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EMBEDDING 2-COMPLEXES IN R4

MARKO KRANJC

Using Freedman's results it is not very hard to see that every finite
acyclic 2-complex embeds in R4 tamely. In the present paper a relative
version of this fact is proved. We also study when a finite acyclic 2-
complex with one extra 2-cell attached along its boundary can be
tamely embedded in R4.

Introduction. In 1955 A. Shapiro found a necessary and sufficient
condition for the existence of embeddings of finite ^-complexes in
R2* if n > 2 (see [14]) by defining an obstruction using the ideas of H.
Whitney ([15]). The obstruction is not homotopy invariant and is in
general quite hard to compute. It is well-known that any finite acyclic
n -complex embeds in R2" \ίnφ2 (see for example [8]). Not long ago
it was proved in [16] that any finite n-complex K with Hn(K) cyclic
embeds in R2n ifn>2.

It is known that any finite acyclic 2-complex can be embedded in R4

(see [9], compare also with [11]). In the present paper the following
relative version is proved.

THEOREM 1. Let K be a finite 2-complex obtained from a 2-complex
L by adjoining one 2-cell e along its boundary. IfH2{K) = 0 then any
π{-negligible tame embedding of L into R4 can be extended to a %\-
negligible tame embedding ofK into R4.

REMARK. This result is the best possible in the following sense:
there exists a %\ -negligible embedding of a finite acyclic 2-complex
into R4 which cannot be extended over an additional 2-cell (see §3).

In §2 the following is proved:

THEOREM 2. Let L be a finite acyclic 2-comρlex. Suppose K is ob-
tained from L by attaching one additional 2-cell e$ along its boundary.
If a regular neighborhood of some complex K which carries the second
homology of K can be embedded in some orientable 3-manifold then
K can be tamely embedded in R4.

Note. K c K carries the second homology of K if the inclusion K c
K induces an isomorphism H2(K) « HiiK). A regular neighborhood
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of K is the union of all simplices in the second barycentric subdivision
oϊ K which intersect K (compare with [13], page 33).

The author believes that this theorem is true without the condition
onK.

The above results give only tame embeddings because the proofs
use the disc embedding theorem (see [6]). To our best knowledge it
is not even known if every finite contractible 2-complex embeds in R4

smoothly (i.e.: by an embedding which is smooth on the interior of
each cell).

1. Embedding acyclic 2-complexes in R4 In what follows all 2-
complexes will be finite simplicial or cell complexes. Everything will
be smooth or PL except when the results of [5] will be used. All im-
mersions will be regular (i.e.: self-intersections will be transverse and
there will be no triple points). Familiarity with the basic work of
Freedman and Quinn ([6]) is assumed. We are going to use the disc
embedding theorem in the following form:

THEOREM (Disc Embedding Theorem). Let Mbea simply-connected
4-manifold with boundary, and let f: (D2, dD2) -» (M, dM) be a framed
regular immersion which restricts to an embedding on dD2. Suppose
there exists a transverse sphere S for f{D2) such that the homological
intersection number S S is even. Then there is a topologically framed
disc in M with the same framed boundary as f(dD2); furthermore, the
resulting tame disc has a transverse sphere.

Note. If F is a connected surface immersed in a 4-manifold then
a transverse sphere for F is an immersed sphere which intersects F
transversely in a single point.

A proof of the disc embedding theorem can be found in [5]. How-
ever, since our formulation is slightly stronger, a Casson tower has
to be constructed more carefully to ensure the existence of the trans-
verse sphere. This can be achieved by using recent techniques of 4-
dimensional topology which are described for example in [2] and in
[6] (see [11]).

LEMMA l.Iff:K-^R4isa regular immersion of a 2-complex K
then H2(f(K)) is isomorphic to H2(K).

Proof Since / is a regular immersion, the singular set of / is
finite, say {y\,...,yt} and so is each set f~ι(yi). Clearly f(K) is
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homeomorphic to K/f~ι(yι)/-'/f"ι(yt). Let Kt be the set
K/f-χ(yι)/ -/f-ι(yί). Then Kt = K^/Γ^yi). From the exact
sequence of the pair (Λ^_i, Z"1 (y, )) we get the isomorphism H2(K^ι)
= H2{Ki), since i/ 5 (/~ l (y,)) is trivial for 5 > 0. It follows that H2(K)

LEMMA 2. IfK is a 2-complex and ife is a 2-cell ofK then any em-
bedding of K -e in R4 can be extended to an embedding of
(K-e) U {a collar ofde in e).

Proof Let / : K-e -» R4 be an embedding. We can extend / to
a regular immersion g: K —• R4. g(e) intersects g(K - e) in finitely
many points X\,...,xs. Let X be the set ((JJ=1 #"* (*/)) Πe. Then X is
again a finite set and g\K - X is an embedding. Since X is contained
in the interior of e, there is a collar ̂ 4 of de in e which does not contain
any point of A. Therefore g\(K - e) U A is an embedding.

LEMMA 3. Lei K be a 2-complex obtained from a 2-complex L by
adjoining a single 2-cell e to L along its boundary. Suppose H2(K) = 0.
If A is a collar ofde in e then any π\-negligible embedding f:LuA->
R4 can be extended to a π{-negligible embedding g: K -• R4.

Proof Let a = f(dA-de). Let N be a regular neighborhood of f(L)
in R4 containing f(LuA) and such that a = dNnf{LuA). Since the
embedding / is π\ -negligible, R4-iV is simply-connected and therefore
a bounds a regularly immersed disc D such that N Π int(Z>) = 0.

Since NuD retracts to LuAuD, and since LuAUD is the image
of K by a regular immersion, H2(N u Z>) is isomorphic to H2(K), by
Lemma 1. Therefore, by Alexander duality, i/i(R4-(iVΌZ>)) is trivial.
Let Λf = R4 - N. Since #1 (M - £>) = 0, there is an orientable surface
F embedded in M such that it intersects D transversely in one point
(a meridian μ of D bounds an embedded orientable surface in Λ/-D,
because H\ (M - D) = 0; if we glue to it the disc lying in the fiber of
a tubular neighborhood of 2), and having μ for its boundary, we get
F). Choose a collection of simple closed curves au &/ on F such that
en n aj = 0, bi Π bj = 0, for all /, j , and such that α, Π &/ = 0, for
1 ^ j , and a single point if / = j , and which generate H\{F). Since
each of these curves bounds an immersed disc in M (M is simply-
connected), we can perform a sequence of double surgeries to change
F to an immersed sphere S. Move D - F off of S by finger moves of
D to get a new immersed disc D which has S for its transverse sphere



304 MARKO KRANJC

(see [2], page 226). Since S c R4, the intersection number S S is
zero; therefore we can apply the disc embedding theorem to replace D
by a tamely embedded disc which still has a transverse sphere. This
defines a π\ -negligible extension of / in the obvious way.

Theorem 1 clearly follows from the above lemma. We also get the
following two corollaries.

COROLLARY 1. IfK is a 2-complex such that H2{K) = 0 then there
exists a π\-negligible embedding ofK in R4.

Proof. Let e\,...,erbe the 2-cells of K, and let

Since H3(K,Ki) = 0, it follows from the cohomology sequence of the
pair (K, Kt) that H2(Ki) = 0, for every i.

Let f0: K^ —• R4 be some embedding. Clearly f0 is πx-negligible.
It is enough to show that any π -negligible embedding f^i: K^\ -» R4

can be extended to a π\ -negligible embedding f ί: Kt —> R4, if / < r +1.
By Lemma 2 it is possible to extend f- \ over a collar of cte, in ex•. Then
use Lemma 3 to get f.

COROLLARY 2. Any acyclic 2-complex can be embedded in R4.

REMARK 1. Any contractible 2-complex K can be embedded in
R4 so that the embedding is π\ -negligible and so that the transverse
spheres are embedded: Let N be an abstract 4-dimensional regular
neighborhood of K. Let Dt be a disc transverse to the 2-cell et of K
such that dDi c dN. By [5] the double D(N) is homeomorphic to S4.
The double /)(/)/) & a n embedded transverse sphere to et.

REMARK 2. Corollary 2 has a simple proof which was told to the
author by Robert Edwards: If K is an acyclic 2-complex let iV be an
abstract 4-dimensional regular neighborhood of K. dN is a homology
3-sphere, therefore it bounds a contractible 4-manifold Δ (see [5]).
Glue Δ to N along dN. The resulting manifold is homeomorphic to
S 4 , K is contained in it. (Compare with [9].)

2. Proof of Theorem 2.

LEMMA 1. Suppose V is an orientable 3-manifold such that H\{V)
is free and Hι(V) = 0. If a simple closed curve C c dV is null-
homologous in dV then a basis for H\ (V) can be represented by disjoint
simple closed curves a\,..., α^ contained in dV - C.
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Proof. Suppose we constructed disjoint simple closed curves α l f . . . ,
αy_i cdV-C, j <k. We are going to define α r Let W be the mani-
fold obtained by attaching 2-handles to V along the curves aχ>..., a/_i
so that the attaching annuli miss C. Thus C c dW. Clearly Hχ[W)
is free and H2(W) is trivial. Since C is null-homologous in dV, it
is also null-homologous in dW. Therefore it separates dW into two
components with closures F\ and F2 (i.e.: F\ UF2 = dW, F\ ΠF2 = C).

Since C bounds in JF, Hχ{WC) is isomorphic to //i(W0 The
Mayer-Vietoris sequence of the pair {(W,Fχ), (fyF2)} gives us the iso-
morphism Hx{tyC) = Hι(tyFι)eHι(φF2), because H2{WfdW) ~+
HX{WC) is the zero homomorphism and since Hχ{WfdW) = H2(W) =
0. Because Hχ(fyC) is free (being isomorphic to H\(W))9 so are
H^WFr) and Hι(WF2).

Let /5: H\(FS) —• //i(W) be the homomorphism induced by the
inclusion Fs c fF. Since C is zero in H\(dW)9 Hχ(W) is isomorphic
to im(/i) + im(z2). Without loss of generality we can assume that
im(ιΊ) φ 0 (because HX{W) φ 0).

Let x be a non-zero element of im(/i). Suppose that x = nu for
some primitive element u E Hχ(W). Since H\(tyF\) has no torsion,
it follows from the short exact sequence

0 -• im(/i) -> Hχ{W) -* Hχ{tyFχ) -+ 0

that u has to lie in im(/i), for example u = iχ(v), for some v G Iίχ(F\).
Since v is primitive and not homologous to dF\ in F\, it can be rep-
resented by a simple closed curve α y in F\ which can easily be made
to lie in dV (see [11], page 13 or [12]).

LEMMA 2. Let V be an orientable 3-manifold such that Hχ{V) is free
and H2(V) = 0. Suppose Q , . . . , Q are disjoint simple closed curves
in V representing a basis for H\(V).

If Co is a simple closed curve in dV which separates dV then it
is possible to choose framings 0/* CΊ,. . . , Q so that Co is slice in the
homology 3-sphere Σ obtained from the double D(V) by surgery along
the framed curves Cχt..., Q . More precisely: Σ bounds a contractible
4-manifold A such that Co bounds an embedded disc D in Δ.

Proof By Lemma 1 it is possible to represent a basis of Hχ{V)
by disjoint simple closed curves A\,...,Ak in dV — C. Let W be
the 3-manifold obtained by attaching 2-handles to V along the curves
Alf..., Ak. Since dW = S2 (W is acyclic), Co bounds a disc D in dW.
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FIGURE 1

D(W) is a homology 3-sphere. We can think of D(W) as being gotten
from D(V) by a sequence of surgeries along the curves A\,...,Ak.

Let Σ be a homology 3-sphere obtained from D(V) by a sequence
of surgeries along the framed curves C\,...,C\. The framings will be
chosen later.

Since both Σ and D{W) are obtained from D(V) by surgery, there
are cobordisms X and Y from D(V) to Σ and to D{W), respec-
tively. We can construct X by attaching 2-handles to D{V) x I along
C\,...,Ck cD(V)xl and Y by attaching 2-handles along Ah..., Ak,
respectively. Let μ\,...,μk be the meridians of A\,...,Ak, respec-
tively. If Y is turned "upside-down" it becomes a cobordism from
D(W) to D(V). Y is constructed from D[W) x / by attaching 2-
handles along μh...tμk c D{W) x 1. If X and F are glued together
along D(V) we get a cobordism Z from D(W) to Σ. To construct Z
from D(W) x / we have to attach 2-handles to Z>(fF) x / along the
curves Ch...,Ck, μh...tμk cD(W)x 1. Co cD(V) x 1 cΣbounds
a disc DinZ: D is the union of Co x / C D{V)xI and Z) c Z>(M )̂ x 0.

Let β be a contractible 4-manifold with boundary D(WΓ) (β exists
by Theorem 1.4' of [5]). Let P be the 4-manifold obtained by gluing Z
to Q along Z)(W) τ h e curves C{,..., Q , μh...,μk c D(W) bound
immersed discs E\,...fEk,E'i,...,E'k, respectively, in Q ( s ee Figure
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1). These discs together with the cores of the 2-handles of Z form a
collection of immersed spheres Sιf...fS/C9S

f

it...,S
t

kinP such that S/
corresponds to C, and S to μ/? i = 1,...,k. The spheres S[,...,S'k
intersect D with zero intersection numbers. All intersections arise
from intersections of the meridians μ\,...,μk with D. By a series of
pipings along disjoint arcs in D each S can be changed to an immersed
surface /•} disjoint from Z>, and such that i7/ intersects Fj only in
int(Q). F\,...,Fk represent the same homology classes in H2(P) as
S[,...,Sf

k. It is possible to represent half of symplectic generators of
#i(U/=i Ή) b y simple closed curves lying in D(W) = dQ.

s!

-D

a basis element for Hi (F2- Π Z)

Since Q is contractible, each of these curves bounds an immersed
disc in β, missing D. Using these discs we can change each Ft into
a new immersed sphere S't by performing a sequence of surgeries.
Clearly the intersection numbers were not affected by going from the
old Sfs to the new ones. The spheres S\,...,Sk, S[,...,S'k represent
a basis for H2{P).

Choice of framings for C\9..., Q : Choose them in such a way that
St Si = 0, for a l l / = \,...,k.

Finding the intersection numbers Si S'y. Suppose Q = YJ]=\ XijAj
in H\{V). Let Gt be an oriented surface in V such that dGi = Ci -
ΣxijAj in H\(V). In D(W) each ^4; bounds a disc Z)7 such that Dj
^ 5 = SjS. Capping off the boundary components of Gf corresponding
to the curves Aj, we get a surface Gz with boundary Q. Obviously
Gi //7 = Xij. Therefore lk(C, , //7) = x / ;, and thus 5,- Sj = X/7.

We are going to show next that S[ Sj = 0 for all 1 < /, j < k. By
Poincare duality Hx {D(V)) is isomorphic toH2{D(V)). Let F 1 ? . . . , i7^
be closed surfaces dual to A\,..., Ak, respectively, i.e.: i7/ Aj = δij.
By a series of pipings on each Fj along the curves A\,...fAk we can
achieve that At n Fj = 0 for / φ j , and A\ Π i7/ ={point}. Each Ft
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defines a null-homology of/// in D{V)-N([fi=x Afi, where Λ (̂U?=i At)
is a regular neighborhood of (J*=i ^/ in Z)(F). Since μ7 can be made to
miss i*/, the linking numbers lk(μ/,μy ) are all zero. Therefore S^-Sj =
0 for all l<l,j<k.

Let now Δ; be a regular neighborhood of Q uSΊ U US* US} U U5[
in P - D. Since all the singularities of (J/=i S/ U flj*=i S'j) lie inside
Q, Δ' is simply-connected.

Let (yij) be the inverse of the matrix (xzy). Pipe together (in Δ')
copies of the spheres Si with suitable orientations to get for each i
a 2-sphere 5Z realizing the element Σk

j=\ ytjSj of H2(Ar). Then St

Sj = Σ{=i W * = <̂> a n d $ * SJ = 2 Σy<5 W&5!, * *• τ h u s $ *
Sj is even for all 1 < i9 j < k. Let 5?' be the immersed sphere
representing the element Si - (1/2)(5/ 5/)5? - ΣJ>/(^Ϊ * ^ ) 5 i τ h e n

5? 5j = S| S'j = J/y, and also S? 5? = 0, for every i, 7. Therefore the
conditions of Theorem 1.2 of [5] are satisfied and Δ; can be changed
into a contractible manifold A" by a series of surgeries which do not
affect dA'. By gluing A" to P-Δ' along dA! = dA" we get a contractible
manifold Δ with boundary Σ. D is the desired slice.

Let L be a simplicial 2-complex, and let L" be its second barycentric
subdivision. If v is a vertex of L let fv be a regular immersion of the
link lk(v) of v in L" into S2. Thus for every vertex v of lk(v) Π lSι\
/v(v) has disc neighborhood £>γ in *S2 such that fv\f~ι(Dγ) is one-to-
one. Since the star st(v) of v in Ln has a natural cone structure over
lk(v), and since B3 is also a cone over S2, fv can be extended to a map
fv: st(v) —• 5V « J53 in a natural way.

For each edge s of L with vertices VQ and vi attach a 1-handle hs

along Dγ0 u ZJy,, where 7/ = st(v/) Π Lί1), to get (an orientable) han-
dlebody H. The mapping f = LIκeL«»/v: \lveD<»Bv "^ ^ c a n ^ e

extended over the 1-handles as follows:
If s is an edge of L with vertices v0 and vi, let Zs be the star of

its barycenter in L"9 and let X; = Zs n st(v ). There exists a home-
omorphism φs: Xo x I —> Zs which is identity on I o x 0 and which
carries Z o

 x 1 o n t o ^i Let ψs: D
2 x / —• hs be a homeomorphism

such that ψ~xf(Xϊ) is a union of straight rays from the origin to the
boundary of D2 x /. / ' can be extended over Zs. For example, if
ΨΓxf<Ps{z, i) = (#/(*), 0» z e ^o? define a map fs: Zs->hs by

fs<Ps(z, t) = ^(exp(ια(z)ί) / 0 ( ^ 0

where / G / , z 6 4 and *i(z)/|/i(z)| = exp(ia(z)) χo(z)/\χo{z)\. fs

is an extension of f over Z5.
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Any such family of maps {fv}veu°) a n d {fs}seuι)-u°) defines a map-
ping / of a regular neighborhood U of L^ to a handlebody H such
that f\Fτ(U): Fr(C/) -> d/f is a regular immersion and such that
/|L ( 1 ) is an embedding (Fr(F) denotes the frontier of U in K). Fur-
thermore, by slight adjustments, Fr(£/) can be made a union of smooth
circles, and f\ Fr(J7) a smooth regular immersion. / can also be made
smooth on U - L^ and on the interior of each edge of L.

Both U and H have a natural mapping cylinder structure over Z/1)
(i.e.: U and 7/ are homeomorphic to mapping cylinders of natural pro-
jections Fr(t7) -+ LW and dH -> £,0) = f{U% respectively). These
structures can be made compatible with / in the following sense. If
p: Fv(U) x / —• U and q: dH x / —• H are the projections induced
by the two mapping cylinder structures such that p(Fr(C/) x 0) =
q{dH x 0) = Lθ> then «(/(*), ί) = /(/>(*, ί)), for JC G Fr(C/).

Let e\,...,eg be the 2-cells of L. Denote by α, the intersection
e/nFr(ί/). Thus L is obtained from U by attaching discs along \Jf=ι oti
via homeomorphisms.

The immersion f\ Fr(C/): Fr(C/) —• //" can be changed to an embed-
ding F: Fr(C/) -^ /ί, by pushing parts of /(Fr(C/)) slightly inside 7/
near the intersections. F in turn defines an embedding F: U ^ H xl
as follows:

F(p(x, ή) = (q(F(x), t), (t + l)/2), t e /, x e Fτ(U).

Clearly F(Fτ(U)) C H x 1, and F(int(C/)) c int(/ί) x [1/2,1) c
int(// x /). Denote by C, the curve F(α/) c f f x l . If we choose
a framing for each Q, and attach 2-handles along d,..., Q we get
a 4-manifold iV. F can be extended to an embedding F: L -• iV by
mapping e, Π ( L - 17) onto the core of the corresponding 2-handle.

9ΛΓ is obtained from d(H x /) = D(/ί) (=the double of if) by a
sequence of surgeries along the framed curves C\,...,Cg.

Proof of Theorem 2. Let ^o, fy+i,..., ^ be the 2-cells of K, and let
^i,..., e^ be the remaining 2-cells of K. Let Ϊ7 be a regular neighbor-
hood of K in K. Suppose U is contained in an orientable 3-manifold
M. Let H be a regular neighborhood of K^ in M such that H Γ)U
is a regular neighborhood of £W in K. The inclusion H nϋ c H
defines mappings /v, v e K^ and ^ , s € £ ( 1 ) - ^ ( 0 ) . For the rest
of the vertices and edges of K define maps fv and fs in any way as
described above.
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As above, these maps define a mapping / : £ / — • / / of a regular

neighborhood U of K^ in K into a handlebody H. f restricts to an

embedding on α 0 U (\Jf=k+ι α/) such that

y«. )=0

(α, are as above). As above / induces an embedding F: U —• H x /.
Clearly C/ = /(«/)> for / = 0, fc + 1,..., #. Since L is acyclic, and
since K carries 7ϊ2(A:), C O = Σf=*+i<*iC/ i n ffiW We want to
show now that CQ = Σf=^+i α / ^ a ^ s o * n ̂ ( ^ 0 Suppose B\,...,Bg

is a basis of ker(z') (where /: Hχ(dH) —> H\{H) is induced by the
inclusion 9// c //) dual to Q , . . . , Cg, i.e.: C, l?y = δjj in Hχ(dH).

If Q = Σf=it+i α / c / + Σf=i βiBi i n ^ i ( θ ^ ) then Co C/ = -y?7 = 0
which proves the claim. Attach 2-handles to framed curves C\,...,Cg

in AT x 1 to get a 4-manifold N and an extension of the embedding F
to an embedding F: Lu U -• N, F(a0) = Co C 57V. 57V is a homology
3-sphere Σ. It is obtained from D(H) by surgeries along C\,...,Cg.
Let V be the 3-manifold gotten from H by attaching 2-handles along
the simple closed curves Q + 1 , . . . ,C g c 9//. Since Co = Σf=fc+i α / Q
in Hχ{dH)9 Co separates 3F. Clearly //^F) is free and H2(V) = 0.
Let W — D(V). W can be obtained from D(H) by surgeries along
Cfc+i,..., C^. Therefore Σ can be obtained from W by surgeries along
C\,..., Cfc. By Lemma 2, the framings of Q , . . . , Ck can be chosen so
that CQ is slice in Σ.

Let Δ be a contractible 4-manifold with boundary Σ, such that CQ
bounds an embedded disc D in Δ. If we glue N to Δ along Σ we get a
homotopy 4-sphere which is therefore an S4 (see [5]). The embedding
F can be extended to an embedding of K by sending βQ-U onto D.

REMARK 1. If AT is a generic 2-complex, i.e.: if it is locally homeo-
morphic to one of the following spaces

then it is possible to determine whether it can be embedded in some
3-manifold as follows: It is easy to embed a closed regular neighbor-
hood U of the intrinsic 1-skeleton G of K (i.e.: the set of non-manifold
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points of K—compare with [7]) in a (possibly nonorientable) handle-
body 77 so that Fr(ί/) c #77, and so that G is a spine of 77. K is
obtained from U by attaching connected surfaces F\,...,Ft to Fr(C/)
along dFχ\j- udFt = Un(K - U). Let wx e Hι(77) be the orientation
class: w\(C) is equal to 1 if C passes through nonorientable 1-handles
of H an odd number of times, otherwise it is 0. K can be embedded
in some 3-manifold if and only if W\{dF\) = = w\(dFt) — 0.

REMARK 2. It is known that any finite 2-complex K such that its
intrinsic 1-skeleton embeds in R2 can be embedded in R4. A discussion
in this direction can be found in [7].

3. An example. In this section we give an example of a 2-complex
K obtained from an acyclic 2-complex L by adjoining one 2-cell e§,
and a π\ -negligible embedding / : L —> R4 which cannot be extended
to an embedding of K.

Let K be the complex obtained from a wedge of two circles by
attaching three 2-cells £o> ̂ u a n ^ ei v * a immersions as follows:

Let U be a regular neighborhood of K^ in K, and let L =
If α 0 = Fr(ί/) Π βQ then K is obtained from L by attaching a 2-cell
eo along its boundary to αo Define an embedding of Fr(C/) in a
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handlebody H with spine Sι V Sι (= K^) as follows:

α, = Fr(U) Π e t

FIGURE 2

As in §2 this defines an embedding / : U -> Hxl. Attach 2-handles
to f{ot\) and ffa) with framings indicated in Figure 2 by the dotted
circles to get 2?4. The cores of the two 2-handles can be used to extend
/ to a π\ -negligible embedding / : L —> B4 c R4. /(c*o) is the trefoil
knot in the boundary of 2?4. Therefore it is not slice and thus / cannot
be extended to an embedding of K.
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