TOPOLOGICAL ENTROPY AND RECURRENCE OF COUNTABLE CHAINS

Ibrahim A. Salama

Abstract

We consider a symbolic dynamical system (X, σ) on a countable state space. We introduce a kind of topological entropy for such systems, denoted h^{*}, which coincides with usual topological entropy when X is compact. We use a pictorial approach, to classify a graph Γ (or a chain) as transient, null recurrent, or positive recurrent. We show that given $0 \leq \alpha \leq \beta \leq \infty$, there is a chain whose h^{*} entropy is β and where Gurevic entropy is α. We compute the topological entropies of some classes of chains, including larger chains built up from smaller ones by a new operation which we call the Cartesian sum.

Introduction. The importance of subshifts of finite type in ergodic theory and dynamical systems is well known. One needs also to study chains on a countably infinite set in order to analyze problems in various fields such as differentiable dynamics, coding for magnetic recording, nonuniqueness of equilibrium states in statistical mechanics, formal languages and automata, or even to analyze arbitrary subshifts. (See [3], [9], [6], [2], [1], [10], respectively.)

Let Γ be a strongly connected directed graph on a countable set of vertices $S=\left\{s_{1}, s_{2}, \ldots\right\}$, and let

$$
X(\Gamma)=\left\{x \in S^{z} \mid \text { for all } i \text {, there is an edge in } \Gamma \text { from } x_{i} \text { to } x_{i+1}\right\} .
$$

If S has the discrete topology and S^{z} the product topology, then in the induced topology $X(\Gamma)$ (or simply X), together with the shift transformation σ defined by $(\sigma x)_{i}=x_{i+1}$ for all i, is a (non-compact) dynamical system, called the chain determined by the directed graph Γ. The topological entropy of X may be determined using Bowen's definition, to obtain $h_{B}(X)$ (see [8] for a definition). This definition depends on the metric we put on X. We consider the following two metric spaces.

1. For $x, y \in X$ define

$$
d_{1}(x, y)=\sum_{i} \frac{1-\delta\left(x_{i}, y_{i}\right)}{2^{|i|}},
$$

where $\delta(s, t)=1$ if $s=t$ and 0 if $s \neq t$.
2. Let $S=\{1,2, \ldots$,$\} and define$

$$
d_{2}(x, y)=\sum_{i} \frac{1}{2^{|i|}} \frac{1-\delta\left(x_{i}, y_{i}\right)}{\min \left(x_{i}, y_{i}\right)}
$$

(we may use $S=\{1 / n, n \geq 1\}$ and define $d_{2}(x, y)=\sum_{i}\left|x_{i}-y_{i}\right| / 2^{|i|}$). On the other hand and without reference to any metric, we may use Gurevic's definition (Gurevic, [4]), $h_{G}(X)=h_{G}(\Gamma)=\sup _{\Gamma^{\prime}<\Gamma} h\left(\Gamma^{\prime}\right)$, where the sup is taken over all (connected) finite subgraphs Γ^{\prime} of Γ (and $h\left(\Gamma^{\prime}\right)$ is the usual topological entropy of the subshift of finite type determined by Γ^{\prime}, the logarithm of the maximal eigenvalue of the transition matrix).

Another possible approach, suggested by Gurevic [4], is to let \bar{S} be the one-point compactification of S, and \bar{X} the closure of X in \bar{S}^{z}. Then \bar{X} is compact, and we may define $h_{c}(X)$ to be the ordinary topological entropy of (\bar{X}, σ).

Fix a vertex S in Γ and define
$B_{s}^{(n)}=$ number of paths of length n in Γ from s to s;
$f_{s}^{(n)}=$ number of paths of length n in Γ from s to s with no other occurrences of s in between;

$$
\begin{aligned}
& F(\Gamma, s, z)=\sum f_{s}^{(n)} z^{n} ; \\
& B(\Gamma, s, z)=\sum B_{s}^{(n)} z^{n} ; \\
& F^{\prime}(\Gamma, s, z)=\sum n f_{s}^{(n)} z^{n-1} .
\end{aligned}
$$

Let L_{Γ} and R_{Γ} be the radii of convergence of $F(\Gamma, s, z)$ and $B(\Gamma, s, z)$, respectively (they are independent of s). We will abbreviate L_{Γ} by L and R_{Γ} by R (generally, $L_{\Gamma_{i}}$ by L_{i} and $R_{\Gamma_{i}}$ by R_{i}).

Vere-Jones ([11], [12]) studied the classification of the graph Γ as transient, null recurrent, or positive recurrent according to the following table:

		null	positive
	transient	recurrent	recurrent

Gurevic ([4], [5]) showed that if X is a connected chain with the d_{2}-metric, then $h_{G}(X)=h_{c}(X)$; and if Γ is a connected graph with $h_{G}(\Gamma)<\infty$, then $h_{G}(\Gamma)=-\log R$.

The paper is organized as follows: In $\S 1$ we introduce a new definition for the topological entropy of a symbolic dynamical system
(X, σ), which we call h^{*}. For a locally finite chain X, we show that $h_{B}(X)=h^{*}(X)$ when the d_{1}-metric is used; and that $h_{B}(X)=h_{G}(X)$ when the d_{2}-metric is used. In $\S 2$ we consider a geometric or pictorial approach to classify chains as transient, null recurrent, or positive recurrent. In $\S 3$ we show that given $1<\alpha \leq \beta$, there exists a recurrent uniformly locally finite graph Γ such that $h_{G}(\Gamma)=\log \alpha$ and $h^{*}(\Gamma)=\log \beta$. If $\alpha=\beta$, then the Γ that we construct is positive recurrent. In $\S 4$ we consider some computation examples.

1. The h^{*} entropy. Let (X, σ) be a symbolic dynamical system with countable state space $S=\left\{s_{1}, s_{2}, \ldots\right\}$. If S is finite, then X is compact and the topological entropy of X is given by $h(X)=\lim _{n} \frac{1}{n} \log B^{(n)}$, where $B^{(n)}$ is the number of blocks of length n in X. Taking this formula and applying it "formally" to symbolic dynamical systems with infinite state space S, we will end up assigning the same value, namely ∞, to these systems. However, it is reasonable to consider the rate of growth of the number of blocks in X starting with a fixed symbol or generally starting with a fixed block. Based on this notion we introduce a new definition for the topological entropy of (X, σ), which we shall call h^{*}, formulated as follows.

Definition Let $T_{s}^{(n)}$ be the number of blocks of length n in X starting with $s \in S$. The entropy of X relative to s is defined by

$$
h^{*}(X \mid s)=\varlimsup_{n} \frac{1}{n} \log T_{s}^{(n)}
$$

and the entropy of X is defined by

$$
h^{*}(X)=\sup _{s \in S} h^{*}(X \mid s)
$$

We observe that if X is a finite connected chain, then $h^{*}(X)=$ $h(X)=h_{G}(X)=h_{B}(X)$. Also, it is easy to see that if X is transitive, then $h^{*}(X)=h^{*}(X \mid s)$ for all $s \in S$, and if X is a countable connected chain, then $h_{G}(X) \leq h^{*}(X)$.

A chain X is locally finite if the corresponding graph Γ satisfies: If s is a state of Γ then the number of arrows coming in and going out of s is finite. The chain is uniformly locally finite if the number of arrows coming in and going out of any state is less than some fixed number, say m.

Theorem (1.1). If X is a locally finite connected chain with the metric d_{1}, then $h^{*}(X)=h_{B}(X)$.

Proof. Let K be a compact subset of X. Then for every i, the number of different symbols appearing in the i th place in K is finite. For $\varepsilon=2^{-i}, r_{n}(\varepsilon, K)$ is the number of different blocks in K of the form $s_{-i} \cdots s_{n+i}$. Let N_{-i} be the set of symbols appearing in K in the $-i$ th place. Then $r_{n}(\varepsilon, K)=\sum_{s \in N_{-1}} r_{n}^{s}(\varepsilon, K)$, where $r_{n}^{s}(\varepsilon, K)$ is the number of blocks in K of the form $s s_{-(i-1)} \cdots s_{n+i}$ and $s \in N_{-i}$. Since $r_{n}(\varepsilon, K)$ is the sum of $\#\left\{N_{-i}\right\}$ nonnegative sequences, there is $s_{0} \in N_{-i}$ such that

$$
r(\varepsilon, K)=\varlimsup \frac{1}{n} \log r_{n}(\varepsilon, K)=\varlimsup \overline{\lim } \frac{1}{n} \log r_{n}^{S_{0}}(\varepsilon, K) \leq h^{*}(X)
$$

Hence $h_{B}(X) \leq h^{*}(X)$.
Now, since X is locally finite, for $s \in S, K_{s}=\left\{x \in X \mid x_{0}=s\right\}$ is compact. If $\varepsilon=2^{-i}$, then $r_{n}\left(\varepsilon, T^{-i} K_{s}\right)$ is the number of blocks in K_{s} of the form $s s_{-(i-1)} \cdots s_{n+1}$, and $h^{*}(X \mid s)=\varlimsup \frac{1}{n} \log r_{n}\left(\varepsilon, T^{-i} K_{s}\right) \leq$ $h_{B}(X)$. Thus, $h^{*}(X) \leq h_{B}(X)$.

The notion of the h^{*}-entropy may be extended to a general topological space (not necessarily compact) and a homeomorphism $T: X \rightarrow X$ as follows. For an open cover α of X and a compact $K \subset X$ let $N_{K}^{n}(\alpha)$ denote the minimum number of sets in $\bigvee_{i=0}^{n-1} T_{\alpha}^{-i}$ needed to cover K, and let $H_{K}^{n}(\alpha)=\log N_{K}^{n}(\alpha)$. The entropy of T relative to α given compact $K \subset X$ is defined as $h^{*}(T, \alpha ; K)=\varlimsup_{n} \frac{1}{n} H_{K}^{n}(\alpha)$. The entropy of T relative to α is defined as $h^{*}(T, \alpha)=\sup _{K \subset X} h^{*}(T, \alpha ; K)$, where K is compact. Finally, the entropy of T is defined as $h^{*}(T)=\sup _{\alpha} h^{*}(T, \alpha)$. The following fact follows from a straightforward argument.

Proposition (1.2). If X is compact, then $h^{*}(T)=h(T)$.
Proposition (1.3). If X is a connected chain with the d_{2}-metric, then $h_{B}(X)=h_{G}(X)$.

Proof. Let K be a compact subset of $X, r_{n}(\varepsilon, K)=$ the smallest cardinality of an (n, ε)-spanning set of $K, r(\varepsilon, K)=\varlimsup_{n} \frac{1}{n} \log r_{n}(\varepsilon, K)$, and $h_{B}(K)=\lim _{\varepsilon \rightarrow 0} r(\varepsilon, K)$, so that $h_{B}(X)=\sup _{K \subset X} h_{B}(K)$.

If X^{\prime} is a connected finite subchain of X, then $h_{G}\left(X^{\prime}\right) \leq h_{B}(X)$; hence $h_{G}(X) \leq h_{B}(X)$. On the other hand, let \bar{X} be the completion of X in the d_{2}-metric. Since $\left(X, d_{2}\right)$ is totally bounded, $\left(\bar{X}, d_{2}\right)$ is compact. If $X^{\prime \prime}$ is a compact subset of X, then $X^{\prime \prime}$ is compact as a subset of \bar{X}, and $h_{B}\left(X^{\prime \prime}\right) \leq h_{B}(\bar{X})=h(\bar{X})=h_{G}(X)$. Hence $h_{B}(X) \leq h_{G}(X)$.
2. Classification of chains. In this section we present a criterion enabling us to decide if a connected graph Γ is transient, null recurrent, or positive recurrent. Our approach is geometric or pictorial in nature, avoiding the computational and combinatorial problems usually encountered. The idea is to relate the value of $h_{G}(\Gamma)$ to the values of $h_{G}\left(\Gamma^{\prime}\right)$, where Γ^{\prime} is either a subgraph of Γ or a graph containing Γ. In general terms, our results on this question may be summarized as follows: Γ is transient if and only if we can "expand" or "contract" Γ without changing h_{G}, Γ is positive-recurrent if and only if any "expansion" or "contraction" of Γ will change h_{G} in the right direction; and Γ is null-recurrent if and only if we can "contract" Γ without changing h_{G} but any "expansion" of Γ will increase h_{G}. We prove the following.

Theorem (2.1). (i) If $\Gamma_{0}<\Gamma_{2}$ and $h_{G}\left(\Gamma_{0}\right)=h_{G}\left(\Gamma_{2}\right)$, then Γ_{0} is transient.
(ii) If Γ_{0} is transient, then there exists $\Gamma_{2}>\Gamma_{0}$ such that $h_{G}\left(\Gamma_{0}\right)=$ $h_{G}\left(\Gamma_{2}\right)$ and Γ_{2} is transient.

Theorem (2.2). Let Γ_{0} be such that $R_{0}=L_{0}$. Then there exists $\Gamma<\Gamma_{0}$ such that $h_{G}(\Gamma)=h_{G}\left(\Gamma_{0}\right)$.

Theorem (2.3). The following conditions for Γ_{0} are equivalent:
(i) Γ_{0} is positive recurrent.
(ii) $R_{0}<L_{0}$.
(iii) For all $\Gamma_{1}<\Gamma_{0}, h_{G}\left(\Gamma_{1}\right)<h_{G}\left(\Gamma_{0}\right)$.
(iv) $F\left(\Gamma_{0}, s, L_{0}\right)>1$.

Corollary (2.4). If Γ_{0} is transient, then there exists $\Gamma_{1}<\Gamma_{0}$ such that $h_{G}\left(\Gamma_{1}\right)=h_{G}\left(\Gamma_{0}\right)$ and Γ_{1} is transient.

Corollary (2.5). Γ_{0} is recurrent if and only if for all $\Gamma_{2}>\Gamma_{0}$, $h_{G}\left(\Gamma_{2}\right)>h_{G}\left(\Gamma_{0}\right)$.

Corollary (2.6). Γ_{0} is null-recurrent if and only if: (i) there exists $\Gamma_{1}<\Gamma_{0}$ such that $h_{G}\left(\Gamma_{1}\right)=h_{G}\left(\Gamma_{0}\right)$, and (ii) for all $\Gamma_{2}>\Gamma_{0}$ we have $h_{G}\left(\Gamma_{2}\right)>h_{G}\left(\Gamma_{0}\right)$.

Proof of Theorem (2.1). (i) Let s be a state in Γ_{0} and Γ_{2}. Then $F\left(\Gamma_{2}, s, R_{2}\right) \leq 1$. Since $\Gamma_{0}<\Gamma_{2}$ and $R_{0}=R_{2}$, we have $F\left(\Gamma_{0}, s, R_{0}\right)<1$.
(ii) Since Γ_{0} is transient, $F\left(\Gamma_{0}, s, R_{0}\right)=\sum_{n} f_{s}^{(n)} R_{0}^{n}<1$. Hence, for some m we can find a positive integer k such that $k>f_{s}^{(m)}$
and $\sum_{n \neq m} f_{s}^{(n)} R_{0}^{n}+k R_{0}^{m}<1$. Let Γ_{2} be the graph obtained by adding a loop of length $\left(k-f_{s}^{(m)}\right)$ based at s to Γ_{0}. Thus $\Gamma_{0}<\Gamma_{2}$ and $F\left(\Gamma_{2}, s, R_{0}\right)<1$. Since $R_{2} \leq R_{0}$, then $F\left(\Gamma_{2}, s, R_{2}\right) \leq F\left(\Gamma_{2}, s, R_{0}\right)<1$, and Γ_{2} is transient. To show $R_{0}=R_{2}$, note that $L_{0}=L_{2}$ and $R_{2} \leq R_{0} \leq L_{0}$. If $R_{2}<R_{0}$, then $R_{2}<L_{2}$ and $F^{\prime}\left(\Gamma_{2}, s, R_{2}\right)<\infty$, contradicting that Γ_{2} is transient.

Proof of Theorem (2.2). For a state s in Γ_{0}, let $\operatorname{Fol}(s)=\left\{s^{\prime} \mid\right.$ there is an arrow from s to s^{\prime} in $\left.\Gamma_{0}\right\}$. Let s_{0} be a state in Γ_{0} such that $\# \operatorname{Fol}\left(s_{0}\right) \geq 2$. Let $s^{*} \in \operatorname{Fol}\left(s_{0}\right)$, let Γ_{1} be the subgraph obtained by removing the edge $s_{0} s^{*}$ from Γ_{0}, and let Γ_{2} be the subgraph obtained by the removal from Γ_{0} the edges $s_{0} s^{\prime}, s^{\prime} \in \operatorname{Fol}\left(s_{0}\right)-s^{*}$. Let i be such that $L_{i}=\min \left(L_{1}, L_{2}\right)$. Then $R_{0} \leq R_{i} \leq L_{i}=L_{0}$. Since $L_{0}=R_{0}$, we have $R_{0}=R_{i}$ and $h_{G}\left(\Gamma_{0}\right)=h_{G}\left(\Gamma_{i}\right)$.

Proof of Theorem (2.3). (i) If $R_{0}<L_{0}$, then $F^{\prime}\left(\Gamma_{0}, s, R_{0}\right)<\infty$ and Γ_{0} is positive recurrent. If $R_{0}=L_{0}$, then by Theorem (2.2) there is $\Gamma_{1}<\Gamma_{0}$ such that $R_{1}=R_{0}$. Hence by (i) of Theorem (2.1) Γ_{1} is transient. Since $F^{\prime}\left(\Gamma_{1}, s, R_{0}\right)=\infty$ and $F^{\prime}\left(\Gamma_{1}, s, R_{0}\right) \leq F^{\prime}\left(\Gamma_{0}, s, R_{0}\right), \Gamma_{0}$ cannot be positive recurrent.
(ii) We show that: Γ_{0} is not positive-recurrent if and only if there is $\Gamma_{1}<\Gamma_{0}, h_{G}\left(\Gamma_{1}\right)=h_{G}\left(\Gamma_{0}\right)$. So, assume that Γ_{0} is not positiverecurrent, then by (i) above we have $R_{0}=L_{0}$; hence, by Theorem (2.2) there is $\Gamma_{1}<\Gamma_{0}$ such that $h_{G}\left(\Gamma_{1}\right)=h_{G}\left(\Gamma_{0}\right)$. On the other hand, if there exists $\Gamma_{1}<\Gamma_{0}$ with $h_{G}\left(\Gamma_{1}\right)=h_{G}\left(\Gamma_{0}\right)$, then Γ_{0} is not positiverecurrent as shown in the proof of (i) above.
(iii) Assume $F\left(\Gamma_{0}, s, L_{0}\right)>1$. Since $F\left(\Gamma_{0}, s, R_{0}\right) \leq 1$, we have $R_{0}<$ L_{0} and by (i) above Γ_{0} is positive-recurrent. If Γ_{0} is positive-recurrent, then $R_{0}<L_{0}$. Since $F\left(\Gamma_{0}, s, R_{0}\right)=1$, we have $F\left(\Gamma_{0}, s, L_{0}\right)>1$.

Finally, Corollary (2.4) follows from part (ii) of the proof of Theorem (2.3), Corollary (2.5) follows from Theorem (2.1), and Corollary (2.6) follows from part (ii) of the proof of Theorem (2.3) and Corollary (2.5).
3. Relation between h_{G} and h^{*}. In this section we study the relation between h_{G} and h^{*} using the following class of countable graphs:

Here: $r_{i}=$ the number of paths from state i to state $i+1$, and $l_{i}=$ the number of arcs between state i and state 0 (as shown above). A graph of this form is indexed by two nonnegative integer sequences $\left\{r_{n}\right\},\left\{l_{n}\right\}$ and is denoted by $\Gamma\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$.

Let Γ_{0} be any connected countable graph (not necessarily of the form above) and let s be a state of Γ_{0}. Define $C_{s}^{(n)}=$ the number of sequences $s s_{i_{1}} \cdots s_{i_{n-1}}$ in Γ_{0} such that $s_{j} \neq s$ for $j=i_{1}, \ldots, i_{n-1}$, and recall that $T_{s}^{(n)}=$ the number of sequences of length n in Γ_{0} that start with s. Let $C\left(\Gamma_{0}, s, z\right)=\sum_{n} C_{s}^{(n)} z^{n}, T\left(\Gamma_{0}, s, z\right)=\sum_{n} T_{s}^{(n)} z^{n}$, and $Q_{0}\left(A_{0}\right)$ be the radius of convergence of $C\left(\Gamma_{0}, s, z\right)\left(T\left(\Gamma_{0}, s, z\right)\right)$.

Towards proving the main result of this section, we use the following Lemmas:

Lemma (3.1). For a connected graph Γ_{0}, we have

$$
h^{*}\left(\Gamma_{0}\right)=\max \left\{\log Q_{0}^{-1}, h_{G}\left(\Gamma_{0}\right)\right\} .
$$

Proof. Let s be a state in Γ_{0}. Then $T_{s}^{(n)}=\sum_{i=1}^{n} B_{s}^{(n-i)} C_{s}^{(i)}$, and $A_{0}=\min \left(R_{0}, Q_{0}\right)$. Since $h^{*}\left(\Gamma_{0}\right)=\log A_{0}^{-1}, h_{G}\left(\Gamma_{0}\right)=\log R_{0}^{-1}$, the result follows.

Lemma (3.2). Let $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$ be a graph with associated sequence $\left\{C_{0}^{(n)}\right\}$. Then
(i) If $\lim _{n} \frac{1}{n} \log \prod_{i=1}^{n} r_{i}=\log \beta$, then $\lim _{n} \frac{1}{n} \log C_{0}^{(n)}=\log \beta$.
(ii) $h^{*}\left(\Gamma_{0}\right)=\max \left\{\log \beta, h_{G}\left(\Gamma_{0}\right)\right\}$.

Proof. Let $n_{i}=l_{i}+(i+1), i=0,1,2, \ldots$, and $W_{k}=\prod_{i=1}^{k} r_{i}, i=$ $1,2, \ldots\left(W_{0}=1\right)$. To count the number of sequences of length k in Γ_{0} that start with 0 , let $S_{k}=\left\{i=0,1, \ldots, k-1 \mid n_{i} \geq k\right\}$, then $C_{0}^{(k)}=\sum_{i \in S_{k}} W_{i}$ and $T_{0}^{(n)}=\sum_{i=1}^{n} B_{0}^{(n-i)} C_{0}^{(i)}$. Noting that $W_{k} \leq$ $C_{0}^{(k)} \leq \sum_{i=1}^{k} W_{i}$, and $\lim _{n} \frac{1}{n} \log \prod_{i=1}^{n} r_{i}=\lim _{n} \frac{1}{n} \log W_{n}=\log \beta$, then $\lim _{n} \frac{1}{n} \log C_{0}^{(n)}=\log \beta$. That shows (i) and (ii) follows by Lemma (3.1).

Lemma (3.3). Let $m<x<(m+1)$. Then there is a sequence $\left\{r_{n}\right\}$ such that
(i) $r_{n}=m$ or $m+1$,
(ii) for all n :

$$
\prod_{i=1}^{n} r_{i} \leq x^{n}<\left(\frac{m+1}{m}\right) \prod_{i=1}^{n} r_{i}
$$

and
(iii) $\lim _{n} \frac{1}{n} \log \prod_{i=1}^{n} r_{i}=\log x$.

For a graph $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$, let $W_{n}=\prod_{i=1}^{n} r_{i}$, and let W_{0} be the radius of convergence of the series $\sum_{n} W_{n} z^{n}$. Then by Lemma (3.2) we have

Lemma (3.4). For $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$, if $L_{0}=W_{0}$, then $h_{G}\left(\Gamma_{0}\right)=h^{*}\left(\Gamma_{0}\right)$.
Lemma (3.5). For $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$, if $\lim _{n} \frac{1}{n} \log \prod_{i=1}^{n} r_{i}=\log W_{0}^{-1}$ and $\left\{l_{n}\right\}$ is bounded (say by k), then $L_{0}=W_{0}$ and $h_{G}\left(\Gamma_{0}\right)=h^{*}\left(\Gamma_{0}\right)$.

Proof. Note that $f_{0}^{(n)} \leq \sum_{i=0}^{n} W_{i}$, hence $W_{0} \leq L_{0}$. To show that $L_{0} \leq W_{0}$, consider the sequence $\left\{n_{j} \mid l_{n} \neq 0\right\}$. Then for every j we have $f_{0}^{\left(n_{j}+l_{n_{j}}\right)} \geq W_{n_{j}}$, hence

$$
\varlimsup_{j} \frac{1}{n_{j}} \log f_{0}^{\left(n_{j}+l_{n_{j}}\right)} \geq \frac{\lim }{j} \frac{1}{n_{j}} \log W_{n_{j}}=\log W_{0}^{-1}
$$

and $L_{0} \leq W_{0}$. By Lemma (3.4) we have $h_{G}\left(\Gamma_{0}\right)=h^{*}\left(\Gamma_{0}\right)$.
Lemma (3.6). Let $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$ be such that $\left\{r_{n}\right\}$ is a special sequence satisfying the conditions of Lemma (3.3) and $\left\{l_{n}\right\}$ is bounded (say by k). Then $h_{G}\left(\Gamma_{0}\right)=h^{*}\left(\Gamma_{0}\right)$ and Γ_{0} is positive recurrent.

Proof. As before consider the sequence $\left\{n_{j} \mid l_{n,} \neq 0\right\}$. Then for every j we have

$$
W_{n_{j}}=\prod_{i=1}^{n_{j}} r_{i} \leq f_{0}^{\left(n_{j}+l_{n_{j}}\right)} \quad \text { and } \quad \frac{W_{n_{j}}}{x^{n_{j}+l_{n_{j}}}} \leq \frac{f_{0}^{\left(n_{j}+l_{n_{j}}\right)}}{x^{n_{j}+l_{n_{j}}}}
$$

By (ii) of Lemma (3.3), we have $W_{n_{\jmath}} / x^{n_{\jmath}}>m /(m+1)>0$. Since $\left\{l_{n}\right\}$ is bounded, we have

$$
\lim _{j \rightarrow \infty} \frac{f_{0}^{\left(n_{j}+l_{n_{j}}\right)}}{x^{n_{j}+l_{n_{j}}}} \geq \lim _{j \rightarrow \infty} \frac{W_{n_{j}}}{x^{n_{j}}}\left(\frac{1}{x^{l_{n_{j}}}}\right)>0
$$

hence $F\left(\Gamma_{0}, 0, x^{-1}\right)=\infty$. By the proof of Lemma (3.5) we note that $L_{0}=x^{-1}$, hence $F\left(\Gamma_{0}, 0, L_{0}\right)=\infty$ and by Theorem (2.3) Γ_{0} is positive recurrent.

We consider two examples. The first shows that positive recurrence and equality of h_{G} and h^{*} can happen without $\left\{l_{n}\right\}$ being bounded. The second shows we may have positive recurrence with $h_{G}<h^{*}$.

Example (3.7). Let $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$ be given by

That is $r_{n}=2$ for all $n \geq 1$ and $l_{n}=n+1, n=0,1,2, \ldots . \Gamma_{0}$ may be "represented" in a locally finite form by Γ_{0}^{\prime} as follows:

(These two graphs have the same values of h_{G} and h^{*}.)
Note that $L_{0}=1 / \sqrt{2}$ and $F\left(\Gamma_{0}, 0, L_{0}\right)=\infty$. Thus, by Theorem (2.3)
Γ_{0} is positive recurrent. Also $F\left(\Gamma_{0}, 0, \frac{1}{2}\right)=1$, hence $h_{G}\left(\Gamma_{0}\right)=\log 2$. Finally, since $W_{0}=\frac{1}{2}$, then by Lemma (3.2) $h^{*}\left(\Gamma_{0}\right)=\log 2$.

Example (3.8). Let $\Gamma_{1}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$ be the same as the Γ_{0} in Example (3.7), except with the loop based at 0 removed. Again by the same argument as in Example (3.7), Γ_{1} is positive recurrent. Since $\Gamma_{1}<\Gamma_{0}$, then by Theorem (2.3) $h_{G}\left(\Gamma_{1}\right)<h_{G}\left(\Gamma_{0}\right)=\log 2$. By Lemma (3.2), $h^{*}\left(\Gamma_{1}\right)=\log 2$.

Theorem (3.9). Given $1<\alpha \leq \beta$, there exists a recurrent uniformly locally finite graph Γ_{0} such that $h_{G}\left(\Gamma_{0}\right)=\log \alpha$ and $h^{*}\left(\Gamma_{0}\right)=\log \beta$. If $\alpha=\beta$, then the Γ_{0} that we construct is positive recurrent.

Proof. Let $m<\beta \leq m+1$, and choose a sequence $\left\{r_{n}\right\}$ satisfying the conditions of Lemma (3.3) with β replacing x. We construct the k th partial sum, S_{k}, for the loop series of Γ_{0} as follows: Let $n_{1}=1$ and set $S_{1}(\alpha) \equiv 1 / \alpha<1$. Let n_{2} be the smallest integer such that

$$
S_{2}(\alpha)=S_{1}(\alpha)+\frac{r_{1}}{\alpha^{n_{2}}}<1 .
$$

Note that $n_{2} \geq 2$. Assuming that we have $n_{1}<n_{2}<\cdots<n_{k}$, let n_{k+1} be the smallest integer such that

$$
S_{k+1}(\alpha)=S_{k}(\alpha)+\frac{\prod_{i=1}^{k} r_{i}}{a^{n_{k+1}}}<1
$$

and note that $n_{k+1}>n_{k}$.

We construct Γ_{0} as follows: Let $l_{0}=1$, and $l_{i}=n_{i+1}-i, i=$ $1,2, \ldots$ Then Γ_{0} is the graph indexed by the sequences $\left\{r_{n}\right\},\left\{l_{n}\right\}$, and is denoted by $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$.

Let $S(x)=\lim _{k \rightarrow \infty} S_{k}(x)$. Note that $S(x)$ is the loop series for the graph $\Gamma_{0}\left(\left\{r_{n}\right\},\left\{l_{n}\right\}\right)$, and $S(\alpha)=1$. To show that $h_{G}\left(\Gamma_{0}\right)=\log \alpha$, let R_{0} be such that $h_{G}\left(\Gamma_{0}\right)=\log R_{0}^{-1}$. Thus $F\left(\Gamma_{0}, 0, \alpha^{-1}\right)=1$ and $F\left(\Gamma_{0}, 0, R_{0}\right) \leq 1$. Hence $R_{0} \leq \alpha^{-1}$. If in fact $R_{0}<\alpha^{-1}$, then we must have $F\left(\Gamma_{0}, 0, R_{0}\right)<1$. In this case Γ_{0} is transient, hence by Theorem (2.3) $R_{0}=L_{0}<\alpha^{-1}$, contradicting that L_{0} is the radius of convergence of the loop series. Hence $R_{0}=\alpha^{-1}$ and $h_{G}\left(\Gamma_{0}\right)=\log \alpha$. By Lemma (3.2) we have $h^{*}\left(\Gamma_{0}\right)=\log \beta$. Note that if $\alpha<\beta$, then by Lemma (3.5) $\left\{l_{n}\right\}$ is not bounded, hence Γ_{0} may be constructed to be a locally finite graph as shown in Example (3.7). Also $\left\{l_{n}\right\}$ is monotone nondecreasing. To show that Γ_{0} may be constructed to be uniformly locally finite, we show that if for some i we have $l_{i}=l_{i+T}$, then $(1+T)<\alpha(m+1) / m$. Equivalently, if for some i we have $n_{i+T}=n_{i}+T$, then $(1+T)<\alpha(m+1) / m$.

Let T be the greatest integer such that $n_{1+T}=n_{1}+T=1+T$. Then

$$
S_{1+T}(\alpha)=\frac{1}{\alpha}+\cdots+\frac{\prod_{i=1}^{T} r_{i}}{a^{1+T}} \geq \frac{1}{\alpha}\left(\frac{m}{m+1}\right)+\frac{1}{\alpha}\left(T\left(\frac{m}{m+1}\right)\right) .
$$

Since $S_{1+T}(\alpha)<1$, we have $(1+T)<\alpha(m+1) / m$.
In general, let k be an integer such that $n_{k+1}>n_{k}+1$, and T be the greatest integer such that $n_{k+1+T}=n_{k+1}+T$. Then

$$
\frac{\prod_{i=1}^{k} r_{i}}{\alpha^{n_{k+1}}}+\cdots+\frac{\prod_{i=1}^{k+T} r_{i}}{\alpha^{n_{k+1}+T}}<\frac{\prod_{i=1}^{k} r_{i}}{\alpha^{n_{k+1}-1}} .
$$

Hence, $(1+T)<\alpha(m+1) / m$.
Let d be the greatest integer such that $d \leq(m+1) / m$. Then, by construction, $\left\{l_{n}\right\}$ is monotone nondecreasing with the property that it cannot stay constant for more than d consecutive times. Then, by using the same idea as in Example (3.7), it is easy to see that Γ_{0} may be constructed to be a uniformly locally finite graph.

Finally, we show that if $\alpha=\beta$ then Γ_{0} is positive recurrent. Note that for every n we have

$$
\prod_{i=1}^{n} r_{i}=f_{0}^{\left(n+l_{n}\right)} .
$$

Thus

$$
\begin{aligned}
\log L_{0}^{-1} & =\varlimsup_{n} \frac{1}{n+l_{n}} \log f_{0}^{\left(n+l_{n}\right)} \\
& =\frac{1}{1+C} \log W_{0}^{-1}, \quad \text { where } C=\frac{\lim }{n} \frac{l_{n}}{n} .
\end{aligned}
$$

Thus we have $L_{0}=W_{0}^{1 /(1+C)}$. Now, for every n we have $l_{n} \geq n / d$, $C=\underline{\lim }_{n}\left(l_{n} / n\right) \geq 1 / d>0$, and $W_{0}<L_{0}$. Since $\alpha=\beta, R_{0}=W_{0}$, we have $R_{0}<L_{0}$ and Γ_{0} is positive recurrent.

This result shows that in the Countable-alphabet case, h_{G} and h^{*} can be anything, unlike the finite-alphabet case, where the possible entropies are exactly the Perron numbers (see [7]).
4. Computational examples. In this section we present some computational results of the topological entropy for certain classes of examples of chains. Consider a chain X over $Z \times Z$ with the following transitions: $\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)$ if either $x_{2}=x_{1} \pm 1$ or $y_{2}=y_{1} \pm 1$. We picture X as follows:

We compute the entropy of some subchains of X whose states are contained in some nice region of R^{2}. The following result will be used in the computation.

Let X be a chain with state space S, and $f: S \rightarrow C$. Let f_{∞} be the corresponding map of X generated by f and $Y=f_{\infty}(X)$. For every $n \geq 1$, let $B X(n, s)(B Y(n, c))$ be the set of n-blocks in $X(Y)$ starting with $s \in S(c \in C)$; and let f_{n} be the corresponding n-block map generated by f. For $B \in B Y(n, c)$ let $f_{n}^{-1}(B)=\left\{B^{\prime} \mid B^{\prime} \in B X(n, s)\right.$ and $\left.f_{n}\left(B^{\prime}\right)=B\right\}$.
With these notations we have:
Proposition (4.1). Let X and $Y=f_{\infty}(X)$ be connected chains. If for $i=1,2$ there exists $c_{i} \in C$ and $s_{i} \in f^{-1}\left(c_{i}\right)$ such that
(i) for every $n \geq 1, f_{n}\left(B X\left(n, s_{1}\right)\right)=B Y\left(n, c_{1}\right)$, and
(ii) $\left\{\# f_{n}^{-1}(B)\right\}$ is bounded as B varies over all blocks in Y starting with c_{2}, then $h^{*}(X)=h^{*}(Y)$.
Proof. For $s \in S$ and $c \in C$, let $T_{s}(n)\left(T_{c}^{\prime}(n)\right)$ be the number of blocks in $X(Y)$ starting with $s(c)$. Then

$$
h^{*}(Y)=\varlimsup_{n} \frac{1}{n} \log T_{c_{1}}^{\prime}(n) \leq \varlimsup_{n} \frac{1}{n} \log T_{s_{1}}(n)=h^{*}(X) .
$$

On the other hand, if the bound on $\# f_{n}^{-1}(B)$ is k, then we have

$$
h^{*}(X)=\varlimsup_{n} \frac{1}{n} \log T_{s_{2}}(n) \leq \varlimsup_{n} \frac{1}{n} \log \left(k \cdot T_{c_{2}}^{\prime}(n)\right)=h^{*}(Y) .
$$

Remark (4.2). Proposition (4.1) holds for the following two more general cases:
(i) f is an m-block map of X.
(ii) X and $Y=f_{\infty}(X)$ are both transitive symbolic dynamical systems.

Example (4.3). Chains contained in the domain $D(m, n, w)$. Let $D(m, n, w)$ be the domain in R^{2} bounded by two parallel lines of slope m / n with horizontal distance w. We assume that one of these lines passes through $(0,0)$. Let $\Gamma(m, n, w)$ be the largest subchain of X contained in $D(m, n, w)$. To compute the h^{*}-entropy of $\Gamma(m, n, w)$, we note that it consists of a "fundamental" finite chain Γ_{0} which repeats itself periodically in an obvious way giving $\Gamma(m, n, w) . \Gamma_{0}$ may be chosen to include the states (x, y) in $\Gamma(m, n, w)$ such that $y=1,2, \ldots, m$. Let c be the number of states in Γ_{0} and consider the following ordering or labelling of these states by $1,2, \ldots, c$ as follows: $\left(x_{1}, y_{1}\right)<\left(x_{2}, y_{2}\right)$ if $y_{1}=y_{2}$ and $x_{1}<x_{2}$ or $y_{1}>y_{2}$. If we repeat this labelling periodically in an obvious way to cover all states of $\Gamma(m, n, w)$, we obtain a one block map, f, from the states of $\Gamma(m, n, w)$ to the set $\{1, \ldots, c\}$. The map f_{∞} generated by f gives a finite chain $\Gamma_{F}(m, n, w)$ over $\{1, \ldots, c\}$ and f_{∞} satisfies the condition of Proposition (4.1). Hence we have $h^{*}\left(\Gamma(m, n, w)=h^{*}\left(\Gamma_{F}(m, n, w)\right)\right.$.

For example consider $\Gamma(1,2,2)$:

the fundamental chain is given by 0.0 and may be labelled by 1 , 2 and 3. $\Gamma_{F}(1,2,2)$ is given by

$$
\Gamma_{F}(1,2,2):
$$

In general, the transition matrix for $\Gamma(1, n, w)$ is given by the $(w+1) \times$ $(w+1)$ matrix $J_{w+1}^{(n)}$, where

$$
J_{w+1}^{(n)}(i j)=1 \quad \text { if }|i-j|=1 \text { or } n, w \geq n>1 .
$$

We note that for $w<n, h^{*}(\Gamma(1, n, w))=0$. Also, for $n=1$, we have

$$
J_{w+1}^{(1)}(i j)=2 \quad \text { for }|i-j|=1 .
$$

Computation of h_{G} for $\Gamma(m, n, w)$ is generally harder. If we like to compute h_{G} from the definition, then we should be able to identify h_{G} for suitable subchains of $\Gamma(m, n, w)$. This may be easily done in two cases: $\Gamma(1,1, w)$ and the infinite vertical rectangular strip denoted here by $\Gamma(1,0, w)$.

Example (4.4). h_{G} for $\Gamma(1,1, w)$. Consider the chain $\Gamma_{l}(1, n)$ given by

Let $\Gamma_{l}(n \otimes m)$ be the Cartesian product of $\Gamma_{l}(1, n)$ and $\Gamma_{l}(1, m)$. That is, $\Gamma_{l}(n \otimes m)$ is the chain over $\{1, \ldots, n\} \times\{1, \ldots, m\}$ with the following transitions: $\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)$ if $x_{1} \rightarrow x_{2}$ in $\Gamma_{l}(1, n)$ and $y_{1} \rightarrow y_{2}$ in $\Gamma_{l}(1, m)$. If T_{n} and T_{m} are the transition matrices for $\Gamma_{l}(1, n)$ and $\Gamma_{l}(1, m)$, respectively, then $T_{n \otimes m}=T_{n} \otimes T_{m}$ is the transition matrix for $\Gamma_{l}(n \otimes m)$ (in some order of the state space of $\Gamma_{l}(n \otimes m)$), and $h_{G}\left(\Gamma_{l}(n \otimes m)\right)=h_{G}\left(\Gamma_{l}(1, n)\right)+h_{G}\left(\Gamma_{l}(1, m)\right)$. Note that $\Gamma_{l}(n \otimes m)$ is the disjoint union of two chains, and the entropy of $\Gamma_{l}(n \otimes m)$ is the maximum of the entropy of these two chains. Since any finite subgraph of $\Gamma(1,1, w)$ is contained in a component of $\Gamma_{l}((w+1) \otimes m)$ for some integer m, we have

$$
h_{G}(\Gamma(1,1, w))=\log \left(2 \times 2 \cos \frac{\pi}{w+2}\right) .
$$

An application of Theorem (2.1) shows that $\Gamma(1,1, w)$ is transient.

Example (4.5). $\quad h_{G}$ for $\Gamma(1,0, w)$ and the Cartesian sum of two chains. The chain $\Gamma(1,0, w)$ is given as

In order to compute $h_{G}(\Gamma(1,0, w))$ we find an easy way to compute the topological entropies of some finite rectangular chains, that is chains of the form

This is done using an idea we introduce as follows. Let Γ_{1} and Γ_{2} be finite chains with state space U and V respectively. We define the Cartesian sum $\Gamma_{1} \oplus \Gamma_{2}$ to be the chain over $U \times W$ with the following transitions; $\left(u_{1}, v_{1}\right) \rightarrow\left(u_{2}, v_{2}\right)$ if $u_{1} \rightarrow u_{2}$ in Γ_{1} and $v_{1}=v_{2}$ or $v_{1} \rightarrow v_{2}$ in Γ_{2} and $u_{1}=u_{2}$.

Let T_{1} and T_{2} be the transition matrices for Γ_{1} and Γ_{2} respectively. Order $U \times V$ according to the following: $\left(u_{1}, v_{1}\right)<\left(u_{2}, v_{2}\right)$ if $v_{1}<v_{2}$ or $v_{1}=v_{2}$ and $u_{1}<u_{2}$. According to this order, the transition matrix T of $\Gamma_{1} \oplus \Gamma_{2}$ is given by $T=T_{1} \otimes I_{m}+I_{n} \otimes T_{2}$. The matrix T satisfies the following two properties: (1) The eigenvalues of T are given by $\alpha+\beta$ where α and β are eigenvalues for T_{1} and T_{2} respectively, (2) the eigenvectors of T are given by $X \otimes Y$, where X and Y are eigenvectors for T_{1} and T_{2} respectively.

Now, the finite rectangular chain given above is in fact $\Gamma_{l}(1, n) \oplus$ $\Gamma_{l}(1, m)$ and is denoted here by $\Gamma_{l}(n \oplus m)$. It follows from the previous discussion that

$$
h_{G}\left(\Gamma_{l}(n \oplus m)\right)=\log \left(2 \cos \frac{\pi}{n+1}+2 \cos \frac{\pi}{m+1}\right)
$$

Direct application of the definition of h_{G} yields:

$$
h_{G}(\Gamma(1,0, w))=\log \left(2+2 \cos \frac{\pi}{w+2}\right) .
$$

Remark (4.6). Let D be a region in R^{2} such that D contains arbitrarily large rectangles, and let Γ_{D} be the largest subchain of X contained in D. Then $h_{G}\left(\Gamma_{D}\right)=\log 4$. We also note that for any region D, we have $h_{G}\left(\Gamma_{D}\right)=h^{*}\left(\Gamma_{D}\right)$, as indicated in Petersen [9]. We note that the computation for the entropy of Γ_{D}, where D is a region bounded by two parallel lines of irrational slope, is hard. We feel that the methods introduced here are not going to work in this case. One possible approach may be through studying the continuity properties of h^{*} or h_{G}.

Finally, the entropies of the following examples may be computed by first constructing chains which factor onto them. For details see [10].

Example (4.7). The sum-bounded systems $X(n, m)$. Consider the closed shift-invariant set

$$
X(n, m)=\left\{\left\{x_{i}\right\}_{-\infty}^{\infty} \mid x_{i}= \pm 1,-n \leq \sum_{l=k}^{K} x_{l} \leq m\right.
$$

k and K are integers and $n, m>0\}$.
Then for $n, m>0$, the system $X(n, m)$ is sofic with topological entropy

$$
h(X(n, m))=\log \left(2 \cos \frac{\pi}{\min (n, m)+2}\right) .
$$

Example (4.8). The sum-bounded-above systems $X(-\infty, m)$. Consider the system $X(-\infty, m)$, where

$$
\begin{aligned}
& X(-\infty, m)=\left\{\left\{x_{i}\right\}_{-\infty}^{\infty} \mid x_{i}= \pm 1, \sum_{l=k}^{K} x_{i} \leq m\right. \\
&k \text { and } K \text { are integers and } m>0\} .
\end{aligned}
$$

Then $h(X(-\infty, m))=\log x^{*}$, where x^{*} is the largest root of the equation $(1-x) f_{m+1}(x)+f_{m-1}(x)=0$, and

$$
f_{m}(x)=(-1)^{m} \sum_{k=0}^{[m / 2]}(-1)^{k}\binom{n-k}{k} x^{n-2 k} .
$$

Example (4.9). The sum-bounded run-length-limited systems $X(n, m ; l, k)$. Let $x \in\{-1,1\}^{Z}$ and $B_{r}=x_{1} \cdots x_{r}$ be an r-block in x. If $x_{1}=\cdots=x_{r}$, then B_{r} is said to be a run of length r of $x . B_{r}$ is a positive (negative) run if $x_{1}=\cdots=x_{r}=1\left(x_{1}=\cdots=x_{r}=-1\right)$. A subblock B of B_{r} is said to be an end run for B_{r} if $B_{r}=x_{1} \cdots x_{i} B$, and B is a run of maximal length, that is B is a run by $x_{i} B$ is not a run.

For n, m, l and k positive integers we define

$$
\begin{aligned}
& X(n, m ; l, k)=\left\{x=\left\{x_{i}\right\}_{-\infty}^{\infty} \mid\right. x_{i}= \pm 1, n \leq \text { the length of a } \\
& \text { positive run in } x \leq m, l \leq \text { the } \\
&\text { length of a negative run in } x \leq k\} .
\end{aligned}
$$

Then, $h(X(n, m ; l, k))=\log x^{*}$, where x^{*} is the largest root of the equation $\sum_{i=n+l}^{m+k} a_{i} / x^{i}=1$ (see Petersen [9]), and the a_{i} 's are given as follows:

Let $M=\min ((k-l)+1,(m-n)+1)$. Then
$a_{i}= \begin{cases}i-(n+l)+1 & \text { if } n+l \leq i \leq(n+1)+(M-2), \\ M & \text { if }(n+l)+(M-1) \leq i \leq(m+k)-(M-1), \\ a_{(l+n)+(k+n)-i} & \text { if }(m+k)-(M-2) \leq i \leq m+k, \\ 0 & \text { otherwise. }\end{cases}$
Acknowledgment. The author would like to thank Professor Karl Petersen for his invaluable assistance in this research.

References

[1] F. Blanchard, and G. Hansel, Systems codes, Theoretical Computer Science, 44 (1986), 17-49.
[2] F. Blanchard, Systemes dynamiques topologiques associes a des automates recurrents, Z. Wahr. Verw. Geb., 58 (1981), 549-564.
[3] E. E. Dinaburg, An example of the computation of topoligical entropy, Uspehi Mat. Nauk, 23 (1968), 249-250.
[4] B. M. Gurevic, Topological entropy of Enumerable Markov chains, Soviet Math. Dokl., no. 4, 10 (1969), 911-915.
[5] , Shift entropy and Markov measures in the path space of a denumerable graph, Soviet Math. Dokl., No. 3, 11 (1970), 744-747.
[6] W. Krieger, On the uniqueness of the equilibrium state, Math. Systems Theory, 8 (1974), 97-104.
[7] D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynamical Systems, 4 (1984), 283-300.
[8] K. Petersen, Ergodic Theory, Cambridge University Press, (1983), Cambridge.
\qquad , Chains, entropy, coding, Ergodic Theory Dynamical Systems, 6 (1986), 415-448.
[10] I. A. Salama, Topological entropy and classification of countable chains, Ph.D. dissertation, (1984), Department of Mathematics, University of North Carolina at Chapel Hill.
[11] D. Vere-Jones, Geometric erogodicity in denumerable Markov chains, Quart. J. Math. Oxford, (2), 13 (1962), 7-28.
[12] _, Ergodic properties of nonnegative matrices-I, Pacific J. Math., No. 2, 22 (1967), 361-386.

Received February 16, 1987. This work was partially sponsored by the U. S. Army Research Office Grant No. DAAL03-86-G-0084.

North Carolina Central University
Durham, NC 27707

