EMBEDDING 2-COMPLEXES IN R ${ }^{4}$

Marko Kranjc

Abstract

Using Freedman's results it is not very hard to see that every finite acyclic 2-complex embeds in \mathbf{R}^{4} tamely. In the present paper a relative version of this fact is proved. We also study when a finite acyclic 2complex with one extra 2 -cell attached along its boundary can be tamely embedded in \mathbf{R}^{4}.

Introduction. In 1955 A. Shapiro found a necessary and sufficient condition for the existence of embeddings of finite n-complexes in $\mathbf{R}^{2 n}$ if $n>2$ (see [14]) by defining an obstruction using the ideas of H . Whitney ([15]). The obstruction is not homotopy invariant and is in general quite hard to compute. It is well-known that any finite acyclic n-complex embeds in $\mathbf{R}^{2 n}$ if $n \neq 2$ (see for example [8]). Not long ago it was proved in [16] that any finite n-complex K with $H^{n}(K)$ cyclic embeds in $\mathbf{R}^{2 n}$ if $n>2$.

It is known that any finite acyclic 2-complex can be embedded in \mathbf{R}^{4} (see [9], compare also with [11]). In the present paper the following relative version is proved.

Theorem 1. Let K be a finite 2-complex obtained from a 2 -complex L by adjoining one 2 -cell e along its boundary. If $H^{2}(K)=0$ then any π_{1}-negligible tame embedding of L into \mathbf{R}^{4} can be extended to a π_{1} negligible tame embedding of K into \mathbf{R}^{4}.

Remark. This result is the best possible in the following sense: there exists a π_{1}-negligible embedding of a finite acyclic 2 -complex into \mathbf{R}^{4} which cannot be extended over an additional 2-cell (see $\S 3$).

In $\S 2$ the following is proved:
Theorem 2. Let L be a finite acyclic 2-complex. Suppose K is obtained from L by attaching one additional 2 -cell e_{0} along its boundary. If a regular neighborhood of some complex \tilde{K} which carries the second homology of K can be embedded in some orientable 3-manifold then K can be tamely embedded in \mathbf{R}^{4}.

Note. $\tilde{K} \subset K$ carries the second homology of K if the inclusion $\tilde{K} \subset$ K induces an isomorphism $H_{2}(\tilde{K}) \approx H_{2}(K)$. A regular neighborhood
of \tilde{K} is the union of all simplices in the second barycentric subdivision of K which intersect \tilde{K} (compare with [13], page 33).

The author believes that this theorem is true without the condition on \tilde{K}.

The above results give only tame embeddings because the proofs use the disc embedding theorem (see [6]). To our best knowledge it is not even known if every finite contractible 2-complex embeds in \mathbf{R}^{4} smoothly (i.e.: by an embedding which is smooth on the interior of each cell).

1. Embedding acyclic $\mathbf{2}$-complexes in \mathbf{R}^{4}. In what follows all 2complexes will be finite simplicial or cell complexes. Everything will be smooth or PL except when the results of [5] will be used. All immersions will be regular (i.e.: self-intersections will be transverse and there will be no triple points). Familiarity with the basic work of Freedman and Quinn ([6]) is assumed. We are going to use the disc embedding theorem in the following form:

Theorem (Disc Embedding Theorem). Let M be a simply-connected 4-manifold with boundary, and let $f:\left(D^{2}, \partial D^{2}\right) \rightarrow(M, \partial M)$ be a framed regular immersion which restricts to an embedding on ∂D^{2}. Suppose there exists a transverse sphere S for $f\left(D^{2}\right)$ such that the homological intersection number $S \cdot S$ is even. Then there is a topologically framed disc in M with the same framed boundary as $f\left(\partial D^{2}\right)$; furthermore, the resulting tame disc has a transverse sphere.

Note. If F is a connected surface immersed in a 4-manifold then a transverse sphere for F is an immersed sphere which intersects F transversely in a single point.

A proof of the disc embedding theorem can be found in [5]. However, since our formulation is slightly stronger, a Casson tower has to be constructed more carefully to ensure the existence of the transverse sphere. This can be achieved by using recent techniques of 4 dimensional topology which are described for example in [2] and in [6] (see [11]).

Lemma 1. If $f: K \rightarrow \mathbf{R}^{4}$ is a regular immersion of a 2 -complex K then $H^{2}(f(K))$ is isomorphic to $H^{2}(K)$.

Proof. Since f is a regular immersion, the singular set of f is finite, say $\left\{y_{1}, \ldots, y_{t}\right\}$ and so is each set $f^{-1}\left(y_{i}\right)$. Clearly $f(K)$ is
homeomorphic to $K / f^{-1}\left(y_{1}\right) / \cdots / f^{-1}\left(y_{t}\right)$. Let K_{i} be the set $K / f^{-1}\left(y_{1}\right) / \cdots / f^{-1}\left(y_{i}\right)$. Then $K_{i}=K_{i-1} / f^{-1}\left(y_{i}\right)$. From the exact sequence of the pair $\left(K_{i-1}, f^{-1}\left(y_{i}\right)\right)$ we get the isomorphism $H^{2}\left(K_{i-1}\right)$ $=H^{2}\left(K_{i}\right)$, since $H^{s}\left(f^{-1}\left(y_{i}\right)\right)$ is trivial for $s>0$. It follows that $H^{2}(K)$ $=H^{2}\left(K_{0}\right)=H^{2}\left(K_{t}\right)=H^{2}(f(K))$.

Lemma 2. If K is a 2 -complex and ife is a 2 -cell of K then any embedding of $\overline{K-e}$ in \mathbf{R}^{4} can be extended to an embedding of $\overline{(K-e)} \cup(a$ collar of ∂e in $e)$.

Proof. Let $f: \overline{K-e} \rightarrow \mathbf{R}^{4}$ be an embedding. We can extend f to a regular immersion $g: K \rightarrow \mathbf{R}^{4} . g(e)$ intersects $g(\overline{K-e})$ in finitely many points x_{1}, \ldots, x_{s}. Let X be the set $\left(\bigcup_{i=1}^{s} g^{-1}\left(x_{i}\right)\right) \cap e$. Then X is again a finite set and $g \mid K-X$ is an embedding. Since X is contained in the interior of e, there is a collar A of ∂e in e which does not contain any point of A. Therefore $g \mid(\overline{K-e}) \cup A$ is an embedding.

Lemma 3. Let K be a 2-complex obtained from a 2-complex L by adjoining a single 2-cell e to L along its boundary. Suppose $H^{2}(K)=0$. If A is a collar of de in e then any π_{1}-negligible embedding $f: L \cup A \rightarrow$ \mathbf{R}^{4} can be extended to a π_{1}-negligible embedding $g: K \rightarrow \mathbf{R}^{4}$.

Proof. Let $\alpha=f(\partial A-\partial e)$. Let N be a regular neighborhood of $f(L)$ in \mathbf{R}^{4} containing $f(L \cup A)$ and such that $\alpha=\partial N \cap f(L \cup A)$. Since the embedding f is π_{1}-negligible, $\mathbf{R}^{4}-N$ is simply-connected and therefore α bounds a regularly immersed disc D such that $N \cap \operatorname{int}(D)=\varnothing$.
Since $N \cup D$ retracts to $L \cup A \cup D$, and since $L \cup A \cup D$ is the image of K by a regular immersion, $H^{2}(N \cup D)$ is isomorphic to $H^{2}(K)$, by Lemma 1. Therefore, by Alexander duality, $H_{1}\left(\mathbf{R}^{4}-(N \cup D)\right)$ is trivial. Let $M=\mathbf{R}^{4}-N$. Since $H_{1}(M-D)=0$, there is an orientable surface F embedded in M such that it intersects D transversely in one point (a meridian μ of D bounds an embedded orientable surface in $M-D$, because $H_{1}(M-D)=0$; if we glue to it the disc lying in the fiber of a tubular neighborhood of D, and having μ for its boundary, we get $F)$. Choose a collection of simple closed curves a_{i}, b_{i} on F such that $a_{i} \cap a_{j}=\varnothing, b_{i} \cap b_{j}=\varnothing$, for all i, j, and such that $a_{i} \cap b_{j}=\varnothing$, for $i \neq j$, and a single point if $i=j$, and which generate $H_{1}(F)$. Since each of these curves bounds an immersed disc in M (M is simplyconnected), we can perform a sequence of double surgeries to change F to an immersed sphere S. Move $D-F$ off of S by finger moves of D to get a new immersed disc D which has S for its transverse sphere
(see [2], page 226). Since $S \subset \mathbf{R}^{4}$, the intersection number $S \cdot S$ is zero; therefore we can apply the disc embedding theorem to replace D by a tamely embedded disc which still has a transverse sphere. This defines a π_{1}-negligible extension of f in the obvious way.

Theorem 1 clearly follows from the above lemma. We also get the following two corollaries.

Corollary 1. If K is a 2 -complex such that $H^{2}(K)=0$ then there exists a π_{1}-negligible embedding of K in \mathbf{R}^{4}.

Proof. Let e_{1}, \ldots, e_{r} be the 2 -cells of K, and let

$$
K_{i}=K^{(1)} \cup e_{1} \cup \cdots \cup e_{i} .
$$

Since $H^{3}\left(K, K_{i}\right)=0$, it follows from the cohomology sequence of the pair (K, K_{i}) that $H^{2}\left(K_{i}\right)=0$, for every i.

Let $f_{0}: K^{(1)} \rightarrow \mathbf{R}^{4}$ be some embedding. Clearly f_{0} is π_{1}-negligible. It is enough to show that any π_{i}-negligible embedding $f_{i-1}: K_{i-1} \rightarrow \mathbf{R}^{4}$ can be extended to a π_{1}-negligible embedding $f_{i}: K_{i} \rightarrow \mathbf{R}^{4}$, if $i<r+1$. By Lemma 2 it is possible to extend f_{i-1} over a collar of ∂e_{i} in e_{i}. Then use Lemma 3 to get f_{i}.

Corollary 2. Any acyclic 2-complex can be embedded in \mathbf{R}^{4}.
Remark 1. Any contractible 2 -complex K can be embedded in \mathbf{R}^{4} so that the embedding is π_{1}-negligible and so that the transverse spheres are embedded: Let N be an abstract 4-dimensional regular neighborhood of K. Let D_{i} be a disc transverse to the 2-cell e_{i} of K such that $\partial D_{i} \subset \partial N$. By [5] the double $D(N)$ is homeomorphic to S^{4}. The double $D\left(D_{i}\right)$ is an embedded transverse sphere to e_{i}.

Remark 2. Corollary 2 has a simple proof which was told to the author by Robert Edwards: If K is an acyclic 2-complex let N be an abstract 4-dimensional regular neighborhood of $K . \partial N$ is a homology 3 -sphere, therefore it bounds a contractible 4 -manifold Δ (see [5]). Glue Δ to N along ∂N. The resulting manifold is homeomorphic to S^{4}, K is contained in it. (Compare with [9].)

2. Proof of Theorem 2.

Lemma 1. Suppose V is an orientable 3-manifold such that $H_{1}(V)$ is free and $\mathrm{H}_{2}(V)=0$. If a simple closed curve $C \subset \partial V$ is nullhomologous in ∂V then a basis for $H_{1}(V)$ can be represented by disjoint simple closed curves $\alpha_{1}, \ldots, \alpha_{k}$ contained in $\partial V-C$.

Proof. Suppose we constructed disjoint simple closed curves α_{1}, \ldots, $\alpha_{j-1} \subset \partial V-C, j \leq k$. We are going to define α_{j}. Let W be the manifold obtained by attaching 2 -handles to V along the curves $\alpha_{1}, \ldots, \alpha_{j-1}$ so that the attaching annuli miss C. Thus $C \subset \partial W$. Clearly $H_{1}(W)$ is free and $\mathrm{H}_{2}(W)$ is trivial. Since C is null-homologous in ∂V, it is also null-homologous in ∂W. Therefore it separates ∂W into two components with closures F_{1} and F_{2} (i.e.: $F_{1} \cup F_{2}=\partial W, F_{1} \cap F_{2}=C$).

Since C bounds in $W, H_{1}(W, C)$ is isomorphic to $H_{1}(W)$. The Mayer-Vietoris sequence of the pair $\left\{\left(W, F_{1}\right),\left(W, F_{2}\right)\right\}$ gives us the isomorphism $H_{1}(W, C)=H_{1}\left(W, F_{1}\right) \oplus H_{1}\left(W, F_{2}\right)$, because $H_{2}(W, \partial W) \rightarrow$ $H_{1}(W, C)$ is the zero homomorphism and since $H_{1}(W, \partial W)=H^{2}(W)=$ 0 . Because $H_{1}(W, C)$ is free (being isomorphic to $H_{1}(W)$), so are $H_{1}\left(W, F_{1}\right)$ and $H_{1}\left(W, F_{2}\right)$.

Let $i_{s}: H_{1}\left(F_{s}\right) \rightarrow H_{1}(W)$ be the homomorphism induced by the inclusion $F_{s} \subset W$. Since C is zero in $H_{1}(\partial W), H_{1}(W)$ is isomorphic to $\operatorname{im}\left(i_{1}\right)+\operatorname{im}\left(i_{2}\right)$. Without loss of generality we can assume that $\operatorname{im}\left(i_{1}\right) \neq 0$ (because $\left.H_{1}(W) \neq 0\right)$.

Let x be a non-zero element of $\operatorname{im}\left(i_{1}\right)$. Suppose that $x=n u$ for some primitive element $u \in H_{1}(W)$. Since $H_{1}\left(W, F_{1}\right)$ has no torsion, it follows from the short exact sequence

$$
0 \rightarrow \operatorname{im}\left(i_{1}\right) \rightarrow H_{1}(W) \rightarrow H_{1}\left(W, F_{1}\right) \rightarrow 0
$$

that u has to lie in $\operatorname{im}\left(i_{1}\right)$, for example $u=i_{1}(v)$, for some $v \in H_{1}\left(F_{1}\right)$. Since v is primitive and not homologous to ∂F_{1} in F_{1}, it can be represented by a simple closed curve α_{j} in F_{1} which can easily be made to lie in ∂V (see [11], page 13 or [12]).

Lemma 2. Let V be an orientable 3-manifold such that $H_{1}(V)$ is free and $H_{2}(V)=0$. Suppose C_{1}, \ldots, C_{k} are disjoint simple closed curves in V representing a basis for $H_{1}(V)$.

If C_{0} is a simple closed curve in ∂V which separates ∂V then it is possible to choose framings of C_{1}, \ldots, C_{k} so that C_{0} is slice in the homology 3-sphere Σ obtained from the double $D(V)$ by surgery along the framed curves C_{1}, \ldots, C_{k}. More precisely: Σ bounds a contractible 4-manifold Δ such that C_{0} bounds an embedded disc D in Δ.

Proof. By Lemma 1 it is possible to represent a basis of $H_{1}(V)$ by disjoint simple closed curves A_{1}, \ldots, A_{k} in $\partial V-C$. Let W be the 3-manifold obtained by attaching 2-handles to V along the curves A_{1}, \ldots, A_{k}. Since $\partial W=S^{2}(W$ is acyclic $), C_{0}$ bounds a disc \tilde{D} in ∂W.

Figure 1
$D(W)$ is a homology 3 -sphere. We can think of $D(W)$ as being gotten from $D(V)$ by a sequence of surgeries along the curves A_{1}, \ldots, A_{k}.

Let Σ be a homology 3 -sphere obtained from $D(V)$ by a sequence of surgeries along the framed curves C_{1}, \ldots, C_{1}. The framings will be chosen later.

Since both Σ and $D(W)$ are obtained from $D(V)$ by surgery, there are cobordisms X and Y from $D(V)$ to Σ and to $D(W)$, respectively. We can construct X by attaching 2 -handles to $D(V) \times I$ along $C_{1}, \ldots, C_{k} \subset D(V) \times 1$ and Y by attaching 2 -handles along A_{1}, \ldots, A_{k}, respectively. Let μ_{1}, \ldots, μ_{k} be the meridians of A_{1}, \ldots, A_{k}, respectively. If Y is turned "upside-down" it becomes a cobordism from $D(W)$ to $D(V) . \quad Y$ is constructed from $D(W) \times I$ by attaching 2handles along $\mu_{1}, \ldots, \mu_{k} \subset D(W) \times 1$. If X and Y are glued together along $D(V)$ we get a cobordism Z from $D(W)$ to Σ. To construct Z from $D(W) \times I$ we have to attach 2-handles to $D(W) \times I$ along the curves $C_{1}, \ldots, C_{k}, \mu_{1}, \ldots, \mu_{k} \subset D(W) \times 1 . C_{0} \subset D(V) \times 1 \subset \Sigma$ bounds a disc D in $Z: D$ is the union of $C_{0} \times I \subset D(V) \times I$ and $\tilde{D} \subset D(W) \times 0$.

Let Q be a contractible 4-manifold with boundary $D(W)(Q$ exists by Theorem 1.4^{\prime} of [5]). Let P be the 4 -manifold obtained by gluing Z to Q along $D(W)$. The curves $C_{1}, \ldots, C_{k}, \mu_{1}, \ldots, \mu_{k} \subset D(W)$ bound immersed discs $E_{1}, \ldots, E_{k}, E_{i}^{\prime}, \ldots, E_{k}^{\prime}$, respectively, in Q (see Figure
1). These discs together with the cores of the 2-handles of Z form a collection of immersed spheres $S_{1}, \ldots, S_{k}, S_{i}^{\prime}, \ldots, S_{k}^{\prime}$ in P such that S_{i} corresponds to C_{i} and S_{i}^{\prime} to $\mu_{i}, i=1, \ldots, k$. The spheres $S_{1}^{\prime}, \ldots, S_{k}^{\prime}$ intersect D with zero intersection numbers. All intersections arise from intersections of the meridians μ_{1}, \ldots, μ_{k} with \tilde{D}. By a series of pipings along disjoint arcs in \tilde{D} each S_{i}^{\prime} can be changed to an immersed surface F_{i} disjoint from D, and such that F_{i} intersects F_{j} only in $\operatorname{int}(Q) . F_{1}, \ldots, F_{k}$ represent the same homology classes in $H_{2}(P)$ as $S_{1}^{\prime}, \ldots, S_{k}^{\prime}$. It is possible to represent half of symplectic generators of $H_{1}\left(\bigcup_{i=1}^{k} F_{i}\right)$ by simple closed curves lying in $D(W)=\partial Q$.

Since Q is contractible, each of these curves bounds an immersed disc in Q, missing D. Using these discs we can change each F_{i} into a new immersed sphere S_{i}^{\prime} by performing a sequence of surgeries. Clearly the intersection numbers were not affected by going from the old $S_{i}^{\prime \prime}$'s to the new ones. The spheres $S_{1}, \ldots, S_{k}, S_{1}^{\prime}, \ldots, S_{k}^{\prime}$ represent a basis for $H_{2}(P)$.

Choice of framings for C_{1}, \ldots, C_{k} : Choose them in such a way that $S_{i} \cdot S_{i}=0$, for all $i=1, \ldots, k$.

Finding the intersection numbers $S_{i} \cdot S_{j}^{\prime}$: Suppose $C_{i}=\sum_{j=1}^{k} x_{i j} A_{j}$ in $H_{1}(V)$. Let G_{i} be an oriented surface in V such that $\partial G_{i}=C_{i}-$ $\sum x_{i j} A_{j}$ in $H_{1}(V)$. In $D(W)$ each A_{j} bounds a disc D_{j} such that D_{j}. $\mu_{s}=\delta_{j s}$. Capping off the boundary components of G_{i} corresponding to the curves A_{j}, we get a surface \hat{G}_{i} with boundary C_{i}. Obviously $\hat{G}_{i} \cdot \mu_{j}=x_{i j}$. Therefore $\operatorname{lk}\left(C_{i}, \mu_{j}\right)=x_{i j}$, and thus $S_{i} \cdot S_{j}^{\prime}=x_{i j}$.

We are going to show next that $S_{i}^{\prime} \cdot S_{j}^{\prime}=0$ for all $1 \leq i, j \leq k$. By Poincaré duality $H_{1}(D(V))$ is isomorphic to $H^{2}(D(V))$. Let F_{1}, \ldots, F_{k} be closed surfaces dual to A_{1}, \ldots, A_{k}, respectively, i.e.: $F_{i} \cdot A_{j}=\delta_{i j}$. By a series of pipings on each F_{j} along the curves A_{1}, \ldots, A_{k} we can achieve that $A_{i} \cap F_{j}=\varnothing$ for $i \neq j$, and $A_{i} \cap F_{i}=\{$ point $\}$. Each F_{i}
defines a null-homology of μ_{i} in $D(V)-N\left(\bigcup_{i=1}^{k} A_{i}\right)$, where $N\left(\bigcup_{i=1}^{k} A_{i}\right)$ is a regular neighborhood of $\bigcup_{i=1}^{k} A_{i}$ in $D(V)$. Since μ_{j} can be made to miss F_{i}, the linking numbers $\operatorname{lk}\left(\mu_{i}, \mu_{j}\right)$ are all zero. Therefore $S_{i}^{\prime} \cdot S_{j}^{\prime}=$ 0 for all $1 \leq 1, j \leq k$.
Let now Δ^{\prime} be a regular neighborhood of $Q \cup S_{1} \cup \cdots \cup S_{k} \cup S_{1}^{\prime} \cup \cdots \cup S_{k}^{\prime}$ in $P-D$. Since all the singularities of $\bigcup_{i=1}^{k} S_{i} \cup\left(\bigcup_{j=1}^{k} S_{j}^{\prime}\right)$ lie inside Q, Δ^{\prime} is simply-connected.

Let ($y_{i j}$) be the inverse of the matrix ($x_{i j}$). Pipe together (in Δ^{\prime}) copies of the spheres S_{i} with suitable orientations to get for each i a 2 -sphere \tilde{S}_{i} realizing the element $\sum_{j=1}^{k} y_{i j} S_{j}$ of $H_{2}\left(\Delta^{\prime}\right)$. Then \tilde{S}_{i}. $S_{s}^{\prime}=\sum_{j=1}^{k} y_{i j} x_{j s}=\delta_{i s}$, and $\tilde{S}_{i} \cdot \tilde{S}_{j}=2 \sum_{j<s} y_{i j} y_{i s} S_{j} \cdot S_{s}$. Thus \tilde{S}_{i}. \tilde{S}_{j} is even for all $1 \leq i, j \leq k$. Let $S_{i}^{\prime \prime}$ be the immersed sphere representing the element $\tilde{S}_{i}-(1 / 2)\left(\tilde{S}_{i} \cdot \tilde{S}_{i}\right) S_{i}^{\prime}-\sum_{s>i}\left(\tilde{S}_{i} \cdot \tilde{S}_{s}\right) S_{s}^{\prime}$. Then $S_{i}^{\prime \prime} \cdot S_{j}^{\prime}=\tilde{S}_{i} \cdot S_{j}^{\prime}=\delta_{i j}$, and also $S_{i}^{\prime \prime} \cdot S_{j}^{\prime \prime}=0$, for every i, j. Therefore the conditions of Theorem 1.2 of [5] are satisfied and Δ^{\prime} can be changed into a contractible manifold $\Delta^{\prime \prime}$ by a series of surgeries which do not affect $\partial \Delta^{\prime}$. By gluing $\Delta^{\prime \prime}$ to $P-\Delta^{\prime}$ along $\partial \Delta^{\prime}=\partial \Delta^{\prime \prime}$ we get a contractible manifold Δ with boundary $\Sigma . D$ is the desired slice.

Let L be a simplicial 2-complex, and let $L^{\prime \prime}$ be its second barycentric subdivision. If v is a vertex of L let \tilde{f}_{v} be a regular immersion of the link $\operatorname{lk}(v)$ of v in $L^{\prime \prime}$ into S^{2}. Thus for every vertex \bar{v} of $\operatorname{lk}(v) \cap L^{(1)}$, $\tilde{f}_{v}(\bar{v})$ has disc neighborhood $D_{\bar{v}}$ in S^{2} such that $\tilde{f}_{v} \mid \tilde{f}_{v}^{-1}\left(D_{\bar{v}}\right)$ is one-toone. Since the star $\operatorname{st}(v)$ of v in $L^{\prime \prime}$ has a natural cone structure over $1 \mathrm{k}(v)$, and since B^{3} is also a cone over S^{2}, \tilde{f}_{v} can be extended to a map $f_{v}: \operatorname{st}(v) \rightarrow B_{v} \approx B^{3}$ in a natural way.

For each edge s of L with vertices v_{0} and v_{1} attach a 1 -handle h_{s} along $D_{\bar{v}_{0}} \cup D_{\bar{v}_{1}}$, where $\bar{v}_{i}=\operatorname{st}\left(v_{i}\right) \cap L^{(1)}$, to get (an orientable) handlebody H. The mapping $f^{\prime}=\coprod_{V \in L^{(0)}} f_{v}: \coprod_{V \in L^{(0)}} B_{v} \rightarrow H$ can be extended over the 1 -handles as follows:

If s is an edge of L with vertices v_{0} and v_{1}, let Z_{s} be the star of its barycenter in $L^{\prime \prime}$, and let $X_{i}=Z_{s} \cap \operatorname{st}\left(v_{i}\right)$. There exists a homeomorphism $\varphi_{s}: X_{0} \times I \rightarrow Z_{s}$ which is identity on $X_{0} \times 0$ and which carries $X_{0} \times 1$ onto X_{1}. Let $\psi_{s}: D^{2} \times I \rightarrow h_{s}$ be a homeomorphism such that $\psi_{s}^{-1} f^{\prime}\left(X_{i}\right)$ is a union of straight rays from the origin to the boundary of $D^{2} \times i$. f^{\prime} can be extended over Z_{s}. For example, if $\psi_{s}^{-1} f^{\prime} \varphi_{s}(z, i)=\left(\chi_{i}(z), i\right), z \in X_{0}$, define a map $f_{s}: Z_{s} \rightarrow h_{s}$ by

$$
f_{s} \varphi_{s}(z, t)=\psi_{s}\left(\exp (i \alpha(z) t) \cdot \chi_{0}(z), t\right)
$$

where $t \in I, z \in X_{0}$, and $\chi_{1}(z) /\left|\chi_{1}(z)\right|=\exp (i \alpha(z)) \cdot \chi_{0}(z) /\left|\chi_{0}(z)\right| . f_{s}$ is an extension of f^{\prime} over Z_{s}.

Any such family of maps $\left\{f_{v}\right\}_{v \in L^{(0)}}$ and $\left\{f_{s}\right\}_{s \in L^{(1)}-L^{(0)}}$ defines a mapping f of a regular neighborhood U of $L^{(1)}$ to a handlebody H such that $f \mid \operatorname{Fr}(U): \operatorname{Fr}(U) \rightarrow \partial H$ is a regular immersion and such that $f \mid L^{(1)}$ is an embedding $(\operatorname{Fr}(V)$ denotes the frontier of U in $K)$. Furthermore, by slight adjustments, $\operatorname{Fr}(U)$ can be made a union of smooth circles, and $f \mid \operatorname{Fr}(U)$ a smooth regular immersion. f can also be made smooth on $U-L^{(1)}$ and on the interior of each edge of L.

Both U and H have a natural mapping cylinder structure over $L^{(1)}$ (i.e.: U and H are homeomorphic to mapping cylinders of natural projections $\operatorname{Fr}(U) \rightarrow L^{(1)}$ and $\partial H \rightarrow L^{(1)}=f\left(L^{(1)}\right)$, respectively). These structures can be made compatible with f in the following sense. If $p: \operatorname{Fr}(U) \times I \rightarrow U$ and $q: \partial H \times I \rightarrow H$ are the projections induced by the two mapping cylinder structures such that $p(\operatorname{Fr}(U) \times 0)=$ $q(\partial H \times 0)=L^{(1)}$ then $q(f(x), t)=f(p(x, t))$, for $x \in \operatorname{Fr}(U)$.

Let e_{1}, \ldots, e_{g} be the 2-cells of L. Denote by α_{i} the intersection $e_{i} \cap \operatorname{Fr}(U)$. Thus L is obtained from U by attaching discs along $\bigcup_{i=1}^{g} \alpha_{i}$ via homeomorphisms.

The immersion $f \mid \operatorname{Fr}(U): \operatorname{Fr}(U) \rightarrow H$ can be changed to an embedding $\tilde{F}: \operatorname{Fr}(U) \rightarrow H$, by pushing parts of $f(\operatorname{Fr}(U))$ slightly inside H near the intersections. \tilde{F} in turn defines an embedding $F: U \rightarrow H \times I$ as follows:

$$
F(p(x, t))=(q(\tilde{F}(x), t),(t+1) / 2), \quad t \in I, x \in \operatorname{Fr}(U)
$$

Clearly $F(\operatorname{Fr}(U)) \subset H \times 1$, and $F(\operatorname{int}(U)) \subset \operatorname{int}(H) \times[1 / 2,1) \subset$ $\operatorname{int}(H \times I)$. Denote by C_{i} the curve $F\left(\alpha_{i}\right) \subset H \times 1$. If we choose a framing for each C_{i}, and attach 2-handles along C_{1}, \ldots, C_{g} we get a 4-manifold $N . F$ can be extended to an embedding $\hat{F}: L \rightarrow N$ by mapping $e_{i} \cap(\overline{L-U})$ onto the core of the corresponding 2-handle.
∂N is obtained from $\partial(H \times I)=D(H)(=$ the double of H) by a sequence of surgeries along the framed curves C_{1}, \ldots, C_{g}.

Proof of Theorem 2. Let $e_{0}, e_{k+1}, \ldots, e_{g}$ be the 2-cells of \tilde{K}, and let e_{1}, \ldots, e_{k} be the remaining 2 -cells of K. Let \tilde{U} be a regular neighborhood of \tilde{K} in K. Suppose \tilde{U} is contained in an orientable 3-manifold M. Let \tilde{H} be a regular neighborhood of $\tilde{K}^{(1)}$ in M such that $\tilde{H} \cap \tilde{U}$ is a regular neighborhood of $\tilde{K}^{(1)}$ in K. The inclusion $\tilde{H} \cap \tilde{U} \subset \tilde{H}$ defines mappings $f_{v}, v \in \tilde{K}^{(0)}$ and $f_{s}, s \in \tilde{K}^{(1)}-\tilde{K}^{(0)}$. For the rest of the vertices and edges of K define maps f_{v} and f_{s} in any way as described above.

As above, these maps define a mapping $f: U \rightarrow H$ of a regular neighborhood U of $K^{(1)}$ in K into a handlebody $H . f$ restricts to an embedding on $\alpha_{0} \cup\left(\bigcup_{i=k+1}^{g} \alpha_{i}\right)$ such that

$$
f\left(\alpha_{0} \cup\left(\bigcup_{i=k+1}^{g} \alpha_{i}\right)\right) \cap f\left(\bigcup_{i=1}^{k} \alpha_{i}\right)=\varnothing
$$

(α_{i} are as above). As above f induces an embedding $F: U \rightarrow H \times I$. Clearly $C_{i}=f\left(\alpha_{i}\right)$, for $i=0, k+1, \ldots, g$. Since L is acyclic, and since \tilde{K} carries $H^{2}(K), C_{0}=\sum_{i=k+1}^{g} \alpha_{i} C_{i}$ in $H_{1}(H)$. We want to show now that $C_{0}=\sum_{i=k+1}^{g} \alpha_{i} C_{i}$ also in $H_{1}(\partial H)$. Suppose B_{1}, \ldots, B_{g} is a basis of $\operatorname{ker}(i)$ (where $i: H_{1}(\partial H) \rightarrow H_{1}(H)$ is induced by the inclusion $\partial H \subset H)$ dual to C_{1}, \ldots, C_{g}, i.e.: $C_{i} \cdot B_{j}=\delta_{i j}$ in $H_{1}(\partial H)$. If $C_{0}=\sum_{i=k+1}^{g} \alpha_{i} C_{i}+\sum_{i=1}^{g} \beta_{i} B_{i}$ in $H_{1}(\partial H)$ then $C_{0} \cdot C_{j}=-\beta_{j}=0$ which proves the claim. Attach 2-handles to framed curves C_{1}, \ldots, C_{g} in $H \times 1$ to get a 4-manifold N and an extension of the embedding F to an embedding $\tilde{F}: L \cup U \rightarrow N, \tilde{F}\left(\alpha_{0}\right)=C_{0} \subset \partial N . \partial N$ is a homology 3 -sphere Σ. It is obtained from $D(H)$ by surgeries along C_{1}, \ldots, C_{g}. Let V be the 3 -manifold gotten from H by attaching 2 -handles along the simple closed curves $C_{k+1}, \ldots, C_{g} \subset \partial H$. Since $C_{0}=\sum_{i=k+1}^{g} \alpha_{i} C_{i}$ in $H_{1}(\partial H), C_{0}$ separates ∂V. Clearly $H_{1}(V)$ is free and $H_{2}(V)=0$. Let $W=D(V)$. W can be obtained from $D(H)$ by surgeries along C_{k+1}, \ldots, C_{g}. Therefore Σ can be obtained from W by surgeries along C_{1}, \ldots, C_{k}. By Lemma 2, the framings of C_{1}, \ldots, C_{k} can be chosen so that C_{0} is slice in Σ.

Let Δ be a contractible 4-manifold with boundary Σ, such that C_{0} bounds an embedded disc D in Δ. If we glue N to Δ along Σ we get a homotopy 4 -sphere which is therefore an S^{4} (see [5]). The embedding F can be extended to an embedding of K by sending $\overline{e_{0}-U}$ onto D.

Remark 1. If K is a generic 2 -complex, i.e.: if it is locally homeomorphic to one of the following spaces

then it is possible to determine whether it can be embedded in some 3-manifold as follows: It is easy to embed a closed regular neighborhood U of the intrinsic 1-skeleton G of K (i.e.: the set of non-manifold
points of K-compare with [7]) in a (possibly nonorientable) handlebody \bar{H} so that $\operatorname{Fr}(U) \subset \partial \bar{H}$, and so that G is a spine of $\bar{H} . K$ is obtained from U by attaching connected surfaces F_{1}, \ldots, F_{t} to $\operatorname{Fr}(U)$ along $\partial F_{1} \cup \cdots \cup \partial F_{t}=U \cap(\overline{K-U})$. Let $w_{1} \in H^{1}(\bar{H})$ be the orientation class: $w_{1}(C)$ is equal to 1 if C passes through nonorientable 1 -handles of \bar{H} an odd number of times, otherwise it is $0 . K$ can be embedded in some 3-manifold if and only if $w_{1}\left(\partial F_{1}\right)=\cdots=w_{1}\left(\partial F_{t}\right)=0$.

Remark 2. It is known that any finite 2 -complex K such that its intrinsic 1-skeleton embeds in \mathbf{R}^{2} can be embedded in \mathbf{R}^{4}. A discussion in this direction can be found in [7].
3. An example. In this section we give an example of a 2 -complex K obtained from an acyclic 2 -complex L by adjoining one 2 -cell e_{0}, and a π_{1}-negligible embedding $f: L \rightarrow \mathbf{R}^{4}$ which cannot be extended to an embedding of K.

Let K be the complex obtained from a wedge of two circles by attaching three 2 -cells \tilde{e}_{0}, e_{1}, and e_{2} via immersions as follows:

Let U be a regular neighborhood of $K^{(1)}$ in K, and let $L=U \cup e_{1} \cup e_{2}$. If $\alpha_{0}=\operatorname{Fr}(U) \cap \tilde{e}_{0}$ then K is obtained from L by attaching a 2-cell e_{0} along its boundary to α_{0}. Define an embedding of $\operatorname{Fr}(U)$ in a
handlebody H with spine $S^{1} \vee S^{1}\left(=K^{(1)}\right)$ as follows:

Figure 2
As in $\S 2$ this defines an embedding $\tilde{f}: U \rightarrow H \times I$. Attach 2-handles to $\tilde{f}\left(\alpha_{1}\right)$ and $\tilde{f}\left(\alpha_{2}\right)$ with framings indicated in Figure 2 by the dotted circles to get B^{4}. The cores of the two 2-handles can be used to extend \tilde{f} to a π_{1}-negligible embedding $f: L \rightarrow B^{4} \subset \mathbf{R}^{4} . f\left(\alpha_{0}\right)$ is the trefoil knot in the boundary of B^{4}. Therefore it is not slice and thus f cannot be extended to an embedding of K.

References

[1] A. Casson, Three lectures on new infinite constructions in 4-dimensional manifolds, Notes prepared by L. Guillou, Prepublications Orsay 81T06.
[2] R. Edwards, The solution of the 4-dimensional annulus conjecture (after Frank Quinn), Contemporary Math., 35 (1984), 211-264.
[3] A. Flores, Über die Existenz n-dimensionaler Komplexe, die nicht in den $R_{2 n}$ topologish einbettbar sind, Erbeg. math Kolloq., 5 (1932/33), 17-24.
[4] M. Freedman, A surgery sequence in dimension four, the relations with knot concordance, Invent. Math., 68 (1982), 195-226.
[5] ___, The topology of 4-manifolds, J. Differential Geom., 17 (1982), 357-453.
[6] M. Freedman and F. Quinn, Topology of 4-manifolds, to appear as an Annals of Mathematics Study.
[7] D. Gillman, Generalising Kuratowski's theorem from R^{2} to R^{4}, to appear.
[8] K. Horvatić, on embedding polyhedra and manifolds, Trans. Amer. Math. Soc., 157 (1971), 417-436.
[9] R. Kirby, 4-manifold problems, Contemporary Math., 35 (1984), 513-528.
\qquad , Problems in low dimensional manifold theory, Proc. Symp. Pure Math., 32 (1978), 273-322.
[11] M. Kranjc, Thesis, UCLA, 1985.
[12] W. Meeks, III and J. Patrusky, Representing homology classes by embedded circles on a compact surface, Illinois J. Math., 22 (1978), 262-269.
[13] C. Rourke and B. Sanderson, Introduction to Piecewise-Linear Topology, Sprin-ger-Verlag, 1972.
[14] A. Shapiro, Obstructions to the imbedding of a complex in a Euclidean space, I. The first obstruction, Ann. of Math., 66, No. 2 (1957), 256-269.
[15] H. Whitney, The self-intersections of a smooth n-manifold in $2 n$-space, Ann. of Math., 45 (1944), 220-246.
[16] D. Wilson, Embedding polyhedra in Euclidean space, manuscript.
Received December 9, 1986 and in revised form October 5, 1987.
Western Illinois University
Macomb, IL 61455

