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PSEUDOCONVEX CLASSES OF FUNCTIONS
I. PSEUDOCONCAVE AND PSEUDOCONVEX SETS

Z B I G N I E W S L O D K O W S K I

An axiomatic definition of a pseudoconvex class of functions is
developed. The models include classes of subharmonic, plurisubhar-
monic, g-plurisubharmonic, convex and ̂ -convex functions, and many
others. Notions of dual class of functions and of pseudoconcave and
pseudoconvex sets are introduced and studied. The results have appli-
cations to complex interpolation of normed spaces, given elsewhere.

Introduction. It is well known that classes of subharmonic, plurisub-
harmonic, and convex functions share many properties including, in
particular, existence and uniqueness of the solution to the generalized
Dirichlet problem. Classes of tf-plurisubharmonic functions, studied
by Hunt and Murray [4] and the author [8], follow the same pattern.
During his work on [8] the author realized that most of these similar-
ities are consequences of few simple properties.

Namely, each of these classes is a sheaf on RN, consisting of upper
semicontinuous functions with local maximum property, preserved
by multiplication by positive constants. The limit of a decreasing
sequence of functions of a given class belongs to it, as does supremum
of several functions of this class. While only some of these classes
are closed with respect to addition, all of them satisfy the following,
weaker, property.

(0.1) Whenever u is a function of a given class, and v is a convex
function, then u + v is a function of the same class.

All of these classes are also translation invariant, that is (0.2) when-
ever u: U —• [-oo, +oo) is of given class, then uy is of the same class,
for every y e RN, where uy(x) = u(x - y)9 x eU + y.

We will tentatively call any class of functions satisfying the above
conditions a translation invariant pseudoconvex class on RN. (See
Examples 2.1-2.3 below.)

It turns out that considerable parts of the theory of plurisubhar-
monic functions, polynomially convex sets, various types of pseudo-
convex and pseudoconcave sets, and some parts of potential theory
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can be generalized to the setting introduced above. In such a general-
ization, an arbitrary pseudoconvex class of functions is a basic object,
in terms of which all the other notions (which are analogs of the clas-
sical ones) are defined. This seems to be of interest in itself, but there
are still other reasons to undertake a systematic study of pseudoconvex
classes of functions.

For one thing, the complete description of an arbitrary translation
invariant pseudoconvex class on RN (which will be given in [11], a
sequel to this paper) allows to easily obtain various approximation
theorems for some already known pseudoconvex classes. No other
proofs of these results are currently known.

Another reason, and the principal one for the author, comes from
interpolation theory of normed spaces [13]. During his work [10] on
generalizing the complex interpolation method of Coifman et al. [1, 2],
the author realized that pseudoconvex classes of functions can serve as
a natural unifying framework to study various interpolation methods.
See [13] for an implementation of this program.

In this paper and its two sequels [11, 12], we study in detail pseu-
doconvex classes of functions. Sections 1-3 contain necessary prelim-
inary material. In § 1 we give a general definition of pseudoconvex
classes which goes beyond the translation invariant case and enables
one to introduce pseudoconvex classes of functions on manifolds. (In
fact, we study in [12] invariant pseudoconvex classes on complex ho-
mogeneous spaces and apply the results in [13].) The crucial notion
of duality between pseudoconvex classes of functions is discussed in
§2. The results, that will be used in [13], are grouped in §§4 and 5,
where local maximum sets and pseudoconvex sets (with respect to a
given class of functions) are studied.

1. Discussion of axioms.

1.1. NOTATION. By a class of functions on a topological space we
understand a collection of functions which may be defined on different
subsets of M. If such a class is denoted by i7, then F(Y)9 where
Y c My denotes the set of functions of class F whose domain of
definition is equal to Y. Typically, F(U) is originally defined for U
open, U c M. If Y is an arbitrary subset of M, we define F(nbhd Y) =
\JUDYF(U), where U is an arbitrary open neighborhood of Y.

If # is a compact set, K c M, we let u e F(K), if there exists a
sequence {un)%Lx c F(nbhdK), such that un{x) \ u{x), x e K. If
Y is locally compact in M, we let u e F(Y), if for every compact set
KcY, u\K e F{K).
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The classes of all upper semicontinuous and continuous functions
will be denoted by use and C respectively. If P is any class on M,
CP denotes its intersection with C, i.e. CP(U) = C(U) n P(U), if U
is open in M. CP(nbhd Y) is defined in the same way as ^(nbhd Y)
above.

DEFINITION 1.2. Let F be a class of functions on a topological space
M. We say that F is a generalized pseudoconvex class of functions on
M, if M is locally compact, and conditions (1.1) through (1.6) hold.
Below U and V denote subsets of M.

(l . l)F(l/)cusc(C7).
(1.2) Whenever VcU undue F(U)9 then w|F G F(F) .
(1.3) Whenever κπ G F(U), un(x) > un+χ(x), n = 1,2,..., and

u(x) = lim^oo un(x), then w G F(U).
(1.4) If (ut)teτ is a locally uniformly upper-bounded subfamily of

F(U), and M(X) = sup,€Γ ut(x), x e U, then u* e F(U), where u*
denotes the use regularization of w, i.e. u*(x) = limsup^^^ u(y).

(1.5) If u e F(C7) and C is a real number, then (u + C) e F(C/).
(1.6) For every relatively compact subset U of M, F(U) contains a

bounded function.

DEFINITION 1.3. If F is a class of functions on M, the additive
center of F, denoted by AF, is the class of all functions v e usc(F), V
an open subset of A/, such that for every u e F(U)9 U an open subset
ofM, (u + v)eF(UnV).

DEFINITION 1.4. A class P of functions on M is called pseudoconvex,
if it is a generalized pseudoconvex class (in the sense of Definition 1.2)
and, in addition, satisfies conditions (1.7) through (1.9).

(1.7) {Sheaf axiom). If u e usc(£/), where U = \JteTUt, Ut are
open in Λf, and ut\Ut e P(Ut)9 for t e T9 then u e P(U).

(1.8) (Localization axiom). Whenever K c M is a compact set,
u G usc(AΓ) and ε > 0, then there exist XQ G K and /? G AP(nbhd^)
such that

sup \p{x)\ <ε, (u + p)(x0) > (u + p){x), x G K\{x0}.
xeK

(1.9) (Continuity axiom). Whenever x* e M, K, L c M, φ e C(K),
and ε > 0 are given, where x* e L, L c Int(K), K and L are compact,
then there exists a neighborhood F of x*9 with K c AT, such that for
every u G P(nbhdAΓ), satisfying inequality u(y) < φ(y)9 y G K, and
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for every x eV
(i) there exists a function u'x G P(nbhdL U V), such that

ux{x) >u{x*)-ε;

(ii) there exists a function u"x G P(nbhdLu V), such that

uf

x(xη > u(x) - ε.

The axioms (1.8) and (1.9) may seem unclear, so we comment on
them first, before discussing more systematically the definitions intro-
duced so far.

The role of axiom (1.8) is two-fold. On one hand, in many ar-
guments, a maximum property for some functions has to be proven.
This is done by the reduction to a contradiction: with the help of
(1.8), a function with a strict maximum is constructed, after which
the contradiction is usually easily obtained.

On the other hand, the axiom (1.8) means also that the additive cen-
ter AP contains "enough" functions. For example, a sufficient condi-
tion for (1.8) to hold is that the set AF(M) contains a linear subspace
of functions separating points of M. (See the appendix.) In classi-
cal examples such a subspace is formed by linear or pluriharmonic
functions.

Axiom (1.9) is an abstract analog of the property of the invariance
of a class of functions P with respect to the group of translations.
(See Proposition 1.7 below.) It is used in those arguments in which the
discontinuity of some functions of class P is an obstacle. In fact, under
additional assumptions, axiom (1.9) allows for local approximation of
functions of class P by continuous functions of the class, cf. [11, §1].

EXAMPLE 1.5. The notions of generalized pseudoconvex and pseu-
doconvex classes are actually different. Define class F on C by letting
u G F(U), U c C, if there is a locally uniformly upper bounded fam-
ily {ut}teτ of harmonic functions on £/, such that u(x) = sup, ut(x).
One can easily see that Definition 1.2 is satisfied and (less easily) that
the sheaf axiom (1.7) fails.

Definition 1.4 and the informal definition of translation invariant
pseudoconvex class on RN, given in the Introduction, differ in several
respects.

On one hand, conditions (0.1) and (0.2) are changed, as they had
to, since the base-space M is no longer Euclidean. If M has some
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geometric structure, closer analogs of conditions (0.1) and (0.2) can
be given (see [12] for the case of complex homogeneous spaces), but in
the abstract situation (1.8) and (1.9) seem to be their best substitutes.

On the other hand, we have also omitted from Definition 1.4 con-
ditions (1.10) through (1.12), listed next (which are satisfied by the
standard pseudoconvex classes, cf. Examples 2.1-3), although they
make sense for an arbitrary base-space M.

(1.10) Constant functions belong to F(U), U cM.

(1.11) (Local maximum property.) For every compact set K c M,
and for every u e F(nbhdK), maxu\K < maxu\dK.

(1.12) (Cone condition.) Whenever u e F(U) and r is a positive
constant, then rue F(U).

We will comment now on conditions (1.8) through (1.12).
Note first, that condition (0.1) means that in case P is a transla-

tion invariant pseudoconvex class on RN, then AP contains all con-
vex functions. Then Corollary A.2 (see Appendix) implies that axiom
(1.8) holds. For another specific example of the additive center AP,
see [12, §3].

The practical role of condition (1.8) is that it allows for the follow-
ing localization of maximum property.

PROPOSITION 1.6. Assume that a class F of functions on M satisfies
conditions (1.5) and (1.8). Let K, L be compact sets, and u e usc(AΓ),
where Lc K c M and max u\K> max u\L. Then there exist x0 e K\L
and p e AF(nbhdK), such that

(u + p)(x0) = 0>(u + p)(x), x e K\{x0}.

Proof. Choose ε > 0, such that maxu\K > 2ε + maxw|L. Choose,
by (1.8), x0 £ K, and p\ e AF (nbhdK), such that supxeK \p\(x)\ < ε,
and (u + Pι)(xo) > (u + P\)(x), x e K\{x0}. Since

max(w + p\) < ί maxu) + ε < ί maxu ] - ε
L \ L / \ K J

< max {u + p\) = (u + pι) (x0),
K.

we conclude that XQ <fc L. Let now p{x) = p\{x) — (u + P\)(XQ). By
(1.5), p € Λ/^nbhdtf), and clearly (u + p)(x0) = 0 > (u + p)(x),
x e K\{x0}. Ώ
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Contrary to its name, the additive center AP does not have to be
contained in P. This holds, if and only if constant functions belong
to AP, i.e. condition (1.10) holds. See Example 1.10 below.

We will show now that translation invariant classes, cf. (0.2), satisfy
continuity axiom (1.9).

PROPOSITION 1.7. Let F be a generalized pseudoconvex class on M.
Let W be a locally compact topological group with unit e, acting on M
via maps tw: M —• My w e Wy so that te = Id, tww> = tw ° tw>, and
the map (w,x) —• twx: W x M —• M, is continuous. Assume that the
action is locally transitive in the following sense. For every x0 e M
and for every neighborhood Wo ofe in W, the set {twx$: w e Wo} is a
neighborhood ofx0 in M. Assume further that F is invariant, i.e.

(1.13) whenever u e F{U), and wefy then uotwe F{Qι{U)).

Then F satisfies axiom (1.9).

Proof. Let x*, K, L, φ, e be given as in (1.9). Maps φ e C(K) and
(H>, X) —• tw: W x K —• M, are uniformly continuous, and so there is
relatively compact neighborhood Wo of e such that W^1 = WQ, and
for every y e K

(1.14) {twy:yeL, weW0}cK,

and the variation of φ on {twy: w e Wo} is smaller than ^ε. Thus

(1.15) u(twy) < φ(y) + Jβ, y G K.

By assumptions, the set {twx*' w e WQ} contains a neighborhood
of x*; choose such a neighborhood V. Whenever x e V, choose
w = w(x) e WQ, such that twx* = x, and let u'x(y) = ( w o ς 1 ) ( j ; ) ~ jβ
andu!x(y) = (uotw)(y)-%e. By (1.14), (1.13) and (1.5), functions ufχ9

u"x are of class F on a neighborhood of L. The inequalities required
in (1.9) (i), (ii) hold by (1.15). D

The last proposition goes beyond the Euclidean case and is sufficient
for most purposes, cf. [12]. However, if M is, e.g. a closed unit ball
in Cn, then the Mόbius group acts continuously on M, but its action
is transitive on the open ball only. Lemma 1.9 helps to handle such
situations.

DEFINITION 1.8. Let F be a class of functions on M and x e M.
We say that x is a peak for F if, given a compact set K with x e K,
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a neighborhood U of x and E < 0, there is u e F(nbhdK), such that

(1.16) u\K<0, u\K\U<E;

(1.17) lim u(y) = u(x) = 0.

LEMMA 1.9. Let P be a pseudoconvex class on M. Let Γ be a closed
subset ofM consisting of peak points for P. Assume that class P satisfies
continuity axiom (1.9) for subsets K c M\Γ. Then P satisfies (1.9) on
M.

Proof. Let x*9 L, K, φ, ε be as in (1.9).

Case x* $. Γ. Using (1.5) and Definition 1.8, we find for each Z G Γ
a function hz e F(nbhdK) and a neighborhood Mz of z, such that

(1.18) hz(y)<φ, yeK,

(1.19) hz{y)>φ{y)-\e, y e Mz.

Choose from {Mz} a finite covering Mz^y . . . , Mz^9 of K n Γ, which
we denote further by M\,..., AfΛ, and let h\,...,hn denote the cor-
responding functions hz^, ...,hz^ny Let M = M\ U ••• U Mn and
h(x) = max(/zi(x),. ..,hn(x)). Choose compact subsets L o , ̂ 0 ? of L
and K respectively, so that L o C Int(l£ 0), ^ o Π Γ = 0 , L c L o U M
and A: C KO U Λf.

Since axiom (1.9) holds on Λf\Γ, there is a neighborhood F of x*,
such that F c Λf \Γ, F c Domain of /, and for every X G F there are
functions u\, u\ e P ( n b h d ^ 0 ) , such that

(1.20) u\ < φ - \ε, u\ < φ - \ε, on LouT,

u\{x) > u(x*) - ε, ul(x*) > u{x) - ε.

Define now

/ f ) = ί mzx(uι

x(y),h(y)), y e nbhd(L0 uF),
x \h(y), yeM\(Loυvy,

u"(v) = ί max(i/2(j;), Λ(y)), y e nbhd(L0 uF),
χ{ } \h(y), yeM\(LouV).

By (1.4) h e P{M) and u'x, u"x G P(nbhd(L0 U M)). By (1.19), h{y) >
φ(y) - \ε9 and so by (1.20), the definitions of u'x, ux are consistent,
provided nbhd(L0 U F) is chosen small enough. By sheaf axiom (1.7)
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u'χ9 ux are of class P on nbhd(L0 U V) U M, which contains L. The
remaining properties of u'x, ux are obvious.

Case x* G Γ. Using Definition 1.8, we choose a neighborhood V of
x*9 and h e P{nbhdK), such that \φ{y) - φ(x*)\ < \ε, y e V, h < φ
on K, and h{y) > φ(y) - jβ, y e V. Then let u'x = h, ux = h. It is
clear that V, u'x, ux satisfy the requirements of (1.9). D

Although we did not include (1.10)-( 1.12) into the axioms of a pseu-
doconvex class, we will still have to assume them occasionally, while
studying some topics. For example, (1.12) is assumed throughout [13,
14].

In Definition 1.4, the role of condition (1.10) is partly played by
axiom (1.6).

EXAMPLE 1.10. Let L be a fixed real parameter. Define class C[
on RN as in [8, §2]. Namely, u e C|(C7), if the function v(x) =
u{x) + \L\x\2 is locally convex on U. By [8, Proposition 2.3], class
Cl satisfies axioms (1.1)—(1.8), and (0.2), and so is pseudoconvex by
Proposition 1.7.

Clearly, C[ contains constant functions, if and only if L > 0. (In
contrast, it always contains a locally bounded function x —• -^Llxl2.
The last example shows also that local maximum property does not
hold for an arbitrary pseudoconvex class. Namely, C | satisfies (1.11),
if and only if L < 0. These two observations suggest that conditions
(1.10), (1.11) might be related by some kind of duality. The next
definition and Proposition 1.12 confirm this.

DEFINITION 1.11. Let F be a class of use functions on a locally com-
pact space M. The dual class to F, denoted F d , consists of functions
u e usc(C/), U c M, U open, such that for every / e F(V), V c M,
V open, the function u + f has local maximum property (1.11).

Although property (1.11) may fail for a pseudoconvex class P, it still
holds for the class P + Pd. Through this duality, the local maximum
property is still important in the study of general pseudoconvex classes.

PROPOSITION 1.12. Let F be a generalized pseudoconvex class on
M. Then

(i) F has local maximum property, if and only ifFά contains con-
stant functions;

(ii) if Fά contains constant functions, then F has local maximum
property.
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This proposition follows immediately from (1.5) and definitions.

The study of duality is continued in §2.

REMARK 1.13. Property (1.12) is very natural and simplifies many
arguments, cf. [13]. On the other hand, classes C | , for L < 0, do not
have it, as well as the one defined next.

EXAMPLE. Let u e P{U), U open in RN

9 if the distributional Lapla-
cian of u is a measure greater than or equal to the Lebesgue measure.

These examples suggest that pseudoconvex classes (without cone
condition) might be an appropriate setting to study nonhomogeneous
Dirichlet problems (e.g. nonhomogeneous Monge-Ampere equations).

The next proposition shows that, under marginal exceptions, cone
condition (1.12) implies both (1.10) and (1.11).

PROPOSITION 1.14. Let F be a generalized pseudoconvex class on M
satisfying (1.12). Then

(i) Fά satisfies cone condition (1.12);
(ii) F contains constant functions',

(iii) F has local maximum property (1.11), provided F satisfies ax-
iom (1.8), and for every x e M, there is u e i ^ n b h d x ) , such that
u(χ) φ -oo;

(iv) ifue F(U), U c M, and g: R —• R is an increasing convex
function, then g o u e F(U).

Proof, (i) Obvious, by Definition (1.11).
(ii) Let [ / c M b e open and relatively compact. By (1.6), there

is a bounded function w0 Ξ F{U)> Let u(x) = UQ(X) + sup x 6 f / \u(x)\.
By (1.5), ueF(U). By condition (1.12), n~xueF{U), n = 1,2,....
Since n~ιu(x) \ 0 (note u(x) > 0), axiom (1.3) implies that the
constant function 0 belongs to F(U).

(iii) Suppose F does not have local maximum property (1.11). Then
there is a compact set K, and / G F(nbhdK), such that max f\K >
maxf\dK. By Proposition 1.6, there is a function p e AF(nbhdK),
and x0 e Int(K), such that (f+p)(x0) = 0 > (f+p){x), x e K\{x0}.
By assumption (iii), there is a relatively compact neighborhood V of
x0 and u e jFd(nbhdF), such that V c K, and U(XQ) > -oo. Choose
e > 0, so that, if g = f + p + ε, then

(1.21) g(xo)>O>maxg\dV
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Choose r > 0 so that rg(x0) + u(x0) > maxw|F. By this and (1.21),
we get (rg + u)(x0) > max(rg + u)\dV. This is a contradiction, since
(rg + u) e r(F + AF) + Fά c F + Fά. D

(iv) Since g is convex and increasing, g(x) = supίeχ lt(x)9 where
lt(x) = at + btx, bt > 0. Thus, (g o u)(x) = supteT(at + btu(x)). By
(1.12), [btu) e F{U), and by (1.5), (α, + btu) e F{U). Since g o u is
already use, g o u = sup// o w belongs to F(U) by axiom (1.4). D

2. Duality. Many pseudoconvex classes can be represented as dual,
in the sense of Definition 1.11, to some simpler ones. We will show in
[11] that every proper translation invariant pseudoconvex class P on
RN is dual to a class F, where F can be chosen as a class of smooth
functions (in fact, as a class of quadratic polynomials). We will give
now several examples of such representations.

EXAMPLE 2.1. P = the class of all subharmonic functions on open
subsets of RN. Then P = Ff and P = F2

d, where F ^ t h e class of
all harmonic functions and F2 = the class of all quadratic harmonic
polynomials. In fact, P = P d , i.e. P is self-dual.

EXAMPLE 2.2. P = Pq, the class of all g-plurisubharmonic functions
on C \ where 0 < q < n - 1, cf. [4], [8]. Then Pq = jFd, where i 7 =
the class of all smooth functions whose complex Hessian has at least
(n — q) nonnegative eigenvalues (at every point); cf. [8, Proposition
1.1]. Also, Pq = Fjd, where F\ = the set of all functions /, such
that f\L is plurisubharmonic, f\Cn\L = —oo, for some hypeφlane of
complex dimension (q + 1) in Cn.

EXAMPLE 2.3. P = the class of all ^-convex functions on RN. Here
p = Fά, where F = the collection of all functions / on RN

9 such
that f\L is convex, f\RN\L = -oo, for some (q + 1)-dimensional
hypeφlane L in RN.

Similar representations can be given for pseudoconvex classes ψ(q),
q = 1,2..., introduced by Wu [16, §1]. Further examples of dual
pseudoconvex classes are given in [11, 12].

PROPOSITION 2.4. A class P of functions on a locally compact space
M is dual to some class F of use functions on My if and only if it is
equal to its own bidual i.e. P = Pάά.

Proof. The sufficiency is obvious: P = Fά, where F = P d .
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Necessity. If P = Fά, then all the classes F + F d , Fάά + Fά and
Fάd + Fάάά have the local maximum property, by Definition 1.11.
Since Fάάά is the largest of all classes Fu such that Fάά + Fx has local
maximum property, it follows that F d d d contains F\ = Fά. In the same
way Fάά contains F, and s o F + Fάάά has local maximum property.
Similarly, Fά is the largest of all classes F 2 , such that F + F2 has local
maximum property, and so Fά contains F2 = Fάάά. Thus, Fd = F d d d ,
i.e. P = Pάd. π

We prove now that non-triviality of Fά implies weaker forms of
maximum property for the class F itself.

PROPOSITION 2.5. Let F be a class of use functions on a locally com-
pact space M. Let U c M be open. Then

(i) ifFά(U) contains a bounded function, then there exists a constant
C, depending only on U, such that for every compact K c U and for
every function u e F(nbhdK),

(2.1) maxw|A: < C + mzx(u\dK).

(ii) if x e U, and there exists a function g e Fά(U), such that
g(x) > ~oo, then there exists a constant C(x), depending only on x
and U, such that for every compact K c U and for every u e F(nbhdK)

(2.2) u{x) < C{x) + max(u\dK).

Proof. If g G Fά(U)9 then for every w, K as above max(w + g)\K <
max(w + g)\dK, by the definition of Fά. Hence, for xeK,

u(x) < max(w + g)\ΘK - g(x)

< {-g(x) + max g\dK) + max u\dK.

If g(x) > -oo, as in (ii), we let C{x) = -g(x) + max£|d(7, and (2.2)
is proved.

If g is bounded, as in (i), then let C = max(-#)|ΛT + maxg\dK,
and (2.2) holds with this value of C, by (2.3). D

The next two remarks follow immediately from Definitions 1.11
and 1.3.

REMARK 2.6. Let F be a class of use functions on M invariant with
respect to homeomorphisms tw: M —> M, w € W, in the sense of
(1.13). Then Fά is invariant with respect to tw, w e W.
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REMARK 2.7. If F is a class of use functions on M9 then AF c
A{Fά).

The following lemma is a local criterion for a function to belong to
the dual class.

LEMMA 2.8. Let F be a class of use functions on a locally compact
space M, such that (1.5) and (1.8) hold. Let u e usc(J7), U open in
M. Then u does not belong to Fά{U), if and only if there are a point
x e U, a neighborhood V ofx, V c U, and u0 e F(V), such that

(2.4) (u + uo)(x) = 0>(U + uo)(y), y e V\{x}.

Proof. The sufficiency is obvious; as for the necessity, if u £ Fd(U),
then there is U\ e F(U\) and a compact K c ί/nί/i, such that

i +ύ)\K> max(wi + ύ)\dK.

By Proposition 1.6, there is v e AF(nbhdK) and x0 e Int(K)9 such
that

wi + u){x) + v{x) = 0> max((«i + u) + v)(y), y e K\{x}.

o = uι+v and V = Int(A'). Then u0 e F(V) and (2.4) holds, α

It is natural to ask whether the dual and bidual of a pseudoconvex
class P must be pseudoconvex as well, and if so, whether P = Pάά. We
will prove in [11] that it is indeed so in the translation invariant case.
Below, we give partial results in this direction in the general case.

LEMMA 2.9. Let F be a class of use functions on a locally compact
space M.

(i) Assume that axiom (1.5) holds for F. Then, the dual class
p = Fά satisfies axioms (1.1)—(1.3), (1.5), and the following weaker
form of (I A):

whenever u e usc(l/), U c M andu(x) = sup, ut(x),x e
U, where {ut}teT c P(U), then u e P{U).

(ii) Assume that axiom (1.8) holds for F. Then, P = Fά satisfies
(1.7), (1.8) and the following "minorant property":

(2.5) if u E usc(C/) is such that for every x e U there ex-
ists ux e P{UX), Ux open, x e Ux c U, with ux(x) =
u{x), ux{y) < u{y), y e Ux, then u e P{U).
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LEMMA 2.10. Let F be a class of use functions on a locally compact
space M, satisfying axioms (1.5) and (1.9)(i). Assume that (1.6) holds
for Fά. Then, P = Fά is a generalized pseudoconvex class.

REMARK. The assumption on Fά is probably too strong but it cannot
just be omitted: if F = use, then Fά consists only of the constant
function = -oo.

COROLLARY 2.11. Let P be a pseudoconvex class of functions on M
invariant with respect to a continuous and locally transitive action of
a locally compact group W on M (as in Proposition 1.7), If Pά(U)
contains a bounded function whenever U is relatively compact, then
both Pά and Pάά are pseudoconvex classes on M.

Proof. Follows immediately from Proposition 1.7, Remark 2.6 and
Lemmas 2.9, 2.10. D

Proof of Lemma 2.9(i). It is obvious, by Definition 1.11, that condi-
tions (1.1), (1.2), (1.5) hold for Fά. To check (1.3), take un e Fά(U),
with un(x) > un+\(x)9 n = 1,2,..., and un[x) \ u(x), x e U, and
consider / e F(V). Then, the functions wn — un + / have local maxi-
mum property and wn(x) \ w(x) +/(x) , x eU. Thus, u + f has local
maximum property for every f e F(U), and so u E Fd(U).

As for the weaker form of (1.4), if u and uu t e Γ, are as in
Lemma 2.9(i), take f e F(V) and let wt = ut+ f. Then, sup, wt(x) —
u(x) + /(x), x E V ΠU, and sow + / has local maximum property for
every / e F. Consequently, u e Fά(U) (u is use by assumption), as
required.

(ii) By Remark 2.7, class Fά satisfies axiom (1.8). The sheaf condi-
tion (1.7) is a special case of property (2.5).

Suppose (2.5) fails. Then, by Lemma 2.8, there are a point x, a
neighborhood V of x and u0 e F(V), such that inequality (2.4) holds.
If Ux and ux e P{UX) are as in condition (2.5), then, by (2.4),

{U
x
 + U

O
){X) = U{X) + U

O
{X) = 0 > (M + Mo) W >

 U
x{y) +

for y e U
x
\{x}.

Thus, (ux + UQ) has strict local maximum at x, which contradicts the
assumption that (ux + w0) € Fά + F. α
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Proof of Lemma 2.10. Note that, in the last proof, Condition (1.8)
was used only to prove (2.5) and (1.7). So, it remains to show that
axiom (1.4) holds for Fά.

Let uu t e T, u and u* be as in (1.4). Suppose, u* £ Fά(U).
By Definition 1.11, there are a compact L c U, XQ £ Int(L) and
/ € F(nbhdL), such that

(2.6) u*(x0) + f(x0) > max(w* + f)\dL.

Choose a compact K c U9 such that L c Int(K) and ^ c Dom(/).
Choose ε > 0 and 9? e C(J£), such that φ(y) > f(y), y e K, and
W*(JCO)+/(JCO) > 2ε+max(u* + φ)\dL. We now apply axiom (1.9)(i) to
the data XQ, K, L, φ, ε and get a neighborhood V of XQ with properties
postulated therein. Without loss of generality, V c L.

By the definition of use envelope w*, there i s x e F and t(x) e Γ,
such that ut(X){x) > U*(XQ) - ε. We now apply part (i) of axiom
(1.9) to the function / < φ, and obtain f'x e F(nbhdL), such that
f'(y) < ψ{y)i V €&-> a nd fχ(χ) > f{χo)-e By these inequalities and
(2.6), we get

iMt(x) + fχ)(x) > u*(χo) - β + f{xo) - β > max(w*

This contradicts the local maximum property of the function

(utix)+fx)eFά + F. π

3. Constructing new functions of class P. As shown in Lemma 2.9,
the dual class P = Fά has the "minorant property" (2.5) which is (at
least formally) stronger, than the sheaf axiom (1.7). It is open, whether
the minorant property holds for an arbitrary pseudoconvex class but
it will be proved in [11] that it does hold for all translation invariant
pseudoconvex classes. In this section, we discuss some weaker versions
of property (2.5).

Other methods of producing functions of class P are related to the
Dirichlet problem and will be studied in a subsequent paper.

REMARK 3.1. The minorant property (2.5) implies the following

(3.1) {Reiteration property). If U\ C U C M, U\, U open, and
U\ e P{U\), u e P(U) are such that limsup ; ;_ ; cwi(y) < u(x), for
x e U n (dUi), then v e P{U)9 where

x(wi (*), u{x)), x e Uu

u(x), xeU\Uχ.
= /

\
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In particular, the dual class P = Fά in Lemma 2.9 has property (3.1).

Proof. To apply (2.5), we let vx = U\ and UX = U\, in case Wi(x) >
w( c), and vx = u, Ux = U otherwise. The assumptions of (2.5) being
satisfied, veP{U). π

PROPOSITION 3.2. Let F be a generalized pseudoconvex class on M
and (un) c F{U), U c M. Ifun converges uniformly to u on U, then
ueF(U).

Proof. Choose a subsequence n{k), k = 1,2,..., such that
sup!!!„(*)(*) - u(x)\ < 2~k~2. Let vk{x) = 2~k + un{k)(x). Then,
vk{x) > vk+x(x), k = 1,2,..., and so v*(*) \ v(x), x e (7. By (1.5),
v̂  E F(C/) and by (1.3), u e F(U). π

PROPOSITION 3.3. Let P be a pseudoconvex class on M. Then, the
reiteration property (3.1) holds, provided function u in (3.1) is contin-
uous at the point ofUn (dU\).

Proof. In the notation of (3.1), let, for n = 1,2,...,

ί max(uι(x), u(x) + n~ι), x e U\,
u{x) + n-\ xeU\Uι.

We will show first that vn e P(U) by checking that the sheaf axiom
(1.7) holds, i.e. every x e U has a neighborhood Ux, such that vn| t/x e
P{UX). lΐxeUu take C^ = Ux and, if JC e C/\t/i, then Ux = U\Vι
works. If x e U Π (dU\)9 then, by the continuity of u at JC, there
is a neighborhood Ux of x, such that U\ < u + n~x on Ux, and so

Since vn e P(U), n = 1,2,..., and vn(x) \ v(x), x e U9 function v
must be of class P. π

Recall that a covering {Vt}teτ is locally finite, if every point x has
a neighborhood Ux, which intersects only finitely many Vt

9s.

COROLLARY 3.4. Let P be a pseudoconvex class of functions on M,
and {Vt}teT be a locally finite open covering of an open set V c M.
Let u e C{V), vt e C(Vt)f t e T. Assume that vt\Vt e P{Vt) and

(3.2) vt\dVt = u\dVt,
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(3.3) u\Vt < v,.

Let v{x) = max{vt(x): x e Vt}> xeV. Then, veP(V)n C(V).

Proof. Obviously, v is continuous.

Assertion. If v, G C(Vi), v, | ^ G P{V{)9 i = 1,2, and v^dVi) n
Vj < Vj\(dVi n Vj), where {/,;} = {1,2}, then v e C(VX UV2) and
v|(Fi U V2) G_P, where v(x) = max(vi(x), Vi(x)), x € F i n F 2 , v(x)
= MX), x G KAK2, v(x) = v2(x), x G V2\VX.

Indeed, if Γ = {1,2}, then V = VXUV2 and, by (1.7), it suffices
to show that v|F G P ( ^ ) , / = 1,2. To show v\Vx e P{Vλ), we apply
reiteration property (3.1) (Proposition 3.3) to the data U: = Vu U\ :=
j/j n F2, u = vi|Fί, uι = v2|K! Π F2. Then, v(x) = max(w!(x),u(x))9

x E U\ and v(x) = u(x)9 x G ί/\C/i. The required assumptions hold
by (3.2), (3.3), and so v\Vx G P(Vχ). By similar argument for / = 2,
veP{V).

Consider now a sequence (Vn) of sets from the covering {^} with
corresponding functions vn G P(Vn) and let F(w) = V\ u U ̂  and
v(π)(x) = max{v/(x): x G )^}. One checks easily that the pairs V^n\
Vn+χ, and v^n\ vn+\, satisfy the assumption of the Assertion, and that

v(n+\) = m a x ( v ( « ) ) V / j + 1) i n r(π) n j / + 1 > v(/i+i) = V(Λ) i n FW\FΛ+i and

V(Λ+I) = v ^ + 1 j n vn+\\V(n\ Applying inductively the Assertion, we get
vWeCP{Vn),n = 1,2,.... _

If U is relatively compact in V> sequence (Vn) covers U9 and if n is
large enough, then v\U = vM|l7, and so, by (1.7), v G P(K). D

THEOREM 3.5. Let P be a pseudoconvex class on M and u G C(U),
where U is open in M. Assume that for every x G U, there are a
neighborhood Ux ofx and a continuous function ux e P(UX), such that

ux(x) = u(x), ux{y) < u{y), y e Ux\{x}.

ThenueP{U).

Proof. Fix ε > 0 and choose for every x e U a positive number
ε(x) < ε, such that the open set Vx = {y e U: vx(y) > u(y) - ε(x)} is
relatively compact in Ux.

By (1.7), it suffices to show that u\H G P{H) whenever H is open
and relatively compact in U. Fix such H and choose a finite covering
of Ή by sets Vx^9..., Vx^ny Index these neighborhoods as V\,..., Vn,
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the corresponding functions ux as u\,...,un, and ε(x(j)) as ε7 , j =

l,...,n. Let vj{y) = Uj(y) + εj9 y G Vj9 j = l , . . . , / i , a n d V =
V\ U U Vn. Clearly, the functions vi, v2,..., vn9 u, and the covering
{V\, . ,Vn} of ^ satisfy the assumptions of Corollary 3.4, and so
v G JP(F), where V(JC) = max{v7 (x): x e Vj}.

On the other hand, u(x) < v(x) < u(x) + ε, x e F. Let vε = v|/7.
We have constructed for every o O a function vε e P(H), such that
||Ve - (u\H)\\oo < ε. By Proposition 3.2, u G P{H). D

4. Sets with local maximum property and saturations. In this section

we study systematically local maximum property for sets and the no-
tion of saturation of a set (Definition 4.11), which is an analog of the
Perron envelope in this context. The notion of saturation is crucial
for our construction of interpolation spaces in [13].

DEFINITION 4.1. Let F be a class of functions on a locally compact
space M. A subset X of M is called an F-maximum set, if X is
locally compact (i.e. X = X n V for some open subset V of M), and
for every compact K c M, such that K n X is compact, and for every
feF(nbhd(KnX))

maxf\KΠX < maxf\{dK) nX

If A/ = CΛ and i 7 = the class of all plurisubharmonic functions
on Cn (n > 1), the most natural examples of F-maximum sets are
complex analytic varieties without isolated points. Other examples
are provided by complements of pseudoconvex domains in Cn.

Local maximum sets in the spectrum of a uniform algebra were
studied by Wermer [15]. In this context the simplest local maximum
sets are analytic discs.

If F = the class of all /c-plurisubharmonic functions on Cn (where
0<k<n — 2)9 then F-maximum sets are identical with /^-maximum
sets studied in [9, §2]. Many results given below generalize those of

[9].
We give next a local characterization of F-maximum sets in which

axiom (1.8) is assumed. However, in most cases this local characteri-
zation is not used, and so we assume (1.8) only when it is necessary.

PROPOSITION 4.2. Let F be a class of use functions on a locally com-
pact space M. Assume that (1.8) holds. Let V c M be open and
X = X π V and let, for every x, {Bt(x)}ίeT be a fixed basis of rela-
tively compact neighborhoods of x. Then the following conditions are
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equivalent:
(a) X is an F-maximum set,
(b) for every x e X and for every Bt{x), such that Ίtt(x) C V, and

for every f e F{nbhd Bt(xj)

f(x)<maxf\(XndBt(x)),

(c) there does not exist x e X, α neighborhood Bt(x) and f e
F{Bt{x))> such that

f(x) = 0>f(y), yeXnBt(x)\{x}.

Proof. Implications (a) => (b) => (c) are obvious. If (a) fails, there
is a compact K c M and a function f\ e F(nbhdK), such that
max/iIK Π X > mzxf\{dK) Π X. Applying Proposition 1.6 to K\ =
K n X and Li = (dΛΓ) n X, we get JC e K{\L{ and v € ̂ ^(nbhdϋ:!),
such that (/i + v)(x) = 0 > (/i + v)(y) for j ; ̂  JC, y e AΊ. Let-
ting / = (/i + v) e F and choosing ^ ( J C ) small enough, we obtain
contradiction with (c). Thus, (c) =» (a). D

REMARK. By the last proposition, if F satisfies (1.8), then X is an F-
maximum set, if and only if the class F\X (consisting of restrictions
of functions in F to X) has local maximum property (1.11) on X.
(Note that we do not assume the local maximum property of F on
M.)

The next corollary follows directly from Definition 4.1 and the last
proposition (part (c)).

COROLLARY 4.3. Let F be a class of use functions on M and let
XcM. Then

(i) ifX is an F-maximum set and U is open in My then X Γ\U is
an F-maximum set,

(ii) ifF satisfies axiom (1.8) and {Ut}teτ is an open covering ofXf

such that UtΓ)X is an F-maximum set for every t e T, then X is an
F-maximum set

COROLLARY 4.4. Let F be a class of use functions on M. Let Ky Z be
compact sets and u e usc(Z), where K c Z c M. Assume that Z\K is
an F-maximum set and u\Z\K e F{Z\K). Then max u\Z < max u\K.

Proof. Suppose, to the contrary, that maxw|Z > maxu\K. Then,
there is an open relatively compact neighborhood V of K, such that
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maxw|(Z\F) > maxw|F. Choose a compact N c M so that NΓ\K =
0 and Z c Int(iV) u V. Then, Z \ F c N, {dN) n (Z\tf) C F and
(Z\A:) n iV is compact. Hence, maxu\N n (Z\A:) > maxw|(dΛ0 Π

Since w e F(Z\K), there exist ww e ^(nbhd JV), n = 1,2,..., such
that «π(x) \ w(x), x e N. If π is large enough, we obtain, by the
last inequality, that maxun\Nn(Z\K) > maxun\(dN)n(Z\K), which
contradicts the assumptions. D

REMARK 4.5. If localization axiom (1.8) is assumed, the set Z\V
in the above proof can be made a singleton and then the proof applies
to localized completions of the class F and their transfinite iterates,
in the spirit of Rickart [7].

Let X be a locally compact subset of M. Then I = ϊ π F , where
V is open in M. We will call the function

= Xχ{x) \Xχ{x) = Xχ{x) = \ 1/κv

I - oo, x e V\X,
a "characteristic function" of X relative to V.

PROPOSITION 4.6. Let F be a class of use functions on M. Let X,
V c My where V is open andX = XnV. Assume that F satisfies axiom
(1.8). Then X is an F-maximum set, if and only if the characteristic
function χx = χ% is of class Fά(V).

Proof. Follows immediately from Lemma 2.8, Proposition 4.2 and
the fact that (χx + f)\V\X = -oo, for every / . (Cf. [9, Theorem 2.5]
for a similar argument.) D

COROLLARY 4.7. Let X c M and F, F\ be two classes of use func-
tions on M, both satisfying axiom (1.8). Assume that Fά = F^. Then
X is an F-maximum set, if and only if it is an F\-maximum set. In
particular, F- and Fdά-maximum sets are the same.

Proof. The first statement is a direct consequence of Proposition
4.6. The second statement is a special case with F\ = Fάά, since
Fάdά = Fά, by Proposition 2.4. D

REMARK 4.8. Clearly, Fdά is usually a much larger class than F.
For example, when F — the class of all pluriharmonic quadratic poly-
nomials on Cn, then F d d = the class of all plurisubharmonic functions
on Cn. (Follows from the results of [11].)
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PROPOSITION 4.9. Let F be a class of use functions on M satisfying
axiom (1.8). Let {Xt}teτ be a family of F-maximum sets, such that
their union X = \JteT Xt is locally compact Then X is an F-maximum
set

Proof. If not, then, by Proposition 4.2 (c), there are x G X, a
neighborhood B oϊ x and / G F(B), such that f(x) = 0 > f(y) for
yeXΠ B\{x}. If x e Xu then f{x) = 0 > f{y) for yeXtΠ B\{x},
which contradicts the assumption that Xt is an F-maximum set. D

PROPOSITION 4.10. Let F be a class of use functions on M. Assume
that F either satisfies axiom (1.9)(i) or consists of continuous functions
only. Then

(i) whenever Y c M is locally compact and Xt, t G T, are F-
maximum sets, such that Xt = Xt ΓΊ Y, then X* is an F-maximum set,
where X = [jteTXt and Γ = I n F ,

(ii) ifYcM is locally compact and Xs = Xs Π Y, s G S, form a net
of F-maximum sets, then Xoo = LimS\xps Xs is an F-maximum set,
provided it is non-empty.

(iii) let {Ks}ses and {Zs}seS be nets of compact subsets, such that
both Lim Suρ5 Zs = Z ^ and Lim Suρ5 Ks = Koo exist and are compact
sets. Assume that ZS\KS, s G S, are F-maximum sets. Then ZOO\JRΓOO

is an F-maximum set.

Proof, (i) Suppose X* is not an F-maximum set, i.e. there exist:
x* G X*, K compact with K n X* compact and / G F(nbhd(A: n X*)),
such that x* G K\dK and /(**) > maκf\(dK) Π X*.

We consider first the case when axiom (1.9)(i) holds. Choose a
relatively compact neighborhood W of (dK) n Xoo5 so that / G
^ ( n b h d ^ U AT n Xoo)) and f(x0) > max/|TF. Choose a compact set
AΊ, so that Kx Π Xoo is compact, K Π Xoo U W c Int(AΓi), and
/ G F(nbhd AΊ). Choose ε > 0 and φ e C{Kχ), so that φ > f on K\
and

(4.1) / ( x o ) - ^ > m a x ^ | T F .

We apply now axiom (1.9)(i) to data **, L\ = K n Xoo? AΊ and 9?.
Let K be a neighborhood of x* with properties postulated by (1.9)(i)
and choose s e S and xs G Z5, SO that xs G F. By (1.9)(i), there is
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fs e F(nbhdL{ U V), i.e. fs e F(nbhd(ϋ: n *«>)), such that fs{x) >
f{xo) - ε and fs < φ on L\ u V. Combining these inequalities and
(4.1), we get

Jl(xs) >maxφ\W>maxφ\(dK)nXs >maxfs\(dK)nXSf

which is impossible, since Xs is an F-maximum set.
In case F consists of continuous functions only, most of the above

argument can be omitted and we can simply take fs = / .

(ii) By the definition X^ = f)σ X\ where Xσ = YnCl([Js>σ X*)- By
(i), each Xσ is an F-maximum set, relatively closed in Y. Moreover,
Xσ form a decreasing family, and so (ii) follows immediately from
the next assertion.

Assertion 1. If XS9 s e S, form a decreasing family of F-maximum
sets, where S is a directed partially ordered set, and Xs = Xs Π Y,
where Y is locally compact, then Xoo = f]s Xs is an F-maximum set.

Indeed, if K is compact, K n Xoo is compact, and / e
F(nbhd K Π Xoo), then there is s0 e S, such that / e F(nbhdK n AΓ5)
for Λ > SQ. Then

max /|JT n Xoo = lim max / | J ί n Xs < lim max / | (a^Γ) n Jζ

(iii) The following assertion is an easy consequence of Definition
4.1.

Assertion 2. A locally compact set X c M is an F-maximum set,
if and only if for every open set W, such that W n X is compact, the
intersection W n X is an F-maximum set.

In the setting of (iii), if W n (Z o o \^ o o ) is compact, we can assume
without loss of generality that WΠKQO = 0. Since Lim Sups Ks = Λ^o,
there is SQ G S, such that Ks c M\W for 5 > SQ. Then, the sets Γ :=

w, xs = zs n w = (zs\κs) nw and xoo = zoonw = (ZooVKoo) n Ĥ
satisfy assumptions of part (ii) (for s > SQ), and so the latter is an
F-maximum set for every W under consideration. By Assertion 2,

is an F-maximum set. D

DEFINITION 4.11. Let F be a class of use functions on M, which
satisfies axiom (1.9)(i) or consists of continuous functions only. Let
K c Y C M, where K is compact and Y locally compact.

(a) We say that a set Z c Y is α saturation ofK relative to Y, if Z
is compact and Z\K is an F-maximum set.
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(b) We call the union of all saturations of K relative to Y the sat-
uration of K relative to Y and denote Satγ(K) or, more precisely,

Note that the saturation ofK does not have to be compact, in gen-
eral, and in such an instance it is not a saturation.

The saturation is an object similar to the polynomial hull. In fact, if
Y = M = Cn, and F = the class of all plurisubharmonic functions on
Cn

9 then Satγ{K) = the polynomial hull of K. A more general result of
this type will be proven in [14]. However, the identity of the saturation
and of the hull (with respect to some class of functions, cf. Definition
4.17 below) holds only under strong assumptions about the class F
and the set Z. Note also that the saturation is built up by adding
more and more to the set K, while the hull is obtained by removing
some parts from the ambient space M. In view of these observations,
the notion of the saturation seems to merit a study, independently on
that of the hull.

COROLLARY 4.12. Let F, M, K, Y satisfy assumptions of Definition
4.11. Then

(i) SatY (K) is relatively closed in Y provided it is relatively compact
in Y.

(ii) Satγ(K) is compact, if and only if it is relatively compact in
Y. IfSatγ(K) is compact, it is a saturation, i.e. SztY(K)\K is an
F-maximum set.

Proof, (i) Assume that Saty(ΛΓ) c Γo C Y, where YQ is compact. Let
x € C\(Sztγ(K)), x £ K. Then there exists a net {xt)teτ> T being an
ordered set, such that lim^ xt = x and xt e Zt, where Zt is a saturation
of K, for t € T. Since all the Zt are subsets of the compact set YQ9

LimSup5Z, = Zoo exists and is a compact set. By Proposition 4.10
(iii), Zoo\K is an F-maximum set and so Z ^ is a saturation of K.
Hence, x e Saty(ΛΓ), seeing that x e Z^. This proves (i).

(ii) If Saty(A^) is compact, Satγ(K)\K is relatively closed in Y\ =
Y\K and is the union of F-maximum sets Zt\K (where Zt is any
saturation), which are all relatively closed in Y{. By Proposition 4.10
(i), Satγ(K)\K is an F-maximum set.

If Sztγ(K) is relatively compact in Y, it is relatively closed, by (i),
and so is compact. D

COROLLARY 4.13. Let F be a class of use functions on M satisfy-
ing the localization axiom (1.8). Assume that Saty(J^) is compact.
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where K is compact, Y locally compact and K c Y c M. Then,
= Satγ(K).

Proof. Let Z = Satγ(K) and suppose Saty(Z) φ Z. Then, there is
Z\ c 7, such that Z\ is compact and Zi\Z is an .F-maximum set. Let
Z 2 = Z\ U Z. Then Z 2 is compact and Z2\K is an ^-maximum set,
by Proposition 4.9, because it is locally compact and is the union of
two F-maximum sets Zi\Z and Z\K. Thus, Z 2 is a saturation of K,
and so Z 2 c Z . D

REMARK 4.14. It follows immediately from Corollary 4.7 that, if F
and F\ are two classes of use functions on M, both satisfying condition
(1.8), and such that Fά = if, then Sat£(#) = Sat£(*:).

LEMMA 4.15. Let F be α class of use functions on M satisfying ax-
ioms (1.5) and (1.8). Let u: U —• Rbean use function, where U is open
in M. Let Xt = {x € U: u(x) > t}. Then, the following conditions are
equivalent:

(i) all the Xt 's, t eR, are F-maximum sets,
(ii) for every continuous, non-decreasing function φ: R —> R, the

composition x —• φ(u(x)) is ofFά-class,
(iii) the same as (ii), with φ C^-smooth and φ'(x) > 0 on R.

A natural application of this lemma is the next corollary, in which
presence of an additional structure implies that one of the sets Xt is
an F-maximum set, if and only if all of them are. The corollary will
be used in [13].

COROLLARY 4.16. Let M be a locally compact space and M = M x
RN. Let F be a class of use functions on M, satisfying axioms (1.5)
and (1.8), and invariant with respect to homoteties {x,y) —> (x,cy),
{x, y) e M x RN, c> 0. Let G c M be open and p: GxRN -+ [0, oo)
be a lower semi-continuous function, such that p{x,ry) = rp(x,y),
r > 0, and p(x, y) = 0, if and only ify = 0. Denote

X = {(x,y) eGx (RN\{0}): p(x,y) < 1}.

Then
(a) X is an F-maximum set, if and only if for every C^-smooth

function φ: R —• R, such that φ'{x) > 0, x e R, the composition
(x,y) -> φ{-logp{x,y)) belongs to Fά(G x (i?
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(b) if in addition, F satisfies axiom (1.12), then X is an F-maximum
set, if and only if the function (JC, y) —• min(— \ogp(x, y), 0) is of class
Fd(G x (RN\{0})).

Proof of Lemma 4.15. Obviously, (ii) => (iii). Conversely, (iii) =>
(ii). Indeed, if φ: R -> R is continuous and non-decreasing, there
exist functions ^ r t G C^(R), such that ^J,(ί) > 0, n = 1,2,..., and
Ψn{t) \ ρ(f), for ί G i?. Then, φnou e Fd and ^Λ(M(JC)) \ p(w(jc)),
X G C / , and so φ o w G Fd(U), by Lemma 2.9.

(i) => (ii). Denote # ( * ) = χ^(x) . By Proposition 4.6, x, G Fd(C/).
Let A/(x) = φ{t) + //(x). Since F d + const c i ^ , by Lemma 2.9,
ht G Fd(ί7), for all t G i?. Since ht = -oc on U\Xt and 9? is non-
decreasing, ht < φ o u, for t G i?. On the other hand, if x* G 1/
and ί* = u(x*)9 then ht*{x*) = p(ί*) + /r(x*) = ^(w(x*)). Thus,
(φ o u)(x) = sup rh t(x)9 x G C/. Since 9? o w is use, φ ou e Fd(U), by
Lemma 2.9.

(ii) => (i). Fix ί G i? and let ^(y) = -00 for y < t and 0 for y > t.
Further, let φn{y) = n(y - t), foτy<t and 0 for y > t, n = 1,2,
By (ii), φnou G Fd(U). Since φnou(x) \ φou(x) — χt{x\ χt G jFd(ί7)
by Lemma 2.9. Thus, Λf, is an F-maximum set, by Proposition 4.6. D

Proof of Corollary 4.16. (a) Let U = G x ( i^\{0» and φ j ) =
- \ogp{x, y). If Xt, t e R, are defined as in the last proof, then X =
Xo> and every ΛΓ/ is the image of X under the map (x, y) -* (x, ^ y ) .
Thus, X is an ^-maximum set, if and only if all the X/s are, and so
Lemma 4.15 implies (a).

(b) In the same way, the necessity in (b) follows from Lemma
4.15(ii). As for sufficiency, if v e Fά{U), U = Gx (RN\{0})9 where
v(x,y) = min(-logp(jc,y),0), then nv e Fd(U), n = 1,2,..., by
Proposition 1.14(i). Since nv{xfy) \ χ%(x,y), Xx G Fd(U), by
Lemma 2.9, and so X is an F-maximum set. D

DEFINITION 4.17 (Krantz [5, p. 106]). Let F(Y) be a family of
functions defined on a set Y and K c Y. We say that K is F(Y)-
convex, or convex with respect to F(Y), if for every y G Y\K there is
g G F{Y), such that swρg\K < g{y).



PSEUDOCONVEX CLASSES OF FUNCTIONS 367

The next corollary will be applied in [13]. A related result, for
analytic multifunctions in one-dimensional setting, was obtained by
Ransford [6, Theorem 5.1].

COROLLARY 4.18. Let F be a class of use functions onM = Mx RN,
satisfying assumptions of Definition 4.11, and G c M be open and
relatively compact in M. Let ζ —• K(ζ): dG —• 2RN be an use, compact-
valued function. Assume that for each b e dG, the set {b} x K(b) is
AF(G x RN)-convex and there are barrier functions uh

n G F(G x RN),
n = 1,2,..., such that

(4.2) ub

n\{b} x RN = 0; 0 > ub

n{z, w) \ -oo,

(z,w)e(G\{b})xRN.

Then, Sa%χ^(gr(7O) Π {dG) x RN = gτ(K) (= the graph ofK( )).

Proof. Recall that gr(K) = {(z, w) e dG^RN: w e K{z)}. We have
to show that, if Z is a compact subset of G x RN

9 such that Z\gτ(K)
is an /"-maximum set, then Zb c K(b)9 where

(4.3) Z^ = {w€UAr:(fc,w)GZ},
cf. Definition 4.11 (a). Suppose, on the contrary, that there is vv0 E
Zb\K\b). By the ^F-convexity of {b} x A:(ό), there is g e
AF(G x RN)9 such that g(Λ, w0) > 2ε + maxg|{ft} x ϋ:(*), for some
ε > 0. Let vΛ(z, w) = g(z, w) + «£(z, w), (z, W ) G G X iί^. By Defini-
tion 1.3 and Notation 1.1, vn e {AF) + F c F(G x RN). Seeing that
vΛ(fc, w) = g{w), w e RN, vn{z, w) \ -oo, for (z, w) e Z\{b} x RN,
and taking into account that Z is compact and vn are use, we conclude
that for n large enough,

maxvn\Z > g(b,w0) > e + max^K^} x K(b) > maxvn|gr(A:).

This contradicts Corollary 4.4. D

COROLLARY 4.19. Let M, M, F be as in the last corollary. Let G c
M be an open and relatively compact subset of M and b e dG admit
a sequence of barrier functions {ub

n) c F(G x RN) satisfying condition
(4.2). LetZ cGxRN beanF-maximumset. ThenX = Zn{b}xRN

is an AF-maximum set.

Proof. Suppose not, then there exist a compact subset N c M and
g e AF(nbhd{N Γ)X))> such that X n N is compact and

(4.4) max#|(<9iV) nX< maxg\NnX
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and (without loss of generality) sup g < Q < oo. Choose now a
compact set No, such that NQ c N Π Όom(g), N Π Z is compact,
7VonX = iVnXjand dNonX = diVnX. ThenZniVoΠίόlxi?^ = XC\N
and Z ΠN0 c G x RN. Using this, inequality (4.4) and the property
that 0 > uh

n{zt w) \ -oo on (G\{b}) x RN, we conclude that for n
large enough max(^ + w^)|5Λ^nZ < max^lΛ^nX. Since ub

n{b, w) = 0,
w e RN and I c Z , w e get

(4.5) max(# + ub

n)\ΘN0 Π Z < max(s + w

By the definition of F(G x RN), cf. Notation 1.1, we can approximate
each W |̂JVQ ΓΊ (G x RN), in a decreasing fashion, by functions v e
F(nbhd(iVo ί l G x RN)) Replacing ub

n in (4.5) by a sufficiently good
approximation v, we get max(g + v)\dN0 Π Z < max(# + v)|iV0 n Z.
Since # + v e AF + F c F, and Z is an F-maximum set, we get a
contradiction. D

5. Absolutely pseudoconvex and relatively pseudoconvex sets. Per-

haps the most natural motivation of the notion of P-pseudoconvex sets
comes from the study of convex hulls relative to a class of functions.
This approach corresponds to holomorphic convexity in the classical
case and we will follow it in [14]. Already at this stage, however, one
can define P-pseudoconvexity by a version of kontinuitatsatz, with
P-maximum sets replacing the usual analytic discs.

Permanent Assumption. We will assume throughout the whole sec-
tion that F is a class of use functions on the given locally compact
space Λf, satisfying conditions of Definition 4.11.

DEFINITION 5.1. (i) Let Y c M. We say that Y is F-pseudoconvex,
if Y is locally compact and if, whenever two nets (Zt)ίeT, {Xt)teτ are
such that

(5.1) Zt,XtcX Zt, Xt are compact t e T,

(5.2) Zt\Xt is an F-maximum set, t G T,

(5.3) LimSup, Xt = XQO exists and is a non-empty compact set,

then the limit Z ^ = Lim Sup, Zt exists and is a compact set.

(ii) Let Y c R C M. We say that Y is relatively P-pseudoconvex
in i?, if Y and R are locally compact, and for every two nets (Zt)teτ>
[Xt)teτ of subsets of 7, satisfying conditions (5.1) through (5.3) and
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such that Lim Sup, Z, = Zoo, considered relative to R, exists and is
compact, the set Z ^ must be contained in Y.

REMARK. In the above definition, Lim Sup, Z, is understood in a
more restrictive sense than in Proposition 4.10, Proof of (ii). Namely,
we require also that for every neighborhood U of Zoo, there is to € Γ,
such that Zt cU for t> ί0.

PROPOSITION 5.2. Let Y c Rc M be locally compact sets. Then
(a) if Y is F-pseudoconveXy then Y is relatively F-pseudoconvex in

R,
(b) ifR is F-pseudoconvex and Y is relatively F-pseudoconvex in R,

then Y is F-pseudoconvex,
(c) // Y is relatively compact in R and relatively F-pseudoconvex in

R, then Y is F-pseudoconvex,
(d) ifR is compact and Y is relatively F-pseudoconvex in R, then Y

is F-pseudoconvex,
(e) ifu e F{R) and Rc: = {x e R: u{x) < C}, where -oo < C <

+00, then Rc is relatively F-pseudoconvex in R. In particular, ifR is
F-pseudoconvex, then so is Re-

Proof (Sketch), (a) and (b) are obvious, and (d) follows directly
from (c).

(c) Since Y is compact and Y c R, Z^ = Lim Sup, Zt exists, relative
to Y. It is then easy to observe that Lim Sup, Z,, relative to R, exists
and is equal to Zoo. Since Y is relatively pseudoconvex in R, Z^ c Y.
Now, it suffices to observe that Lim Sup, Z,, relative to 7, exists as
well (and is equal to Zoo). We omit further details.

(e) Let Z,, Xu T satisfy conditions of Definition 5.1(ii), with Y =
Rc. We have to show that Z ^ c Rc Since Xoo c Rc, u\Xoo < C. By
Proposition 4.10(ii), Z^Xoo is an F-maximum set and, by Corollary
4.4, w|Zoo < maxw|Xoo < C. Thus, Z ^ C Rc. •

REMARK. In contrast with the standard usage, we consider also
non-open pseudoconvex sets. This allows for more uniformity in ex-
position and will be also useful in [13]. We note that every compact
set is F-pseudoconvex.

PROPOSITION 5.3. Let Y,R,S c M be locally compact,
(a) IfY cR and Y is relatively F-pseudoconvex in R, then YnS is

relatively F-pseudoconvex in RnS.
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(b) If Y is relatively F-pseudoconvex in R and R is relatively F-
pseudoconvex in S, then Y is relatively F-pseudoconvex in S.

Proof (Sketch). Similarly as in the proof of (b) given next, (a) follows
directly from Definition 5.1(ii).

(b) Let (Zj), (Xt) be nets of compact subsets of Y (satisfying condi-
tions of Definition 5.1 (ii)) for testing of the relative F-pseudoconvexity
of Y in S. In particular, LimSup, Zt = Zoo, relative to S, exists and
Zoo is a compact subset of S. Since R is relatively F-pseudoconvex
in S9 ZQO c R. Clearly, Zoo = LimSup, Z,, relative to R. Since Y is
relatively F-pseudoconvex in R, Zoo C Γ . D

The proof of the next proposition is similar to the last one and is
omitted.

PROPOSITION 5.4. Let Y\, i e I, and R be locally compact subsets
of M. If every Yit ί e /, is relatively F-pseudoconvex in R, and the
intersection Y = f]ieI Y, is locally compact, then Y is relatively F-
pseudoconvex in R.

After these rudimentary observations on the general case (which
will be continued in [14]), we will focus now on the case of Y and F
of the special form, considered already in Corollary 4.16 (and relevant
for the applications in [13]).

LEMMA 5.5. Let M be a locally compact space and M = M x RN.
Let F be a class of use functions on M satisfying assumptions of Defini-
tion 4.11 and invariant with respect to maps (x, y) —> (JC, ty), t>0. Let
G c M be locally compact and Y c GxM relatively open. Assume that
sections Yz, z eG (cfi (4.3)) form a locally uniformly bounded family
of non-empty star-shaped subsets of RN .Then Y is F-pseudoconvex in
G x RN, if and only ifS2dβxRN(K) c Y, whenever K cY is compact.

REMARK. For classes F with some additional properties, this result
means that Y is F-pseudoconvex, if and only if it is F(7)-convex, cf.
[14].

Proof. By Definition 4.11, an equivalent formulation is: if K c Y,
K and Z are compact sets, and Z\K is an F-maximum set, then
ZcY.
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"Sufficiency" is now obvious: in the situation of Definition 5.1 (ii),
Zoo C Y, because Xoo c Y and ZOO\ZOO is an i^-maximum set by
Proposition 4.10(iii).

"Necessity". Suppose K, Z are compact, Z\K is an i^-maximum
set and Z <jL Y, while K c Y. Let Z', K* denote the images of
Z, K under maps (x,y) —• (x>ty)9 t > 0. Let τ be the smallest t,
such that Zt intersects (G x RN)\Y. Then τ < 1, since Z 1 = Z,
and Λ7 c Y for £ < τ, since Kι = K c Y and Yz are star-shaped.
The nets {Z%<t<τ){K%<t<τ, with Z ^ = L i m S u p ^ τ Z ' = Z τ and
Âoo = Lim Supf_>τ-K7 = AΓτ satisfy conditions of Definition 5.1 (ii).
Thus, Z τ c Y, which is a contradiction. D

REMARK 5.6. The last lemma applies in particular when G is a
singleton, G = {£}.

In the classical case, pseudoconvexity is a local property of the
boundary. The next theorem is a partial result in this direction. (The
general problem remains open.)

THEOREM 5.7. Let M be a complex manifold on which globally holo-
morphic functions separate points, M = M x Cn, F a class of functions
on M, G c M and F c f f x C 1 . Assume that F9 Y satisfy all the
assumptions of Lemma 5.5 and, in addition, G is open, Yz, z eG, are
circled, and F is invariant with respect to the maps

(5.4) (z,w)-+(zfΛ(z)w)f

where h(-) is a nowhere-vanishing holomorphic function. Let {Gt}teτ
be an open covering of G. Then Y is relatively F-pseudoconvex in
G x Cn, if and only ifYΠ(GtxCn) is relatively F-pseudoconvex in
Gt x Cn for every t e T.

REMARK 5.8. Under the assumptions of the above theorem, if Y
is not relatively .F-pseudoconvex in G x CΛ, then there are compact
sets K, Z and point a € π(Z), where π: M x Cn —> M is the standard
projection, such that K c Y, Z\K is an .F-maximum set, and Z c
Yu{a}xCn, butZ£ Y.

Proof of Remark 5.8. By Lemma 5.5, there are compact sets K°,
Z°, such that Z° c G x Cn, K° c Y, Z° £ Y, and Z°\K° is an
F-maximum set. Define

(5.5) eu^ = max{ί > 0: ΓιZ°z n (C"\r z ) ^ 0 } , z G π(Z°),

(5.6) ev^ = max{ί > 0: {ΓιK°z) n (C Λ \r z ) ^ 0 } , z e π(ϋ:°),
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where K°, Z°, Yz are defined by (4.3). Clearly, u{z) > v(z), z e
π(K°) and one can show easily (details omitted) that w( ) and v( ) are
use functions on π(Z°) and π(K°) respectively. Since K° c Y and

z°£r,
(5.7) max u > 0 > max v.

By Corollary A.3 and Proposition A.4, there is a holomorphic function
p: nbhd(π(Z0)) -> C and a e π(Z°), such that

(5.8) [u + Rcp)(a) = 0>(u + Rep)(z), z e π(Z°)\{a}f

(5.9) max(v + Re/?)|π(Λ:0) < 0.

Now let h(z) — exp p(z) and define compact sets Z, K as the images
of Z°, Γ̂° under the map (z, w) -* (z, A(z)w). Since T7 is invariant
with respect to such maps, Z\K is an F-maximum set. By (5.5) and
(5.6),

> 0: ΓXZZ n (C"\7Z) ^ 0} = e

u^^Ktp^\ z e π(Z),

> 0: r ^ z n (Cn\Yz) φ0} = e

v^+Re^z\ z e π(K),

(we used here the fact that Yz are circled). These relations and (5.8),
(5.9) imply ZaΠ{Cn\Ya) φ 0, Z z c Yz for z G π(Z)\{α}, a n d ^ z c FΓ

for z e π(^), i.e. ί c F . D

Proof of Theorem 5.7. The condition is necessary by Proposition
5.3(a). Suppose it is not sufficient, then there are K, Z, a with proper-
ties stated in Remark 5.8. Choose Gu such that a eGt and a relatively
compact neighborhood B of a with B c G / . Let Zj = (5 x C") Π Z
and ^ i = ( 5 x C " ) n i ί : u {dB x Cπ) Γ)Z. Clearly, Ku Z{ are compact.
Since Z\\K\ — [Z\K] n (5 x CΛ), it is an ^-maximum set by Corollary
4.3(i). Moreover, by Remark 5.8, KxcYΓ\{Gtx Cn), Zx c Gt x Cn

andZ! c Yn{GtxCn)\J{a}xCn,vίhϊleZι (jt Yn(GtxCn). By Lemma
5.5, this means that Y n (Gt x Cn) is not relatively F-pseudoconvex in
Gt x Cπ. D

We will consider now a property of a pair 7 c i?, which is, at least
formally, stronger than the relative F-pseudoconvexity of Y in R. Let
7* = yu interior of Yu{YndR), relative to R. By Proposition 5.3(a),
relative F-pseudoconvexity of Y* in R implies that of Y in R. The
converse is open even in the classical case. (In case Y is compact in
R, a positive answer would mean that relative F-pseudoconvexity of
Y in R is equivalent to absolute F-pseudoconvexity of 7*). We give
a partial result in the context of Lemma 5.5.
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COROLLARY 5.9. Let M, M, F, G, Y satisfy assumptions of Lemma
5.5. Assume additionally that G, Y are relatively compact in M and
M respectively, and for every b e dG, there are "barrier" functions
ub

n e F(G x RN) satisfying condition (4.2) ofCorollary 4.18. Let Y* =
interior ofYu (dG x RN) n Y relative toGx RN. Assume that the
fibers {b} x Y£ are AF-pseudoconvex. Then Y = Y* Γ)(G x RN) is
relatively F-pseudoconvex in G x RN, if and only if Y* is relatively
F-pseudoconvex in G x RN.

Proof. Only necessity requires proof. By Lemma 5.5, we have to
show that, if K, Z c G x RN are compact sets, such that K c Y* and
Z\K is an F-maximum set, then Z c Γ , Let b e dG; by Corollary
4.19, the set {b}xRNΠ(Z\K) = {b}xZb\{b}xKb is an ,4F-maximum
set. Since the fiber {b}x Yζ is ̂ F-pseudoconvex and contains {b}xKb,
by Remark 5.6, {b} x Zb c {b} x Yb, for every b e dG. By the
compactness of G and Z, and relative openness of Γ, there is an open
neighborhood V of dG, such that

(5.10) ZzcYz, zeVnG.

Let N = G\V, Zx = Z n (N x RN) and Kx = K n (N x RN) U Z n
(dN x RN). Then N, Ku Zx are compact, Zx c G x RN and, by
(5.10), Kx c Y. Furthermore, ZX\KX = (IntΛQ x RN n (Z\K) is an
F-maximum set. Since Y is relatively F-pseudoconvex in G x RN,
Z\ c Y (by Lemma 5.5), which, together with (5.10), implies that
ZCΓ. D

COROLLARY 5.10. Let M, F satisfy the assumptions of Lemma 5.5
and, in addition, axiom (1.8). Let G c M be open and relatively
compact and z —> W(z): G —• 2RN be a continuous family of compact
strictly star-shaped (i.e. tW(z) c Int W(z), t e (0,1), z eG) neigh-
borhoods of zero. Assume that gr W = Sat^χRN($τ(W\dG)). Then the

set Y* = {(z, w): z e~G,w e j n t W(z)}, which is open in G x RN, is
relatively F-pseudoconvex in G x RN.

Proof. By Lemma 5.5, we have to show that Sat ̂ χRN(K) c Y*,
whenever K c Y* is compact. By the continuity of z —> W(z), there
is t e (0,1), such that K c gr(tW) = {(z,tw): z eG, w e W(z)}.
Clearly, the latter set is the saturation of {(b, tw): b edG,w e W(b)}
(by the invariance property of F) and so is equal to its own saturation



374 ZBIGNIEW SLODKOWSKI

by Corollary 4.13. Thus, Sat^χRN{K) c gr(tW) c 7* (by the strict-
shapedness). D

Appendix. A localization lemma. The proof of Remark 5.8 relied on
Corollary A.3 and Proposition A.4 below. We prove first the following
generalization of [9, Lemma 4.5].

LEMMA A.I. Let X be a compact metrizable space and let A be
a closed linear subspace of CQ(X) Assume that A contains constant
functions and separates points of X. Then, for every u e usc(JSΓ) and
δ > 0, there exists p eA and XQ e X, such that

(A.1) u{x0) + Rep(xo) > u{x) + Reρ(x), x e X\{x0},

(A.2) max|/?| < ά

Proof. Since A is separable, one can choose a countable, linearly
dense subset (fn) of A, such that ||/ r t | | < 2~n. Functions (fn) must
separate points of X, and so the map F: X —• I2, where F(x) =
(/i(*)> fi{x)y )> is a homeomorphism of X onto a compact subset,
say 7, of/2. Let uo(y) = u(F~ι(u))y y eY. Clearly, u0 e usc(7). Let
uε(y) = Uo(y) + e(y, y), y G 7, for ε > 0. Fix ε and choose yo e Y,
such that uε(yo) = max ue. Let ύ(y) = uε(y) - ε\y - yo\2. Then

(A.3) u(y0) > u(y), y e Y\{yo}

On the other hand, ύ(y) = uo{y) + 2εRe(y, y) - ε|yol2- Using this
and (A.3), and letting y = F(x) and Xo = F~ι(y0)9 we get

uo(F(xo)) + ε\yo\
2 > uo(F(x)) + 2ε Re(F(x), y0) - ε\yo\

2, for x φ x0,

and so

u{x0) > u{x) + 2ε Re(F(x), y0) - 2 φ o | 2 , x Φ ̂ o

If yo = {yn)> let

p(x) = 2ε(F(x)t y0) - 2ε\yo\
2 = -2ε |y o | 2 + 2

Clearly, /? E 4̂ and satisfies (A.I), (A.2), for suitably chosen ε. D

REMARK A.2. If P is a class of functions on RN, satisfying condition
(0.1), the above lemma implies that the localization axiom (1.8) must
hold. Just apply the lemma to A = closed subspace of C(K) consisting
of restrictions to K of affine functions on RN.
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COROLLARY A. 3. If M is a complex manifold, such that globally an-
alytic functions separate points ofM, and F is a class of use functions
on M, such that F(U) + g c F(U n V), for U c M and every pluri-
harmonic function g: V —> R, then F satisfies the localization axiom
(1.8).

Proof. If K c M is as in (1.8), apply Lemma A. 1 to A = the uniform
algebra C(V) Γ)M(V)9 where V is a relatively compact neighborhood
oϊK. D

PROPOSITION A.4. Let F be a class of use functions on M satisfying
axioms (1.5) and (1.8). Let Ky L be compact sets and u e usc(K),
v G usc(L) be such that L c K c M, u(x) > v(x) for x e L, and
max u > max v. Then there is p e F(nbhd K) and XQ G K, such that

(A.4) (u + p){x0) = 0>(u + p){x), x G K\{x0},

(A.5) max(v + /?)|L<0.

Proof. Choose e > 0, so that maxw > 2ε + maxv. By (1.8), there
are p\ G F(nbhdK) and such that \\p\\\κ < β and (u + p\){x$) >
(u + pχ)(x) for x G K\{x0}. Lεtp(x) = pι{x)-(u + pι)(x0). By (1.5),
p G ̂ (nbhdΛT). Clearly, (A.4) holds. Furthermore, max(w + /?i) >
(maxu) - ε > ε + max v > max(v + px)9 which implies (A.5). D

REMARK A.5. Applying Lemma A.I to a separable uniform algebra
A c C(MA), one can observe that, if F is a class of use functions
on MA, such that R e ^ c AF (cf. Definition 1.3), then F satisfies
axiom (1.8). This is true, in particular, in the case of the class of
Λ-subharmonic functions, studied by Gamelin and Sibony [3].
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