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LOCALIZATION IN FINITE DIMENSIONAL FPF RINGS

THEODORE G. FATICONI

The ring R is right FPF if each faithful, finitely generated right
iΐ-module is a generator of MOD-R. C. Faith has conjectured that
a two sided FPF ring has a self-injective classical ring of quotients.
We provide a partial answer to Faith's conjecture by studying Ore
localizations and cogeneration properties of right FPF rings R of finite
right dimension. Many results from the literature on quotient rings
of FPF rings are then reproven.

Introduction. An associative ring with identity R is right FPF
(finitely pseudo-Frobenius) if each faithful, finitely generated right
iϊ-module is a generator of the category MOD-i? of right iί-modules.
Examples of FPF rings include Dedekind prime rings and PF (pseudo-
Frobenius) rings. C. Faith in [Fal, Theorem 5.1] has shown that the
classical ring of quotients of a commutative FPF ring is self-injective.
He conjectures that each (two sided) FPF ring has a self-injective quo-
tient ring [Fal]. Such a quotient ring exists for FPF rings R which are
either Noetherian or semi-perfect. (See [Fa4], [FP], [Ftl], [Ft2], [Pa2],
and [Pa3].) However, the techniques employed in these papers are ad
hoc. The results of the present paper provide a unified approach to
Ore localization in right FPF rings of finite right dimension.

A description of the results follows.
Let R denote a right FPF ring of finite right dimension. We begin by

studying those generators which are of minimal dimension in MOD-i?,
showing that any two such generators are similar. Consequently, each
finitely generated, Lambek torsion-free, right i?-module is torsionless
(Corollary 2.9).

An unexpected consequence of our techniques is Corollary 4.2: If
the (right and left) FPF ring R has finite right and finite left dimen-
sion, then the maximal right ring of quotients of R equals the maximal
left ring of quotients of R. This provides a partial answer to a ques-
tion raised by Faith. Other results from §4 bring out the connection
between the set of right regular elements of R and the various types
of localizations of R. Thus the right FPF ring R possesses a right
self-injective, semi-perfect, maximal right ring of quotients iff R has
finite right dimension and the right regular elements of R are regular,
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(Theorem 4.3). We then classify those right FPF rings possessing a
right PF or right QF ring of quotients. Finally, some results from [FP],
[Ftl], [Ft2], [Pa2], [Pa3] are revisited in light of the above results.

1. Preliminaries. Unexplained notations and terminologies can be
found in the standard reference [St].

We fix the following notation and convention for the remainder of the
paper. Until stated otherwise, R denotes a ring of finite right (Goldie)
dimension n, E denotes the injective hull of R in the category of right
JR-modules MOD-i?, and the term module means right i?-module.
Since E has finite right dimension, there are integers m,n\,...,nm>0
and direct sum decompositions of nonzero modules

(1.1) E = Kι®- ®Km, and

Ki = JEπθ θEi Ά i for 1 < i <m,

such that

(1.2) for all \<i,k<m, 1 < j < nuand 1 < / < nk,

Eij = Eki iff / = k.

For 1 < / < m, we set E\ = En and note that Ej is not isomorphic to
Ek for 1 < i' Φ k < m. Let

(1.3) {πij\ E-+Eij\\ < i<m, 1 < j < m)

be the set of projections corresponding to the direct sum decomposi-
tion in (1.1), i.e. φ / 7 π / 7 = 1^ and for pairs (/, j), E = E^ θ kerπZ7,
where kerπ,7 = ®{Ekl\(k, I) φ (ι, j)}.

More common convention follows. The singular submodule of the
module M is Z(M) = {x € M\rR(x) is an essential right ideal of R}.
Then Z = Z(R) is the right singular ideal of R. The injective hull of
M is denoted E(M), (or E{MR) if we wish to emphasise side). Given
an ideal / of R, &R(I), {&r

R{I)), is the set of (right) regular elements
modulo / . The classical right (left) ring of quotients of R is denoted
Q£(R), {Qι

c{
R))> w h i l e Qc{R) denotes the classical (left and right) ring

of quotients of R. Similarly, we let Qr

m{R) and Qι

m(R) denote the
maximal right and maximal left ring of quotients of i?, respectively.

The ideal / of R is called classically left localizable if (i) / is a
semi-prime left Goldie ideal, and (ii) 9?R(I) is a left denominator
set in R. (See [St, Chapter II].) In this case, (i) the localization
Rj = [WR(I)~ι] R of R at / is a semi-local ring with Jacobson radical
//, and (ii) i?//// is canonically the semi-simple classical left ring of
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quotients of the semi-prime left Goldie ring R/L Our use of the term
"classically localizable ideal" differs from some of the literature on
Ore localization in that we do not assume an Artin-Rees property of
/. Finally, a ring or ideal property not modified by "right" or "left"
is meant to hold on both sides. Thus FPF means right and left FPF,
ideal means right and left ideal, etc.

2. Mixed modules and cogeneration. Throughout this section and in
addition to the conventions established in §1, R denotes a right FPF
ring of finite right dimension.

The right i?-module M is a generator of minimal dimension in
MOD-iϊ if M is a generator of MOD-i? and if given a generator N of
MOD-i?, then dim(Λf) < dim(JV). The right i?-module M is called
mixed if M is not a singular module, i.e. There is an element x eM
such that rR(x) is not an essential right ideal of R.

In our setting, MOD-i? has a generator of minimal dimension since
R has finite right dimension. By [FP, Theorem 1.2B], the basic mod-
ule of a semi-perfect ring is a generator of minimal dimension. Ex-
amples of mixed modules include non-torsion abelian groups, nonsin-
gular modules, and projective modules. If M is a mixed module and
if M c N then TV is a mixed module. If M —• N is a surjection and
if TV is a mixed module then M is a mixed module. Thus the class of
mixed modules is closed under injective hulls and direct sums.

The following technical lemma illustrates how mixed modules are
used in the sequel.

LEMMA 2.1. Let M be a generator ofMOΌ-R. Let φ: N —• L be a
map in MOD-i? such that φ{N) is a mixed submodule ofL.

(a) There is a map γ: M —• N such that φy{M) is a mixed submodule
ofL

(b) Assume M = M\@--®Mt where each Mt is a uniform module.
There is a map γ: M -> JV and an index i such that the restriction map
y\Mi\ M[ —• L is an injection.

Proof, (a) There is no loss of generality in assuming φ(N) = L.
Then, because M is a generator, L is generated by the images of com-
posite maps M -* N ^ L. By hypothesis L is a mixed module, so
there is a map γ: M —• N such that φy{M) is a mixed submodule ofL.
(Otherwise L is the sum of singular modules, contrary to hypothesis.)

(b) By part (a) there is a map γ: M -+ N such that φy{M) =
7=i ψy(Mi) is a mixed module. Thus for some index /, φy{M{)Σ '
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is a mixed module, so that Mi is a mixed uniform module. Since
each proper homomorphic image of a uniform module is singular,
φγ\Mi: Mi -+ L is an injection. D

In case φ = 1#: N —• N then in the notation of (2.1), N contains a
copy of one of the A//.

Before showing that two generators of minimal dimension are sim-
ilar, we construct a prototype generator.

LEMMA 2.2. Let Et be as in (1.2), 1 < i < m. Each Ei contains
a finitely generated, mixed, uniform module (?/. Moreover, G = G\ θ
•"®Gm is a generator ofMOΌ-R.

Proof. For each I < i < m and 1 < j < nι let E\j 2s, be an
isomorphism, where the 2?y are defined in (1.1), and let π / 7 : E —•
£/7 be the map defined in (1.3). Because kerπy is not essential
in 2s, (Eij Φ 0), π / 7 (l) is not a singular element of π/7 (2ϊ). Thus
7Γ/y(2?) ^ <pijπij(R) is a mixed submodule of £;. For fixed / let
Gi = Σj<Pijπij(R). Then G/ is clearly a finitely generated, mixed,
uniform submodule of 2s/.

We prove that G = G\ θ θ Gm is a generator of MOD-i?. Because
= 1E, R C φ l 7 π y (Λ), so that/y

l7

Thus

m m

ί = l (=1
n = p\rR(πij(R))=0

since the #>y are isomorphisms. As R is right FPF, G is a generator
of MOD-i?. α

LEMMA 2.3. Lei (? be as constructed in (2.2).
(a) IfM is a generator ofMOΌ-R then G embeds in M. Thus, G is

a generator of minimal dimension in MOD-i?.
(b) Let M be a generator of minimal dimension in MOD-i?. Then

M is similar to G.

Proof, (a) Let Et be as in (1.2). By (2.1a), there is a map λx?: M -> 2s,
such that λj(M) is a mixed module. Note 2s, = 2s(λ, (Af)). Then by
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(2.1b) and (2.2), there is an index k and a map y*.: G -+ M such that
λ,Ύk\Gk is a n injection. This injection lifts to an isomorphism of the
indecomposable injective modules Ek = Et. By (1.2), k = i. Thus,
for each \ <i <m there is an injection jι: Gi —> M.

The proof of (a) is complete once we have shown that Σi Viiβi) is

direct. The above paragraph forms the basis for an induction. Assume

for some value 1 < k < m that we have shown the sum ]C?=i 7/(0?/)

is direct. Let K = 7k+\{Gk+i) Π [E?=i 7/(0/)]. Observe that E(K)

is a summand of E(Σ!ϊ=i 7i(Gj)) = φ ^ = i 2£/ and the indecomposable
injective module ^ + 1 = E(Gk+ι). By the Azumaya-Krull-Schmidt
Theorem [St, Corollary V.5.5] either K = 0 or £ ( # ) = Ek+X is iso-
morphic to Et for some 1 < i < k. Since (1.2) shows £'^+ 1 Φ Eι for
each 1 < i < k, K = 0. It follows that the sum Σ^ϊ 7i(Gi) is direct,
completing the induction. Hence G = ΣT=\ 7i(Gi) is a submodule of
M.

(b) By part (a) and the minimality of dim(Λf), we may assume G is
an essential submodule of M. By (2.1a), there are maps y,•: M —> (7/
such that 7i(M) is a mixed module. Since kery; is not essential in
M and since G is essential in Λf, 7i{G) is mixed. As in the proof
of part (a), the restriction y/|G| : Gz —• (7/ is an injection. Hence
(7/ Π kerj>/ = 0. Now γt lifts to a map y/: ^(G) -• -B/, and because
G/ Π ker yz = 0, £/ n £(ker y, ) = 0. It is readily seen that £(G) = Et θ
jE(kery/), so by the Azumaya-Krull-Schmidt Theorem and (1.2) Ei is
not isomorphic to a summand of E (ker yz). Therefore no £/ appears as
a summand of ^(Π/^i ker y/) c Π/=i ̂ (ker γ{). Another application of
the Azumaya-Krull-Schmidt Theorem shows that ^(Π/li keryz) = 0.
But then y: M —• G defined by y(x) = yi (x)θ -®7m{x) is an injection
since kery = f|/=i kery/ = 0. Thus M is similar to G. D

Notice (2.3) shows that any generator of minimal dimension in
MOD-JR embeds in a finitely generated module. The next lemma col-
lects some properties of generators of minimal dimension in MOD-i?.

LEMMA 2.4. (a) Let F be a mixed, indecomposable, injective right
R-module. Then F = Et for some 1 < / < m.

(b) Let M and N be finitely generated, mixed, uniform right R-
modules. Then M is similar to N iffE{M) = E{N).

(c) For 1 < i < m, let Mt be a finitely generated mixed submodule
of Ei. Then M = 0 ^ Mt is a generator of minimal dimension in
MOD-i?.
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(d) The finitely generated faithful module M is a generator of mini-
mal dimension iffE(M) = ®™=l Et.

Proof, (a) By (2.1) and (2.2) there is a map γ: G —• F and an index
i such that y|C?, is an injection. Then γ\Gj lifts to an isomorphism of
the indecomposable injective modules E[ = E{G{) = F.

(b) The only if part is clear. So assume E{M) = E(N) and by
part (a) there is no loss of generality in assuming E(M) = E\. Then
G c G + M and M is finitely generated, so G + M is a generator of
MOD-i?. Note that G + M = (Gx + M) © G2 © θ Gm. Now by
(2.1b), there is an index k and a map γ: G + M —• N such that 7|G^
is an injection. As in the proof of (2.3a), k = 1, so that M c Gχ+M
embeds in N. Similarly, N embeds in M, which proves that M is
similar to N.

(c) By part (b), G( and Af, are similar for each 1 < i < m. Thus Λf
is a finitely generated faithful module satisfying dim(Λf) = dim(G).
Finally, recall that R is right FPF.

(d) Use (2.3b). D

REMARK. Compare (2.3) and (2.4) to the facts that (i) a basic
module M of a semi-perfect ring S is unique up to isomorphism,
(ii) M is a summand of each generator of MOD-5, and (iii) M is a
generator of minimal dimension in MOD-S. To further illustrate the
parallel between basic modules and generators of minimal dimension,
we offer the following extensions of [FP, Theorems 2.1 A, 2.IB].

PROPOSITION 2.5. (a) Let M be a finitely generated faithful module.
Then M is a generator of minimal dimension in MOD-i? iffr^ (M/K) Φ
0 for each nonzero submodule K of M.

(b) If R is a generator of minimal dimension in MOD-i? then R is
right strongly bounded, i.e. Each nonzero right ideal ofR contains a
nonzero ideal ofR.

Proof, (a) Let M be a generator of minimal dimension in MOD-
R and let 0 ψ K c M. There is no loss of generality in assum-
ing K is uniform. Then by (2.3b) and the Azumaya-et.al. Theorem
[St, Corollary V.5.5], E{K) = Et for some 1 < i < m. Without
loss of generality, we assume K c E\ c E(M) = E\ θ •• © Em.
Let π: E{M) —• E\ be the projection with kernel (Bj^Ej, and let
P = ^E(M) ~ π- Then π + p = 1 so that M c π(M) ® p(M). Hence
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π(M) φ p(M) is a generator of minimal dimension in MOD-i?. Con-
sider (π{M) Θ p{M))/K = π{M)/K ® p{M). Since π{M) is uniform,
π(M)/K is singular. Thus π(M)/K does not generate the mixed mod-
ule E\. Further, p(E(M)) = φ^yi £/ and Ej does not embed in the
indecomposable injective module £Ί, (1.2). Then each map Ej —• £Ί
has nonzero kernel and singular image. That is p(E(M)) does not gen-
erate E\. Because E\ is injective, p(M) does not generate Ex. Hence
π(M)/K © p(M) is not a generator of MOD-i?. Since i? is right FPF,
π(M)/K © />(Af) is not a faithful module. But π(M)/K © />(Af) con-
tains a copy of Af/J£, so rR{M/K) Φ 0, as required.

Conversely, assume rR(M/K) Φ 0 for each 0 φ K c M. Let G
be the module constructed in (2.2). By (2.3b) we may assume G is
a submodule of M. Let AT c Af be such that G © K is an essential
submodule of Λf. Then M/K D(G® K)/K Ξ G is a faithful module.
By hypothesis # = 0 and M has minimal dimension m.

(b) Follows from (a). D

We do not know if a generator of minimal dimension in MOD-i?
need be a projective right R-module. If so, then a right FPF ring of
finite right dimension is Morita equivalent to a right strongly bounded
ring. This would answer a question posed by Faith in [FP]. Also,
compare with [FP, Theorem 2.1 A].

From these techniques, we show that R possesses a cogeneration
property.

THEOREM 2.6. Let R be a right FPF ring of finite right dimension
and let E be the injective hull of R in MOD-i?. Then the finitely gen-
erated R'Submodules ofE embed in R.

Proof. Let M be a finitely generated submodule of E. There is no
loss of generality in assuming M = M + R. Let π / 7 : E —> £*/7 be the
projection map of (1.3), and for / = l, . . . ,ra let A/, = πn(M). The
proof is broken up into three steps.

Step 1. N = φ ^ ! M? embeds in R.
First observe that M\ ® © Mm is a generator of minimal dimen-

sion in MOD-i?, (2.4c). We construct an embedding of TV —• i? by
induction on the lexicographically ordered set β = {(0,0), (/, j)\l <
i < m, 1 < j < A2/}.

The basis of the induction is to set MOQ = Foo = 0 and 0 =
7oo: Λfoo -* -R Assume for some pair (0,0) Φ [k, p) e β that we
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have produced a direct sum decomposition

(2.7) E =

for some indecomposable injective modules Fjj. Further assume we
have constructed injections

(2.8) γu:

Now, let p: E -

>RnFij for (/, j) < (k,p) e β.

be the projection map such that

ker/? =

As in the proof of (2.2a), ρ(R) is a finitely generated, mixed, uniform
submodule of Ekp. By (2.lb), there is a map γkp: M\ © θ M m —• R
and an index / such that py^p\M\\ M\ -+ p(R) is an injection. As in
(2.3a), k = / so ykpWk: Mk —• R is an injection.

Let Fkp = E{γkp{Mk)) and note that Fkp Πkcrp = 0. We then have
the direct sum decomposition of injective modules

E = Fkp 0 ker p =

and injections

for {i, j) < {k,p) e β,

as required by (2.7) and (2.8). This completes the induction on β.
Therefore E = 0 ^ ^ and φ ^ 7/y(Λ//) C i?. Now for fixed / we

have m pairs (/, j) in jff. Thus 0 ^ yy(Af/) = 0 ^ ! Af/11 = iV embeds
in i?, which completes Step 1.

Step 2. For fixed /, Aί/1' is similar to φ j ^ π o ( M ) .
Recall that i? c Af, so for 1 < j < Πi π, y(Af) is a finitely generated,

mixed, uniform module. Since %ij{M) c E^ = Et and since Mt =
π/i(AΓ), (2.4b) shows Af/ is similar to π/7 (Af) for 1 < j < nz. Thus,
Af/2' is similar to φn/=ι πij(M)9 completing Step 2.

Step 3. Λf embeds in R.
Since 0 ^ π/y = \E (1.3) and by Step 2 there are embeddings

m
M-+0 πu(M)

7=1

Λf/"
i=\
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By Step 1, N embeds in R, so M embeds in R. This completes the
proof of the theorem. α

This section closes with some consequences of (2.6). For the pur-
poses of the next several results, call a module M Lambek torsion-free
if M is a submodule of a product of copies of E. (See [St, page 149].)

COROLLARY 2.9. Each finitely generated Lambek torsion-free mod-
ule is torsionless.

Proof. Say M c YljE = P for some index set /. By (2.6), to
each i £ I and projection map πf : P —> E, there is an embedding
ψi\ 7ti{M) —> R. Hence M embeds in Y[j<Piiti{M) c Π / ^ That is,
M is torsionless. D

We remark that over a right PF (injective cogenerator) ring, each
right module is Lambek torsion-free and torsionless, [FP, Theorem
1.7A].

COROLLARY 2.10. Let L be α submodule ofE. Assume that for each
of the projection maps πij in (1.3), the module π//(L) is mixed. Then
each finitely generated submodule ofE embeds in L.

Proof. Use the proof of (2.6) verbatum. D

COROLLARY 2.11. Let I be a right ideal ofR.
(a) Assume R/I is a Lambek torsion-free module, {i.e. Assume I is

closed in the topology of dense right ideals on R.) Then I = rR{X) for
some set X c R.

(b) / is dense in R ifflR{I) = 0.

Proof, (a) R/I is Lambek torsion-free iff R/I embeds in a product
of copies of E. By (2.10) R/I is torsionless. Now argue as in [Fa3,
Lemma 20.26].

(b) / is dense in R iff HomR(R/I9E) = 0 iff HomR(R/I,R) = 0
(2.6) iff trace*(R/I) = RlR(I) = 0 iff lR{I) = 0. D

Note (2.11b) extends [Fa4, page 162, both corollaries].

PROPOSITION 2.12. (a) E is aflat right R-module and each finitely
generated submodule ofE is contained in a free submodule ofE. (M.
Finkel-Jones [FJ] refers to such modules as f-projectίve.)
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(b) There are finitely generated, mixed, uniform right ideals l\,...,ln

and a right regular element c ofR such that cR c φ " = 1 //.

Proof, (a) By (2.6), each finitely generated submodule M c E em-
beds in R. Assume without loss of generality that R c M. Then an
embedding φ: M —• R lifts to an embedding φ: E —• E. Since E has
finite dimension, E = φ(E), which shows that φ is an automorphism.
Hence M c φ~ι{R) = R and since E is then a union of free modules,
E is flat.

(b) Recall the projections π / ; from (1.3). Because 0yff// = 1^,

* c ®uπu(R)> a n d b y P a r t (a)> ®ij^ij{R) C xR = R for some
element x e E. Given an isomorphism ^ : xR -+ i?, relabel the set
{̂ 7Γ;y (i?)|/,7} as {/!,...,/„} and let c = ^(1). It is readily verified
that these choices satisfy the proposition. α

Observe that the argument in (2.12a) can be used to rephrase (2.6)
as follows. To each finitely generated submodule M of E, there is an
automorphism φ of E such that φ{M) c R. We use this restatement
of (2.6) without fanfare in §§3 and 4.

3. Preliminaries for localization. In this section, we investigate the
set ^r

R(0) of right regular elements of R. These results are prerequisite
to our discussion of classical localization in right FPF rings contained
in §4.

In addition to the convention and notation established in previous
sections, R is a right FPF ring of finite right dimension. Recall that
Z denotes the right singular ideal of R. We fix an embedding R-+ E
and denote the image of 1 by 1. Then let

= {λe A\λ{R) cR} = {λe Λμ(l) e R},

Z} = R{ n/(Λ),

where the last equality holds since /(Λ) is the set of maps with essen-
tial kernel, [St, Proposition XIV. 1.1]. Further, we set

= {φ e Λ|p(l) € β^(0)} = {φ e Rγ\kerφ = 0}.

The following facts about the above sets are well known or easily
proven. Λ is a semi-perfect ring, [St, Proposition XIV. 1.7]. R\ is a
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subring of Λ, and Z\ is an ideal of R\. Further, L\ = IRX{\) c Zi, and
L\ is an ideal of R\. We consider E as a Λ-H-bimodule, and so as an
i?i-jR-bimodule. When possible, we avoid the use of parentheses in
the action of Λ on E. As left Λ-modules, E = Λl = A/Lχ. W is a set
of units of Λ, so that W c ΨRχ (0).

LEMMA 3.1. (a) The evaluation map ξ: A -* E with ξ(λ) = Al m-
α rm^ surjection ξ: R\ —> R and an isomorphism R\/Z\ = H/Z.

(c) g7 w α /ς# Ore set in R{.
(d) Z! is a classically left localizable ideal ofR\ and (i?i)z, = Λ.

Proof, (a) The definitions of ξ and Rx show that ξ(Rx) = i?, ί (Zi) =
Z, and ker<^ = L\ c Z\. Because L\ is an ideal of R\9 ξ is a ring
surjection which induces the isomorphism R\/Z\ = i?/Z.

(b) As noted above, ^ c i7^1 (0) since & is a set of units of Λ. Thus
i 7 maps onto a set of units of Λ//(Λ). Because

Rx/Zλ = i ? ! / ^ ! n/(Λ)) s (Λ! +/(Λ))//(Λ) c Λ//(Λ)

we have ^ c &Rϊ(Zι). On the other hand, given φ e ^Rχ{Z\) we
claim φ + Zi is a unit of Λ//(Λ).

(3.2) Suppose A € Λ is such that λ^ € /(A). By (2.6) there is an
automorphism γ e A of E such that γ(R + λR) c i?. Then γl e %R(Q)
and yλl e i? so that y e W and yλ e R\. But then (yA)̂  € i?i Π/(Λ) =
Zi Since φ e ^Rχ{Z]), γλ e Z\ C /(A). Because y is a unit of A,
λ G /(A), which proves that #> + Z\ is left regular in the semi-simple
ring A/J(A). Then as claimed, #> + Z\ is a unit of A/J(A).

Since units lift modulo /(A), $P is a unit of A and hence φ G g7.
This proves «? = «*'(Zi).

(c) Note (3.2) proves that to each A G A there is a y G ̂  such that
yλ G R\. Now for ^ G ̂ , Λ/i?i = Aφ/Rγψ = A/Rγφ, so that for each
#> G ̂  and A G i?i there is a y G ^ such that yA G i?i^. i.e. W is a left
Ore set in Λi.

(d) By parts (b) and (c) W = ^ Λ l (Zi) is a left Ore set of regular ele-
ments of Hi. Thus the left ring of quotients [&~ι] R\ exists. Further,
the proof of part (c) shows that A/R\ is a ^-torsion left Rγ-module.
Since 8" is a set of units of A, the universal property of localization
proves that A = [&~~ι] R\ Finally, because A is a semi-perfect ring,
Z\ is a classically left localizable ideal of Hi. D
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COROLLARY 3.3. (a) R/Z is a semi-prime left Goldie ring.
(b)&R(0) = &R(Z).
(c) %R{ϋ) is a left Ore set in R.

Proof. Use (3.1a) and (3.1d) to prove (a). By (3.1a), ξ{V) = WR{0)
and ξ(Z{) = Z so that (b) and (c) follow from (3.1b) and (3.1c). D

We have not claimed that Z is a classically left localizable ideal of
R since this requires that &R{0) = &R(0). This line of discussion is
developed in §4. For the present, we content ourselves with a non-Ore
localization. Consider the filter of left ideals

(3.4) & = {left ideals I c R\I Π %R{ϋ) φ 0}.

Because &R{G) is a left Ore set in R, the linear topology on R generated
by & is a 1-topology. (See [St, section XI.6].) Further, R is an &-
torsion-free left i?-module since each / e & contains a right regular
element. Therefore, the localization R? exists and by [St, Proposition
IX.2.4],

(3.5) R? = {x e E(RR)\Ix c R for some I

= {xe E(RR)\cx e R for some c e %

where E(RR) is the injective hull of the left R-module R.

LEMMA 3.6. Let & be the filter of left ideals defined in (3.4).

(a) Rr = E n EUR) = {^ e E\LX c lRχ (x)}.
(b) & generates a perfect left topology on R iff%R{0) = &R(0).
(c) WR(0) = WR{0) iff A = E. In this case, Ri = R, Zx = Z, and

Proof, (a) The largest i?i-submodule of E(RιR) possessing a natural
action by R is

E(RR) = {xeE(RιR)\L{clRι(x)},

[Fa3, Proposition 19.12]. Now by (3.Id) the left it!-module R pos-
sesses a left module of quotients [&~ι] R c E(RίR). Indeed, because

*

R = Λ ® Λ l R s Λ ® Λ (Λj/Li) = A/Li = E,
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so by (3.5) RpcEnE(RR). But then

R<? c E n E(RR) c{xe E\LX c /Λl(x)}

c{xe E{RR)\cx e R for some c e %R{ϋ)} = R&.

(b) If & generates a perfect left topology on i?, then R$r = R^Rc =
Rsrc for each c e &r

R(0). Then each right regular element of R is left
invertible in R&. By part (a), R$r C E has finite right dimension, so
&r

R(0) is a set of units of R<r, [St, Lemma XV.5.4]. Thus

Conversely, if Wr

R(0) = WR(0) then 8 s* (0) is a left denominator set
in R, (3.3c). By [St, Proposition XI.6.4], & generates a perfect left
topology on R.

(c) The "if" part is clear from (3.1). Assume 8*(0) = &R(0) and
claim Li is an ideal of Λ. By (2.6)

{ c G E\xc = 0 for some c e &R{0)} = 0.

(xi? embeds in R and i? is ^^(O)-torsion-free.) Now L\ is an ideal
of i?i, so for φ e &, L\ = L\ψφ~x c ^ I ^ " 1 = /Λ(^1) B u t then
' Λ ( ^ 1 ) / ^ I ίs a subset of £ = Λ/Li annihilated by ^1 G £(^) =
^ ( 0 ) = ^ Λ ( 0 ) . Thus /Λ(^l) C U which implies Li = Lxφ~x. But
then Λ = [&~ι] R\ (3.Id) so Lx is an ideal of Λ, as claimed. Finally,
because E is a faithful left Λ-module, L\ = 0. Part (c) follows from
(3.1). D

4. Localizations of FPF rings. We maintain the notations and con-
ventions established in the previous sections with the exception that
R need not have finite right dimension.

The results of this section are partial answers to a question raised by
Faith and Page in [Fa4, page 187, problem 15] and [FP, pages 0.1-0.3].
Namely, for right FPF rings R when is Qr

m(R) an Ore localization?
When is Qr

m{R) right self-injective? When does Qr

c{R) exist? Faith
conjectures that for FPF rings i?, QC(R) exists and is self-injective.
These questions have been settled for commutative FPF rings and
for various permutations of the hypotheses left and right Noetherian,
semi-perfect, and nonsingular. (See [Fa4], [FP], [Bu], [Pa2], [Pa3],
[Ftl], [Ft2].) In this section we will show that the injectivity of the
maximal or classical ring of quotients is tied to the regularity condition
^(0) = gJ (O). This regularity condition is then used to investigate
various kinds of self-injective quotient rings of R. Also, several results
from the literature are revisited in light of new classifications.

We begin by showing that Qr

m{R) is also a left localization of R.
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THEOREM 4.1. Let R be a right FPF ring of finite right dimension,
and let T be the filter of left ideals defined in (3.4). Then R? =
Q'm{R) C QU

Proof. Recall that Qr

m(R) = Q is the maximal rational extension of
R. Then for λ e Λ, λR = 0 iff λQ = 0, so that Q = {x e E\L{ c
/*,(*)}. By (3.6a), Q = i?^r. Further, i? is ^-torsion-free as a left
i?-module, so the elements of & are dense left ideals of R. (See [St,
page 200, Example 1].) Thus R? c β^CΌ •

COROLLARY 4.2. Lei i? 6e an FPF ring which has finite right and
finite left dimension. Then Qr

m(R) = Q!

m(R). •

We do not have examples of right FPF rings for which Qr

m{R) is
not a left Ore localization of R. Also, it is not known if Qr

m(R) is
semi-local, whereas all known examples of localizations of finite di-
mensional FPF rings are semi-local. Semi-local perfect localizations
of general rings are classified in [FZ] and [Fa3, page 54-55, Proposi-
tion 18.47]. Commutative FPF rings R possessing semi-local QC(R)
are classified in [Fal, page 90].

The next result points out the connection between the regularity
condition and the injective property.

THEOREM 4.3. Let R be a right FPF ring. Then Qr

m(R) is a semi-
perfect right selfinjective ring iff R has finite right dimension and

= &R(P). In this case, Z is a classically left localizable ideal
ι

Proof. Let Qr

m(R) = Q. If Q is semi-perfect and right self-injective
then i? has finite right dimension by [St, Proposition XIV.4.3]. Recall
that right regular elements in a semi-perfect right self-injective ring
are units. Since R is right essential in Q, &r

R(0) c ^r

Q(0) = ̂ f i ( 0 ) , so

Conversely, assume R has finite right dimension and that &r

R(0) =
WR(0). Then by (3.Id) and (3.6c), Zx = Z is a classically left local-
izable ideal of R\ = R and E = Λ = Rz = Qι

c(R) is a semi-perfect
ring. Also, Q = EndΛ(£) = EndΛ(Λ) = Λ. Then by [St, Proposi-
tion XIV.4.1], Q = E is also right self-injective, which proves the
theorem. D

Faith conjectures [FP, 0.1, Problem 6] that for FPF rings i?, QC(R)
exists and is self-injective. In this case, QC(R) = Qm{R) = Qι

m(R),
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as in (4.2). Observe that (4.3) partially resolves this conjecture. For
FPF rings there is a significant simplification of (4.3) which provides
a new insight to Faith's conjecture.

COROLLARY 4.4. Let R be an FPF ring. Then R possesses a semi-
perfect, self-injective, classical ring of quotients iff the left singular ideal
ofR equals the right singular ideal ofR, and R has finite left dimension
and finite right dimension.

Proof. If Qc(R) = Q exists and is self-injective, then J(Q) is the
left singular ideal and the right singular ideal of Q, [St, Corollary
XIV. 1.3]. Because R is essential in Q, R ΠJ(Q) is the left singular
ideal and right singular ideal of R. Further, R has finite dimension by
(4.3). Conversely, if Z denotes the common singular ideal of R then
g^(O) = ΨR{Z) = &*(0) = &R(0) by (3.3b). Apply (4.3) to complete
the proof. D

REMARK. Burgess [Bu] has shown that if Z = 0 then QC(R) exists,
while [Pal] and [FP] show that a semi-prime right Goldie right FPF
ring is left Goldie. We do not know of an example of an FPF ring in
which the right singular ideal is not the left singular ideal.

In view of (4.4) it is natural to ask when Z is a classically localizable
ideal of R.

COROLLARY 4.5. The following are equivalent for a right FPF ring
R.

(a) R possesses a semi-perfect, right selfinjective, classical right ring
of quotients.

(b) R has finite right dimension and Z is a classically localizable
ideal in R.

(c) i? possesses a classical right ring of quotients, R has finite right
dimension, andWR(0) = WR(0).

(d) R andR/Z have finite right dimension, %R{G) = «*(()), and for
c,de «*(0), there are regular c\ d' e &R{0) such that cc' = ddf.

IfR satisfies any of the above statements, then QC{R) exists and

Proof, (a) =» (b) By (a) and [St, Proposition XIV.4.1], E = Qr

c{R) =
Qr

m{R). By (4.3) Z is a classically left localizable ideal in R, and by
(3.3b) <gR\z) = WR(0) = &R(0). Then WR(Z) is a right denominator
set in i?, and Z is a classically localizable ideal in R.
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(b) => (c) By (b) and (3.3c) WR{Z) = %R{0) is a denominator set in
i?. Hence 8^(0) = g*(0) and i ? z = &(!?)• This is (c).

(c) => (d) Since ^ Λ ( 0 ) is a right Ore set in i?, it remains to prove
that R/Z has finite right dimension. From (3.3b) and hypotheses
WR(Z) = &r

R(0) = &R{0) is a right denominator set in R, so Rz =
Qc{R)' But then Rz/Zz is canonically the semi-simple classical right
ring of quotients of i?/Z. By Goldie's Theorem, R/Z has finite right
dimension.

(d) => (a) By (4.3) Qm(^) = GiCO = ^ z = Q is a semi-perfect right
self-injective ring. Thus it suffices to show that &R(0) is a right Ore
set in R. Let x e R and c e &R(0) = «?Λ(Z), (3.3b). By (3.3a) and
hypotheses, R/Z is a semi-prime Goldie ring, so there are c' £ &R(Z)
and xf e R such that JCC' - ex' £ Z. Now let z = xc' - ex1. Then by
(3.3b) z + c e %R{Z) = &R(0). From (d) there are c",d" £ ^ ( 0 )
such that (z + c)c" = crf;/. Hence ^c" = (z + c)cr/ - cc" = crf/; - cc/; =
c{d" - c"). But then {xc' - cx')c" = c(ύ?" - c") implies J C ( Λ " ) =
c(x'c"+d"-c"). This proves &R(0) is a right Ore set in R, as required
to end the proof. D

REMARK. Observe that the proof of (d) => (a) above is similar to
that of [Fa3, Proposition 18.47] where Faith classifies those rings hav-
ing semi-local Ore localizations. Other papers considering localization
at the singular ideal of an FPF ring include [Ftl, Ft2, Pal, Pa2, Bu]
and [Fa4, Theorem 9B].

Since FPF rings are generalizations of PF and QF rings, it is natural
to ask when the associated quotient rings of FPF rings are PF or QF.
Right FPF rings with right PF localizations are quite symmetric.

THEOREM 4.6. The following are equivalent for a right FPF ring R.

(a) Qr

m{R) is a right PF ring.
(b) Qr

c(R) exists and is a right PF ring.
(c) R has finite right dimension, ^R(Q) — ^ Λ ( 0 ) , and each dense

right ideal ofR contains a right regular element.
(d) R has finite right dimension and a right ideal IofR is dense in

R iff I contains a regular element ofR.

IfR satisfies any of the above statements, then R has finite right and

finite left dimension, WR{0) = 8^(0) = &R{0) is an Ore set in R, and

Qc{R) = Qr

m{R) = Qι
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Proof, (b) =» (a) In general β£(Λ) c Qr

m{R) c £ . By (b) and [St,
Proposition XV.5.2], E = β£(i?). This proves (a).

(a) =Φ> (c) A right PF ring is semi-perfect and right self-injective,
[FP, Chapter 1]. Then by (4.3), φ*(0) = &R{0) and E = Qr

m{R) =
Qι

c{R) = Q. Now if / is a dense right ideal of R then lR{I) = 0 =
IR{IQ) Recall the projection of (1.3) and observe that because Q =
Endjι(E) the projections πy are idempotents of Q. Therefore π / y7β =
7Γ/7<2 is a mixed right i?-submodule of Q. Since R is right essential
in <2, πy/ is a mixed right i?-submodule of Q = E. By (2.10) 2?
embeds in /. The image of 1 under this embedding is the (right)
regular element we seek.

(c) => (d) The " i f direction is part (c). Conversely, if / contains a
(right) regular element of R then /#(/) = 0. By (2.1 lb), / is dense in
R.

(d) => (b) By (d), cR is a dense right ideal of R for each c € gy*(0).
Hence IR(CR) = 0 implying c is regular, i.e. %R{0) = &R{0). Further,
because cR is dense in i?, for each x e R there is a dense right ideal
/ , and so an element d e &R(0), such that xdexl ccR. Thus &R(0)
is a right Ore set in R. But then Q£(i?) exists and is semi-perfect right
self-injective, (4.5c). Now in this case, the set of dense right ideals of
R generates a perfect right topology on R, [St, Proposition XI.6.3], so
[St, Proposition XL5.2] shows Qr

c(R) is a cogenerator ring. i.e. Qr
c(R)

is a right PF ring. This proves the equivalence of the statements (a)
thru (d).

Now assume R satisfies any one (and hence all) of the above state-
ments. By (4.3) and (4.5) R is left essential in Qr

m{R) = Qι

c(R) =
QC(R) = Q. Because a right PF ring has finite left and finite right di-
mension [FP, Chapter 1] R has finite left and finite right dimension.
Now by (4.1) Q c Qι

m(R). Because a right PF ring is its own maximal
left ring of quotients, Q = Qι

m{R). Finally, for c e g/(0), lR{cR) = 0,
so by (2.1 lb) cR is a dense right ideal of R. By (4.6b) cRQ = cQ = Q,
so that c is right invertible in the semi-perfect ring Q. Thus c is a unit
of Q and c e &R(0). This completes the proof of the theorem. D

REMARK. [Ftl, page 94] determines those commutative FPF rings
with PF classical ring of quotients. The regularity condition in (4.3),
(4.5), and (4.6) appears in [Pa2] and [Ft2] (for localizations in semi-
perfect right FPF rings) and in [Ftl] where Beachy's extension [Be] of
SmalPs Theorem [Sm] is used to investigate localization in Noetherian
FPF rings.
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We now improve upon several results from the literature. S. Endo
[En] initially proved that a commutative Noetherian FPF ring pos-
sesses a QF classical ring of quotients. Attempts to extend Endo's
theorem to the noncommutative case include [FP, Chapter 5] where
the semi-perfect, Noetherian, FPF rings are considered, [Pa2] where a
QF quotient ring is produced using Krull dimension techniques, and
[Ftl] where it is shown that an FPF ring R is an order in a QF ring iff
R has the ace and dec on right annihilators and his finite left and finite
right reduced ranks. (See [Be] for the definition of reduced rank.) The
latest in this series of results is

COROLLARY 4.7. The following are equivalent for a right FPF ring
R.

(a) R possesses a QF classical right ring of quotients.
(b) R possesses a right Artinian classical right ring of quotients.
(c) R is a Goldie ring.
(d) R is a right Goldie ring with the ace on left annihilators.

Proof, (a) => (b) => (d) and (a) => (c) =» (d) are clear. For (d) => (a)
recall that a left Ore set of right regular elements in a ring with the ace
on left annihilators is a set of regular elements. Then by (3.3c) and
(4.3), Qr

m(R) = Q is a right self-injective classical left ring of quotients
of R. Since R has the ace on left annihilators, so does Q. Thus Q is
a QF ring and by (4.6a), (a) holds. D

The quotient ring results from [En], [Ftl], [FP], and [Pa3] concern-
ing Noetherian FPF rings extend as follows.

COROLLARY 4.8. A Noetherian right FPF ring possesses a QF clas-
sical ring of quotients. π

REMARK. The literature is rich in papers concerning orders in QF
rings. (See [Fa3, page 222] for references.) We feel (4.7) and (4.8)
stand apart from these references due to the constraints we place on
the ring R.

With regard to semi-prime right FPF rings of finite right dimension,
(3.3a) shows that these rings are left Goldie. It is known that semi-
prime left Goldie rings have the ace on right annihilators, so a semi-
prime right FPF ring of finite right dimension is actually left and right
Goldie. This agrees with [FP, Corollary 3.IB].
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A semi-perfect right FPF ring R has finite right dimension by [FP,
Theorem 2.1 A]. Thus, most of the material here will apply to such
rings. The common result from [Ft2], [FP, Chapter 2], and [Pa2]
shows that R possesses a right self-injective classical right ring of quo-
tients iff %R{0) = &R(0). For more general semi-perfect right FPF
rings there is

PROPOSITION 4.9. Let R be a semi-perfect right FPF ring. Then the
classical left ring of quotients exists and Qr

m{R) = Qι

c(R)

Proof. Let Q = Qr

m{R) and recall the filter & defined in (3.4). By
(4.1) R$r = Q. Now using the proof of [Ft2, Lemma 3.2c] we can
prove that R is a left order in R<?. Let <g = {c e Wr

R(0)\R^c =
R<?}. Claim <g = g*(0). By [St, Theorem XI.2.1, Proposition XI.6.4]
R<? = ψ~x\ R. Thus g7 c &R(0). On the other hand, E = Ec for
each c e &R{0) and {x e E\xc = 0} = 0. (xR embeds in R by (2.6).)
Hence right multiplication by c is an automorphism of E. i.e. c is a
unit of Q = End Λ (£), implying W = &R{0). Thus Q = Qι

c{R). u

COROLLARY 4.10. For a semi-perfect FPF ring Rf the classical ring
of quotients exists and QC{R) = Q!

m{R) = QJn{R).

Proof. Use the left/right symmetry of (4.9) and (4.1). D

5. Some open questions.
(5.1) In a right FPF ring R (of finite right dimension) are the right

regular elements regular?

(5.2) In an FPF ring R is the right singular ideal the left singular
ideal?

(5.3) Let R be a right FPF ring of finite right dimension. We echo
Faith and Page: Do the rings Qr

c (R), Qι

c(R) exist? Are the rings Qr

m(R)
and Qι

m{R) Ore localizations of RΊ Which of these four rings is self-
injective?

(5.4) We expand upon (5.3). Let R be a right FPF ring (of finite
right dimension). Let Q = Qr

m{R). Are finitely presented right Q-
modules torsionless? Equivalently, if M is a finitely generated right
Q-submodule of Qn is M then rationally closed in QnΊ Equivalently,
is Qr

m{R) a left FP-injective ring [Ja]? See (2.6) in this regard.
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(5.5) Let R be a right FPF ring of finite right dimension and let
M and N be generators of minimal dimension in MOD-i?. Is M a
projective right i?-module? Is there an integer k such that Mk = NkΊ
(i.e. Are M and N of the same genus, for some reasonable definition
of genus?) Is M a genus summand of each generator of MOD-i??
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