DIFFERENTIAL IDENTITIES, LIE IDEALS, AND POSNER'S THEOREMS

Charles Lanski

Abstract

Two well-known results of E. C. Posner state that the composition of two nonzero derivations of a prime ring cannot be a nonzero derivation, and that in a prime ring, if the commutator of each element and its image under a nonzero derivation is central, then the ring is commutative. Our purpose is to show how the theory of differential identities can be used to obtain these results and their generalizations to Lie ideals and to rings with involution.

A number of authors have generalized these theorems of Posner in several ways. To be more specific, let R be a prime ring with center Z, and let d and h be derivations of R. The specific statements of Posner's theorems, to which we shall refer frequently, are the following:

Posner's First Theorem [25; Theorem 1, p. 1094]. If char $R \neq 2$ and if the composition $d h$ is a derivation of R, then either $d=0$ or $h=0$.

Posner's Second Theorem [25; Theorem 2, p. 1097]. If $x x^{d}-$ $x^{d} x \in Z$ for all $x \in R$, then either $d=0$ or R is commutative.

The proof of the first theorem is fairly easy and extends to ideals of R. For this theorem, the case when char $R=2$ was obtained in [6] and later in [13], which also gives some generalizations to the case when char $R \neq 2$ and R is a semi-prime ring. No attempt seems to have been made to extend Posner's first theorem to a Lie ideal L of R, assuming that $d h$ is a Lie derivation on L. Several authors (see [5], [7], [8], [16], and [22]) have shown that $d=0$ or $h=0$ when $L^{d h}=0$ or $L^{d h} \subset Z$. The second theorem of Posner was much more difficult to prove than the first, although an easier proof has been found [3]. When char $R=2$, this result is easy to prove. One such proof appears in [1] and, although not stated, it holds for Lie ideals of R. Partial generalizations of Posner's second theorem to ideals [10] and to Lie ideals when char $R \neq 2$ [4] have also been obtained. More recently, a full generalization to Lie ideals when char $R \neq 2$ has been proved
([22] and [5]), and in [14] there is an extension to d-invariant ideals in d-semi-prime rings.

In the references cited above, the arguments are generally ad hoc computations, often lengthy and clever. Our purpose is to obtain and extend these results in a systematic way by using the theory of differential identities as developed by V. Kharchenko [17] and extended in [18]. We are able to prove Posner's second theorem fairly easily for Lie ideals in any characteristic. His first theorem is harder for us to prove, but our result gives the full generalization to the case when $d h$ is a Lie derivation acting on a Lie ideal L of R in any characteristic. In addition, we obtain results corresponding to Posner's theorems for the (skew) symmetric elements in rings with involution. The statements of our main results are:

Theorem. If L is a noncommutative Lie ideal of R and d is a nonzero derivation of R so that $x x^{d}=x^{d} x \in Z$ for all $x \in L$, then either R is commutative, or char $R=2$ and R satisfies S_{4};

Theorem. If L is a noncommutative Lie ideal of R and d and h are nonzero derivations of R so that dh is a Lie derivation of L into R, then $\operatorname{char} R=2$ and either R satisfies S_{4} or $h=d c$ for c in the extended centroid of R;

Theorem. If R has an involution, ${ }^{*}, J=J^{*}$ is a nonzero ideal of R, and d and h are nonzero derivations of R so that dh is a Lie derivation from the skew-symmetric elements of J to R, then R satisfies S_{4}, or d and h are inner and R must satisfy a nonzero generalized polynomial identity, unless char $R=2$ and $h=d c$ for c in the extended centroid of R.

Differential identities and preliminary results. Our method of approaching these problems is to use results on differential identities to show that the derivations involved are inner, and then to conclude that R satisfies a generalized polynomial identity. This means that R embeds nicely in a primitive ring with nonzero socle [23] and by extending the base field we argue that one can assume that R is a matrix ring over a field. At this point, matrix computations yield the desired result. Unfortunately, even to state the result on differential identities which we need requires a considerable amount of terminology. We begin with a review of some important facts about the Martindale quotient ring and then discuss the notion of differential identity.

Throughout the paper, R will denote a prime ring with center Z, extended centroid C, and Martindale quotient ring Q (see [23] for details). One can view Q as equivalence classes of left R-module homomorphisms from ideals of R to R, so R embeds in Q as right multiplication on R. The center of Q is C, which is a field, and C is also the centralizer of R in Q. One can characterize C as those elements of Q which are R-bimodule mappings. For any $q \in Q$ there is a nonzero ideal I of R with $I q \subset R$, and $q=0$ if $J q=0$ for any nonzero ideal J of R. Using this, one can show easily that any subring of Q which is also an R-bimodule is a prime ring whose extended centroid is again C. One subring of Q of particular importance is $R C+C$, the central closure of R. Another subring arising in the theory of differential identities is $N(R)=N=\{q \in Q \mid I q+q I \subset R$ for some nonzero ideal I of $R\}$ [17]. It is easy to see that $R C+C \subset N$. Let $\operatorname{Der}(R)$ denote the Lie ring of derivations of R. Any $d \in \operatorname{Der}(R)$ has a unique extension to Q, and this extension restricts to N ([17] or [18]). Thus, we may consider $\operatorname{Der}(R) \subset \operatorname{Der}(R) C \subset \operatorname{Der}(R C) \cap \operatorname{Der}(N)$, where $d c$ for $d \in \operatorname{Der}(R)$ and $c \in C$ is given by $x^{d c}=x^{d} c$ for any $x \in N$. Now if $d \in \operatorname{Der}(R)$ extends to an inner derivation of Q, say $d=a d(y)$ for $q^{d}=q y-y q$, then $y \in N$ ([17] or [18]). The right C subspace of $\operatorname{Der}(R) C$ consisting of those elements whose extensions to Q are inner is denoted by $\operatorname{Inn}(R)$. Finally, if R has an involution, *, then one can extend ${ }^{*}$ to N by taking $q \in N, J$ a nonzero ideal of R satisfying $J q+q J \subset R$, and defining q^{*} on J^{*} by $\left(j^{*}\right) q^{*}=(q j)^{*}$ (see [24; Theorem 4.1, p. 511]). In particular, $R C+C \subset N$ has an involution restricting to * on R, so we may assume that any involution of R is also defined on C.

Next, we review the notion of differential identity for R a prime ring with involution, *. Our discussion is a special case of the development in [17] and [18]. Let X be a set of indeterminates over C of the form $\left\{x_{i}\right\} \cup\left\{x_{i}^{d}\right\}$, where i ranges over the positive integers and d ranges over $\operatorname{Der}(R) C$. We shall say that x_{i} or x_{i}^{d} has subscript i, that x_{i}^{d} has exponent d, and that x_{i} has no exponent. Let $F(N, X, Y)$ denote the free product over C of N and $C\{X, Y\}$, where Y is another set of indeterminates $\left\{y_{i}\right\} \cup\left\{y_{i}^{d}\right\}$. One C-basis for $F(N, X, Y)$ is the set of all monomials $a_{0} z_{1} a_{1} \cdots z_{n} a_{n}$, where the coefficients, $\left\{a_{i}\right\}$, belong to some C-basis of N, and $\left\{z_{i}\right\} \subset X \cup Y$. Any $f \in F(N, X, Y)$ involves only finitely many indeterminates, so for a suitable integer n, f defines a function from R^{n} to N. Specifically, for $\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$ one substitutes, r_{i} for x_{i}, r_{i}^{*} for $y_{i},\left(r_{i}\right)^{d}$ for x_{i}^{d}, and $\left(r_{i}^{*}\right)^{d}$ for y_{i}^{d}. If J
is a nonempty subset of R so that $f\left(J^{n}\right)$, the image of J^{n} under f, is zero, then f is called a generalized ${ }^{*}$-differential identity (G^{*}-DI) for J. A G^{*}-DI f for J which has all its indeterminates appearing without exponent, that is in $\left\{x_{i}\right\} \cup\left\{y_{i}\right\}$ is called a generalized ${ }^{*}$-polynomial identity (G^{*}-PI) for J. When one ignores the fact that R has an involution, or does not assume an involution, the terminology above has its obvious parallels. Specifically, $f \in F(N, X)$ is a GDI (generalized differential identity) for J if $F\left(J^{n}\right)=0$, and is a GPI for J if all indeterminates appearing in f are in $\left\{x_{i}\right\}$. In general, we regard $F(N, X) \subset F(N, X, Y)$ and consider any result for a G^{*}-DI to hold for a GDI, with the obvious changes needed.

We note that our use of "GPI" is somewhat nonstandard because the coefficients of a GPI f are in N rather than in $R C+C$. This is a potential problem because we need to use Martindale's theorem [23; Theorem 3, p. 579] which asserts that if R satisfies a nonzero GPI with coefficients in $R C+C, R C$ is a primitive ring with nonzero socle, and for a primitive idempotent $e \in R C$, the division ring $e R C e$ is finite dimensional over its center $e C$. This problem is resolved by [19; Theorem 2, p. 18] which shows that if $f \in F(N, X)$ is a nonzero GPI for an ideal J of R, then R satisfies a nonzero GPI with coefficients in R (also see [18; Proposition, p. 769]).

The statement of the main result from [18] requires still more terminology. To say that $f \in F(N, X, Y)$ is multilinear means that f is multilinear and homogeneous in its subscripts; that is, no subscript appears twice in any single basis monomial appearing in f and all basis monomials in f have the same set of subscripts. Assume for simplicity that f is multilinear with subscript set $\{1, \ldots, n\}$ and let $W \subset \operatorname{Der}(R) C$ be the set of all exponents appearing in f. Of course W is empty exactly when all variables in f are in $\left\{x_{i}\right\} \cup\left\{y_{i}\right\}$. To each monomial m in f we associate its exponent sequence (h_{1}, \ldots, h_{n}), where $h_{i} \in W$ if it is the exponent of the variable in m with subscript i, and $h_{i}=1$ if the variable with subscript i is x_{i} or y_{i}. For example, $m=x_{4}^{d} y_{2}^{d} a x_{3} b x_{1}^{h}$ has exponent sequence ($h, d, 1, d$). For any such sequence $\left(h_{1}, \ldots, h_{n}\right)$ we let $f_{\left(h_{1}, \ldots, h_{n}\right)}$ be the sum of all monomials of f having this same exponent sequence, but with all exponents deleted. Thus, if

$$
f=x_{1}^{d} y_{2} x_{3}^{d}+x_{3} y_{1} x_{2}^{d}+y_{3}^{d} y_{2} y_{1}^{d}+x_{2}^{d} x_{3}^{d} x_{1}
$$

then

$$
\begin{gathered}
f_{(d, 1, d)}=x_{1} y_{2} x_{3}+y_{3} y_{2} y_{1}, \quad f_{(1, d, 1)}=x_{3} y_{1} x_{2}, \quad \text { and } \\
f_{(1, d, d)}=x_{2} x_{3} x_{1}
\end{gathered}
$$

Finally, the set $W=\left\{d_{1}, \ldots, d_{k}\right\} \subset \operatorname{Der}(R) C$ is called independent modulo $\operatorname{Inn}(R)$ if $d_{1} c_{1}+\cdots+d_{k} c_{k} \in \operatorname{Inn}(R)$, for $c_{i} \in C$, implies that all $c_{i}=0$. With all of these preliminaries we can now state the special case of [18; Theorem 7, p. 783] which we require.

Theorem A. Let R be a prime ring with involution, J a nonzero ideal of R, and $f \in F(N, X, Y) a G^{*}$-DI for J which is multilinear with subscript set $\{1, \ldots, n\}$ and exponent set $W \subset \operatorname{Der}(R) C$ independent modulo $\operatorname{Inn}(R)$. If $\left(h_{1}, \ldots, h_{n}\right)$ is the exponent sequence for any basis monomial in f, and contains a maximal number of derivations among all such sequences, then $f_{\left(h_{1}, \ldots, h_{n}\right)}$ is a G^{*}-PI for R, and R satisfies a nonzero GPI, if $f \neq 0$.

By applying Theorem A we will be able to assume that R satisfies a nonzero multilinear GPI, say g. The multilinearity of g makes it clear that $R C$, and so, $R \bar{C}=R C \otimes_{C} \bar{C}$ satisfies g, where \bar{C} is an algebraic closure of C, and with the identification of $R \bar{C} \subset N \bar{C}=N \otimes_{C} \bar{C}$. By Martindale's theorem [23; Theorem 3, p. 579] one concludes that $R \bar{C}$ is a primitive ring, that $H=\operatorname{soc}(R \bar{C})=\operatorname{Soc}(R C) \bar{C} \neq 0$, and for any idempotent $e \in H, e H e \cong M_{n}(\bar{C})$ where n is the (uniform) dimension of $e H$, or of He . Therefore, the multilinear identities for R will be identities for H and the reduction to matrices depends on showing that H is finite dimensional over \bar{C}, in which case $R \bar{C}=H=M_{n}(\bar{C})$, $R C=M_{n}(C)$, and C is the quotient field of Z [26]. One technical problem which arises is whether a GPI g for R is a GPI for H; that is, can one consider the coefficients of g to be in $N(H)$? Our first lemma clarifies this matter and provides a related computation which will be useful in what follows.

Lemma 1. Let R satisfy a nonzero GPI, let \bar{C} be an algebraic closure of C, and set $H=\operatorname{Soc}(R \bar{C})$. Then $H N+N H \subset H$ and $N \subset N(H)$, where we consider $N, H \subset N \bar{C}$.

Proof. For $q \in N$ let J be a nonzero ideal of R satisfying $J q+q J \subset$ R. Now $J \bar{C}=J C \otimes \bar{C}$ is a nonzero ideal of $R \bar{C}$ and H is the unique minimal ideal of $R \bar{C}$, so

$$
\begin{aligned}
H q+q H & =H^{2} q+q H^{2} \subset H(J \bar{C}) q+q(J \bar{C}) H \\
& \subset H(R \bar{C})+(R \bar{C}) H \subset H
\end{aligned}
$$

Therefore $H N+N H \subset H$, and since right multiplication by $q \in N$ is a left H-module homomorphism of H to itself, $N \subset N(H)$.

Since our main results concern Lie ideals, we collect some wellknown facts about them in our next lemma. We say that R satisfies S_{4} if R satisfies the standard polynomial identity of degree four; equivalently, R is an order in a simple algebra at most four dimensional over its center, the quotient field of the center of R [26], and so $R \bar{C}=M_{2}(\bar{C})$. The notation $[a, b]=a b-b a$ is used throughout, and recall that a Lie ideal of R is an additive subgroup L satisfying $[L, R] \subset L$.

Lemma 2. Let R be a prime ring, $d \in \operatorname{Der}(R) C, L$ a noncommutative Lie ideal of R, and M the ideal of R generated by $[L, L]$. Then the following hold:
(i) $M \subset L+L^{2}$;
(ii) $[M, M] \subset L$;
(iii) $[L, L]$ is a noncommutative Lie ideal of R unless char $R=2$ and R satisfies $S_{4} ;$ and
(iv) $[L, L]^{d} \subset Z$ implies $d=0$ unless char $R=2$ and R satisfies S_{4}.

Proof. The proof of (i) is given in [11; proof of Lemma 1.3, p. 4]. Briefly, for $a, b \in L$ and $r \in R,[a, b] r=[a r, b]-a[r, b] \in L+L^{2}$ and then commutation with R gives the result. Now (ii) follows from (i) if $\left[L^{2}, M\right] \subset L$, and this holds using the identity $[x y, z]=[x, y z]+[y, z x]$. Next, (iii) is immediate from [21; Lemma 7, p. 120]. Finally, let A be the subring generated by $[U, U]$ for $U=[L, L]$. Unless char $R=2$ and R satisfies S_{4}, (iii) and (i) show that $J \subset A$ for J a nonzero ideal of R, and since $A^{d} \subset[U, U]^{d}=0$, one has $J^{d}=0$ which easily gives $d=0$.

Our first theorem is the result which will enable us to show that $H=$ $\operatorname{Soc}(R \bar{C})$ is finite dimensional. This theorem is of some independent interest because it shows that Lie ideals can satisfy nontrivial linear identities, whereas ideals cannot ([23], [12; Lemma 1.3.2, p. 22], or [18; Lemma 1, p. 766]), and further, that this can occur only when $R C$ is finite dimensional. In the proof of the theorem, and in later proofs, we will need the fact that Litoff's theorem [15; Theorem 3, p. 90] holds in H.

Theorem (Litoff). For any $\left\{h_{1}, \ldots, h_{n}\right\} \subset H=\operatorname{Soc}(R \bar{C})$, there is an idempotent $e \in H$ so that $\left\{h_{i}\right\} \subset e H e$.

Theorem 1. Let R be a prime ring, L a noncommutative Lie ideal of R, \bar{C} an algebraic closure of C, and $f \in F(N, X)$ a multilinear GPI
for L. Then either $f=0, f$ is a nonzero GPI for $Q \bar{C}$, or $R \bar{C} \cong M_{n}(\bar{C})$ and f is a GPI for $[R \bar{C}, R \bar{C}]$.

Proof. We proceed by induction on the degree of f, and for the case $\operatorname{deg}(f)=1$ let $f=f\left(x_{1}\right)=\sum a_{i} x_{1} b_{i}$. There is a nonzero ideal M of R satisfying [M, M] $\subset L$, by Lemma 2, and it is clear that $\bar{f}\left(x_{1}, x_{2}\right)=f\left(x_{1} x_{2}-x_{2} x_{1}\right)$ is a GPI for M. Assume that $f \neq 0$ in $F(N, X)$, so also $\bar{f} \neq 0$. We may conclude from ($[\mathbf{1 8}$; Theorem 7 , p. 783] or [24; Theorem 3.9, p. 510]) that \bar{f} is a GPI for R. The multilinearity of \bar{f} implies that \bar{f} is also a GPI for $R \bar{C}$, and so for $H=\operatorname{Soc}(R \bar{C})$, using Lemma 1. In particular $f([H, H])=0$. Note also that $f(H) \subset H$ by Lemma 1. Employing Litoff's theorem, one can show that as \bar{C}-vector spaces, $H=[H, H]+\bar{C} e$ for any primitive idempotent $e \in H$ [20; proof of Theorem 4]. Therefore, $f(H)=$ $\bar{C} f(e) \subset H$. Should $f(e)=0$, then $f(H)=0$ forcing $f=0$ in $F(N(H), X)$ [18; Lemma 1, p. 766]. Consequently, we may assume that $f(e) \neq 0$ and use Litoff's theorem to find idempotents $g, g^{\prime} \in H$ satisfying $f(e) \in g H g$ and $\left\{g, g a_{i}\right\} \subset g^{\prime} H g^{\prime}$, where the a_{i} are the left coefficients of f. If H is infinite dimensional over \bar{C}, there is a primitive idempotent $e^{\prime} \in H$ which is orthogonal to g^{\prime}. As we have seen, $f=0$ if $f\left(e^{\prime}\right)=0$, so we may write $f\left(e^{\prime}\right)=c f(e)$ for $c \in \bar{C}-\{0\}$. Hence $c f(e)=c g f(e)=g f\left(e^{\prime}\right)=\sum g a_{i} e^{\prime} b_{i} \subset \sum g^{\prime} H g^{\prime} e^{\prime} b_{i}=0$, contradicting $f\left(e^{\prime}\right) \neq 0$. We are forced to conclude that either $f=0$ or H is finite dimensional over \bar{C}. Since H is an ideal and simple subalgebra of $R \bar{C}$, the second possibility gives $R \bar{C}=H \cong M_{n}(\bar{C})$, completing the proof when f is linear.

Now let $\operatorname{deg} f=k>1$ and assume that $R \bar{C}$ is not finite dimensional over \bar{C}. Write $f=f\left(x_{1}, \ldots, x_{k}\right)$ and consider $\bar{f}=f\left(x_{1}, \ldots, x_{k-1}, y\right)$ for any $y \in L$. It is clear that \bar{f} is multilinear and homogeneous of degree $k-1$, and that $\bar{f}\left(L^{k-1}\right)=0$, so by induction, $\bar{f}\left(R^{k-1}\right)=0$. Hence, for any $\bar{r} \in R^{k-1}, f^{\prime}(x)=f(\bar{r}, x)$ is linear and $f^{\prime}(L)=0$. The case $k=1$ now forces $f^{\prime}=0$ and we have that f is a GPI for R. We observe that f is also a GPI for $Q[19$; Theorem 1, p. 17] and so for $Q \bar{C}$ by multilinearity. When $R \bar{C} \cong M_{n}(\bar{C})$, the multilinearity of f implies that f is a GPI for $L \bar{C}=L C \otimes_{C} \bar{C}$. Since $[R \bar{C}, R \bar{C}] \subset L \bar{C}$ by Lemma 1 , the proof is complete.

Posner's second theorem for Lie ideals and involutions. We have now assembled what we need to prove our first main result, which is

Posner's second theorem for Lie ideals. As we indicated in the introduction, this result appears in [22] and [5]. Recall that Z denotes the center of R.

Theorem 2. Let R be a prime ring, L a noncommutative Lie ideal of R, and $d \in \operatorname{Der}(R)-\{0\}$. If $\left[x, x^{d}\right] \in Z$ for all $x \in L$, then either R is commutative, or char $R=2$ and R satisfies S_{4}.

Proof. Suppose that $d \notin \operatorname{Inn}(R)$ and linearize the expression $\left[x, x^{d}\right]$ to obtain the multilinear $g=\left[x_{1}, x_{2}^{d}\right]+\left[x_{2}, x_{1}^{d}\right] \in F(N, X)$. When char $R=2$ and $t, y \in L,[t, y]^{d}=g(t, y) \in Z$, or equivalently, $[L, L]^{d} \subset$ Z. Thus, R satisfies S_{4} by Lemma 2, proving the theorem. We may assume henceforth that char $R \neq 2$. In g, replace the variables with commutators to get

$$
f=\left[\left[x_{1}, x_{2}\right],\left[x_{3}^{d}, x_{4}\right]+\left[x_{3}, x_{4}^{d}\right]\right]+\left[\left[x_{3}, x_{4}\right],\left[x_{1}^{d}, x_{2}\right]+\left[x_{1}, x_{2}^{d}\right]\right]
$$

and set $\bar{f}=\left[f, x_{5}\right]$. Then \bar{f} is a GDI for M, the ideal of R given in Lemma 2 and satisfying $[M, M] \subset L$. Now if $\bar{f}=0$ in $F(N, X)$, then $f=0$ also, it would follow that [$\left.\left[x_{1}, x_{2}\right],\left[x_{3}, x_{4}\right]\right]$ is a GPI for R. But then R would be commutative, using Lemma 2. Therefore, we may assume $\bar{f} \neq 0$ and apply Theorem A with $W=\{d\}$ and exponent sequence $(d, 1,1,1,1)$ to conclude that [[[$\left.\left.\left.x_{3}, x_{4}\right],\left[x_{1}, x_{2}\right]\right], x_{5}\right]$ is a GPI for R. Again, R must be commutative, finishing the proof when $d \notin \operatorname{Inn}(R)$.

Now assume $d=\operatorname{ad}(A)$, so $h=\left[g, x_{3}\right]$ is a GPI for L, where each x_{i}^{d} is replaced with $\left[x_{i}, A\right]$. Note that h is written as a sum of distinct basis monomials of $F(N, X)$ if $A \notin C$, and that $A \in C$ means $d=0$. Hence $h \neq 0$ and so from Theorem 1 either h is a GPI for H, or $H=R \bar{C} \cong M_{n}(\bar{C})$ and h is a GPI for $[H, H]$. In the first case take $e^{2}=e \in H$ and replace each x_{i} with e to obtain $0=[e, g(e, e)]=[e, A]$; that is, A centralizes all idempotents in H. but when H is infinite dimensional, it is generated by its idempotents, forcing $A \in C$ and $d=0$. Consequently, we may assume that $H=R \bar{C} \cong M_{n}(\bar{C})$ for $n>1$, and that h is a GPI for $[H, H$].

Let $\left\{e_{i j}\right\}$ be the usual matrix units for H. If $i \neq j$, then $e_{i j}=$ $\left[e_{i i}, e_{i j}\right] \in[H, H]$, so $g\left(e_{i j}, e_{i j}\right)$ is a scalar matrix. This shows that $A_{j i}=0$, so A is a diagonal matrix. For any invertible $P \in H, P^{-1} h P$ is still a GPI for $\left[H, H\right.$], and it follows that $P^{-1} A P$ is also a diagonal matrix. This is possible only if A is scalar, resulting again in $d=0$ and completing the proof of the theorem.

Corollary. Let R be a prime ring, I a nonzero ideal of R, and $d \in \operatorname{Der}(R)-\{0\}$. If $\left[x, x^{d}\right] \in Z$ for each $x \in I$ then R is commutative.

Proof. From Theorem 2 we may assume char $R=2$ and that R satisfies S_{4}. The proof of Theorem 2 shows that we may take $d=$ $\operatorname{ad}(A)$. Since $R C \cong M_{2}(C)$ and C is the quotient field of Z [26], it follows that $[x,[x, A]] \in C$ for any $x \in R C=I C$. In particular, the choice of $x=e_{11}$ shows that A is diagonal, and then taking $x=$ $e_{11}+e_{12}$ yields the contradiction $A \in C$.

In Theorem 2, the exception given when char $R=2$ is necessary because if $R=M_{2}(C)$, for C a field with char $C=2$, then $L=[R, R]$ is noncommutative, but $[L, L] \subset C$. Hence if $d=\operatorname{ad}(A)$ for $A \in L$, then $\left[x, x^{d}\right] \in C$ holds for all $x \in L$.

Our next theorem is the version of Theorem 2 for rings with involution. When R has an involution, ${ }^{*}$, and $J^{*}=J$ is an ideal of R, set $S(J)=\left\{y \in J \mid y^{*}=y\right\}, T(J)=\left\{y+y^{*} \mid y \in J\right\}$, and $K(J)=$ $\left\{y-y^{*} \mid y \in J\right\}$. We shall consider the situation when $\left[x, x^{d}\right] \in Z$ for all $x \in T(J)$, or for all $x \in K(J)$. As one might expect, the example mentioned just above shows that one must again exclude the case when R satisfies S_{4}.

Example. Let $R=M_{2}(C)$ for C a field and assume first that $\operatorname{char} R \neq 2$. When R has the symplectic involution $\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)^{*}=\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$, $S=C \cdot I_{2}$ so $\left[S, S^{D}\right]=0$ for any $D \in \operatorname{Der}(R)$. With the usual transpose involution, $K=C\left(e_{12}-e_{21}\right)$, so $[K, K]=0$ and $\left[K, K^{D}\right]=0$ whenever $K^{D} \subset K$.

Now, if char $C=2, T=K$ and for the transpose involution $T=$ $C\left(e_{12}+e_{21}\right)$ is commutative, so again $\left[T, T^{D}\right]=0$ if $T^{D} \subset T$; for example, $D=\operatorname{ad}(A)$ with $A_{12}=A_{21}$. For the symplectic involution on $R, T=C \cdot I_{2}$ and $S=[R, R]$. As we have seen $[S, S] \subset C \cdot I_{2}$, so for any $D \in \operatorname{Der}(R)\left[S, S^{D}\right] \subset C \cdot I_{2}$ and $\left[T, T^{D}\right]=0$.

Recall that an involution, * in R is of the first kind if $S(C)=C$, and of the second kind otherwise [24]. If * is of the second kind, let $c \neq c^{*}$ and choose a nonzero ideal $J=J^{*}$ of R with $c J+c^{*} J \subset R$. Then for $y \in J,\left(c-c^{*}\right) y=\left(c y+c^{*} y^{*}\right)-c^{*}\left(y+y^{*}\right)$ and $\left(c-c^{*}\right) y=$ $\left(c y-c^{*} y^{*}\right)+c^{*}\left(y^{*}-y\right)$, so $J \subset C T(R) \cap C K(R)$. Consequently, each of $C T$ and $C K$ contains a nonzero ideal of $R C$. When ${ }^{*}$ is of the first kind, then it can be extended to $R \bar{C}$ by setting $(a \otimes \bar{c})=a^{*} \otimes \bar{c}$ for $a \in R C$.

Our next lemma states an important fact which we need in Theorem 3. It is certainly known, but there is no apparent reference, particularly when $\operatorname{char} R=2$. The statement that it holds for K when $\operatorname{char} R \neq 2$ is given in [9; p. 529]. We provide an argument for completeness.

Lemma 3. Let R be a prime ring with involution, *, and $I=I^{*} a$ nonzero ideal of R. If either $[T(I), T(I)] \subset Z$ or $[K(I), K(I)] \subset Z$ then R satisfies S_{4}.

Proof. Suppose that $[T(I), T(I)] \subset Z$, let $f=\left[\left[x_{1}+y_{1}, x_{2}+y_{2}\right], x_{3}\right]$, and note that f is a nonzero multilinear G^{*}-PI for I. By Theorem A, f is a $\mathrm{G}^{*}-\mathrm{PI}$ for R, so R satisfies S_{6} [2; Theorem 1, p. 63]. Localizing R at $S(Z)$ [26] and using the multilinearity of f and S_{6} enable us to assume that R is simple Artinian and satisfies both f and S_{6}. If ${ }^{*}$ is of the second kind, then as we indicated above $R=C T$, resulting in $[R, R] \subset C$, which forces R to be commutative [11; Corollary, p. 9]. When * is of the first kind, $R \bar{C}$ satisfies f and S_{6}, so unless R satisfies $S_{4}, R \bar{C} \cong M_{3}(\bar{C})$ and ${ }^{*}$ is of transpose type. But for $i \neq j, t_{i j}=$ $c_{i} e_{i j}+c_{j} e_{j i} \in T$, where $c_{i} c_{j} \neq 0$ and $\left[t_{12}, t_{23}\right] \notin \bar{C} \cdot I_{3}$. Thus R must satisfy S_{4}. The proof when $[K(I), K(I)] \subset Z$ proceeds in exactly the same fashion, starting with $g=\left[\left[x_{1}-y_{1}, x_{2}-y_{2}\right], x_{3}\right]$.

Theorem 3. Let R be a prime ring with involution, ${ }^{*}, I=I^{*} a$ nonzero ideal of R, and $d \in \operatorname{Der}(R)-\{0\}$. If $\left[x, x^{d}\right] \in Z$ for all $x \in T(I)$, or for all $x \in K(I)$, then R satisfies S_{4}.

Proof. Assume first that $d \notin \operatorname{Inn}(R)$ and set

$$
\begin{gathered}
g=\left[\left[x_{1}+y_{1}, x_{2}^{d}+y_{2}^{d}\right], x_{3}\right]+\left[\left[x_{2}+y_{2}, x_{1}^{d}+y_{1}^{d}\right], x_{3}\right] \text { and } \\
f=\left[\left[x_{1}-y_{1}, x_{2}^{d}-y_{2}^{d}\right], x_{3}\right]+\left[\left[x_{2}-y_{2}, x_{1}^{d}-y_{1}^{d}\right], x_{3}\right] .
\end{gathered}
$$

Then if $\left[x, x^{d}\right] \in Z$ holds for $T(I), g \in F(N, X, Y)$ is a multilinear G^{*}-DI for I, and if it holds for $K(I), f$ is a multilinear G^{*}-DI for I. We proceed assuming that the hypothesis holds for $T(I)$ and indicate what changes, other than obvious ones, are necessary at each step if one assumes instead that the hypothesis holds for $K(I)$. Now $g \neq 0$ since it is a sum of distinct basis monomials, so by Theorem A $g_{(1, d, 1)}$ is a G ${ }^{*}$-PI for R. But then $[T(R), T(R)] \subset Z$ and R satisfies S_{4} by Lemma 3. Therefore, we may assume $d=\operatorname{ad}(A)$ and replacing each expression t^{d} in g with $[t, A]$ enables us to view g as a G^{*}-PI for I.

Next, observe that $g \neq 0$, unless $A \in C$ and $d=0$, since the basis monomial $x_{1} x_{2} A x_{3}$ in g is not canceled. By Theorem A, g is a G^{*}-PI for R and R satisfies a nonzero GPI. Suppose that * is of the second kind. Our comments before Lemma 3 show there is an ideal J of R satisfying $J \subset C T(R)$. Since $d=\operatorname{ad}(A)$ and g is an identity for R, it follows that for $a, b \in J,\left[a, b^{d}\right]+\left[b, a^{d}\right] \in C \cap R=Z$. If char $R=2$, then $[J, J]^{d} \subset Z$ and R must satisfy S_{4} by Lemma 2. If char $\neq 2$ taking $a=b=x \in J$ shows that $\left[x, x^{d}\right] \in Z$ and R must be commutative by the Corollary to Theorem 2. Consequently, we may now assume that * is of the first kind, so ${ }^{*}$ extends to $R \bar{C}=R C \otimes_{C} \bar{C}$. Furthermore by multilinearity of g and Lemma $1, g$ is G^{*}-PI for $H=\operatorname{Soc}(R \bar{C}) \neq 0$, from which it also follows that $[x,[x, A]] \in \bar{C}$ for all $x \in T(H) \subset T(I \bar{C})$.

Suppose for now that char $R=2$ and that H is infinite dimensional over \bar{C}. If $a, b \in T(H)$ then $[a, b]^{d}=\left[a, b^{d}\right]+\left[b, a^{d}\right] \in \bar{C} \cap H=0$, using Lemma 1 again. Thus $[[T, T], A]=0$ and since the subring generated by [T,T] is H [21; Theorem 25, p. 129], we must have $A \in \bar{C}$ and $d=0$. This contradiction means that when char $R=2, H=R \bar{C} \cong$ $M_{n}(\bar{C})$, and R satisfies S_{4} unless $n>2$. If ${ }^{*}$ is of transpose type on H, then $\left\{t_{i j}=c_{i} e_{i j}+c_{j} e_{j i} \mid i \neq j\right.$ and certain $c_{i} \in C$ with $\left.c_{i} c_{j} \neq 0\right\}$ span T over \bar{C}, and it is easy to see that $[T, T]=T$. As above, for $a, b \in T$, $[a, b]^{d} \in \bar{C}$, so $[T, A]=[[T, T], A] \subset \bar{C} \cdot I_{n}$. Consequently, $[T, A]=$ $[[T, T], A]=0, A$ centralizes T, and so, A centralizes $e_{i k} \in \bar{C} t_{i j} t_{j k}$ for i, j, k distinct. This clearly gives the contradiction $A \in \bar{C} \cdot I_{n}$.

Consider now char $R=2, H \cong M_{n}(\bar{C})$ and assume that * is of symplectic type. This means that $n=2 m$ and if $B \in H$ is written as $B=\sum B_{i j} E_{i j}$ for $1 \leq i, j \leq m$, where $B_{i j} \in M_{2}(\bar{C})$ and $E_{i j}=$ $I_{2} \in M_{2}(\bar{C})$ in the " $i-j$ " position, then $B^{*}=\sum B_{j i}^{*} E_{i j}$ with $\left(\begin{array}{ll}a & b \\ c & t\end{array}\right)^{*}=$ $\left(\begin{array}{cc}t & -b \\ -c & a\end{array}\right)$. In particular $E_{i i}=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right) E_{i i}+\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right) E_{i i} \in T$. Taking $x=E_{i i}$ and using $E_{i i}$ is an idempotent shows that $\left[E_{i i},\left[E_{i i}, A\right]\right]=\left[E_{i i}, A\right] \in$ $\bar{C} \cdot I_{n}$ which yields $A_{i j}=0$ if $i \neq j$; that is, $A=\sum A_{i i} E_{i i}$. Now, for $B \in M_{2}(\bar{C})$ set $Y=B E_{i j}+B^{*} E_{j i}+E_{i i} \in T$ and compute $[Y,[Y, A]]=$ $\left[Y^{2}, A\right]=\left(B A_{j j}+A_{i i} B\right) E_{i j}+\left(B^{*} A_{i i}+A_{j j} B^{*}\right) E_{j i} \in \bar{C} \cdot I_{n}$ which forces $B A_{j j}=A_{i i} B$. When $B=I_{2}$ one gets $A_{i i}=A_{j j}$, resulting in $B A_{i i}=$ $A_{i i} B$, so $A \in \bar{C}$ and $d=0$. This contradiction finishes the proof when $\operatorname{char} R=2$, so we may now assume that char $\neq 2$.
Just as in the case char $R=2$, we want to show that H is finite dimensional, so assume for now that H is infinite dimensional over \bar{C}. Thus for $t_{1}, t_{2} \in T(H),\left[t_{1}, t_{2}^{d}\right]+\left[t_{2}, t_{1}^{d}\right] \in \bar{C} \cap H=0$, using the fact
that g is a G^{*}-PI for H, and Lemma 1. For $y \in T(H)$ and $h \in H$, $h y+y h^{*} \in T(H)$. The computation above, with $t_{1}=t_{2}=y$ shows [y, y^{d}] $=0$, and then taking $t_{1}=h y+y h^{*}$ and $t_{2}=y$ gives

$$
\begin{aligned}
0= & {\left[h y+y h^{*}, y^{d}\right]+\left[y,\left(h y+y h^{*}\right)^{d}\right] } \\
= & {\left[h, y^{d}\right] y+y\left[h^{*}, y^{d}\right]+y\left(h y+y h^{*}\right)^{d} } \\
& -h^{d} y^{2}-h y^{d} y-y^{d} h^{*} y-y\left(h^{*}\right)^{d} y .
\end{aligned}
$$

Consequently, $h^{d} y^{2}=h y^{d} y-y^{d} h y+y h_{1}-h y^{d} y-y^{d} h^{*} y$ for $h_{1} \in H$, and we may conclude from this that for $y \in T(H), H^{d} y^{2} \subset y H+y^{d} H$. If also $x \in T(H)$ then $\left(h x^{2}\right)^{d}=h^{d} x^{2}+h\left(x^{2}\right)^{d}$, and it follows that $H\left(x^{2}\right)^{d} y^{2} \subset H^{d} x^{2} y^{2}+H^{d} y^{2} \subset x H+x^{d} H+y H+y^{d} H$. Suppose that $\left(x^{2}\right)^{d} y^{2} \neq 0$ for some choice of x and y. Now we have $H=$ $H\left(x^{2}\right)^{d} y^{2} H=x H+x^{d} H+y H+y^{d} H$, which forces H to have finite uniform dimension, since $x, y, x^{d}, y^{d} \in H$, contradicting the infinite dimensionality of H over \bar{C}. Therefore, we may assume $\left(x^{2}\right)^{d} y^{2}=0$. Since char $\bar{C} \neq 2, T(H)=S(H)$, and the span over \bar{C} of $\left\{t^{2} \mid t \in S(H)\right\}$ is a Jordan ideal of $S(H)\left(t^{2} s+s t^{2}=\left(t^{2}+s\right)^{2}-\left(t^{2}\right)^{2}-s^{2}\right)$; this span is $S(H)$ [11; Theorem 2.6, p. 32]. Also, the span of $\left\{t^{2} \mid t \in K(H)\right\}$ contains $S(H)$, by a theorem of Baxter [11; Theorem 2.3, p. 29]. Consequently, under either possible original hypothesis, $S(H)^{d} S(H)=0$, and it follows from the fact that $S(H)$ generates H as a ring [12; Theorem 2.1.6, p. 61], that $d=0$. In summary, we may now assume that $H=R \bar{C} \cong M_{n}(\bar{C})$ where $n>2$ and char $\bar{C} \neq 2$.

If * is of transpose type on H, then as in the char $R=2$ case $\left\{t_{i j}=\right.$ $c_{i} e_{i j}+c_{j} e_{j i} \mid i \neq j$ and $\left.c_{i} c_{j} \neq 0\right\}$ spans $T(H)$. Since $Y=\left[t_{i j},\left[t_{i j}, A\right]\right] \in$ $\bar{C} \cdot I_{n}$ and $n>2$, for $k \neq i, j$ we have $Y_{i k}=-c_{i} c_{j} A_{i k}=0$, and it follows that A is diagonal. Thus $Y=2 c_{i} c_{j}\left(A_{i i}-A_{j j}\right)\left(e_{i i}-e_{j j}\right) \in \bar{C} \cdot I_{n}$, and so $A_{i i}=A_{j j}$ forcing $A \in \bar{C}$ and again $d=0$. Finally, if ${ }^{*}$ is of symplectic type on H, then $n=2 m$ and $B \in H$ can be written $B=\sum B_{i j} E_{i j}$ as in the char $R=2$ case. Now $E_{i i}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) E_{i i}+\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)^{*} E_{i i} \in T(H)$, so $Y=\left[E_{i i},\left[E_{i i}, A\right]\right] \in \bar{C} \cdot I_{n}$ and this yields $0=Y_{i j}=A_{i j}$ when $i \neq j$. Now set $t=B E_{i j}+B^{*} E_{j i}$ for any $B \in M_{2}(\bar{C})$ and let

$$
X=[t,[t, A]]=2 B B^{*}\left(A_{i i} E_{i i}+A_{j j} E_{j j}\right)-2\left(B A_{j j} B^{*} E_{i i}+B^{*} A_{i i} B E_{j j}\right),
$$

using $A=\sum A_{i i} E_{i i}$ and $B B^{*} \in \bar{C} \cdot I_{2}$. Since X is scalar, for $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$, $B B^{*}=0$ and it follows that $X=0$, the " $1-2$ " entry of $A_{j j}$ is zero and the " $2-1$ " entry of $A_{i i}$ is zero. Using $B=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ shows that $A_{i i}$ and $A_{j j}$ are diagonal. Lastly setting $B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ yields the fact that $A_{i i}=A_{j j} \in \bar{C} \cdot I_{2}$, giving the contradiction $A \in \bar{C} \cdot I_{n}$. Therefore $n \leq 2$ and R satisfies S_{4}, finishing the proof of the theorem.

Posner's first theorem for Lie ideals. We turn now to Posner's first theorem. An additive mapping d of R which satisfies $[x, y]^{d}=\left[x^{d}, y\right]+$ [x, y^{d}] for all $x, y \in A \subset R$ is called a Lie derivation of A into R, and the set of all such will be denoted $\operatorname{Lie}-\operatorname{Der}(A, R)$. If $(x y)^{d}=x^{d} y+$ $x y^{d}$ for all $x, y \in A$ we write $d \in \operatorname{Der}(A, R)$. Clearly, $\operatorname{Der}(A, R) \subset$ Lie- $\operatorname{Der}(A, R)$. Suppose now that $d, h \in \operatorname{Der}(R), L$ is a Lie ideal of R, and $d h \in \operatorname{Lie-Der}(L, R)$. As Posner observed [25, p. 1094], for $x, y \in L,[x, y]^{d h}=\left[x^{d h}, y\right]+\left[x^{d}, y^{h}\right]+\left[x^{h}, y^{d}\right]+\left[x, y^{d h}\right]$ since $d, h \in$ $\operatorname{Der}(R)$, and also $[x, y]^{d h}=\left[x^{d h}, y\right]+\left[x, y^{d h}\right]$ since $d h \in \operatorname{Lie}-\operatorname{Der}(R)$. Together these equations give $\left[x^{d}, y^{h}\right]+\left[x^{h}, y^{d}\right]=0$, and this exhibits the GDI in which we are interested. Working with the commutator of this expression with another variable will enable us to obtain all of the results mentioned in the introduction. In our results about Lie ideals it is necessary to exclude the case when $\operatorname{char} R=2$ and R satisfies S_{4}. For example, when $R=M_{2}(C)$ and char $C=2$, we have seen that $[L, L] \subset C$ for $L=[R, R]$, so taking $d=\operatorname{ad}(A)$ and $h=\operatorname{ad}(B)$ for $A, B \in L$ and C-independent results in $d h \in \operatorname{Lie-Der}(L, R)$, since $L^{d h}=0$, and also $R^{d h} \subset C$, although $d h$ need not be zero. However, a direct extension of Posner's first theorem to ideals does not require this exception. As we mentioned earlier, Posner's proof [25; Theorem 1, p. 1094] actually holds for ideals when $\operatorname{char} R \neq 2$, and when char $R=2$ a (characteristic free) proof is given in [6], and another in [13]. The proof in [13] is not obviously adaptable to ideals, and while the proof in [6] does work for ideals, it has never appeared in print. For the sake of completeness of our results, and as an easy illustration of our approach, we provide a proof of this theorem for ideals. First we state a lemma from [18] which we will need to use a number of times in the results which follow. Special cases whose proofs are essentially the same are [23; Theorem 1, p. 577] and [12; Lemma 1.3.2, p. 22].

Lemma 4 [18; Lemma 1, p. 766]. Let R be a prime ring and let $f=\sum a_{i} x_{1} b_{i} \in F(N, X, Y)$ be a GPI for a nonzero ideal I of R. If $\left\{a_{i}\right\} \subset N-\{0\}$ then $\left\{b_{i}\right\}$ is C-dependent and if $\left\{b_{i}\right\} \subset N-\{0\}$ then $\left\{a_{i}\right\}$ is C-dependent.

Theorem 4. Let R be a prime ring, $d, h \in \operatorname{Der}(R)$ and J a nonzero ideal of R. if $d h \in \operatorname{Der}(J, R)$ then either $d=0, h=0$, or $\operatorname{char} R=2$ and $d=h c$ for $c \in C$.

Proof. Set $f=x_{1}^{d} x_{2}^{h}+x_{1}^{h} x_{2}^{d}$, so that for $x, y \in J, f(x, y)=(x y)^{d h}-$ $x^{d h} y-x y^{d h}=0$. If $\{d, h\}$ is independent modulo $\operatorname{Inn}(R)$, then f is a multilinear GDI to which we may apply Theorem A to get the identity $f_{(d, h)}=x_{1} x_{2}$. This contradiction shows that we may assume $h=d c+\operatorname{ad}(A)$ for $c \in C$, and $d \notin \operatorname{Inn}(R)$. Replacing, in f, each $\left(x_{i}\right)^{h}$ with $x_{i}^{d} c+\left[x_{i}, A\right]$ gives a GDI \bar{f} for J, and if char $R=2$, by Theorem A $\bar{f}_{(d, 1)}=x_{1}\left[x_{2}, A\right]$ is an identity for R. Thus $A \in C$, and $h=d c$ results, finishing the proof if char $R=2$. If char $R \neq 2$ and $c \neq 0$ we now get the identity $\bar{f}_{(d, d)}=2 c x_{1} x_{2}$ for R, another contradiction. Thus we may assume $d=\operatorname{ad}(A)$, and by a similar argument, $h=\operatorname{ad}(B)$. If $h \neq 0$ or $d \neq 0$, there is $y \in J$ with either $y^{h} \neq 0$ or $y^{d} \neq 0$. Write out $f\left(x_{1}, y\right)=x_{1}\left(A y^{h}+B y^{d}\right)-A x_{1} y^{h}-B x_{1} y^{d}$ and use Lemma 4 to conclude that $\{1, A, B\}$ is C-dependent, again completing the proof if char $R=2$. When char $R \neq 2, d \neq 0$, and $h \neq 0, f=2 c\left[x_{1}, A\right]\left[x_{2}, A\right]$, when $B=c A+c_{1}$, and substituting x for x_{1} and $y x$ for x_{2} shows that $A \in C$, giving the contradiction $d=0$.

We return now to the consideration of Lie ideals. As in our generalization of Posner's second theorem, much of the work in generalizing the first theorem occurs after applying Theorem A. The computations for matrix rings are more involved than for the earlier result and we present them in a separate theorem which gives Posner's first theorem for inner derivations of matrix rings.

Theorem 5. Let $R=M_{n}(C)$ for C an algebraically closed field, and for $A, B \in R \operatorname{set} g\left(x_{1}, x_{2}\right)=\left[\left[x_{1}, A\right],\left[x_{2}, B\right]\right]+\left[\left[x_{1}, B\right],\left[x_{2}, A\right]\right]$. If $\left[g, x_{3}\right]$ is a GPI for $[R, R]$, then $\left\{I_{n}, A, B\right\}$ is C-dependent, unless char $R=2$ and $n=2$, and either $A \in C \cdot I_{n}$ or $B \in C \cdot I_{n}$ if char $R \neq 2$.

Proof. Let $\left\{e_{i j}\right\}$ be the standard matrix units in R. It is clear that it suffices to prove the theorem if either A or B is replaced by itself plus a scalar matrix, or if both A and B are replaced by $P^{-1} A P$ and $P^{-1} B P$, respectively, for any $P \in \mathrm{GL}_{n}(C)$. Assume throughout that $A \notin C \cdot I_{n}$. Note first that for $i \neq j, e_{i j} \in[R, R]$ and $e_{i i}-e_{j j} \in[R, R]$, so $g\left(e_{i j}, e_{i i}-e_{j j}\right) \in C \cdot I_{n}$. Computing the $j-i$ entry of this element yields $8 A_{j i} B_{j i}=0$. Assume for now that char $C \neq 2$, so that

$$
\begin{equation*}
A_{j i} B_{j i}=0 \quad \text { if } i \neq j \tag{1}
\end{equation*}
$$

Replacing A and B with \bar{A} and \bar{B}, their conjugates by $P=I_{n}+c e_{i j}$ for $c \in C$, and applying equation (1) yields
$0=\bar{A}_{i j} \bar{B}_{i j}=\left(A_{i j}+c\left(A_{i i}-A_{j j}\right)-c^{2} A_{j i}\right)\left(B_{i j}+c\left(B_{i i}-B_{j j}\right)-c^{2} B_{j i}\right)$.

If $A_{i j} \neq 0$, then $B_{i j}=0$ by (1). Since C is infinite, there is $c \in C$ with $\bar{A}_{i j} \neq 0$ and $\bar{B}_{i j} \neq 0$ unless $B_{j i}=B_{i i}-B_{j j}=0$. But $\bar{A}_{i j} \bar{B}_{i j}=0$ by (1), so we may conclude

$$
\begin{equation*}
\text { if } A_{i j} \neq 0 \text {, then } B_{i j}=B_{j i}=0 \text { and } B_{i i}=B_{j j} \tag{2}
\end{equation*}
$$

Next, if $k \neq i, j$, then using (1) again gives

$$
0=\bar{A}_{i k} \bar{B}_{i k}=\left(A_{i k}-c A_{j k}\right)\left(B_{i k}-c B_{j k}\right) .
$$

As above, if $A_{i k} \neq 0$ we could choose $c \in C$ so $\bar{A}_{i k} \bar{B}_{i k} \neq 0$ unless $B_{j k}=0$. That is,

$$
\begin{equation*}
\text { if } A_{i k} \neq 0 \text { then } B_{j k}=0 \text { for } i, j, k \text { distinct. } \tag{3}
\end{equation*}
$$

Conjugate A and B by $P \in \mathrm{GL}_{n}(C)$ so that A is in Jordan canonical form. If A is diagonal we may assume that $A_{11} \neq A_{22}$, since $A \notin C \cdot I_{n}$, and so, conjugation of A and B with $I_{n}+c e_{12}$ changes A to an upper triangular matrix with $e_{11} A=c_{1} e_{11}+c_{2} e_{12}$ for $c_{i} \in C$ and $c_{2} \neq 0$. We may assume A has this form, since its Jordan form does if it is not diagonal. Now, if $n=2$ then since $A_{12} \neq 0$ we have $B_{12}=B_{21}=0$ and $B_{11}=B_{22}$ by (2), which is to say, $B \in C \cdot I_{2}$, finishing the proof. If $n>2$, conjugate A and B by $P=I_{n}+\left(e_{23}+\cdots+e_{2 n}\right)$ to obtain \bar{A} and \bar{B}, where $e_{11} \bar{A}=c_{1} e_{11}+c_{2}\left(e_{12}+\cdots+e_{1 n}\right)$. Since $\bar{A}_{1 j} \neq 0$ for $j>1$, from (2) $\bar{B}_{1 j}=\bar{B}_{j 1}=0$ and $\bar{B}_{11}=\bar{B}_{j j}$, and using (3) gives $\bar{B}_{j k}=0$ if $j \neq k$ and $k>1$. Thus $\bar{B} \in C \cdot I_{n}$, proving the theorem when $\operatorname{char} C \neq 2$.

Assume now that char $C=2$ and $n>2$. As above, $g\left(e_{i j}, e_{i i}-e_{j j}\right) \in$ $C \cdot I_{n}$, so computing the $j-k$ entry gives

$$
\begin{equation*}
A_{j i} B_{j k}+A_{j k} B_{j i}=0 \quad \text { for } i, j, k \text { distinct } \tag{4}
\end{equation*}
$$

and computing the $k-i$ entry yields

$$
\begin{equation*}
A_{j i} B_{k i}+A_{k i} B_{j i}=0 \text { for } i, j, k \text { distinct. } \tag{5}
\end{equation*}
$$

Just as in the char $C \neq 2$ case, we may assume that A is upper triangular and that $e_{11} A=A_{11} e_{11}+c\left(e_{12}+\cdots+e_{1 n}\right)$ with $c \neq 0$. We can also assume that $A_{11}=B_{11}=0$ by replacing A with $A+A_{11} I_{n}$ and B with $B+B_{11} I_{n}$. Using (5) for $j>i>1$ yields $0=A_{j i} B_{1 i}+A_{1 i} B_{j i}=c B_{j i}$, since A is upper triangular, and because $c \neq 0$ we conclude

$$
\begin{equation*}
B_{j i}=0 \quad \text { if } j>i>1 . \tag{6}
\end{equation*}
$$

Now use (5) with $j, k>1$ and $j \neq k$ to obtain $0=A_{k j} B_{1 j}+A_{1 j} B_{k j}$, or equivalently,

$$
\begin{equation*}
c B_{k j}=B_{1 j} A_{k j} \quad \text { for } j \neq k \text { and } j, k>1 . \tag{7}
\end{equation*}
$$

Still assuming $j, k>1$ and $j \neq k$, by (4) $0=A_{1 k} B_{1 j}+A_{1 j} B_{1 k}$, and since $A_{1 k}=A_{1 j}=c \neq 0$ we have $B_{1 j}=B_{1 k}=z$ for $j, k>1$. Substituting in (7) gives

$$
\begin{equation*}
B_{k j}=c^{-1} z A_{k j} \quad \text { if } j>1 \text { and } k \neq j . \tag{8}
\end{equation*}
$$

Equations (4) and (5) hold for the conjugates $\bar{A}=P^{-1} A P$ and $\bar{B}=P^{-1} B P$ for $P=I_{n}+y e_{1 j}$, where $y \in C$ and $j \neq 1$. In particular for $1, j, k$ distinct, (5) yields

$$
\begin{aligned}
0= & \bar{A}_{k j} \bar{B}_{1 j}+\bar{A}_{1 j} \bar{B}_{k j} \\
= & A_{k j}\left(B_{1 j}+y\left(B_{11}+B_{j j}\right)+y^{2} B_{j 1}\right) \\
& +\left(c+y\left(A_{11}+A_{j j}\right)\right)\left(B_{k j}+y B_{k 1}\right) .
\end{aligned}
$$

This relation holds for all $y \in C$, which is infinite, so the coefficient of y must be zero. Now $A_{11}=B_{11}=0$ and $B_{k j}=c^{-1} z A_{k j}$ by (8), so we may conclude that

$$
\begin{equation*}
A_{k j} B_{j j}+c B_{k 1}+c^{-1} z A_{k j} A_{j j}=0 \quad \text { if } 1, j, k \text { are distinct. } \tag{9}
\end{equation*}
$$

Since A is upper triangular, $A_{k j}=0$ if $k>j$, so if $k>2$, (9) implies that $B_{k 1}=0$. When $k=2$, take $j=3$, multiply (9) by B_{21}, and use $A_{23} B_{21}=0$ from (4) to get $c B_{21}^{2}=0$. Consequently

$$
\begin{equation*}
B_{k 1}=0 \quad \text { if } k \geq 1 . \tag{10}
\end{equation*}
$$

Finally, using (4) with $1, j, k$ distinct gives

$$
\begin{aligned}
0= & \bar{A}_{1 k} \bar{B}_{1 j}+\bar{A}_{1 j} \bar{B}_{1 k} \\
= & \left(c+y A_{j k}\right)\left(B_{1 j}+y\left(B_{11}+B_{j j}\right)\right) \\
& +\left(c+y\left(A_{11}+A_{j j}\right)\right)\left(B_{1 k}+y B_{j k}\right) .
\end{aligned}
$$

As above, the coefficient of y must be zero, which shows that $c B_{j j}+$ $z A_{j k}+c B_{j k}+z A_{j j}=0$, and so by (8), $B_{j j}=c^{-1} z A_{j j}$ for $j>1$. This computation, together with (10) and (8) yields $B=c^{-1} z A$, so that $\left\{I_{n}, A, B\right\}$ is C-dependent, completing the proof of theorem.

We come now to our last main technical result, from which our generalization of Posner's first theorem and the related results mentioned in the introduction will follow easily. Our approach is like that in Theorem 2 or Theorem 3. The reduction to rings satisfying a GPI using Theorem A is fairly easy, but the argument from that point to the matrix case is considerably more involved. For convenience, we first isolate a special case of Lemma 4 which will be useful to have.

Lemma 5. Let R be a prime ring and let $f=\left[\left[x_{1}, A\right], B\right] \in F(N, X)$. If f is a GPI for a nonzero ideal J of R, then $\{1, A, B\}$ is C-dependent, and either $A \in C$ or $B \in C$ unless char $R=2$ and $A^{2}, B^{2} \in C$.

Proof. From Lemma 4, the set of left coefficients $\{1, A, B, B A\}$ of f is C-dependent. If $\{1, A, B\}$ is independent, then writing $B A$ as a linear combination of these and using Lemma 4 again gives the contradiction $\{A, B\} \subset C$. Thus $\{1, A, B\}$ must be C-dependent. If neither $A \in C$ nor $B \in C$, then $[[x, A], A]$ is a GPI for J. When char $R=2$, this is equivalent to $\left[x, A^{2}\right]$ forcing $A^{2} \in C$, and so $B^{2} \in C$ also. When char $R \neq 2$ replacing x with $u v$, for $u, v \in J$ shows $[u, A][v, A]=0$, and now replacing v with $v u$ leads to $[u, A] J[u, A]=0$ resulting in the contradiction $A \in C$, and so, proves the lemma.

Theorem 6. Let R be a prime ring, L a noncommutative Lie ideal of R, and $d, h \in \operatorname{Der}(R)$. Set $g=\left[x_{1}^{d}, x_{2}^{h}\right]+\left[x_{1}^{h}, x_{2}^{d}\right]$ and $f=\left[g, x_{3}\right]$. If f is a GDI for L then either $d=0, h=0$, or char $R=2$ and either R satisfies S_{4} or $h=d c$ for $c \in C$.

Proof. We assume throughout that $d \neq 0, h \neq 0$, and if char $R=2$ then R does not satisfy S_{4}. Let M be the nonzero ideal of R satisfying $[M, M] \subset L$ given by Lemma 2. For any $y, t \in L$ use f to define a multilinear GDI for M by setting
$f(y, t)=\left[\left[\left[x_{1}^{d}, x_{2}\right], y^{h}\right]+\left[\left[x_{1}, x_{2}^{d}\right], y^{h}\right]+\left[\left[x_{1}^{h}, x_{2}\right], y^{d}\right]+\left[\left[x_{1}, x_{2}^{h}\right], y^{d}\right], t\right]$. If $\{d, h\}=W$ is independent modulo $\operatorname{Inn}(R)$, apply Theorem A to conclude that $f(y, t)_{(d, 1)}=\left[\left[\left[x_{1}, x_{2}\right], y^{h}\right], t\right]$ is a GPI for R. Using Lemma 2, we have first that $\left[[R, R], L^{h}\right] \subset Z$, and then that $h=0$, since $[[L, L],[L, L]]^{h}=0$. Thus, we may now assume that $d \notin \operatorname{Inn}(R)$ and $h=d c+\operatorname{ad}(A)$ for $c \in C$.

Let $\bar{f}(y, t)$ be $f(y, t)$ with each x_{i}^{h} replaced with $x_{i}^{d} c+\left[x_{i}, A\right]$. Now $\bar{f}(y, t)$ is a multilinear GDI for M, so Theorem A shows that $\bar{f}(y, t)_{(d, 1)}$ $=\left[\left[\left[x_{1}, x_{2}\right], y^{h}+y^{d} c\right], t\right]$ is a GPI for R. As above, it follows from Lemma 2 that $\left[[R, R], L^{h+d c}\right] \subset C$ and then that $h+d c=0$. But $h=d c+\operatorname{ad}(A)$, so $2 d c+\operatorname{ad}(A)=0$ results and either char $R=2$ and $h=d c$ as claimed, or char $R \neq 2$ and either $d \in \operatorname{Inn}(R)$, a contradiction, or $c=0$ forcing $0=h+d c=h$, another contradiction. Therefore, the theorem is proved unless $d=\operatorname{ad}(A)$, and by a similar argument, $h=\operatorname{ad}(B)$.

In f, replace x_{i}^{d} with $\left[x_{i}, A\right]$ and x_{i}^{h} with $\left[x_{i}, B\right]$ so that f is a multilinear GPI for L. By Theorem 1 , either $R \bar{C} \cong M_{n}(\bar{C})$ and
f is a GPI for $[R \bar{C}, R \bar{C}]$, or f is a GPI for $Q \bar{C}$. In the first case $N=R C=M_{n}(C)$, so $A, B \in R \bar{C}$ and using Theorem 5 finishes the proof: if char $R=2$ then $\{1, A, B\}$ are C-dependent so $d=0, h=0$, or $h=d c$, and if char $R \neq 2$ then $A \in C$ or $B \in C$. Consequently, we may assume henceforth that f is a GPI for $Q \bar{C}$, and that $R \bar{C}$ is not finite dimensional over \bar{C}.

We shall finish the proof by showing that $R \bar{C}=H=\operatorname{Soc}(R \bar{C})$ is finite dimensional, but first we need to know that $H \neq 0$; that is, that $f \neq 0$. We claim that we may assume $\{1, A, B\}$ is C-independent, and so, \bar{C}-independent. Otherwise, $B=c_{1}+c_{2} A$ for $c_{i} \in C$ and $c_{2} \neq 0$, since we are assuming $A \notin C$ and $B \notin C$. If char $R=2$, then $h=$ $\operatorname{ad}(B)=d c_{2}$, finishing the proof, so assume char $R \neq 2$. Substituting in f, one gets the GPI $f^{\prime}=2 c_{2}\left[\left[\left[x_{1}, A\right],\left[x_{2}, A\right]\right], x_{3}\right]$ for R. Now $f^{\prime} \neq 0$ in $F(N, X)$ because $A \notin C$ implies that $x_{1} A x_{2} A x_{3}$ is a basis monomial of f^{\prime} which cannot be canceled. Thus $H \neq 0, f^{\prime}$ is a GPI for H, and $g^{\prime}=\left[\left[x_{1}, A\right],\left[x_{2}, A\right]\right]$ satisfies $g^{\prime}(H, H) \subset \bar{C} \cap H=0$, using Lemma 2 and our assumption that H is infinite dimensional. In particular, for any $y \in H\left[\left[x_{1}, A\right],[y, A]\right]$ is a GPI for H, so from Lemma 5 either $A \in \bar{C}$, forcing $d=0$, or $H^{d} \subset \bar{C}$. Finally, if $H^{d} \subset \bar{C}$ then $[H, H]^{d}=0$ and $d=0$ follows from Lemma 2. This contradiction establishes our claim that $\{1, A, B\}$ can be assumed to be \bar{C}-independent.
Observe next that $f \neq 0$ since $x_{1} A x_{2} B x_{3}$ is a basis monomial of $F(N, X)$ appearing in f. Hence R does satisfy a nonzero GPI, so $H \neq 0$ and $f\left(H^{3}\right)=0$. As in the last paragraph, using Lemma $2, g(H, H) \subset$ $H \cap \bar{C}=0$, so g is a GPI for H. We claim next that for some $h \in H$, $[h, A]$ and $[h, B]$ are \bar{C}-independent. If not, then when $[h, B] \neq 0$, $[h, A]=c[h, B]$ for some $c=c(h) \in \bar{C}$. Rewriting g gives $g\left(x_{1}, h\right)=$ $\left[\left[x_{1}, A+c B\right],[h, B]\right]$, a GPI for H, and from Lemma $5[h, B] \in \bar{C}+$ $\bar{C} A+\bar{C} B$. Thus $[H, B]$ is at most 3 -dimensional over \bar{C}. Clearly, $[H, B] \subset H e$ for an idempotent $e \in H$, so the infinite dimensionality of H and Litoff's theorem enable us to find an idempotent $e^{\prime} \in H-\{0\}$ orthogonal to e. Therefore, $0=[H, B] e^{\prime}=\left[H^{2}, B\right] e^{\prime}=[H, B] H e^{\prime}$, forcing $B \in \bar{C}$ and contradicting $h \neq 0$. Our claim is established.
Fix $y \in H$ so that y^{d} and y^{h} are \bar{C}-independent and note that $y^{d}, y^{h} \in H$ by Lemma 1, so for some idempotent $e \in H, y^{d}, y^{h} \in e H$. By our assumption on $H, H(1-e)=\{t \in H \mid t e=0\} \neq 0$. For all $t \in H$ and $v \in H(1-e)-\{0\}, 0=v g(t, y)=v t\left(A y^{h}+B y^{d}\right)-v A t y^{h}-v B t y^{d}$, so $v g\left(x_{1}, y\right)$ is a GPI for H and we may conclude from Lemma 4 that $\left\{y^{h}, y^{d}, A y^{h}+B y^{d}\right\}$ is \bar{C}-dependent. From our choice of y, it follows that $A y^{h}+B y^{d}=c_{1} y^{h}+c_{2} y^{d}$, if either $v A \neq 0$ or $v B \neq 0$. Setting
$\bar{A}=A-c_{1}$ and $\bar{B}=B-c_{2}$, it is clear that $d=\operatorname{ad}(\bar{A})$ and $h=\operatorname{ad}(\bar{B})$, so our choice of y is unaffected by replacing A and B by \bar{A} and \bar{B}. However, now $\bar{A} y^{h}+\bar{B} y^{d}=0$, so computing $v g(t, y)$ again shows that $v \bar{A} x_{1} y^{h}+v \bar{B} x_{1} y^{d}$ is a GPI for H and we obtain $v \bar{A}=0=v \bar{B}$ from Lemma 4. Hence, there is no loss of generality in assuming $v A=v B=0$ for all $v \in H(1-e)$. Since from Lemma $1 A x \in H$ for all $x \in H$, we get from $H(1-e) A x=0$, that $A x=e A x \in H$, resulting in $(A-e A) H=0$, and so $A=e A \in H$. Similarly, $B \in H$ and by Litoff's theorem $A, B \in \bar{e} H \bar{e}$ for some idempotent $\bar{e} \in H$. Using the infinite dimensionality of H, choose \bar{e}^{\prime}, a nonzero idempotent orthogonal to \bar{e}, and consider the identity $-\bar{e}^{\prime} g\left(x_{1}, \bar{e}^{\prime} x_{2}\right)=\bar{e}^{\prime} x_{2}\left(B\left[x_{1}, A\right]+A\left[x_{1}, B\right]\right)$ for H. Since H is a simple ring, $B\left[x_{1}, A\right]+A\left[x_{1}, B\right]=B x_{1} A+A x_{1} B-$ $(B A+A B) x_{1}$, is a GPI for H, which is impossible by Lemma 4 and the independence of $\{1, A, B\}$. This contradiction completes the proof of the theorem.

As an immediate consequence of Theorem 6 one can obtain the generalization of Posner's first theorem to Lie ideals in any characteristic, as well as the related results mentioned earlier.

Theorem 7. Let R be a prime ring, L a noncommutative Lie ideal of R, and $d, h \in \operatorname{Der}(R)-\{0\}$. If R does not satisfy S_{4} when $\operatorname{char} R=2$, then:
(i) if $d h \in \operatorname{Lie}-\operatorname{Der}(L, R)$ then $\operatorname{char} R=2$ and $h=d c$ for $c \in C$;
(ii) if $d h \in \operatorname{Der}(L, R)$ then $\operatorname{char} R=2$ and $h=d c$ for $c \in C$;
(iii) if $L^{d h} \subset Z$ then char $R=2, h=d c$ for $c \in C$ and $d h=0$;
(iv) if $[[L, A], B] \subset C$ for $A, B \in N$, then either $A \in C, B \in C$, or char $R=2,\{1, A, B\}$ is C-dependent, and $A^{2}, B^{2} \in C$; and
(v) if $\left[A, L^{d}\right] \subset C$ for $A \in N$, then either $A \in C$ or char $R=2$, $d=\operatorname{ad}(A) c$ for $c \in C$, and $A^{2} \in C$.

Proof. (i) As we indicated before Lemma 4, this assumption implies that $\left[x_{1}^{d}, x_{2}^{h}\right]+\left[x_{1}^{h}, x_{2}^{d}\right]$ is a GDI for R, so the conclusion is immediate from Theorem 6 .
(ii) This follows from (i) since $\operatorname{Der}(L, R) \subset \operatorname{Lie}-\operatorname{Der}(L, R)$.
(iii) For all $x, y \in L,\left[x^{d}, y^{h}\right]+\left[x^{h}, y^{d}\right]=[x, y]^{d h}-\left[x^{d h}, y\right]-$ $\left[x, y^{d h}\right]=[x, y]^{d h} \in Z$, so the conclusion follows from Theorem 6, except for $d h=0$ when char $R=2$ and $h=d c$. But in this case $d h=d^{2} c=D \in \operatorname{Der}(R)$, because char $R=2$, so $L^{D} \subset Z$, forcing $[L, L]^{D}=0$ and $D=0$ results from Lemma 2 .
(iv) Clearly $f=\left[\left[\left[x_{1}, A\right], B\right], x_{2}\right]$ is a GPI for L, so by Theorem 1 , either f is a GPI for N, or $R \bar{C} \cong M_{n}(\bar{C})$ and f is a GPI for $[R \bar{C}, R \bar{C}]$. Set $d=\operatorname{ad}(A)$ and $h=\operatorname{ad}(B)$. In the first case, when f is a GPI for N, we are done using $R=L=N$ in (iii) above. In the second case, $A, B \in R \bar{C}$ so the result follows again from (iii) with $R \bar{C}$ replacing R and $[R \bar{C}, R \bar{C}]$ replacing L.
(v) Consider the GDI $f=\left[\left[A, x_{1}^{d}\right], x_{2}\right]$ for L. If $d \notin \operatorname{Inn}(R)$ then $f=0$ forces $A \in C$, and if $f \neq 0$ then using Theorem A forces $A \in C$ again. Hence $d=\operatorname{ad}(B)$ and the result follows from (iv).

Posner's first theorem for rings with involution. Unlike the situation for Posner's second theorem, there is no full generalization of the first theorem for $T(I)$ or $K(I)$ when R has an involution. Of course, from our earlier example one must expect to exclude $R=M_{2}(C)$, but things do not work well in general either, as our next example shows.

Example. Let C be a field with char $C \neq 2$ and let R be the ring of all countable by countable matrices over C having only finitely many nonzero entries. One can consider each element of R to be $A \in$ $M_{2 n}(C)$, in the upper left corner, and so one can define an extended symplectic involution * on R. In particular, if $t \in T(R)$ then $t_{12}=$ $t_{21}=0$, so if $d=\operatorname{ad}\left(e_{12}\right)$, then $T^{d^{2}}=0$ although $d^{2} \neq 0$. A similar example holds for K when T contains a nilpotent element. For C, the complex numbers, let * be transpose on R. Then for $d=\mathrm{ad}(t)$ where $t=\left(\begin{array}{cc}1 & i \\ i & -1\end{array}\right)$ in the upper left corner, it follows that $K^{d^{2}}=0$, although $d^{2} \neq 0$.

These examples are typical in that if $d h$ is a derivation on T or K then d and h must be inner and R must satisfy a GPI. The justification of this statement comprises the remainder of the paper.

Our next result is like Theorem 6 in that the hypothesis is implied by different, but related, conditions on composites of derivations.

Theorem 8. Let R be a prime ring with involution *, let $J=J^{*}$ be a nonzero ideal of R, and assume that R does not satisfy S_{4}. Let $d, h \in \operatorname{Der}(R)-\{0\}, g=\left[x_{1}^{d}, x_{2}^{h}\right]+\left[x_{1}^{h}, x_{2}^{d}\right]$, and $f=\left[g, x_{3}\right]$. If f is a GDI for $K(J)$, then $d, h \in \operatorname{Inn}(R)$ and R satisfies a nonzero GPI, or $\operatorname{char} R=2$ and $h=d c$ for $c \in C$.

$$
\begin{array}{r}
\text { Proof. Set } g^{*}=\left[x_{1}^{d}-y_{1}^{d}, x_{2}^{h}-y_{2}^{h}\right]+\left[x_{1}^{h}-y_{1}^{h}, x_{2}^{d}-y_{2}^{d}\right] \text { and } f^{*}= \\
{\left[g^{*}, x_{3}\right] \text {. Suppose that }\{d, h\}=W \text { is independent } \operatorname{modulo} \operatorname{Inn}(R) \text { and }}
\end{array}
$$

apply Theorem A to the G^{*}-DI f^{*} for J to get the G^{*}-PI $f_{(d, h, 1)}^{*}=$ $\left[\left[x_{1}-y_{1}, x_{2}-y_{2}\right], x_{3}\right]$ for R. This implies that $[K, K] \subset Z$, forcing R to satisfy S_{4} by Lemma 3, so that d and h cannot be independent. Assume next that $d \notin \operatorname{Inn}(R)$ and $h=d c+\operatorname{ad}(A)$ for $c \in C$. In f^{*} replace expressions t^{h} with $t^{d} c+[t, A]$ and when char $R=2$ use Theorem A again to conclude that $f_{(d, 1,1)}^{*}=\left[\left[x_{1}-y_{1},\left[x_{2}-y_{2}, A\right]\right], x_{3}\right]$ is a G^{*}-PI for R. Thus $[K,[K, A]] \subset C$, which yields $[[V, V], A]=0$ for $V=[K, K]$. The subring generated by $[V, V]$ contains a nonzero ideal of R ([9] and [21]), unless R satisfies a polynomial identity. In the first case, $A \in C$, and in the second case $R C=M_{n}(C)$. If $R C=M_{n}(C)$ and ${ }^{*}$ is of the second kind then $K C=R C$, so using $f_{(d, 1,1)}^{*}$ one sees that $[R C,[R C, A]] \subset C$. But now $[L, A] \subset C$ for the Lie ideal $L=[R C, R C]$ and it follows that $[[L, L], A]=0$ so $A \in C$ by Lemma 2. When * is of the first kind, $K(R C)=K(R) C$, so using $f_{(d, 1,1)}^{*}$ we obtain $[k,[k, A]] \in C$ for all $k \in K(R C)$, and since $A \in R C$ we may apply Theorem 3 to conclude again that $A \in C$. Thus in all cases $A \in C$, so $h=d c$ and we are finished if $\operatorname{char} R=2$. Should $\operatorname{char} R \neq 2$ then applying Theorem A again gives the G^{*}-PI $f_{(d, d, 1)}^{*}=$ $2 c\left[\left[x_{1}-y_{1}, x_{2}-y_{2}\right], x_{3}\right]$ for R, resulting in $[K, K] \subset Z$. This gives the contradiction that R satisfies S_{4}, using Lemma 3. Therefore, we may assume that $d=\operatorname{ad}(A)$ and, by a similar argument, $h=\operatorname{ad}(B)$. With the obvious substitutions f^{*} becomes a G*-PI for J. By Theorem A, R satisfies a nonzero GPI, completing the proof, unless $f^{*}=0$. But $f^{*}=0$ implies $g^{*}=0$ which in turn gives $g=0$, so applying Theorem 6 finishes the proof.

Using Theorem 8 we can obtain a partial extension of Theorem 7 to rings with involution.

Theorem 9. Let R be a prime ring with involution, $J=J^{*}$ a nonzero ideal of R, and assume that R does not satisfy S_{4}. If $d, h \in \operatorname{Der}(R)-\{0\}$ and either $d h \in \operatorname{Lie}-\operatorname{Der}(K(J), R), d h \in \operatorname{Der}(K(J), R)$, or $K(J)^{d h} \subset Z$, then $d, h \in \operatorname{Inn}(R)$ and R satisfies a nonzero GPI, unless char $R=2$ and $h=d c$. When $K(J)^{d h} \subset Z$, char $R=2$ and $h=d c$, then $d h=0$.

Proof. Each condition gives the identity of Theorem 8, so that theorem proves this one, except for the last statement. If char $R=2$, then $d h=d^{2} c=D \in \operatorname{Der}(R)$, so $K(J)^{D} \subset C$ and $D=0$ follows from Theorem 3.

Our last result is a version of Theorem 9 for $T(J)$. Now $T(J)$ is a Jordan ideal of $S(R)$, which means that $t \circ s=t s+s t \in T(J)$ for all
$t \in T(J)$ and $s \in S(R)$. For $d \in \operatorname{End}(R)$ we write $d \in \operatorname{Jor}-\operatorname{Der}(A, R)$ for $A \subset R$, if $(x \circ y)^{d}=x^{d} \circ y+x \circ y^{d}$ for all $x, y \in A$. Of course, $\operatorname{Der}(A, R) \subset \operatorname{Jor}-\operatorname{Der}(A, R)$.

Theorem 10. Let R be a prime ring with involution which does not satisfy S_{4}, let $J=J^{*}$ be a nonzero ideal of R, and let $d, h \in$ $\operatorname{Der}(R)-\{0\}$. If either $d h \in \operatorname{Jor-\operatorname {Der}}(T(J), R), d h \in \operatorname{Der}(T(J), R)$, or $T(J)^{d h}=0$, then $d, h \in \operatorname{Inn}(R)$ and R satisfies a nonzero GPI unless char $R=2$ and $h=d c$, in which case $T(J)^{d h}=0$ implies $d h=0$.

Proof. We may assume char $R \neq 2$ since otherwise $T(J)=K(J)$ and Theorem 9 applies. Each condition implies that

$$
d h \in \operatorname{Jor}-\operatorname{Der}(T(J), R)
$$

and this yields $x^{d} \circ y^{h}+x^{h} \circ y^{d}=0$ for all $x, y \in T(J)$. Set

$$
f=\left(x_{1}^{d}+y_{1}^{d}\right) \circ\left(x_{2}^{h}+y_{2}^{h}\right)+\left(x_{1}^{h}+y_{1}^{h}\right) \circ\left(x_{2}^{d}+y_{2}^{d}\right)
$$

and proceed as in Theorem 8. If $\{d, h\}$ are independent modulo $\operatorname{Inn}(R)$ then $f_{(d, h)}=\left(x_{1}+y_{1}\right) \circ\left(x_{2}+y_{2}\right)$ is a G^{*}-PI for R, so $t^{2}=$ 0 for all $t \in S(R)$ which easily gives a contradiction to R being prime. Next, if $d \notin \operatorname{Inn}(R)$ and $h=d c+\operatorname{ad}(A)$ then the identity $f_{(d, d)}=2 c\left(x_{1}+y_{1}\right) \circ\left(x_{2}+y_{2}\right)$ for R forces $c=0$ and $h=\operatorname{ad}(A)$. But now $f_{(d, 1)}=\left(x_{1}+y_{1}\right) \circ\left(\left[x_{2}+y_{2}, A\right]\right)$ is an identity for R, and so for $R C_{S}=R(C \cap T(C)) \subset R C$. In particular $\left[t^{2}, A\right]=0$ for all $t \in R C_{S}$. Since the span over C_{S} of $\left\{t^{2} \mid t \in R C_{S}\right\}$ is a Jordan ideal of $S\left(R C_{S}\right)=S(R) C_{S}$, it follows that this span contains $T(I)$ for an ideal I of $R C_{S}$ [12; Theorem 21.12, p. 71] and this forces $A \in C$ [12; p. 59]. Consequently, $d=\operatorname{ad}(A)$ and $h=\operatorname{ad}(B)$, so f is now a G*-PI for J. If $f \neq 0$ then R satisfies a nonzero GPI by Theorem A, whereas if $f=0$ then $x_{1}^{d} x_{2}^{h}+x_{1}^{h} x_{2}^{d}$ is an identity for R and we are finished by applying Theorem 6.

References

[1] M. Ahmad, On a theorem of Posner, Proc. Amer. Math. Soc., 66 (1977), 13-16.
[2] S. A. Amitsur, Identities in rings with involution, Israel J. Math., 7 (1969), 6368.
[3] R. Awtar, On a theorem of Posner, Proc. Cambridge Phil. Soc., 73 (1973), 2527.
[4] , Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc., 41 (1973), 67-74.
[5] , Lie structure in prime rings with derivations, Publ. Math. Debrecen, 31 (1984), 209-215.
[6] J. Bergen, Prime Rings and Derivations, Ph. D. Thesis, Univ. Chicago, 1981.
[7] J. Bergen, I. N. Herstein, and J. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), 259-267.
[8] L. Carini, Derivations on Lie ideals in semi-prime rings, Rend. Circ. Mat. Palermo, 34 (1985), 122-126.
[9] T. Erickson, The Lie structure in prime rings with involution, J. Algebra, 21 (1972), 523-534.
[10] B. Felzenszwalb and A. Giambruno, A commutativity theorem for rings with derivations, Pacific J. Math., 102 (1982), 41-45.
[11] I. N. Herstein, Topics in Ring Theory, University of Chicago Press, Chicago, 1969.
[12] _ Rings with Involution, University of Chicago Press, Chicago, 1976.
[13] Y. Hirano, H. Tominaga, and A. Trzepizur, On a theorem of Posner, Math. J. Okayama Univ., 27 (1985), 25-32.
[14] M. Hongan and A. Trzepizur, On a generalization of a theorem of Posner, Math. J. Okayama Univ., 27 (1985), 19-23.
[15] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloq. Publications, Vol. 37, Amer. Math. Soc., Providence, 1964.
[16] W. F. Ke, On derivations of prime rings of characteristic 2, Chinese J. Math., 13 (1985), 273-290.
[17] V. K. Kharchenko, Differential identities of prime rings, Algebra and Logic, 17 (1978), 155-168.
[18] C. Lanski, Differential identities in prime rings with involution, Trans. Amer. Math. Soc., 292 (1985), 765-787; Correction to: Differential identities in prime rings with involution, Trans. Amer. Math. Soc., (to appear)
[19] \quad, A note on GPIs and their coefficients, Proc. Amer. Math. Soc., 98 (1986), 17-19.
[20] , Derivations which are algebraic on subsets of prime rings, Comm. in Algebra, 15 (1987), 1255-1278.
[21] C. Lanski and S. Montgomery, Lie structure of prime rings of characteristic 2, Pacific J. Math., 42 (1972), 117-136.
[22] P. H. Lee and T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica, 11 (1983), 75-80.
[23] W. S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
[24] W. S. Martindale III, Prime rings with involution and generalized polynomial identities, J. Algebra, 22 (1972), 502-516.
[25] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
[26] L. Rowen, Some results on the center of a ring with polynomial identity, Bull. Amer. Math. Soc., 79 (1973), 219-223.

Received November 19, 1986 and in revised form July 23, 1987.

