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SOME RESULTS ON SPECKER’S PROBLEM

ARTHUR W. APTER AND MoTI GITIK

Say that the Specker Property holds for a well ordered cardinal
N, and write this as SP(R), if the power set of R can be written as
a countable union of sets of cardinality X. Specker’s Problem asks
whether it is possible to have a model in which SP(R) holds for every R.
In this paper, we construct two models in which the Specker Property
holds for a large class of cardinals. In the first model, SP(RX) holds for
every successor X. In the second model, SP(R) holds for every limit R
and for certain successor R’s.

In 1957, Specker [13] stated the following question (which will
henceforth be referred to as Specker’s Problem): Is it consistent with
the axioms of ZF to have, for each ordinal o, a countable sequence
(An: n < w) of subsets of 2% so that |4,| = R, for all n and 2% =
Unrew An? Since the existence of one ordinal « so that 2% is a count-
able union of sets of cardinality X, implies that R,,; is singular, a
model in which the above holds would be one in which the Axiom of
Choice is false. Indeed, it can easily be seen that in such a model,
AC,, is false.

Lévy [9], shortly after the invention by Cohen of forcing, con-
structed a model in which 2% is a countable union of countable sets. A
later result on Specker’s Problem was obtained in [6], in which it was
shown that, relative to the existence of a proper class of strongly com-
pact cardinals, it is consistent for every infinite set to be a countable
union of sets of smaller cardinality.

Unfortunately, we still do not know whether Specker’s Problem is
consistent. In this paper, we will prove the following two theorems,
each of which provides a partial answer to Specker’s Problem for a
large class of cardinals.

THEOREM 1. Con(ZFC + There exists a regular limit of supercom-
pact cardinals) = Con(ZF + For every successor ordinal o, 28 is a
countable union of sets of cardinality R,).

THEOREM 2. Con(ZFC + GCH + There is a cardinal x which is
22" supercompact) = Con(ZF + For every limit ordinal A, 2% is a
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countable union of sets of cardinality R, + For every successor ordinal
o so that o = 3n, 3n+1, A+3n, or A+3n+2, where A is a limit ordinal
and n € w, 2% is a countable union of sets of cardinality R,).

The techniques used in the proofs of the above two theorems can
be used to establish additional results on Specker’s Problem. For ex-
ample, it is possible to establish the relative consistency of the theory
“ZF + For every successor ordinal o, 2% is a countable union of sets
of cardinality R, + For every limit ordinal A so that A = A’ + w where
A’ is a limit ordinal, 2% is a countable union of sets of cardinality R;”.
However, as the proofs of such results involve amalgamations of the
aforementioned techniques which are well illustrated by the proofs of
Theorems 1 and 2, only the proofs of these theorems will be given
here.

Note that some sort of strong hypotheses will be needed in order
to prove the above theorems, since as previously mentioned, if 2%
is a countable union of sets of cardinality R,, N,,; is singular with
cofinality w. Thus, if R, and R, are both so that 2% is a countable
union of sets of cardinality 8, and 28+ is a countable union of sets of
cardinality R,.1, Ro41 and R,,, both have cofinality w. This implies
the existence of inner models with measurable cardinals of high order.

The proofs of Theorems 1 and 2 will use the Easton iteration of
partial orderings which satisfy the Prikry property developed in [7].
Before beginning the proofs of these theorems, however, we will briefly
give some background information and preliminaries.

Our set theoretic notation is relatively standard. When a < f are
ordinals, [a, ], [a, B), (o, B], and (e, B) are as in standard interval
notation. When x is a set, X is the order type of x. For our forcing
notation, however, we adopt the notation of [12], and say that for p
and ¢ forcing conditions, g I p means that ¢ contains more informa-
tion than p. For ¢ a statement in the appropriate forcing language,
D || ¢ means that p decides ¢.

Two partial orderings will be of particular importance in the proof
of Theorems 1 and 2, namely the Lévy collapse and supercompact
Prikry forcing. For k¥ < A regular cardinals, Col(x,A) is the Lévy
collapse of A to k™, i.e., Col(x,A) = {f: k x A — A: f is a function so
that |dmn(f)| < k¥ and f({(e, B)) < B}, ordered by g I+ p iff ¢ D p.
The trivial condition is the empty set &. If By € [k, 4] is a regular
cardinal and p € Col(x,A), p | Bo = {{{a. B).¥) € p: B< Bo}. P |
Bo is then a condition in Col(k, By), and for G generic on Col(x, 4),
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G| Bo={p | Bo: p € G} is generic on Col(k, By) which we may also
sometimes write as Col(k, 1) | So.

Supercompact Prikry forcing is a generalization of the usual notion
of Prikry forcing which was first used by Magidor in the mid 1970’s.
Let k¥ < A be such that x is A supercompact, and let Z be a normal
ultrafilter on P, (A) which satisfies the Jech-Menas partition property.
(See [11] for a definition of this property.) For p,q € P((4),say p C ¢
iff p C g and p < ¢N«k. Supercompact Prikry forcing SC(k, 4) is then
the set of all # = (py,..., pn, A) where:

l.newand Ae¥%.

2. Fori=1,...,n, p,€ A.

3.For1<i<j<n, pigp;

4. For each g € 4, p, C g, and |p,| < |q|-

The sequence (py, ..., pn) is called the p-part of n and is written p-
part(nm).

If 7y = (p1,...,pn, A) and n, = {(q1,...,gm, B) are elements of
SC(x, A) then m; I+ m; iff:

1. n<m.

2. Fori=1,...,n, pi=gq,.

3.Fori=n+1,...,m,q; € A.

4. B C A.

As with ordinary Prikry forcing, supercompact Prikry forcing satisfies
the Prikry property, namely for ¢ a statement in the forcing language
of SC(k, A) and & a condition, it is possible to shrink the measure 1
set to form a condition 7’ so that n’ || ¢.

If G is generic on SC(k, 1), then the generic sequence r = (p,: n €
w) (where p, € r iff there is some 7 € G so that p, is the nth element
of p-part(n)) codes a cofinal w sequence through A if A is regular. In
addition, if o € [k, 4] is regular, then r | o = (p, Na: n € w) codes a
cofinal w sequence through a; when a =k, r | k is a Prikry sequence
through x. Also, in analogy to the Lévy collapse, for a € [, A] regular,
we can for 7 = (py,..., pp, A) definen [ a = (p1Na,..., pyNa, A | @),
where A | a = {pNa: p € A}. n | a is then a condition in SC(x, o)
(which is defined using the restriction ultrafilter  [a={A | a: A €
#}),and G | a = {n | a: n € G} is generic on SC(x, a) which we may
also sometimes write as SC(x, 4) | a.

Finally, we will say that ¥, satisfies the Specker property, written
SP(R,), if 2% can be written as a countable union of sets of cardinality
R,.

We turn now to the proof of Theorem 1.
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Proof of Theorem 1. Let V £ “ZFC + There exists a regular limit
of supercompact cardinals”, and let g be the least such limit, with
(Ka: @ < ag) the sequence of supercompact cardinals whose limit is
ag. As each k, is supercompact, a result in [1] shows that there is a
supercompact ultrafilter %, on P, (x,+;) with the following property
(*): %, satisfies the Menas partition property, and there is a set 4, €
%, so that for g € A,, gNk, is an inaccessible cardinal, and if p,q € 4,
are so that p Nk, = q Nk,, then |p| = |q|. Let (Z: a < ag) and
(Aa: o < ag) be such a sequence of ultrafilters %, and sets A4,.

Define now a sequence (P,: o < o) of partial orderings as follows:

Py = Col(w, k).

where each condition in P, is stronger than the trivial condition

(¢, Aa).
+
P, = Col ((U xa> ,lc,l) for A a limit ordinal.

a<i

Note that since o is the least regular limit of supercompact cardinals,
the definition of P, makes sense.

We are now in a position to define the partial ordering P which
will be used in the proof of Theorem 1. P consists of all elements
P = (Pa: a < og) of [, ., Po so that the support of p is some ordinal
< oy, 1.e., so that 38 < ap Vy > B [p, is the trivial condition]. The
ordering is the componentwise one.

Let G be V-generic on P. The model for Theorem 1 will be a certain
submodel N of V'[G]. The intuition behind the construction of N will
be as follows. We wish to define N in a manner so that the x,’s and
the (U,<; o) *’s are the successor cardinals and so that each of these
cardinals satisfies the Specker property. Thus, we will place in N just
enough information to be able to collapse each of the above cardinals,
preserve the fact that they indeed remain cardinals in N, and define
the sequence which witnesses the fact that they satisfy the Specker
property. For any cardinal 6 which becomes a successor cardinal in
N, we will place in N for each n € w, roughly speaking, the partial
collapse map to d* restricted to the nth element of the Prikry sequence
through the least x, > J, together with the partial collapse map to y*
restricted to the nth element of the Prikry sequence through the least
K, > y for every y in a certain set of cardinals below 4.
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Getting specific, let for each a < o, G, be the projection of G onto
P,. Let ry be the collapse map of xy to w; generated by Gy. For 4 a
limit ordinal, let r; be the collapse map of x; to (,; ko)t generated
by G;, and for # = a + 1 a successor ordinal, let rg = (r}: n € w)
be the w sequence generated by G which codes a cofinal w sequence
through each regular cardinal in the interval [x,, k,,1]- We can now
define, for each n < w and each g < «y, s,’f =(ro | (r’Nk,): a < B).
N will then be defined as R(«g) of the least model M of ZF extending
V which contains, for every n < w and every f < oy, the set s,/f . More
precisely, let L, be a ramified sublanguage of the forcing language L
associated with P which contains symbols v for each v € V', a predicate
symbol V (to be interpreted as V' (v) < v € V), and all symbols of the
form i for n < w and B < ay. As usual, we can assume that each y is
invariant under any automorphism of P. We can also assume that each
7 € L, which mentions only §£ is invariant under any automorphism
T = (n,: a < ag) of P such that =, is generated by a function which
is the identity on the ordinal determined by r” Nk, for o < B if there
is enough information to determine all such ordinals.

Working in V[G], we define an inner model M as follows.

My = 2.
M, = U M, if A is a limit ordinal.
a<i

M, ={x € M,: x is definable over M, by a term
7€ L) of rank < o}.

M= |J M

a€O0rdinals”

The standard arguments will show that for N = R(ag)™, since o
is a limit ordinal and M E ZF, N satisfies all axioms of ZF with the
possible exception of Replacement.

We now prove a sequence of lemmas which shows that N is the
desired model for Theorem 1.

LEMMA 1.1. Assume that x € M is a set of ordinals. Then:

(a) x € V[s?] for some n < w and 6 < oy.

(b) If x C w, x € V[s9] for some n < w.

(©) If a < ag and x C ko, X € V[s3] for some n < w and § = a + 1.

(d) If A < ag is a limit ordinal and x C (U,<; ka)*, X € V[sZ] for
some n< w and é = A.
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Proof of Lemma 1.1. We will first prove (a) and then show how
(b), (c), and (d) all follow from (a). Let Tt € L; and p € P be such
that 7 denotes x and p IF“t C po” for some ordinal yy. As 7 € L,
7 contains only finitely many symbols of the form 52 for n < w and
8 < ay; using standard coding tricks, we can assume that T mentions
only one symbol of the form s¢. We show that p IF “x € V[s3].”

Let p = (ps: a < ag), where y < aq is such that p, is trivial for o >
y. First, since d < ag, we can assume without loss of generality that
y > ¢ and for every o < J, r is determined. (Simply extend p, for
a < d + 1 so that the finite portion of the Prikry sequence determined
by p, has length at least n.) Next, define a function f: oy — o by
Sf(B) =rgnig for B <6, f(A) = (Uscs®o)™ for A > 4 a limit ordinal,
and for f = a+ 1 > a successor ordinal, f(f) = k,. Our first claim
is that if ¢ = (g,: @ < o), § = (So: @ < ag), ¢ I p, s I+ p are such
that Va < ag [ga | f(a) = 5o | f(a)], then for any By < yp, if g I
“Boe T, slF“fye1.”

The proof of this claim is very similar to the proofs of Lemmas 1.1
and 1.6 of [1]. Specifically, if the claim is false, then let 1% = (¥0: o <
ap) be such that 70 I s and 70 I “ B, ¢ 1.” For each successor a = f+1,
a < ag, let ul € P, be such that u, I g, and so that for (¢¢, ..., %)
the p-part of u, and (#f;..., ) the p-part of u), 14N f(@) = %N f(e)
for j = 1,...,k. Form a condition 2 = (u2: a < o) by u2 = ul if
o is a successor ordinal and ug = ¢, if a is a limit ordinal or a = 0.
Clearly, r?I- g and r2 I “By € 1.”

We define now an automorphism 7 = (n,: o < ap) of P so that
n(r?) is compatible with 0 and n(r?) F“B, € t”. If A=0or Aisa
limit ordinal, then by the homogeneity of the Lévy collapse, we can
let 7; be any automorphism of P; so that n,l(uﬁ) is compatible with
ug and 7, is generated by a function which is the identity on f(1). If
o = B + 1 is a successor ordinal, then as in [3] or [1], Lemma 1.6, let
7, be an automorphism so that n,(u2) is compatible with ¥ and =,
is generated by a function which is the identity on f(a). 7 = (7,: a <
) is thus an automorphism of P so that z(r?) is compatible with r°,
and by the invariance properties of 7, n(r?) I “B, € t”. Since n(r?) is
compatible with 9 and 70 I “B, ¢ 7”, this is a contradiction. Thus, if
qd={qa: a<ag),s=(S4: @< ag), qlF p, sl p are such that Va < o
[9a | fla) =54 | f(@)], thenif g IF “Bg € 77, 5 IF “By € T”. Now, if we
define y = {p < yo: 3¢ I+ pl[g = (ga: @ < a9), 4o | f(@) € Gu | f(a),
and g - “p € 1]}, then using the preceding fact, we can argue as
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in Lemma 1.1 of [1] and show that x = y. Since y is definable in
Vllaca, Go I f(e)], this shows that x € V[[],.,, G [ f(@)]-

We next show that x € V[[[,<; Go | f()]. Since each G, I f()
is recoverable from r, | (r* Nk,), this will show that x € V[s2]. To
show that x € V[[],<s Ga ! f(a)] we again argue as in Lemma 1.6
of [1]. Specifically, we know that for any successor o = 4+ 1 > 4,
P, | f(e) is supercompact Prikry forcing on Py, (k) defined using the
measure % | kg = {A | kg: A € %p}. It is well known that this partial
ordering is canonically isomorphic to ordinary Prikry forcing P, on
kp defined using the canonical normal ultrafilter on xz generated by
%p | kg. Call this normal ultrafilter ;. If we let P} = {{5,S): s €
[kp]<“& S € %} ordered as in ordinary Prikry forcing, i.e., if we
define P/ as in ordinary Prikry forcing except that it is not necessarily
the case that | Js < (1S, then as in [5] and Lemma 1.6 of [1] we can
without loss of generality replace P, with P..

Now let ¢ be a canonical term for x in the forcing language associ-
ated with

Q=[P fla)x I1 Py
a<d {a€[d+1,a0): a is a successor ordinal}
X 11 Pyt f(A).

{A€[d+1,a0): A is a limit ordinal}

Define a term 7 in the forcing language associated with [[ s P | f(@)
by p = (pa:a <) IF“p e n” iff (po: a < ag) IF “p € 67, where for
a >0 + 1, p, is the trivial condition. Clearly,  will denote a set in
VI[l.<s Ga I f()] which is a subset of x. The proof will be complete
if we can show that I-p“g C n”.

To this end, let ¢ = (gy: a < o) IF “p € ¢”. It suffices to show that
r={qy: a <0) X (fy: a>0d)IF“p € c” where for a > J, 7, is the
trivial condition. If this is not the case, then let s = (sa: a < ag) I+ r
be such that s I- “p ¢ ¢”, and let § € (J, o) be such that for all y > S,
s, and g, are the trivial condition. Without loss of generality, assume
that for all successors § < y < B, the p-parts of s, and g, have the
same length.

We construct now an automorphism y = (y,: o < o) of Q as
follows. For ordinals a > B, ordinals a < d, and limit ordinals o €
(0, B) let y, be the identity. (Note that for o € (4, #) a limit ordinal,
P, | f(«) is the trivial partial ordering.) For o € (4, ) a successor
ordinal, as in Lemma 1.6 of [1] let y, be an automorphism of P so
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that y,(s,) is compatible with g, and y, is generated by a function
which is a permutation of k¢, fora = y+1. ¥ = (¥, @ < og) is then an
automorphism of Q so that y(s) is compatible with g, and since we can
assume that o is invariant under any automorphism generated by y,’s
as just defined, y(s) I “p ¢ ¢” and g IF“p € ¢”. This contradiction
shows that x € V[s?].

To show (b), (c), and (d), let o be either w, k,, or (U,.; k)", and
let y be such that x C ¢ and x € V[s}]. If y < J for ¢ as defined in (b),
(c), and (d), then the proof is complete, since V[s}] C V[s?]. Thus,
assume that y > 6. Asin part (a), we know that x € V[[],<, Go I f(@)]
for f as defined previously. We show that x € V[s?] by showing that
Villa<y Go | f(@)] and V[[],<5 Ga | f(a)] contain the same subsets
of o and then using the identification of V[[],<;Gs | f(a)] with
V[so).

To this end, we need to show that forcing over V[[],.5 Go | f(a)]
with [T (541, Pa | f(a) adds no new subsets of g. Write

1 Pt/

a€[d+1,y]

as Q' x Q", where

Q,= H Parf(a)

{a: a€[d+1,y] and « is a successor ordinal}

and
Q"= 11 Pyt ().
{A: A€[d+1,y] and 4 is a limit ordinal}

This factorization generates a factorization of [],c(511,Ge [ f(@)
into G' x G”. Since each 4 so that P, | f(4) is a component partial
ordering of Q" is > d, the closure properties of the Lévy collapse and
the definition of Q” ensure that the subsets of ¢ in V'[G"] and V are the
same. Further, by the definition of f and each P, for a = f+1 a fixed
but arbitrary successor ordinal in [ + 1, y], |l'[,7S g Pyl S| < xg.
Also, if A > «a is a limit ordinal, the closure properties of the Lévy
collapse and the definition of P ensure that each P; | f(4) is (at least)
22" closed. Thus, since P, | f(c) is a supercompact Prikry partial
ordering on P, (f(a)) with [P, | f(@)| < 22, an application of the
closure properties of

H P}. ) f(}.) — Qlll

{A: A€[o,y] and 4 is a limit ordinal}
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followed by an application of the Lévy-Solovay results [10] shows that

VQ'”XHrrssz" L) “P, | f(a) is a partial ordering which satisfies the
Prikry property and adds no new bounded subsets to kz”. Thus, Q’
can be regarded in V'[G"] as a full support iteration of partial orderings
each of which satisfies the Prikry property and adds no new bounded
subsets to K5, SO since g is the least regular limit of supercompact
cardinals, the result of [7] shows that forcing over V[G"] with Q'
adds no new bounded subsets to kg, i.e., since g < k5, V[G"][G'] =
VIG'NG"] = VI agis41, Ga T f(a)] F “The subsets of ¢ are the same
as those in V”. Thus, any new subsets of g in V[Hasy G, | f(a)]
are generated by forcing over V[[],¢(511,, Go I f(e)] With [],<5 Po |
f(a), i.e., since

V[ I1 Garf(a)} [H Garf(a)}

a€[d+1,7] a<é

=V [1’[ Ga rf(a)} [ II G rf(a)J ,
a<d a€[d+1,7]

forcing over V[[],<5 Go I f(@)] with [],¢(511,1 P | f(@) adds no new

subsets of ¢. Thus, x € V[s2]. This proves Lemma 1.1. m]

LEMMA 1.2. For 0 =k or 0 = (U,<; ¥a)t, 4 a limit ordinal, N F
“o is a cardinal”.

Proof of Lemma 1.2. For ¢ as in Lemma 1.1, since N C M and
0 < ap, Lemma 1.1 shows that if x C ¢ and x € N then x € V[s¢] for
some n € w. Let f be as in Lemma 1.1. By the identification of V[s¢]
with V[[T,<5 G | f(@)], view V[s¢]as V[Gs | f(6)][Tacs Ga I f(@)]

If 0 =K, thend =a+ 1 and Ps | f(J) is a supercompact Prikry
ordering on P, (f(d)). This means that V[Gs | f(d)] F “k, is a car-
dinal and [[T;.5Ps I f(B)] < Kka”, so V[si] F “k, is a cardinal”.
Thus, no subset of x, in N can code a collapsing map of k,, i.e., N F
“Kq is a cardinal”. If 0 = (U,;Ko)", then 6 = 4, and Ps | f(9)
is Col((U,<;Ka)t, f(4)). Therefore, by the definition of P and f,
VIG, | f(A)]F “o is a regular cardinal and for each a < 4, P, | f()
is k(a)-c.c. for some k(a) < {J,c; Ko Which depends on P, | f(«a)”,
so by the definition of P, | f(a), V[G; | f(A)] F “All antichains in
[To<i Po | f(e) have size < |J,.; ko”. This means that V[sl] F “o is
a cardinal”. The exact same reasoning as before shows N E “g is a
cardinal”. This proves Lemma 1.2. O
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LEMMA 1.3. Every successor cardinal in N is either a k, or a
(U< Ka)T for some limit ordinal A < .

Proof of Lemma 1.3. Since N = R(g)™, it suffices to show that any
successor cardinal x* in M below o is either k, or a (U,; ko) for
some limit A < ag. To show this, we argue by contradiction. Assume
k't is the least successor cardinal in M below ¢ which does not satisfy
this property. Consider two cases.

Case 1. k = (6%)M for some cardinal 6 < og. By the leastness
of k¥, x is either a x, or a (U,; ko)™ for some limit 4 < op. If
K = K, for some o < «ag, then by the definition of M for each n € w
Viras1 T (rl; Nkasr1)] € M. As in [1] and [3], by the fact that
ro+1 1s generic for supercompact Prikry forcing on Py (kKo+1), Vra+1 |
(r’., N Kqaq1)] F “There are no cardinals in the interval (kq, (ry,; N
Kot+1)]”. Since (7}, ; NKat1): 1 € w) is cofinal in K4y 1, M F “There
are no cardinals in the interval (ku, Kuot1)”. By Lemma 1.2, M E
“Ka+1 is a cardinal”, so M F “kqy1 = k}7 If k = (Uyei ko)™ for
some limit A < g, then again by the definition of M for each n € w
Vir, I (rf nx;)] € M. Since r; is generic for Col((U,<; ko), k;) and
(rf Nk;: n € w) is cofinal in x;, V[ry | (r] Nk;)] F “There are no
cardinals in the interval ((U,.;%a), (r] Nk;))” and M F “There are
no cardinals in the interval ((U,<; %2)t.%,)”. By Lemma 1.2, M E
“k; is a cardinal”, so M F “k; = (U,<; Ko)T)*”. Thus, if k = (67)M
for some cardinal J < ag, then (k+)™ = k, for some o < ay.

Case 2. k < ag is a limit cardinal in M. There must be unboundedly
many k,’s below «, for if ¢ < k is a bound on the x,’s, then the
cardinal (in ¥V or M) (6+*)M is below x and is neither a k, nor a
(Ua<i ko), contradicting the leastness of k*. We can thus write, in
V, x =U,<; Ko for some 4 < 0. By Lemma 1.2, (,; ko)™ remains
a cardinal in M. Since V C M, M F “(U,; ¥.)* = k*”. Thus, if «
is a limit cardinal in M and x¥ < ag, M F “There is a limit ordinal
A < ap so that k* = (U,; ko)t ”. This fact, together with Case 1,
proves Lemma 1.3. o

LEMMA 1.4. N E “SP(w), for every o < o, SP(k,), and for every
limit ordinal 2 < g, SP((Uge) ®a)™)”

Proof of Lemma 1.4. Let us first consider the cardinal x,. Working
in N, let X,, = {x C k,: x is definable using s¢*'}. By Lemma 1.1 and
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the fact that N = R(ap)M, X, € V[s2*!]. The cardinality of X, in
V[sg*!] is some ordinal § < (rH! Nkq41) < Kqy1. Since in V[soHl] C
M ¢ is collapsed to k, (this is shown by an argument similar to the
ones given in [3] and [1], Lemma 1.3), x,, is a cardinal in V[sg:tl‘], and
Xn € VIsoH] (VIsgt'1 € VIseHD), VIset 1 F “|Xa| = ko”. Since any
function which is a bijection between X,, and x, must be an element
of R(ag)V 5551 € R(ap)™ = N, N F “|X,| = k,”. Finally, as Lemma
1.1 and the fact that N = R(aq)™ show that any x C k, so that x € N
is in X, for some n, N E SP(k,).

Turning now to the cardinal J; = (U,, k)", We can again define
in N X, = {x C d;: x is definable using s}}. As before, Lemma 1.1
implies that X, € V[s}], and | X,| in V[s}] is some & < (r*!nk;) < x;.
Again, since in V[s;} +11 € M ¢ is collapsed to J; by the Lévy collapse
map generated by r, [ (r]'* I'nk,), V[sﬁ +1] F “05 is a cardinal”, and
VIsi1 € VIst, ), VIsi, ] and M both satisfy “|X,| = 6,”. Lemma 1.1,
the fact that N = R(ag)™, and the fact that R(ag)" ] C R(ap) =
N then again yield that N E SP(4;).

The proof of Lemma 1.4 is completed by noting that the argument

for SP(x,) works for w by letting x_; = w. )
LEMMA 1.5. N E ZF.

Proof of Lemma 1.5. The proof that N F Replacement will show
that N F ZF. We mimic the proof of Theorem 4.2 of [8]. If Replace-
ment fails in N, then for some set X € N there is a class function f on
X such that /"X ¢ N. Since N E Aussonderung, we can assume with-
out loss of generality that range(f) C ag and range(f) is unbounded
in ag. Again without loss of generality we can assume that X = R(«)
for some a < ag, and we fix a the least such ordinal. This a cannot
be a limit ordinal, for if it were then we could construct a function
f' @ — ag whose range was unbounded in ag. Since N C M and
M E ZF, f' € M, so M F “qaq is singular”. By Lemma 1.1a, f’ € V[s?]
for some & < op. The model V[s?] is obtained by forcing with a par-
tial ordering Q so that |Q| < «g, so since V F “oq is inaccessible”,
V2 = V[s?] E “aq is inaccessible”, contradicting V[sJ] F “aq is sin-
gular”. Thus, o = B8 + 1 for some B, and in M there is a function
f: p(R(B)) = R(a) — ag whose range is unbounded in «.

We make now the following

Claim. For each ordinal y < oy, R(w + 7)Y = R(w + )M C
R(w+7) 1L &1,
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Proof of Claim. Letting V[[],., Gs] = V, the claim is true for y = 0
by the absoluteness of R(w). If y is a limit ordinal, then by hypothesis,

for every 6 < 7, R(w + 0)” C R(w + )" L &1, 1t is also true that
for every o < 7, V[[ls<s Gs5]1 € V1<, Gsl; therefore, for every o < 7,
R(w+0)N = R+ o)™ C R(w+0) Tl % ¢ R(w + o) I, 6,
)

UJR@+0)" =JR(@+0)" =R(w+ 7)™

o<y o<y
- U R(Cl) + G)V[].—qu Gs] C U R(w + O')V[Haq Gs)
o<y o<y

= R(w+ ?)V[H5<v Gl

If y = 0 + 1 is a successor ordinal, then by hypothesis we have
R(w+0)N = R(w+ )™ C R(w+0)" UL 6. Since | [1;., Ps| < o,
VIlls<s Gs] E “Kkq is inaccessible”, so

vV LH G,;] EF“lR(w+ a)V[Ha«z G| < k4™,
<g

If x € R(w+ o)™ is a set in M then x can be viewed as a
subset of x, in the analogue of M constructed by forcing over
Vills<s Gs] with HJG[MO) P;. The analogue of Lemma 1.1a then im-
plies that for some n, x € V[[];., Gs1[G?] C VI[ls<y41 Gsl, i-e., that
X € V[I1s<p+1 Gsl- Thus, all subsets of R(w+ o)™ in M are elements
of Vi[lscos1 Gsl- Since

R(w + o)™ € R(w+ ¢)"IL.. 9 ¢ R(ew + )" U Lcrus o)
this immediately implies that
Rw+a+1)" =R(w+7y)M =R(w+y)N
CR(w+o+ I)VIHMH Ul = R(w + y)V[Hm Gl

Using the Claim and working in V[[], <y Gg] for the y so that w+y =

a, for  the cardinal < aq so that V[[],_, G,] F “|R(a)V[H,<? G°]| =
0” we can get in the analogue of M, M*, obtained by forcing over
Vills<y Gol with [];¢(,,) Fo @ function g: 6 — ap whose range is un-
bounded in ag. Since the analogue of Lemma 1.1a will be true about
M*, ag will be a regular cardinal in M*. (In V, IHKY P,;| < ap, and
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any subset of ap in M* will be in a generic extension of V[[],., Gs]
obtained by forcing with a partial ordering of cardinality < ¢y.) Since
aq 1s thus both regular and singular in M*, this contradiction estab-
lishes that N F Replacement and proves Lemma 1.5. o

Lemmas 1.1-1.5 complete the proof of Theorem 1.

We turn now to the proof of Theorem 2. For convenience, we
restate the theorem here.

THEOREM 2. Con(ZFC+ GCH + There exists a cardinal k which is
22" supercompact) = Con(ZF + For every limit ordinal J, SP(R;)+
For every successor ordinal o of the form o = 3n, 3n+ 1, A+ 3n, or
A+ 3n+ 2 where A is a limit ordinal and n € w, SP(R,)).

Proof of Theorem 2. Let V E“ZFC + k is A supercompact for
Ao = 22%""™» and let % be a normal measure on P (A49). The proof
of Theorem 2 will use a modification of the models N, described in
[8] and [2]. The construction of the model M which will witness the
conclusions of Theorem 2, as in [8] and [2], will use supercompact
Radin forcing. We describe the forcing conditions below.

Let j: V — M be the elementary embedding associated with %,
where M is an inner model so that M% C M. Using the embedding
J, we define a Radin sequence of measures g+ = (Uo: @ < k1) on
R(k*®) by po(x) = 1 iff (j(B): B < k*¥) € j(x), and for 0 < a <
kY, uo(x) = 1iff (ug: B < a) € j(x). R+ is supercompact Radin
forcing defined using k-, i.e., R<x+ consists of all finite sequences
of the form ((py, uy, C1), ..., (Pn, Un, Cn), (U<k+, C)) with the following
properties:

l.For1<i<j<n, pCpj.

2. For i < n, p; Nk is an inaccessible cardinal.

3. pi= (pi nx)-&w.

4. For i < n, u; is a Radin sequence of measures on R(p;) with
(u;)o a supercompact measure on Py (D;).

5. C; is a sequence of measure 1 sets for u;.

6. C is a sequence of measure 1 sets for py+.

7. For each p € (C)g, where (C)g is the coordinate of C so that
(Co) € o, Uiy pi € P

8. Foreach p € (C)g, p = (pNK)*®.

Properties (1) and (7) both follow from the fact that y; is a su-
percompact measure on P(4g). Properties (4), (5), and (6) are all
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standard properties of Radin forcing. Properties (2), (3), and (8)
all follow since ug is generated by j or, equivalently, by # | k%,
so we can assume that each p; and each p € (C)y is an element
of {p € Pc(40): p Nk is an inaccessible cardinal and pNkt® =
(pNK)*T9} [ K+,

If mg = ((PrLu, Cr)eens(Pnthn, Cn)y (Bax+, C)) and m =
((q1,v1, D1), ... {@m, Vm, Dm), {U<x+, D)) then m; I+ 7y if the follow-
ing conditions hold.

1. For each (pj;,u;, C;) which appears in =, there is a (g;, v;, D;)
which appears in 7; so that {g;,v;) = (pj,u;) and D; C C;.

2.DCC.

3. n< m.

4. If (g;,v;, D;) does not appear in 7, let (p;, u;, C;) (or (u<x+, C))
be the first element of 7y so that pj Nk > g; N k. Then

(a) g; is order isomorphic to some g € (C})o.

(b) There exists an oo < y;, where y; is the length of u;, so that
v; i1s isomorphic “in a natural way” to an ultrafilter sequence
Ve (C j)a-

(c) For B; the length of v;, there is a function f: §; — y; so that
for B < Bi, (D;)g is a set of ultrafilter sequences so that for
some subset (D;); of (Cj) s(g), each ultrafilter sequence in (D;) g
is isomorphic “in a natural way” to an ultrafilter sequence in

(Di)jg-

For a further explanation of the above ordering (including what “in a
natural way” means) or other facts about supercompact Radin forcing,
see [8], [2], or [4].

We now define a partial ordering P by

P =Ry X II Col(at(@+)), g)
{(a,B): a<B<k and a and B are inaccessible}
X 11 Col(w, @)

{(w,a): a<x is inaccessible}

ordered componentwise. Let G be V-generic on P. The model M for
Theorem 2 will be a submodel of V'[G] and will be a modification of
the model N, as described in [8] and [2]. We describe this model in
more detail below.

Let G, be the projection of G onto R..+. For any condition n =
({1, u1, C1), ..., (Pn tn, Cn), (l<i+, C)) € R+, in analogy with su-
percompact Prikry forcing call (py,..., p,) the p-part of 7. Let R =
{p: 3n € Gy[p € p-part(n)]} and let R, = {p: p € Rand p is a
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limit point of R}. We define three sets Ey, E;, and E; by Ey = {a:
For some 7 € Gy and some p € p-part(n), pNk = a}, E; = {a: a
is a limit point of Ey}, and E, = E, U {f: 3o € E{[f = o or
B = at@th]} u{w}. Let (a,: v < k) be the continuous increasing
enumeration of E,, and let v = v’ + n for some n € w. Sets C/*(a,)
for m € w are then defined in the following manner.

1. v =v #0and n = 0. Let p(a,) be the element p of R such that
pNk =y, and let Ay, : p(ay) — p(ay) be the order isomorphism
between p(a,) and p(ay). Ci*(ow) = {hp@,)"'PNai™: p € Ry, p C
p(ay), and h;(lau)(a?;m) € p}.

2. vV =0and n =3k + 1. Let CJ*(aw) = {hp(a,)PNO;™: D ER,
and if k > 1, p(e,y3k-1)+1) & P € p(aw)}-

3. V' is a limit ordinal and for k > 0, n = 3k. Let CJ*(a,) =
{hpe,)"PNaf™: p € Rand p(ayy3k-1) & P € plaw)}.

4. v' =0and n = 3k. Letry, = (rj}_,: m € w) be the w sequence
generated by G which codes a cofinal sequence through each cardinal
in the interval [a3r41, @3 1. (Note that since p<,+ has length k™ the
cofinal sequence through each cardinal in the interval [a3;,1, 03]
and the Radin sequences C"(a,) discussed in 1, 2, and 3 above will
all have length w.) Let H(as, as.;) be the projection of G onto
Col(ask, azi41)- Then CfM(aw) = H(asg, azp41) T (r3h, ) N @sktr)-

5. v'isalimit ordinal and n = 3k+2. Letr,i 3x43 = (1)l 3 3. ME
w) be the w sequence generated by Gy which codes a cofinal
w sequence through each cardinal in the interval [o,/ 3x.3,
af® sl Let H(ayii3k42, 043k43) be the projection of G onto
Col(ay 4 3k4+2, @r43k+3)- Then

Ci'(aw) = H(owyq3k+2 0ry3k43) | ("3'1+3k+3 N 0y 4 3k43)-

Intuitively, M is R(k) of the least model of ZF extending V" which
contains, for each g < x and each m < w, [[, <5 C"(ov), where i
takes on the values 1 through 5 depending upon which of the above
categories v is and C"(ay) = {J} if v is not in any of categories
1 through 5. As with Theorem 1, the uniform manner in which the
collapsing maps have been placed into A will ensure that the desired
cardinals remain cardinals in M and satisfy the Specker property.

To define M more precisely, it is necessary to define canonical
names a,, for the a,’s and canonical names C/"(v) for the sets C7* (o).

Recall that if o, € E it is possible to decide p(a,) (and hence p(a,))
by writing @ v = 0% -ny+w% -ny+- - -+w%-n; (where gg > oy > --- >
o, > 0 are ordinals, ny, ..., n; are integers, and +, -, and exponentia-
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tion are as in ordinal arithmetic), letting & = ((p;j,, 4;, Dij,) i<k 1<j,<n,>
(H<x+, D)) be such that min(p;; Nk, w!*&M1)) = g; and length(y;;,) =
min(p;; N, length(u;;)) for 1 < j; < n; and letting p(a,) be pyy,,.
Further D, = {r € P: r | R+ extends a condition 7 of the above
form} is a dense open subset of P, and any element of D,, besides de-
termining o, determines in addition o} and o}(@+1). Then for any
ay € E, oy is the name of the o, determined by any element of D, NG;
in the notation of [8], for o, € Ey, ay = {{r, & (r)): r € D, }, where
o, (r) is the a,, determined by the condition r. For «, so that o, = ﬂ;““’
or o, = B;(@+1), where B, € Ey, ay = {(r, B;*(r)): r € D, }, where
{ = w or w+ 1 depending on whether o, = B¢ or o, = B @*1), y is
the (unique) ordinal so that o, = B ¢, and B,(r) is the B, determined
by the condition r.

The canonical names C"(v) for the sets C/"(a,) are defined in a
manner so as to be invariant under the appropriate group of automor-
phisms. Specifically, there are five cases to consider. We again write
v = V' + n, and in analogy to [8] and [2], assume without loss of gen-
erality that for any «a, € E;, D, determines o,,_; (if v — 1 exists), a,,
i1 = o}y = o@D and oy, ;3.

1. v'=v #0and n=0. C{"(v) is then the name for {A,,)n"PN
of™: 3r € P[r€e D,NG, p € p-part(r | Rex+), p C p(aw)(r), pER; |
r, and h;(‘au)(r)(a,f’") € p]} where p(e,,)(r) and hy(y,)() are the p(a,)
and A, determined by the condition r and R, | r is the portion of R;
determined by r. Note that this definition is unambiguous, since for
any r and r’' so thatr, r' € D,NG, p(a,)(r) = p(a,)(r'). In the notation
of [8], CI"(v) = {(r, (F I Rex+) | (au(r),0f™(r))): r € Dy}, where for

reP,m=r!| R+ n | (a(r),af™(r)) = {hp@,)n"PNa™: p € p-
part(n), p C p(av)(r), p € Ry I m, and b\ (af™) € p}.

2. v =0and n = 3k + 1. We have assumed without loss of
generality that for k > 1, D, determines o,/ 34-1)+1- C3'(v) is
then the name for {A,,,»"p No;™:3r € P[r € D, NG, p € p-
part(r [ Rex+), P(ayri3k-141) € P € Playyakq1), P € R [ r, and
h;(fl (@™ € pl}, where R | r is the portion of R determined
by r. The unambiguity of this definition again follows from the fact
that for r.7' € D, N G, p(ayr3k-1)+1)(r) = P(ewy3-1)+1)(r') and
p(ayii3k41)(r) = P(eyry3k41)(r). In the notation of [8], CF'(v) =
{(r, (F I Rex+) | (au(r),af™(r))): r € D,}, where this time for r € P,
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=71 Rur, ¢ I (au(r)ef™(r)) = {hp(au)(r)"p Nof™: p € p-
part(n), p € R | 7, payy3p-1)+1)(r) € P € pP(oyry3k41)(r), and
h (L ) ,)( of™) € p}. For k = 0, the definition of CJ*(v) is the same as
just stated, dropping the proviso that
Play3gk-1y+1)(r) € P C playy3k+1)(r)
and
Ployiisg—n+1) € P S P(ayryaksr)-

3. V' is a limit ordinal and for k > 0, n = 3k. Again assume
without loss of generality that D, determines o, 3-1). C3'(V) is
then the name for {h,)"PNaj™:3r € P[r € D,NG,p € p-
part(r I Rex+), Playrysk-1) € P € playiysk), p € R | r, and
h‘a ) (a+’") € p]}. In the notation of [8], C’"(u) ={(r,(F | Rex+) |
(a,,(r) at™(r))):r € D,}, where forr € P, @ = r | Regr, @ |
(aw(r), of™(r)) = {hp@,)n"P N f™: p € p-part(n), p € R | m,
Py 3p-1))(r) € p C p(ay43)(r), and h 1 r)(a'*' ) € p}.

4. v =0and n = 3k. Let rgk’:{l be the canomcal name for the
mth element of CY(a3;41), rgk’f’H, defined using C9(3k +1). CI'(v)

is then the name for {p | r3k 39 € Plge D,,yNGp egq |
Col(ay(q), ay+1(g))1}. In the notation of [8],

Ci'(v) = {(a. (@ I Colav(q). ay+1(9)) I 5% 4 € Dy}

5. U’ is a limit ordinal and n = 3k +2. Let r* +3k +3 be the canonical

name for the mth element of C)(c,. +3k3)s 10 3k +3, defined using

CI(v' + 3k +3). CP*(v) is then the name for {p  r)7, ,:3g €
Plge D, NG, pe€q| Cola,(q) a,41(q))]}. In the notation of [8],
Cr'(v) ={(g. (4 I Col(er(q), v41()) 1 72015 4 € Dy}

Using the canonical names C"(v), define for fixed m the canonical
names EJ’, v < k, as the name for ([][4., C/"(B)), where i takes on
the values 1 through 5 depending upon in which of the categories
B is, and where C/*(B) is a term for {J} if B is in none of these
five categories. Let & be the group of automorphisms of [8], and let
C(G) = Umew Uk Uree {m(E])})), where for each n € &, =(E]) is
found by taking the action of # on each component of EJ, C’”(ﬁ)
for f < v. C(G) = Upeo(UyerUres lic(mEM)D) = i6(C(G)).
M is then the set of all sets of rank < x of the model consisting

of all sets which are hereditarily V' definable from C(G), i.e., M =
R(K)HVD(C(G)).
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By the definition of M, we know that for any set x C a, in M, «,,
arbitrary, a term 7 for x can be found which mentions only finitely
many of the E". By letting m be the sup of all of the m’s appearing
in 7, and letting 1y be the sup of all of the v’s appearing in 7, 7 can
be rewritten using a term 7’ which mentions only E}°. The following
weak analogue of Theorem 3.2.11 of [8] then holds: For any x C a,
(or indeed, any ordinal 6 € M) as just mentioned, x € V[{ag: f <
vo), EJ°]. Then, using again the arguments of Theorem 3.2.11 of [8],
together with the fact that the subsets of o, in V[(ag: B < vp), E}°
are the same as the subsets of o, in V[(ag: B < v), EJ*] (since as
in Lemma 1.1, the part of the forcing above v which determines the
portion of Ej;° above v, Fi* = (Cg*: v < B < vg), can be taken as
a full support iteration of partial orderings which satisfy the Prikry
property of short enough length (the length is short enough since the
full Radin forcing has length x*, so any ordinal in the Radin sequence
will be singular) so that the result of [7] again can be applied to show
that V[{ag: v < B < 1), F;°] contains the same subsets of o, as V,
so any new subsets of a,, come from V[(ag: g < v), (Cg"’: B <))
we have that for any x C oy, with x € M, x € V[(ag: B < v), EJ"].
This fact will be the key fact used in completing the proof of Theorem
2.

LEMMA 2.1. Each «, is a cardinal in M.

Proof of Lemma 2.1. By the preceding remarks, for any x C «, with
X € M there is some m € w so that x € V[{(ag: B < v), E]']. Since
(ag: B < v) is a Radin sequence together with the wth and w + 1st
successors of each element of the sequence, «, remains a cardinal in
Viag: B < V)]

Assume now that v is a successor ordinal. Write EJ’ =J[;_, C 5 X
C. If o, is an element of the Radin sequence, then C/” is generated
by a supercompact Radin ordering which, because the length of the
original Radin sequence of measures is k*, is isomorphic to a super-
compact Prikry ordering. It is therefore the case that o, is a cardinal in
VICJ']. The partial ordering which generates ((ag: B < V), ]z, Cl’g")
has cardinality < «,, by GCH; hence, «, is a cardinal in

VICI lag: B<v), [[ CF1=VI(eg: B <v). EJ].
B<v

If o, is the w + 1st successor of an element of the Radin sequence,
then C]” is generated by a Lévy collapse ordering, so it is again the
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case that «, is a cardinal in V[C/"]. The same argument as stated
in the next to last sentence can be applied again to show that «, is
a cardinal in V[{ag: B < v), E]’]. If o, is the wth successor of an
element of the Radin sequence, then ((agz: f < v), E]') is generated
by a partial ordering of cardinality < o, by GCH, so again, «, is a
cardinal in V[{ap: B <v), E]'].

If v is a limit ordinal, assume that o, is not a cardinal in V[{ag: g <
v), E]']. There must then be a subset of ap for fy < v which codes
this fact. This subset of ag, is an element of V[(ag: B < o), Eg(’)'] for
some m' € w. By GCH, the set ({(ag: B < Bo), E;{;') is generated by a
partial ordering of cardinality < «,,, an impossibility. Thus, for any
value of v, no subset x C «, can code a function f so that for any m
having the property that x € V[{ag: g < v), E]'] f witnesses that o,
is not a cardinal. This means that «,, is a cardinal in M. O

LEMMA 2.2. M E “(a,: v € Ord¥) = (R, : v € Ord™)”,

Proof of Lemma 2.2. By the fact that all E”" code collapse maps,
the definition of the sequence (o, : v < k), and the definition of M,
it is inductively the case that M F “Vv [a, < R,]”. Since each o, is a
cardinal in M, this immediately yields that M E “Vv [, =R, ]”. O

LEMMA 3.3. If o, is an element of the Radin sequence, or if o, is the
w-+ 1st successor of an element of the Radin sequence, then M £ SP(R,).

Proof of Lemma 2.3. Working in M, for «, as above, let X, =
{x € a,: x is definable using E”}. By our earlier remarks, X, €
Vi{ag: B < v),E!] C V[{ag: B < v), Elt!], and each x C a, so
that x € M is an element of X,, for some m. As in Lemma 1.4,
Vi{ag: B < v),EIN E “| X, = ), ie., V[{ag: B < v), EI*'] con-
tains a bijection f between X, and «,. This bijection f is such that

fe R(K) Vi{ag: B<v),EFF'] - R(K)HVD(C(G)) =M soME “Ian =a,”.

Thus, as in Lemma 1.4, M & “{J, ., X» = 2% and for each n, |X,| =
a,”, 1.e., M F SP(ay,). m]

It inductively follows, by the definition of A and Lemmas 2.1 and
2.2, that the o, ’s as in the statement of Lemma 2.3 become the re-
quired R, ’s of the statement of Theorem 2.

As with Theorem 1 and in analogy with the model N, of [8] and
[2], M will satisfy all of the axioms of ZF with the possible exception
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of Replacement. Thus, the following lemma will complete the proof
of Theorem 2.

LEMMA 2.4. M EZF.

Proof of Lemma 2.4. The proof of Lemma 2.4 is analogous to the
proofs of Lemma 1.5 and Theorem 4.2 of [8]. If Replacement fails
in M, then for some set X € M there is a class function f on X
such that /"X ¢ M. As before, we can assume that X = R(f) for
some f < k and range(f) C x with range(f) unbounded in k. If §
is the minimal such ordinal, then again, f must be a successor ordi-
nal, for if f were a limit ordinal, then we could construct a function
f': B — k whose range was unbounded in x. Since M C HVD(C(G))
and HVD(C(G)) E ZF, ' € HVD(C(G)). By our earlier remarks, for
some m € w and v < Kk, f' € V[(oy: y < v), E']. Since ((a,:y <
v), E") is generated by a partial ordering of cardinality < ¥ and x is
inaccessible in V, V[{(ay: y < v), EI'] E “k is inaccessible”, a contra-
diction to the fact that we have just shown V[(ay: y <v), E]'] =“k is
singular”. Thus, f# = J + 1 for some d, and in HVD(C(G)) there is a
function f: p(R(J)) = R(B) — x whose range is unbounded in x.

Define now, for v < k, E, as a term for the product of the full
collapse maps for the relevant elements of the sequence (ag: f < k);
in other words, E, is a term for [] 5, C;(B), where as before, C;(f) is
a term for {J} for the appropriate values of £, and for those values of
B for which C;(f) is not a term for {J}, C;(f) is as in the definition of

C"(B) except that full and not partial collapse maps are taken. Using
this definition, we make now the following

Claim. For each ordinal y < k,
R(@+ )™ = R(w + y)HYPICG) € R(a + )V les: 8<74n().Eyuno]

for some n(y) € w.

Proof of Claim. Since R(w) is absolute, the claim is true for y = 0. If
y is a limit ordinal, then by hypothesis, for every o < 7, R(w+0)M C
R(w + g)Vles: 920+4n(9)).Esuna)] | 1t is also true that for every < 7,
V{as: 6 < 0+ n(0)), Egine)] € VI{as: 6 < 7), E,]; therefore, for
every g < y,

R(w+ 0)M = R(w + 0)HVP(C(G) C R(w + g)Vles: 920+7(0)).Eouno)]
CR(w+ g)V[(aa: O<NE]
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SO
U Rw+a)M = U R(w + o)HYD(C(G)
o<y o<y
€ | R(@ + g)Vles: 050+n(@) Eoun)]
o<y
C U R(O)—I— U)V[(aa: 0<V).E)] — R(w+ y)V[(a,s: 65}’),Ey];
o<y

note that n(y) = 0.

If y = o + 1 is a successor ordinal, then by hypothesis we have
R(w+a)M = R(w+0’)HVD(C(G)) - R(w..{..a')V[(aa: 5SU+”(G))’Eﬂ+n(a)]. For
Q the partial ordering which generates ((a5: 6 < 6 + 1n(0)), Egyn(o))>
we can find some m € w such that o4 ,(4)1m is inaccessible and |Q| <

Qg+n(g)+m> SO
Vl{as: 6 < o +n(a)), Ea+n(a)]
E“R(w+ G-)VK%i 6<0+n(9)).Evin(a)] | < 0lgyn (a)+m”_

If x € R(w+ o)™ is a set in M then x can be viewed as a sub-
set of ag4n(s)+m in the analogue of M constructed by forcing over
Vi{as: 6 < 0+ n(0a)), Egyn(s)] with the partial ordering consisting of
the cartesian product of the portion of the Radin forcing R.x+ above
Og4n(a) with

1T Col(at@+), g).

{(a.B): agsney<a<p<k and o and B are inaccessible}

An analogue of our remarks before Lemma 2.1 which takes into ac-
count that the successor of an element in the sequence (o, : V < k) is
not necessarily an inaccessible cardinal yields that x € V[{as: d < o+
n(0)), Egino)] l{as: 0 +n(o) <6 <o +n(a)+m),(Ci(d): 0 +n(g) <
8 < a+n(o)+m)] [{as: o+n(c)+m < 6 < B), (CK(9): o+n(o)+m <
0 < B)] where f < k and k € w. As in our remarks before Lemma
2.1, the subsets of ay,,(s)4m in this model are the same as those
in V[{as: 6 < 0+ n(o) +m), Eginio)eml, 1.6, X € V[{as: 9 <
0+ n(0)), Egin(o)] [{as: 0 +n(0) <6 < 0+ n(g) + m),(Ci(d): 0 +
n(0) < 8 < 0 +n(0) + m)] = Vl[{as: 8 < 0 +n(0) + M), Egno)im)
Thus, all subsets of R(w + )M in M are elements of V[{as:d <
o + n(ag) + m), Eg pg)+m]- Since

R(Cl)-I-O’)M C R(w+a)V[<"": 0<0+n(0)),Eginie)]
C R(w + O-)VKQ’J: 6<0+n(0)+m),Esinie)+m)
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this immediately yields that

R@+0+ 1) =R(w+ )M = R(w + y)HVP(C(©)
C R(w + 0 + 1)V les: 9504n(0)+m). Eoiniopin]

= R(w + y)VUes: 0<y+n())Erenn],

|
Using the Claim and working in V[{ag: 0 <y + n(?)), Eyyny)] for
the y so that w + y = B, for J the cardinal < x so that

V(ao: 6 <7+ 1)), Eypngy] F “|R(B)V 0o 05410D Ervnal] = 57

we can get in the analogue of M, M*, obtained by forcing over
Vi{ag: 0 <y + n(y)), Eypn(y)] with the partial ordering consisting of
the cartesian product of the portion of the Radin forcing R+ above
Oy n(y) with

H Col(a+(w+l), B)

{(a.B): aynp<a<p<k and a and B are inaccessible}

a function g: 6 — x whose range is unbounded in k. Since the same
analogue of Lemma 2.1 that was true in the preceding paragraph will
be true about M*, x will be a regular cardinal in M*. (In V, the
partial ordering which generates ((ag: 0 <y + n(?)), E;15(;)) has car-
dinality < k, and any subset of k¥ in A/* will be in a generic extension
of V[{ag: 0 < y+n(p)), Eyin(y)] obtained by forcing with a partial or-
dering of cardinality < k.) Since x is thus both regular and singular in
M*, this contradiction establishes that A/ F Replacement and proves
Lemma 2.4. o

Lemmas 2.1-2.4 complete the proof of Theorem 2.

In conclusion, we remark that the assumption of GCH shows that
for all cardinals J in the preceding models for which SP(d) is false, 29
can be written as a countable union of sets of cardinality J+.

REFERENCES

[11 A. Apter, An AD-like model, J. Symbolic Logic, 50(2) (1985), 531-543.

[2] , Some results on consecutive large cardinals 11: Applications of Radin
Jorcing, Israel J. Math., 52(4) (1985), 273-292.

[3]

, Successors of singular cardinals and measurability, Advances in Math.,
55(3) (1985), 228-241.

[41 A. Apter and J. Henle, Large cardinal structures below R, J. Symbolic Logic,

51(3) (1986), 591-603.




(3]
(6]

(7]
[8]

(9]

[10]

(1]

[12]
(13]

SOME RESULTS ON SPECKER’S PROBLEM 249

E. Bull and E. Kleinberg, 4 consistent consequence of AD, Trans. Amer. Math.
Soc., 247(1) (1979), 211-226.

M. Gitik, All uncountable cardinals can be singular, Israel J. Math., 35(1),
(1980), 61-88.

, Changing cofinalities and the non-stationary ideal, to appear.

, Regular cardinals in models of ZF, Trans. Amer. Math. Soc., 290(1)
(1985), 41-68.

A. Lévy, Definability in Axiomatic Set Theory 1 in: Y. Bar-Hillel ed., Logic,
Methodology, and the Philosophy of Science, North-Holland Publishing Co.,
1965, 127-151.

A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis,
Israel J. Math., 5(4) (1967), 234-248.

T. Menas, A combinatorial property of Pc(4), J. Symbolic Logic, 41(1) (1976),
225-233.

NESTS, A modest proposal, in preparation.

E. Specker, Zur Axiomatik der Mengenlehre, Z. Math. Logik, 3(3) (1957), 173~
210.

Received April 27, 1987. The first author would like to thank the Rutgers University
Research Council for a FASP research grant which partially supported this work. In
addition, the first author would like to thank the second author and his family for
the hospitality shown him when he was in Israel doing the research which led to this

paper.

BAarRucH CoLLEGE oF CUNY
NEwW York, NY 10010

AND

TEL Aviv UNIVERSITY
TEL Aviv, ISRAEL








