# ON A THEOREM DUE TO CASSELS 

José M. Souto Menéndez


#### Abstract

Using properties of one-dimensional formal groups, a proof is given of a theorem on the valuations of the torsion points of elliptic curves defined over $p$-adic fields.


1. Introduction. The aim of the present note is to give a proof of Theorem 5, due to Cassels, on the valuations of the torsion points of an elliptic curve defined over a local field $K$ of characteristic zero. Cassels's proof relies on the addition formulas for the Weierstrass $\wp$ and $\wp^{\prime}$ functions. The one given here follows from the properties of the torsion points of one-dimensional formal groups defined over the ring of integers of $K$.

The reader could also look at Oort [5] for another approach to Cassels' theorem.
2. Torsion points of formal groups. In the following we denote by $K$ a local field, finite extension of the field $Q_{p}$ of $p$-adic numbers, with ring of integers $A$; we assume that the normalized valuation $v$ of $K$ is extended to the algebraic closure $\bar{K}$ of $K$. We denote by $\mathfrak{p}_{K}$ (resp. $\mathfrak{p}_{\bar{K}}$ ) the maximal ideal of $A$ (resp. of the valuation ring of $\bar{K}$ ), and by $e=v(p)$ the ramification index of $K / Q_{P}$.

Let $F$ be a one-dimensional formal group of finite height $h \geq 1$, defined over $A$; as usual (see [3]), for each $a \in Z_{p}$ we denote by $[a](X) \in A[[X]]$ the unique endomorphism of $F$ such that $[a](X)=$ $a X+\cdots$. The group of points $F\left(\mathfrak{p}_{\bar{K}}\right)$ of $F$ with values in $\bar{K}$ has a structure of a module over $Z_{p}$, by means of the operation $a \cdot x=[a](x)$, $a \in Z_{p}, x \in F\left(\mathfrak{p}_{\bar{K}}\right) ; F\left(\mathfrak{p}_{K}\right)$ is a sub- $Z_{p}$-module of $F\left(\mathfrak{p}_{\bar{K}}\right)$.

Let $[p](X)=\sum_{i=1}^{\infty} a_{i} X^{i}\left(a_{1}=p\right)$ be the "multiplication by $p$ " in the formal group $F$; setting $q=p^{h}$, one has $a_{i} \in \mathfrak{p}_{K}$ if $i=1, \ldots, q-$ 1 and $v\left(a_{q}\right)=0$. We shall be interested in the valuations of the torsion points $x \in F\left(p_{\bar{K}}\right)$. The most convenient thing is to consider the Newton polygon of the series $[p](X)$, that is the lower convex envelope of the points $\left(i, v\left(a_{i}\right)\right) \in R^{2}(i \geq 1)$.

If $P_{0}=(1, e), P_{1}=\left(q_{1}, e_{1}\right), \ldots, P_{m}=(q, 0)$ are the vertices of such a polygon (where $e_{i}=v\left(a_{q_{i}}\right)$ ), the slopes are the negative of the numbers
$\alpha_{1}=\left(e-e_{1}\right) /\left(q_{1}-1\right), \ldots, \alpha_{m}=e_{m-1} /\left(q_{m}-q_{m-1}\right)\left(\alpha_{1}>\alpha_{2}>\cdots>\right.$ $\left.\alpha_{m}\right)$. If $q_{i} \leq r \leq q_{i+1}($ for $i=0, \ldots, m-1)$, for any $x \in \mathfrak{p}_{\bar{K}}$ one has $v\left(a_{r} x^{r}\right) \geq \inf \left(v\left(a_{q_{1}} x^{q_{i}}\right), v\left(a_{q_{t+1}} x^{q_{t+1}}\right)\right)$; moreover, if $r>q_{m}=q$, for $x \in \mathfrak{p}_{\bar{K}}, v\left(a_{r} x^{r}\right)>v\left(a_{q} x^{q}\right)$. Therefore, for any $x \in \mathfrak{p}_{\bar{K}}$ with $[p](x)=0$, there exists $i=0, \ldots, m-1$ such that $v\left(a_{q_{t}} x^{q_{i}}\right)=v\left(a_{q_{t+1}} x^{q_{t+1}}\right)$, so that $v(x)=\alpha_{i+1}$. Moreover (see Koblitz [4]) the number of roots $x \in \mathfrak{p}_{\bar{K}}$ of the series $[p](X)$, of valuation $\alpha_{i+1}$, is $q_{i+1}-q_{i}$.

Lemma 1. With the above notations, the $q_{i}$ are powers of $p$.
Proof. For each $i=1, \ldots, m$, the set

$$
\left\{x \in F\left(\mathfrak{p}_{\bar{K}}\right) \mid[p](x)=0, v(x) \geq \alpha_{i}\right\}
$$

is an elementary abelian $p$-group (with the operation given by the formal group law $F$ ); as its order is $\left(q_{i}-q_{i-1}\right)+\cdots+\left(q_{1}-1\right)+1$, the lemma is obvious.

Proposition 2. For any $x \in \mathfrak{p}_{\bar{K}}$, one has
-if $v(x)<\alpha_{m}$, then $v([p](x))=q v(x)$,
-if $\alpha_{i+1}<v(x)<\alpha_{i}$, then $v([p](x))=e_{i}+q_{i} v(x)$,
-if $\alpha_{1}<v(x)$, then $v([p](x))=e+v(x)$.
Proof. For $x \in F\left(\mathfrak{p}_{\bar{K}}\right)$ such that $v(x)<\alpha_{m}$, then for any $r \neq q_{m}=q$, $v\left(a_{q} x^{q}\right)<v\left(a_{r} x^{r}\right)$. In fact, when $r>q$ such a relation is obvious (since $v\left(a_{q}\right)=0$ ); when $r<q$, one may write

$$
\begin{aligned}
v(x)<\alpha_{m} & =\left(v\left(a_{q_{m-1}}\right)-v\left(a_{q}\right)\right) /\left(q-a_{m-1}\right) \\
& <\left(v\left(a_{r}\right)-v\left(a_{q}\right)\right) /(q-r)
\end{aligned}
$$

hence $v\left(a_{q} x^{q}\right)<v\left(a_{r} x^{r}\right)$.
If $\alpha_{i+1}<v(x)<\alpha_{i}$ (with $i=1, \ldots, m-1$ ), then for any $r \neq q_{i}$, one has $v\left(a_{q_{i}} x^{q_{i}}\right)<v\left(a_{r} x^{r}\right)$. In fact, for $r>q_{i}$ this relation comes from

$$
v(x)>\left(v\left(a_{q_{i}}\right)-v\left(a_{q_{i+1}}\right)\right) /\left(q_{i+1}-q_{i}\right) \geq\left(v\left(a_{q_{i}}\right)-v\left(a_{r}\right)\right) /\left(r-q_{i}\right)
$$

for $r<q_{i}$, it comes from

$$
v(x)<\left(v\left(a_{q_{i-1}}\right)-v\left(a_{q_{i}}\right)\right) /\left(q_{i}-q_{i-1}\right) \leq\left(v\left(a_{r}\right)-v\left(a_{q_{i}}\right)\right) /\left(q_{i}-r\right)
$$

The case $v(x)>\alpha_{1}$ is discussed similarly.
Remarks. (1) If $v(x)=\alpha_{i},[p](x) \neq 0$ (for $i=1, \ldots, m$ ), arguing as above, one gets $v([p](x)) \geq e_{i}+q_{i} \alpha_{i}$.
(2) For $i>\alpha_{1}, x \rightarrow[p](x)$ induces an isomorphism $F\left(\mathfrak{p}_{K}^{i}\right) \rightarrow$ $F\left(\mathfrak{p}_{K}^{i+e}\right)$ (of course, we denote by $F\left(\mathfrak{p}_{K}^{r}\right)$ the set $\mathfrak{p}_{K}^{r}$ with the group
structure given by the group law $F$ ). The injectivity comes from the fact that in $\mathfrak{p}_{\bar{K}}$ the zeros of $[p](X)$ have valuation $\leq \alpha_{1}$. To show the surjectivity, let $\Pi$ be a uniformizing parameter of $K$; we have to see that if $y \in \mathfrak{p}_{K}$ is such that $v(y)=i+e>\alpha_{1}+e$, there is $x=\Pi^{\alpha_{1}} t(t \in A)$ such that $[p]\left(\Pi^{\alpha_{1}} t\right)=y$; now, the series

$$
\frac{1}{\Pi^{\alpha_{1}+e}}\left(-y+p \Pi^{\alpha_{1}} T+a_{2} \Pi^{2 \alpha_{1}} T^{2}+\cdots\right)
$$

has coefficients in $A$ and Weierstrass degree one, so the result follows from the Preparation Theorem for power series.
(3) If $F$ is the multiplicative group, the Newton polygon of $[p](X)$ only has one slope. Proposition 2 gives then the well-known effect of "raising to the $p$ th power" in the group of principal units of the local field $K$ (or of any of its finite extensions).

Proposition 3. $F\left(\mathfrak{p}_{K}\right)$ is a $Z_{p}$-module of finite type, whose rank modulo torsion is $\left[K: Q_{p}\right]$. The torsion subgroup is a finite $p$-group.

Proof. For each $i \geq 1$, let us denote, as above, by $F\left(\mathfrak{p}_{K}^{i}\right)$ the abelian group on the set $\mathfrak{p}_{K}^{i}$ with the operation given by $(x, y) \rightarrow F(x, y)$; of course, $F\left(\mathfrak{p}_{K}^{i}\right)$ is a $Z_{p}$-submodule of $F\left(\mathfrak{p}_{K}\right)$. It is trivial that $\mathfrak{p}_{K}^{i} / \mathfrak{p}_{K}^{i+1} \simeq$ $F\left(\mathfrak{p}_{K}^{i}\right) / F\left(\mathfrak{p}_{K}^{i+1}\right)$.

The filtration $F\left(\mathfrak{p}_{K}\right) \supset F\left(\mathfrak{p}_{K}^{2}\right) \supset \cdots$ is separated and produces in $F\left(\mathfrak{p}_{K}\right)$ the $p$-adic topology (if $i$ is large enough, one of the remarks shows that $\left.p F\left(\mathfrak{p}_{K}^{i}\right)=F\left(\mathfrak{p}_{K}^{i+e}\right)\right)$. According to a well-known lemma in commutative algebra, the finiteness of $F\left(p_{K}\right)$ as a module over $Z_{p}$, follows from the finiteness of $F\left(\mathfrak{p}_{K}\right) / p F\left(\mathfrak{p}_{K}\right)$, a quotient of $F\left(\mathfrak{p}_{K}\right) / F\left(\mathfrak{p}_{K}^{i+e}\right)=F\left(\mathfrak{p}_{K}\right) / p F\left(\mathfrak{p}_{K}^{i}\right)$ for $i$ large enough.

Taking again $i$ large enough so that $F\left(\mathfrak{p}_{K}^{i}\right)$ is torsion free, hence free, its rank is the same as $\operatorname{dim}_{F_{o}}\left(F\left(\mathfrak{p}_{K}^{i}\right) / p F\left(\mathfrak{p}_{K}^{i}\right)\right)=\operatorname{dim}_{F_{p}}\left(F\left(\mathfrak{p}_{K}^{i}\right) / F\left(\mathfrak{p}_{K}^{i+e}\right)\right)$; since $\left(F\left(\mathfrak{p}_{K}^{i}\right): F\left(\mathfrak{p}_{K}^{i+e}\right)\right)=p^{\left[K: Q_{p}\right]}$, the proposition is clear.

Proposition 4. Let $x \in F\left(p_{\bar{K}}\right)$ be a torsion point of order $p^{r}$. Then $v(x) \leq e / \varphi\left(p^{r}\right)=e / p^{r-1}(p-1)$.

Proof. From Proposition 2, it is obvious that for any $x \in F\left(\mathfrak{p}_{\bar{K}}\right)$, $v([p](x)) \geq v(x)$; therefore, if $v(x)>\alpha_{1}, x$ is not a torsion point.

One proves the proposition by induction on $r$. If $x$ is of order $p$, $v(x) \leq \alpha_{1}=\left(e-e_{1}\right) /\left(q_{1}-1\right) \leq e /(p-1)$ (by Lemma 1). If $x$ is of order $p^{r}(r>1)$, then $v(x) \leq \alpha_{1}$ and $v([p](x)) \leq e / p^{r-2}(p-1)$, by
the induction hypothesis; again by Proposition 2,

$$
v(x) \leq \alpha_{1} \Rightarrow v([p](x)) \geq p v(x),
$$

so $v(x) \leq v([p](x)) / p \leq e / p^{r-1}(p-1)$.
Remark. Sometimes, one can be more precise about $v(x)$. If the height of $F$ is $h=1$, the Newton polygon has only one slope and all the points of order $p$ have valuation $e /(p-1)$; in this case, if $x \in F\left(p_{\bar{K}}\right)$ is of order $p^{r}(r \geq 1), v(x)=e / p^{r-1}(p-1)$.

If the height of $F$ is $h=2$, there are two possibilities for the Newton polygon. If there is only one slope, the points $x \in F\left(\mathfrak{p}_{\bar{K}}\right)$ of order $p^{r}$ have exact valuation $v(x)=e / p^{2(r-1)}\left(p^{2}-1\right)$. If there are two slopes, one cannot say more than in Proposition 4.
3. Cassels's theorem. In the following theorem, $E$ denotes an elliptic curve defined over the local field $K$, given by a minimal Weierstrass equation

$$
\begin{equation*}
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \tag{X}
\end{equation*}
$$

( $a_{i} \in A$ ). We write $E(K)$ for the group of points of $E$ with values in $K$; $E(K)$ is an abelian group in the usual way, taking the point at infinity $(0,1,0)$ of $E$ as zero element. Notations are the same as in Tate [6].

Theorem 5. Let $(x, y) \in E(K)$ a torsion point of $E$. If the order of $(x, y)$ is not a power of $p$, then $x, y \in A$. If the order of $(x, y)$ is $p^{r}(r \geq 1)$, then

$$
v(x) \geq-2 e / p^{r-1}(p-1), \quad v(y) \geq-3 e / p^{r-1}(p-1)
$$

Proof. By reducing the equation (X) of $E$ modulo the maximal ideal of $A$, we get the equation of a cubic $\tilde{E}$ defined over the residue field $k$ of $K$. The set $\tilde{E}_{n s}(k)$ of nonsingular points of $\tilde{E}$ with values in $k$ is a group, and one has the exact sequence

$$
0 \rightarrow E_{1}(K) \rightarrow E_{0}(K) \rightarrow \tilde{E}_{n s}(k) \rightarrow 0 ;
$$

here $E_{0}(K)$ denotes the subgroup of the elements of $E(K)$ that reduce to the nonsingular points of $E$, and

$$
E_{1}(K)=0 \cup\{(x, y) \in E(K) \mid v(x) \leq-2, v(y) \leq-3\}
$$

is the kernel of the reduction map.

One knows that there is a formal group law $F$ defined over $A$, and an isomorphism

$$
\begin{aligned}
E_{1}(K) & \sim F\left(p_{K}\right) \\
(x, y) & \rightarrow-x / y
\end{aligned}
$$

Such a formal group $F$ is isomorphic to the additive one if $E$ has bad reduction and the singularity of $\tilde{E}$ is a cusp, and of height one or two in the other cases; in the first case, $F\left(\mathfrak{p}_{K}\right)$ is of course torsion free, and in the other ones, the only possible torsion is $p$-torsion. In these cases, if $z \in F\left(p_{K}\right)$ has order $p^{r}, v(z) \leq e / p^{r-1}(p-1)$ (Proposition $4)$; since we have for the corresponding point $(x, y) \in E_{1}(K)$

$$
\begin{aligned}
& x=z^{-2}-a_{1} z^{-1}-a_{2}-\cdots, \\
& y=-z^{-1} x,
\end{aligned}
$$

we get $v(x)=-2 v(z) \geq-2 e / p^{r-1}(p-1), v(y) \geq-3 e / p^{r-1}(p-1)$.
The theorem is proved taking account of the fact that

$$
E(K)-E_{1}(K)=\{(x, y) \in E(K) \mid x, y \in A\} .
$$

Corollary 6 (Nagell-Lutz). Let $E$ be an elliptic curve defined over $Q$, given by a minimal global Weierstrass equation of the form $(\mathbf{X})$ with the $a_{i}$ rational integers. Then the torsion points of $E(Q)$ have integer coordinates, with one possible exception: there could be a unique point of order two of the form $(a / 4, b / 8)$, with $a, b, \in Z$.

Proof. For each prime number $p$, we denote by $v_{p}$ the $p$-adic valuation of $Q$ (extended to $Q_{p}$ ). Since we have $E(Q) \subset E\left(Q_{p}\right)$, we can apply the last theorem.

If $(x, y) \in E(Q)$ is a torsion point whose order is not a power of any prime number $p$, then $x, y \in Z_{p}$ for each $p$, so $x, y \in Z$.

If the order of $(x, y) \in E(Q)$ is $p^{r}$ ( $p$ prime, $r \geq 1$ ), then for each prime $l \neq p, x, y \in Z_{l}$; moreover

$$
v_{p}(x) \geq-2 / p^{r-1}(p-1), \quad v_{p}(y) \geq-3 / p^{r-1}(p-1)
$$

so $x, y \in Z_{p}$ unless, perhaps, $p^{r}=2,3,4$. If $p^{r}=3$ or 4 , again $x, y \in Z_{p}$, since $x, y \notin Z_{p}$ implies $v_{p}(x) \leq-2, v_{p}(y) \leq-3$.

So we are only left with the possibility of points of order $p^{r}=2$; if $(x, y) \in E(Q)$ is one of those points, $x, y \in Z_{l}$ for each $l \neq 2$ and $\nu_{2}(x)=-2, v_{2}(y)=-3$; then $(x, y)$ should belong to the kernel $E_{l}\left(Q_{2}\right)$ of the reduction of $E$ modulo 2 . Looking at the power series $[2](X)=2 X-a_{1} X^{2}-2 a_{2} X^{3}+\cdots$, we find that, in fact, if the formal
group $F$ associated to the model ( $\mathbf{X}$ ) of the curve $E$ is of height one in $Z_{2}\left(\Longleftrightarrow a_{1} \notin 2 Z\right)$, there exists in $E\left(Q_{2}\right)$ a unique point of order two whose coordinates are ( $a / 4, b / 8$ ), $a, b \in Z_{2}$; such a point may or may not be in $E(Q)$.

Remark. As shown in the proof, one has to study the possibility of a torsion point of order two in $E(Q)$ only when $E$ has ordinary good reduction or split multiplicative reduction at 2 .
4. Appendix. If $P=(x(P), y(P)) \in E(Q)$ is a torsion point of order different from two of the curve $E$ given by the equation (X)where the $a_{i} \in Z$-we know that $x(P), y(P) \in Z$, and so $P$ verifies the hypothesis of the following proposition.

Proposition 7. Let $\Delta$ be the discriminant of the curve $E$. If $P=(x(P), y(P)) \in E(Q)$ is a point with integer coordinates such that $2 P=(x(2 P), y(2 P))$ has also integer coordinates, then $\left(2 y(P)+a_{1} x(P)+a_{3}\right)^{2} \mid \Delta$.

Proof. We only sketch it. We write, as in [6],

$$
\begin{aligned}
b_{2} & =a_{1}^{2}+4 a_{2}, \quad b_{4}=a_{1} a_{3}+2 a_{4}, \quad b_{6}=a_{3}^{2}+4 a_{6}, \\
b_{8} & =a_{1}^{2} a_{6}-a_{1} a_{3} a_{4}+4 a_{2} a_{6}+a_{2} a_{3}^{2}-a_{4}^{2}, \\
\Delta & =-b_{2}^{2} b_{8}-8 b_{4}^{3}-27 b_{6}^{2}+9 b_{2} b_{4} b_{6} .
\end{aligned}
$$

Multiplication by two, $E \xrightarrow{2} E$, is given by a formula

$$
2(x, y)=\left(x_{2}, y_{2}\right)
$$

where $x_{2}=u(x) / f(x)$, with $u(T)=T^{4}-b_{4} T^{2}-2 b_{6} T-b_{8}$ and $f(T)=4 T^{3}+b_{2} T^{2}+2 b_{4} T+b_{6}$; one has $\operatorname{disc}_{3}(f(T))=16 \Delta$, and the relation

$$
16 u(T)-f^{\prime}(T)^{2}+4\left(8 T+b_{2}\right) f(T)=0
$$

One verifies, with the notations of Bourbaki [1] (Ch. IV, §6),

$$
\begin{aligned}
\operatorname{Res}_{4,3}(16 u(T), f(T)) & =\operatorname{Res}_{4,3}\left(f^{\prime}(T)^{2}-4\left(8 T+b_{2}\right) f(T), f(T)\right) \\
& =\operatorname{Res}_{4,3}\left(f^{\prime}(T)^{2}, f(T)\right)=\left[\operatorname{Res}_{2,3}\left(f^{\prime}(T), f(T)\right)\right]^{2} \\
& =16\left(\operatorname{disc}_{3} f(T)\right)^{2}=2^{12} \Delta^{2} ;
\end{aligned}
$$

therefore, $\operatorname{Res}_{4,3}(u(T), f(T))=\Delta^{2}$.

On the other hand

$$
\begin{aligned}
& \operatorname{Res}_{4,3}(u(T), f(T)) \\
& =\left|\begin{array}{ccccccc}
1 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & b_{2} & 4 & 0 & 0 \\
-b_{4} & 0 & 1 & 2 b_{4} & b_{2} & 4 & 0 \\
-2 b_{6} & -b_{4} & 0 & b_{6} & 2 b_{4} & b_{2} & 4 \\
-b_{8} & -2 b_{6} & -b_{4} & 0 & b_{6} & 2 b_{4} & b_{2} \\
0 & -b_{8} & -2 b_{6} & 0 & 0 & b_{6} & 2 b_{4} \\
0 & 0 & -b_{8} & 0 & 0 & 0 & b_{6}
\end{array}\right| \\
& =\left|\begin{array}{ccccccc}
1 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 1 & 0 & b_{2} & 4 & 0 & 0 \\
-b_{4} & 0 & 1 & 2 b_{4} & b_{2} & 4 & 0 \\
-2 b_{6} & -b_{4} & 0 & b_{6} & 2 b_{4} & b_{2} & 4 \\
-b_{8} & -2 b_{6} & -b_{4} & 0 & b_{6} & 2 b_{4} & b_{2} \\
0 & -b_{8} & -2 b_{6} & 0 & 0 & b_{6} & 2 b_{4} \\
T^{2} u(T) & T u(T) & u(T) & T^{3} f(T) & T^{2} f(T) & T f(T) & f(T)
\end{array}\right| \\
& =-48 \Delta T^{2} u(T)-8 b_{2} \Delta T u(T)+\left(b_{2}^{2}-32 b_{4}\right) \Delta u(T)+12 \Delta T^{3} f(T)
\end{aligned}
$$

here we have developed the last determinant by the last row, and made systematic use of the relation $4 b_{8}=b_{2} b_{6}-b_{4}^{2}$.

Therefore,

$$
\begin{aligned}
\Delta= & \left(-48 T^{2}-8 b_{2} T+\left(b_{2}^{2}-32 b_{4}\right)\right) u(T) \\
& +\left(12 T^{3}-b_{2} T^{2}-10 b_{4} T+\left(b_{2} b_{4}-27 b_{6}\right)\right) f(T) .
\end{aligned}
$$

Now, if $P=(x(P), y(P)) \in E(Q)$ and $2 P=(x(2 P), y(2 P))$ have integer coordinates, as $u(x(P))=x(2 P) f(x(P))$, we get

$$
f(x(P)) \mid \Delta .
$$

Since $y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}$ implies

$$
\left(2 y+a_{1} x+a_{3}\right)^{2}=4 x^{3}+b_{2} x^{2}+2 b_{4} x+b_{6}=f(x),
$$

the proposition is proved.

## References

[1] N. Bourbaki, Algèbre, Chapitre 4 á 7. Ed. Masson, 1981.
[2] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc., 41 (1966), 193-291.
[3] A. Frohlich, Formal Groups, Lecture Notes in Math. 74, Springer 1968.
[4] N. Koblitz, p-adic Numbers, p-adic Analysis and Zeta Functions, Graduate Texts in Mathematics 58, Springer 1977.
[5] F. Oort, Elliptic curves: Diophantine torsion solutions and singular j-invariants, Math. Ann., 207, 139-162.
[6] J. Tate, The arithmetic of elliptic curves, Inv. Math., 23 (1974), 179-206.
Received May 16, 1985.
Perlora
Carreño
Asturias, Spain

