ON A THEOREM DUE TO CASSELS

JOSÉ M. SOUTO MENÉNDEZ

Using properties of one-dimensional formal groups, a proof is given of a theorem on the valuations of the torsion points of elliptic curves defined over *p*-adic fields.

1. Introduction. The aim of the present note is to give a proof of Theorem 5, due to Cassels, on the valuations of the torsion points of an elliptic curve defined over a local field K of characteristic zero. Cassels's proof relies on the addition formulas for the Weierstrass \wp and \wp' functions. The one given here follows from the properties of the torsion points of one-dimensional formal groups defined over the ring of integers of K.

The reader could also look at Oort [5] for another approach to Cassels' theorem.

2. Torsion points of formal groups. In the following we denote by K a local field, finite extension of the field Q_p of *p*-adic numbers, with ring of integers A; we assume that the normalized valuation v of K is extended to the algebraic closure \overline{K} of K. We denote by \mathfrak{p}_K (resp. $\mathfrak{p}_{\overline{K}}$) the maximal ideal of A (resp. of the valuation ring of \overline{K}), and by e = v(p) the ramification index of K/Q_P .

Let F be a one-dimensional formal group of finite height $h \ge 1$, defined over A; as usual (see [3]), for each $a \in Z_p$ we denote by $[a](X) \in A[[X]]$ the unique endomorphism of F such that $[a](X) = aX + \cdots$. The group of points $F(\mathfrak{p}_{\overline{K}})$ of F with values in \overline{K} has a structure of a module over Z_p , by means of the operation $a \cdot x = [a](x)$, $a \in Z_p$, $x \in F(\mathfrak{p}_{\overline{K}})$; $F(\mathfrak{p}_K)$ is a sub- Z_p -module of $F(\mathfrak{p}_{\overline{K}})$.

Let $[p](X) = \sum_{i=1}^{\infty} a_i X^i$ $(a_1 = p)$ be the "multiplication by p" in the formal group F; setting $q = p^h$, one has $a_i \in \mathfrak{p}_K$ if $i = 1, \ldots, q - 1$ and $v(a_q) = 0$. We shall be interested in the valuations of the torsion points $x \in F(\mathfrak{p}_{\overline{K}})$. The most convenient thing is to consider the Newton polygon of the series [p](X), that is the lower convex envelope of the points $(i, v(a_i)) \in \mathbb{R}^2$ $(i \ge 1)$.

If $P_0 = (1, e)$, $P_1 = (q_1, e_1), \dots, P_m = (q, 0)$ are the vertices of such a polygon (where $e_i = v(a_{q_i})$), the slopes are the negative of the numbers

 $\alpha_1 = (e - e_1)/(q_1 - 1), \dots, \alpha_m = e_{m-1}/(q_m - q_{m-1}) \quad (\alpha_1 > \alpha_2 > \dots > \alpha_m).$ If $q_i \leq r \leq q_{i+1}$ (for $i = 0, \dots, m-1$), for any $x \in \mathfrak{p}_{\overline{K}}$ one has $v(a_r x^r) \geq \inf(v(a_{q_i} x^{q_i}), v(a_{q_{i+1}} x^{q_{i+1}}))$; moreover, if $r > q_m = q$, for $x \in \mathfrak{p}_{\overline{K}}, v(a_r x^r) > v(a_q x^q)$. Therefore, for any $x \in \mathfrak{p}_{\overline{K}}$ with [p](x) = 0, there exists $i = 0, \dots, m-1$ such that $v(a_{q_i} x^{q_i}) = v(a_{q_{i+1}} x^{q_{i+1}})$, so that $v(x) = \alpha_{i+1}$. Moreover (see Koblitz [4]) the number of roots $x \in \mathfrak{p}_{\overline{K}}$ of the series [p](X), of valuation α_{i+1} , is $q_{i+1} - q_i$.

LEMMA 1. With the above notations, the q_i are powers of p.

Proof. For each i = 1, ..., m, the set

 $\{x \in F(\mathfrak{p}_{\overline{K}}) \mid [p](x) = 0, \ v(x) \ge \alpha_i\}$

is an elementary abelian *p*-group (with the operation given by the formal group law *F*); as its order is $(q_i - q_{i-1}) + \cdots + (q_1 - 1) + 1$, the lemma is obvious.

PROPOSITION 2. For any $x \in \mathfrak{p}_{\overline{K}}$, one has $-if v(x) < \alpha_m$, then v([p](x)) = qv(x), $-if \alpha_{i+1} < v(x) < \alpha_i$, then $v([p](x)) = e_i + q_i v(x)$, $-if \alpha_1 < v(x)$, then v([p](x)) = e + v(x).

Proof. For $x \in F(\mathfrak{p}_{\overline{K}})$ such that $v(x) < \alpha_m$, then for any $r \neq q_m = q$, $v(a_q x^q) < v(a_r x^r)$. In fact, when r > q such a relation is obvious (since $v(a_q) = 0$); when r < q, one may write

$$v(x) < \alpha_m = (v(a_{q_{m-1}}) - v(a_q))/(q - q_{m-1}) < (v(a_r) - v(a_q))/(q - r),$$

hence $v(a_q x^q) < v(a_r x^r)$.

If $\alpha_{i+1} < v(x) < \alpha_i$ (with i = 1, ..., m-1), then for any $r \neq q_i$, one has $v(a_q, x^{q_i}) < v(a_r x^r)$. In fact, for $r > q_i$ this relation comes from

$$v(x) > (v(a_{q_i}) - v(a_{q_{i+1}}))/(q_{i+1} - q_i) \ge (v(a_{q_i}) - v(a_r))/(r - q_i);$$

for $r < q_i$, it comes from

$$v(x) < (v(a_{q_{i-1}}) - v(a_{q_i}))/(q_i - q_{i-1}) \le (v(a_r) - v(a_{q_i}))/(q_i - r).$$

The case $v(x) > \alpha_1$ is discussed similarly.

REMARKS. (1) If $v(x) = \alpha_i$, $[p](x) \neq 0$ (for i = 1, ..., m), arguing as above, one gets $v([p](x)) \ge e_i + q_i \alpha_i$.

(2) For $i > \alpha_1, x \to [p](x)$ induces an isomorphism $F(\mathfrak{p}_K^i) \to F(\mathfrak{p}_K^{i+e})$ (of course, we denote by $F(\mathfrak{p}_K^r)$ the set \mathfrak{p}_K^r with the group

structure given by the group law F). The injectivity comes from the fact that in $\mathfrak{p}_{\overline{K}}$ the zeros of [p](X) have valuation $\leq \alpha_1$. To show the surjectivity, let Π be a uniformizing parameter of K; we have to see that if $y \in \mathfrak{p}_K$ is such that $v(y) = i + e > \alpha_1 + e$, there is $x = \Pi^{\alpha_1} t$ $(t \in A)$ such that $[p](\Pi^{\alpha_1} t) = y$; now, the series

$$\frac{1}{\prod^{\alpha_1+e}}(-y+p\Pi^{\alpha_1}T+a_2\Pi^{2\alpha_1}T^2+\cdots)$$

has coefficients in A and Weierstrass degree one, so the result follows from the Preparation Theorem for power series.

(3) If F is the multiplicative group, the Newton polygon of [p](X) only has one slope. Proposition 2 gives then the well-known effect of "raising to the *p*th power" in the group of principal units of the local field K (or of any of its finite extensions).

PROPOSITION 3. $F(\mathfrak{p}_K)$ is a \mathbb{Z}_p -module of finite type, whose rank modulo torsion is $[K: \mathbb{Q}_p]$. The torsion subgroup is a finite p-group.

Proof. For each $i \ge 1$, let us denote, as above, by $F(\mathfrak{p}_K^i)$ the abelian group on the set \mathfrak{p}_K^i with the operation given by $(x, y) \to F(x, y)$; of course, $F(\mathfrak{p}_K^i)$ is a \mathbb{Z}_p -submodule of $F(\mathfrak{p}_K)$. It is trivial that $\mathfrak{p}_K^i/\mathfrak{p}_K^{i+1} \simeq F(\mathfrak{p}_K^i)/F(\mathfrak{p}_K^{i+1})$.

The filtration $F(\mathfrak{p}_K) \supset F(\mathfrak{p}_K^2) \supset \cdots$ is separated and produces in $F(\mathfrak{p}_K)$ the *p*-adic topology (if *i* is large enough, one of the remarks shows that $pF(\mathfrak{p}_K^i) = F(\mathfrak{p}_K^{i+e})$). According to a well-known lemma in commutative algebra, the finiteness of $F(\mathfrak{p}_K)$ as a module over Z_p , follows from the finiteness of $F(\mathfrak{p}_K)/pF(\mathfrak{p}_K)$, a quotient of $F(\mathfrak{p}_K)/F(\mathfrak{p}_K^{i+e}) = F(\mathfrak{p}_K)/pF(\mathfrak{p}_K^i)$ for *i* large enough.

Taking again *i* large enough so that $F(\mathfrak{p}_{K}^{i})$ is torsion free, hence free, its rank is the same as $\dim_{F_{p}}(F(\mathfrak{p}_{K}^{i})/pF(\mathfrak{p}_{K}^{i})) = \dim_{F_{p}}(F(\mathfrak{p}_{K}^{i})/F(\mathfrak{p}_{K}^{i+e}));$ since $(F(\mathfrak{p}_{K}^{i}):F(\mathfrak{p}_{K}^{i+e})) = p^{[K:Q_{p}]}$, the proposition is clear.

PROPOSITION 4. Let $x \in F(\mathfrak{p}_{\overline{K}})$ be a torsion point of order p^r . Then $v(x) \leq e/\varphi(p^r) = e/p^{r-1}(p-1)$.

Proof. From Proposition 2, it is obvious that for any $x \in F(\mathfrak{p}_{\overline{K}})$, $v([p](x)) \ge v(x)$; therefore, if $v(x) > \alpha_1$, x is not a torsion point.

One proves the proposition by induction on r. If x is of order p, $v(x) \le \alpha_1 = (e - e_1)/(q_1 - 1) \le e/(p - 1)$ (by Lemma 1). If x is of order p^r (r > 1), then $v(x) \le \alpha_1$ and $v([p](x)) \le e/p^{r-2}(p - 1)$, by the induction hypothesis; again by Proposition 2,

$$v(x) \le \alpha_1 \Rightarrow v([p](x)) \ge pv(x),$$

so $v(x) \le v([p](x))/p \le e/p^{r-1}(p-1)$.

REMARK. Sometimes, one can be more precise about v(x). If the height of F is h = 1, the Newton polygon has only one slope and all the points of order p have valuation e/(p-1); in this case, if $x \in F(\mathfrak{p}_{\overline{K}})$ is of order p^r $(r \ge 1)$, $v(x) = e/p^{r-1}(p-1)$.

If the height of F is h = 2, there are two possibilities for the Newton polygon. If there is only one slope, the points $x \in F(\mathfrak{p}_{\overline{K}})$ of order p^r have exact valuation $v(x) = e/p^{2(r-1)}(p^2-1)$. If there are two slopes, one cannot say more than in Proposition 4.

3. Cassels's theorem. In the following theorem, E denotes an elliptic curve defined over the local field K, given by a minimal Weierstrass equation

(X)
$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

 $(a_i \in A)$. We write E(K) for the group of points of E with values in K; E(K) is an abelian group in the usual way, taking the point at infinity (0,1,0) of E as zero element. Notations are the same as in Tate [6].

THEOREM 5. Let $(x, y) \in E(K)$ a torsion point of E. If the order of (x, y) is not a power of p, then $x, y \in A$. If the order of (x, y) is p^r $(r \ge 1)$, then

$$v(x) \ge -2e/p^{r-1}(p-1), \quad v(y) \ge -3e/p^{r-1}(p-1).$$

Proof. By reducing the equation (X) of E modulo the maximal ideal of A, we get the equation of a cubic \tilde{E} defined over the residue field k of K. The set $\tilde{E}_{ns}(k)$ of nonsingular points of \tilde{E} with values in k is a group, and one has the exact sequence

$$0 \to E_1(K) \to E_0(K) \to \tilde{E}_{ns}(k) \to 0;$$

here $E_0(K)$ denotes the subgroup of the elements of E(K) that reduce to the nonsingular points of E, and

$$E_1(K) = 0 \cup \{(x, y) \in E(K) \mid v(x) \le -2, \ v(y) \le -3\}$$

is the kernel of the reduction map.

One knows that there is a formal group law F defined over A, and an isomorphism $E(K) \stackrel{\sim}{\longrightarrow} E(n)$

$$E_1(K) \rightarrow F(\mathfrak{p}_K),$$

$$(x, y) \rightarrow -x/y.$$

Such a formal group F is isomorphic to the additive one if E has bad reduction and the singularity of \tilde{E} is a cusp, and of height one or two in the other cases; in the first case, $F(\mathfrak{p}_K)$ is of course torsion free, and in the other ones, the only possible torsion is p-torsion. In these cases, if $z \in F(\mathfrak{p}_K)$ has order p^r , $v(z) \leq e/p^{r-1}(p-1)$ (Proposition 4); since we have for the corresponding point $(x, y) \in E_1(K)$

$$x = z^{-2} - a_1 z^{-1} - a_2 - \cdots,$$

$$y = -z^{-1} x,$$

we get $v(x) = -2v(z) \ge -2e/p^{r-1}(p-1), v(y) \ge -3e/p^{r-1}(p-1)$. The theorem is proved taking account of the fact that

$$E(K) - E_1(K) = \{(x, y) \in E(K) \mid x, y \in A\}.$$

COROLLARY 6 (Nagell-Lutz). Let E be an elliptic curve defined over Q, given by a minimal global Weierstrass equation of the form (X) with the a_i rational integers. Then the torsion points of E(Q) have integer coordinates, with one possible exception: there could be a unique point of order two of the form (a/4, b/8), with $a, b, \in Z$.

Proof. For each prime number p, we denote by v_p the p-adic valuation of Q (extended to Q_p). Since we have $E(Q) \subset E(Q_p)$, we can apply the last theorem.

If $(x, y) \in E(Q)$ is a torsion point whose order is not a power of any prime number p, then $x, y \in Z_p$ for each p, so $x, y \in Z$.

If the order of $(x, y) \in E(Q)$ is p^r (p prime, $r \ge 1$), then for each prime $l \ne p, x, y \in Z_l$; moreover

$$v_p(x) \ge -2/p^{r-1}(p-1), \quad v_p(y) \ge -3/p^{r-1}(p-1),$$

so $x, y \in Z_p$ unless, perhaps, $p^r = 2, 3, 4$. If $p^r = 3$ or 4, again $x, y \in Z_p$, since $x, y \notin Z_p$ implies $v_p(x) \le -2$, $v_p(y) \le -3$.

So we are only left with the possibility of points of order $p^r = 2$; if $(x, y) \in E(Q)$ is one of those points, $x, y \in Z_l$ for each $l \neq 2$ and $\nu_2(x) = -2$, $\nu_2(y) = -3$; then (x, y) should belong to the kernel $E_l(Q_2)$ of the reduction of E modulo 2. Looking at the power series $[2](X) = 2X - a_1X^2 - 2a_2X^3 + \cdots$, we find that, in fact, if the formal group F associated to the model (X) of the curve E is of height one in $Z_2 \iff a_1 \notin 2Z$, there exists in $E(Q_2)$ a unique point of order two whose coordinates are (a/4, b/8), $a, b \in Z_2$; such a point may or may not be in E(Q).

REMARK. As shown in the proof, one has to study the possibility of a torsion point of order two in E(Q) only when E has ordinary good reduction or split multiplicative reduction at 2.

4. Appendix. If $P = (x(P), y(P)) \in E(Q)$ is a torsion point of order different from two of the curve E given by the equation (X)—where the $a_i \in Z$ —we know that $x(P), y(P) \in Z$, and so P verifies the hypothesis of the following proposition.

PROPOSITION 7. Let Δ be the discriminant of the curve E. If $P = (x(P), y(P)) \in E(Q)$ is a point with integer coordinates such that 2P = (x(2P), y(2P)) has also integer coordinates, then $(2y(P) + a_1x(P) + a_3)^2|\Delta$.

Proof. We only sketch it. We write, as in [6],

$$b_2 \doteq a_1^2 + 4a_2, \quad b_4 = a_1a_3 + 2a_4, \quad b_6 = a_3^2 + 4a_6, \\ b_8 = a_1^2a_6 - a_1a_3a_4 + 4a_2a_6 + a_2a_3^2 - a_4^2, \\ \Delta = -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6.$$

Multiplication by two, $E \xrightarrow{2} E$, is given by a formula

 $2(x, y) = (x_2, y_2)$

where $x_2 = u(x)/f(x)$, with $u(T) = T^4 - b_4T^2 - 2b_6T - b_8$ and $f(T) = 4T^3 + b_2T^2 + 2b_4T + b_6$; one has disc₃ $(f(T)) = 16\Delta$, and the relation

$$16u(T) - f'(T)^2 + 4(8T + b_2)f(T) = 0.$$

One verifies, with the notations of Bourbaki [1] (Ch. IV, §6),

$$\operatorname{Res}_{4,3}(16u(T), f(T)) = \operatorname{Res}_{4,3}(f'(T)^2 - 4(8T + b_2)f(T), f(T))$$

= $\operatorname{Res}_{4,3}(f'(T)^2, f(T)) = [\operatorname{Res}_{2,3}(f'(T), f(T))]^2$
= $16(\operatorname{disc}_3 f(T))^2 = 2^{12}\Delta^2;$

therefore, $\operatorname{Res}_{4,3}(u(T), f(T)) = \Delta^2$.

On the other hand

$\text{Res}_{4,3}(u(T), f(T))$									
	1	0	0	4	0	0	0		
	0	1	0	b_2	4	0	0		
	$-b_{4}$	0	1	2 <i>b</i> 4	b_2	4	0		
=	$-2b_{6}$	$-b_{4}$	0	b_6	$2b_4$	<i>b</i> ₂	4		
	$-b_{8}$	$-2b_{6}$	$-b_4$	0	b_6	$2b_4$	<i>b</i> ₂		
	0	$-b_{8}$	$-2b_{6}$	0	0	b_6	$2b_4$		
	0	0	$-b_{8}$	0	0	0	b_6		
ļ	1	0	0		4		0	0	0
	0	1	0		b_2		4	0	0
	- <i>b</i> ₄	0	1		$2b_4$		b ₂	4	0
=	$-2b_{6}$	$-b_{4}$	0	b_6		$2b_4$		b_2	4
	$-b_{8}$	$-2b_{6}$	$-b_{4}$		0	i	b ₆	$2b_4$	<i>b</i> ₂
	0	$-b_{8}$	$-2b_{6}$	ł	0		0	b_6	2 <i>b</i> ₄
	$T^2u(T)$	Tu(T)	u(T)	T^{2}	$^{3}f(T)$	T^2 .	f(T)	Tf(T)	f(T)

$$= -48\Delta T^{2}u(T) - 8b_{2}\Delta Tu(T) + (b_{2}^{2} - 32b_{4})\Delta u(T) + 12\Delta T^{3}f(T) - b_{2}\Delta T^{2}f(T) - 10b_{4}\Delta Tf(T) + (b_{2}b_{4} - 27b_{6})\Delta f(T);$$

here we have developed the last determinant by the last row, and made systematic use of the relation $4b_8 = b_2b_6 - b_4^2$.

Therefore,

$$\Delta = (-48T^2 - 8b_2T + (b_2^2 - 32b_4))u(T) + (12T^3 - b_2T^2 - 10b_4T + (b_2b_4 - 27b_6))f(T).$$

Now, if $P = (x(P), y(P)) \in E(Q)$ and 2P = (x(2P), y(2P)) have integer coordinates, as u(x(P)) = x(2P)f(x(P)), we get

$$f(\mathbf{x}(\mathbf{P}))|\Delta$$
.

Since $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ implies

$$(2y + a_1x + a_3)^2 = 4x^3 + b_2x^2 + 2b_4x + b_6 = f(x),$$

the proposition is proved.

References

- [1] N. Bourbaki, Algèbre, Chapitre 4 á 7. Ed. Masson, 1981.
- [2] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc., 41 (1966), 193-291.
- [3] A. Frohlich, Formal Groups, Lecture Notes in Math. 74, Springer 1968.
- [4] N. Koblitz, *p-adic Numbers, p-adic Analysis and Zeta Functions*, Graduate Texts in Mathematics 58, Springer 1977.
- [5] F. Oort, Elliptic curves: Diophantine torsion solutions and singular j-invariants, Math. Ann., 207, 139–162.
- [6] J. Tate, The arithmetic of elliptic curves, Inv. Math., 23 (1974), 179-206.

Received May 16, 1985.

Perlora Carreño Asturias, Spain