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PROPERTIES OF UPPERS TO ZERO IN R[x]

ELOISE HAMANN, EVAN HOUSTON AND JON L. JOHNSON

If k is a field, k[x] is a principal ideal domain and the ideal struc-
ture of k[x] is well understood. For example, a nonzero ideal is prime
if and only if its generator is irreducible. If R is an integral domain
with quotient field k, it is natural to ask if the set of ideals / of
R[x] such that Ik[x] is proper can be equally well described. Since
such ideals can contain no nonzero elements of R, one hopes that the
structure will be dominated by the structure of k[x]. While such ide-
als need not be principal, we define a notion of almost principal which
does hold for a large class of rings R. We study this class and give
examples where ideals are not almost principal. The almost principal
property is related to the following questions:

(1) When is (ax - b)k[x] n R[x] generated by linear elements?
(Ratliff)

(2) When is (/(*))*[*] n R[x] divisorial? (Houston) and
(3) When is an ideal / , which is its own extension-contraction

from R[x] to R[[x]] and back, equal to cl(7) in the x-adic topology?
(Arnold)

We now list the main concepts we shall use. Recall that R denotes
an integral domain and k denotes its quotient field.

DEFINITION 1. An ideal / of R[x] is called almost principal if there
exists an f(x)el of positive degree and a nonzero s eR such that

si c (/(*))*[*].

It is easy to see that for an ideal / of the form / = Ik[x] n R[x], I
almost principal is equivalent to the existence of a polynomial f{x) e
I and a nonzero s eR such that for each h(x) e k[x] with h(x)f(x) e
R[x], we have sh(x) e R[x]. (The element s is independent of h{x).)
This characterization of almost principal for contracted ideals / is the
basis for our proofs that / is almost principal. In fact, to prove that
a noncontracted ideal / is almost principal, the usual approach is to
show that / = Jk[x] n R[x] D J is almost principal. If / is almost
principal, then / is almost principal (f(x) e I may be chosen as an
element of/ and sJ c si c (f(x))R[x]).

DEFINITION 2. R[x] is called an almost principal ideal domain if all
ideals of R[x] with proper extensions to k[x] are almost principal.
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By the remarks following Definition 1, R[x] is an almost principal
ideal domain if and only if all the contracted ideals / = (f(x)k[x]) n
R[x] are almost principal.

We recall the following definitions for the reader.

DEFINITION 3. The content ideal of f(x) e R[x], denoted c(f(x)),
is the ideal of R generated by the coefficients of / .

It is well known that the content operator satisfies the content for-
mula: There exists an integer m such that

c(f(x))m+lc(g(x)) = c(f(x)rc(f(x)g(x)). [G, Theorem 28.1]

DEFINITION 4. For a fractional ideal / of R, set J~l =[R: J]k and
Jv = (J"1)"1. The fractional ideal / of R is divisorial {or a v-ideal) if
I = IV.

DEFINITION 5. A nonzero ideal / of R[x] is an upper to zero if
/ n R = 0 and / is prime.

Note that all uppers to zero extend to proper ideals of k[x].
We use the following notation throughout the remainder of the pa-

per: R is an integral domain with quotient field k, f(x) is a polynomial
of positive degree in R[x], and / = f(x)k[x] n R[x]. We repeat the
assumption on / in some of the main results for emphasis.

1. Almost principal ideals and related questions. The following the-
orem is known [J, Proposition 3.3],

THEOREM 1.1. IfR is either Noetherian or integrally closed (R = ~R),
then R[x] is an almost principal ideal domain.

We now present some further conditions for an integral domain
R[x] to be an almost principal ideal domain.

THEOREM 1.2. If the conductor of R in the integral closure of R
(denoted by ~R), is nonzero, then R[x] is an almost principal ideal do-
main.

Proof. Let / = f{x)k[x]nR[x], h{x) e k[x], f(x)h(x) e R[x], and
an the leading coefficient of f(x). Then (l/an)f(x) is monic in k[x]
so (l/an)f(x)anh(x) e R[x]. By [G, Theorem 10.4], anh{x) is in the
integral closure of R[x]. Since the conductor C is nonzero, then there
exists a t € C so that tR C R. Thus tanh(x) e R[x] and the proof is
complete.
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COROLLARY 1.3. IfR is a finite R-module then R[x] is an almost
principal ideal domain.

PROPOSITION 1.4. Let J be an ideal in R[x] generated by elements
of bounded degree and whose extension to k[x] is proper. Then J is
almost principal

Proof. Let

Jk[x] = f(x)k[x]f and f(x) = x\anxn + • • • + axx + a0) e J,

n + t > 0, #0 nonzero. Assume that / can be generated by elements
(possibly an infinite number of elements) of degree <t + n + m. We
claim sJ C (f(x)) for s = (ao)m + 1 . To see this let h{x) = f{x)g{x) e
J with deg# < m, g(x) e k[x]. Writing g(x) = bmxm + -- - + b0, / ( x ) -
g(x) E R[x] implies that

{ a n x n + • • • + a x x + a Q ) ( b m x m + --- + b o ) e R[x].

The coefficient of xl for / < m is

i=0

We claim that al§lb\ eR. We proceed by induction noting that a§b$
R and assuming that a^b^ eR for k< I. Since C\ G i?, then

a0cl =

For j < I, a^lbj e R by the inductive hypothesis and so atal
obj e R

for i + j = I. Thus the term aoal
ob[ = al^xbi e i?.

Letting / = m5 we have (al
0

+l)(bmxm + - • -+b0) = (al
Q

+l)g(x) e R[x].
Thus / is almost principal.

To establish further results, we prove the following lemmas.

LEMMA 1.5. Let f\{x) and fi{x) be polynomials in R[x], f(x) =
f\(x)f2(x)f and Ij = fj(x)k[x] n R[x] for j = 1,2. Then I is almost
principal if and only ifl\ and h are almost principal.

Proof. Assume that / is almost principal. If h(x)f\(x) e R[x], then
h(x)Mx)f2(x) e R[x] since f2(x) e * [ * ] . Since fi(x)f2(x) = f(x)
then h(x)f(x) e R[x]. By assumption there exists a nonzero s E R
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so that sh(x) e R[x] for all such h(x). Hence I\ is almost principal.
Similarly, I2 is almost principal.

Assume that I\ and I2 are almost principal. Let h{x) e k[x] so that
h(x)f(x) e R[x]. Since f{x) = /i(*)/2(x), then {h{x)fx{x))f2{x) e
R[x]. By assumption there exist nonzero S\ and s2 in i? so that for all
gi(x),g2{x)mk[x]withgl(x)fi(x)2Lndg2(x)f2(x)mR[x], sxgi(x) E
R[x] ands2g2(x) € R[x]. Thuss2(h(x)fi(x)) e R[x] andsosis2(h(x))
e R[x]. For s = S\S2, we have sh(x) e R[x] for all h(x) e k[x] with
h(x)f(x) in R[x].

LEMMA 1.6. If I is almost principal and I c I\ = f\ (x)k[x] n R[x],
then 11 is almost principal

Proof. Since f(x) e I c I\, there exists an l(x) e k[x] such that
f{x) = l{x)fi(x). For s0 e R with sol(x) e R[x],(f(x))k[x] =
(sof(x))k[x]. We may therefore assume that l(x) e R[x]. By Lemma
1.5, / almost principal implies that I\ is almost principal.

The contracted ideal / = f{x)k[x] n R[x] is an upper to zero pre-
cisely when / is irreducible in k[x]. By Lemma 1.5 and earlier re-
marks, it is clear that R[x] is an almost principal ideal domain if and
only if all the uppers to zero are almost principal.

The following results relate the almost principal property to content
ideals of polynomials which occur in / .

LEMMA 1.7. If g(x) e R[x] and the content ofg satisfies

c(g)-l=R,
then for any a ^ 0 in R, {a, g{x))v = R[x],

The lemma follows immediately from [H, Lemma 4.4].

PROPOSITION 1.8. Let I = [f{x)k[x]) n R[x] for some f{x) irre-
ducible in k[x]. If there exists a g e I with c(g)~l = R, then I is
almost principal

Proof. With the hypothesis as given, we may write g{x) = f(x)l(x)
and pick d ^ 0 in R so that dl(x) e R[x]. Let f(x)h(x) be an arbitrary
element in / . For some a ^ 0 in R (dependent upon h{x)) ah{x) e
R[x]. Since d e R, adh(x) e R[x] as well. But g(x)dh(x) =
dl(x)h(x)f(x) e R[x]. Thus we have

(afg(x))dh(x)f(x)c(f(x))
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and
(a,g(x))vdh(x)f(x)c(f(x)).

Now,by Lemma 1.7, (a, g(x))v = ((a, g(x))-1)-1 = R[x]9 so dh(x)f(x)
is in the ideal (f(x)). It follows that dh(x) e R[x] and that / is almost
principal.

PROPOSITION 1.9 (ARNOLD). IfJ is an ideal ofR[x] such that Jk[x]
is proper and J contains an element l{x) such that f)™=l c{l{x))n ^ 0,
then J is almost principal

Proof. We prove that the contracted ideal I\ = Jk[x]nR[x] is almost
principal since this implies that / is almost principal. By Lemma 1.6,
it suffices to prove that / = l(x)k[x] n R[x] is almost principal. Let
g(x) E /. Then g(x) = h(x)l(x) for some h(x) G k[x], and by the
content formula there exists an integer m with

c{l{x))m+lc{h{x)) = c{l(x))mc(g(x)) c i t

Thus if s e CM(*))"> then sh(x) e R[x] for all h(x) with h(x)l(x) e
k[x]. It follows that / whence / is almost principal.

Let / be as usual f{x)k[x] n R[x] and define

C = [f(x)R[x]:I]R[x].

Observe that the ideal / is almost principal if and only if C n R is
nonzero. The following claims provide information about C and the
closely related ideal 7"1. (The proofs of Claims 1.10 through 1.12
actually require only that Ik[x] = f(x)k[x] for some f(x) in 7.)

Claim 1.10.

j - 1 = C/f(x) (or equivalents C = f(x)rl).

Proof. Since I~lI c R[x], then f(x)rll c f(x)R[x]. The polyno-
mial f(x) is in / and hence f(x)I~l is in R[x]. From our definition
of C we see that f(x)I~l c C.

Let t e C, then tl c (/) so th(x)f(x) e (f(x)) for all h(x)f(x)
in / . Thus (t/f(x))I c i?[jc] and so (*//(*)) e Z"1. It follows that

1.11. If/-" = (/-1)" for each «, then 7i[JC](/) = i?[C//(x)],
where T denotes the ideal transform.
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Proof. We use the definition of the ideal transform

n=\

The claim follows easily since I~n = (7"1)", and I~l = C/f(x).

Claim 1.12. If / is irreducible in k[x] and C contains an element
which is not a multiple of f(x) in k[x], then C contains a nonzero
constant and hence / is almost principal.

Proof. Let g(x) be an element of C which is not a multiple of
f(x). The polynomials f{x) and g(x) are relatively prime in k[x],
hence there exist elements h\(x) and hi{x) in k[x] such that

Let 0 / s e R such that shx{x), sh2(x) e R[x], then

s = f(x)sh{(x) + g(x)sh2(x).

Since g(x) e C, f(x) E C, and sh\(x) and sh2(x) are in i?[x], then
seC.

Claim 1.13. If /(x) is irreducible in k[x] and / is not almost prin-
cipal, then C c /.

Proof. Since / is not almost principal, Claim 1.12 implies that each
element of C is a multiple of f(x) and hence in /.

LEMMA 1.14. J"1 n k[x] = [/: / ] .

Proof Clearly [/: /] c 7"1 n k[x]. Suppose h(x) e I'1 n k[x].
Then h(x)I c R[x] and A(x)7 c h(x)f{x)k[x] c /fc[jc]. Thus /z/ c 7
because of the assumption that / = f(x)k[x] n

The results 1.8, 1.12, and 1.13 give information about uppers to
zero since f(x) was assumed to be irreducible in k[x]. Under the
assumption that / is an upper to zero, we now obtain a number of
conditions in terms of/"1 and [/: /] equivalent to the almost principal
property.
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PROPOSITION 1.15. The following are equivalent for I an upper to
zero with I = f(x)k[x] n R[x].

(1) I is almost principal.
(2) I-*k[x] = (l/f)k[x] (or Ck[x] = k[x]).
(3) 7"1 £ k[x].
(4) 7"1 is not a ring.
(5) J-V [/:/].
(6) There exists a g{x) e R[x]\I with g(x)I c f(x)R[x].

Proof. (1) =• (2) That I~lk[x] c (l//)fc[jc] is clear. Since / is
almost principal, si C (/) for some nonzero s in R. Then s1// e
7"1 which implies that 1 / / G /"

(2) => (3) We may write 1 / / = J2?=i uihi w i t h «/ e r~l a n d */ €
]. There exists a nonzero 5 e R so that JA/(*) E i?[x] for each i.

Then s/f = E ii/jA/ el~l, but 5 / / £ fc[x].

(3) =• (4) Choose u e I~l\k[x]. We write u = g{x)/f(x)9 where
g(x) e JR[JC]\/. The element u2 & 7"1 since u2f = .f2//, / is irre-
ducible and g/f & k[x]. Hence 7"1 is not closed under multiplication.

(4) => (5) Since 7"1 is not a ring, 7"1 cannot equal [7: / ] .

(5) => (6) Let u e 7~1\[7: 7]. Then uf e R[x], and so there exists
a g(x) e R[x] with u = g/f. Hence g(jc)7 c ( /) . By Lemma 1.14,
u & k[x] so g(x) & 7.

(6) => (1) Follows immediately from Claim 1.12.

If 7 is principal (7 = fR[x]), then [7: 7] is easy to find. In fact, [7: 7]
determines whether 7 is principal in R[x]. The following proposition
shows this and a bit more.

PROPOSITION 1.16. [ 7 : 7 ] ^ R[x] if and only if there exists a g(x) e
I\(f) with g(x)I c (/).

Proof Suppose g(x) = f(x)h(x) e I\f(x)R[x] with g(x)I c
( / ( J C ) ) . T h e n h i c R[x]. S i n c e h i c / J t [ j c ] a l s o , w e h a v e W e /
with h & R[x]. Conversely, if he [I: I]\R[x], then g = fh e 7 \ ( / )
with gl C (/) .

We now wish to relate the almost principal property to questions
(2) and (3) mentioned in the introduction. We need two preliminary
lemmas, both from unpublished work of Arnold.
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LEMMA 1.17. Let R be a domain, I = f(x)k[x] n R[x], then (/) =
(f)ec if and only if I - Iec, where ec means extend to R[[x]] and
contract to R[x].

Proof If 7 = Iec, then {f)ec c Iec = / c f(x)k[x]. Thus

(f)ec c f(x)k[x] n /(*)*[[*]] = /(*)*[*] = (/).

Conversely, suppose that (/) = (f)ec. If g E Iec, then g = gxh\ +
1- £«^« with &• E 7, and hi E R[[x]] for / = 1, • • • , n. There exists

a nonzero a e R with a& E (/) for all i. Thus ag = agi/zi H h
agnK e fR[[x]] n i?[x] = (/)^c. It follows that ag e (/), whence
# € /&[.*] n R[x] = / , as desired.

LEMMA 1.18. (f)ec = cl(/). (Here "cl" rf^oto ctowr^ I/I the x-adic
topology, so cl(/) = n £ i

^ ^ e ( / ) « , then ^ = f(x)(b0 + bxx + ••-)tbi e R for
i = 1,2,.... Let ^ = 60 + " - + *«-i^""1 a n d ^ = 6n + 6w+iX + •••.
Then we write g = /gw + xnfg'n. Since # - /gw E i?[x], we must have
fg'neR[x]. Hence ^ E cl(/).

For the other inclusion we may assume / (0) ^ 0. Let A E cl(/). For
each n = 0 ,1 ,2 , . . . , write A = fhn + xnln, where A,,, /„ E i?[x]. For
m > n we have fhn+xnln = fhm+xmlm, so that f(hn-hm) E x"i?[x].
Since /(0) / 0, this gives hn - hm e xnR[x]. Therefore, all hm for
m> n, have the same coefficient of x". Denote that coefficient by an.
It is then straightforward to show that h(x) = f{x)(ao + a\X H ) E

(f)ec-
THEOREM 1.19. Let R be an integral domain with quotient field

k, I = (f(x)k[x])nR[x] an upper to zero in R[x]f then (1) => (2) => (3)
where

(1) I is almost principal
(2) / is divisorial
(3) / = Iec implies I = cl(7).

Proof. The proof that we give for (2) => (3) is due to Arnold.

(1) => (2) Assume that / is almost principal, then there exists a
nonzero s e R so that si c f(x)R[x]. With si C / (

*(/)„ = (5/), c (/)„ = (/) c /.

Thus Iv C / and 7 is divisorial.
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(2) =>• (3) Assume that / is divisorial. Let u(x) G 7"1 with u(x) G
k(x). Then u(x)f(x) G R[x] and so we may write u(x) = h(x)/f(x)
for some h(x) G R[X]. For any g(x) G / ,

h{x)g{x) = (/(*)«(*))*(*) = (u(x)g(x))f(x) e (/).

Thus /z(x)/ C ( / ) . From the preceding lemmas it follows that

h(x)c\(I) c cl(/) = (/) .

Hence u(x)c\(I) c 7?[JC]. Thus

7-^1(7) CR[x].

We have
cl(7) C Iv = I.

2. Examples and counterexamples. In this section we present ex-
amples of ideals which are not almost principal, not divisorial, and
do not satisfy (3) of Theorem 1.19. We show that condition (3) of
Theorem 1.19 does not imply (2). All the examples involve a linear
f(x), and this case is thoroughly discussed.

Arnold's Example. Let 7? = F[t, {ty2"}™=0] and f(x) = tyx-t for
F a field. Then the ideal 7 = (f(x)k[x])nk[x] is not almost principal,
and satisfies neither (2) nor (3) of Theorem 1.19.

To show that Arnold's Example is not almost principal, we show a
more general class of polynomials in certain domains lead to ideals
which are not almost principal. We begin with a definition.

DEFINITION. Let 7? be a domain with quotient field k. An element
t G k is spotty over R (or just plain spotty) if f\ZdR: tK] ^ ° f o r

some infinite subset of integers {kt}, but f l ^ i [ ^ : ' ' ] = 0.
Recall that an element t in the quotient field k of an integral domain

7? is almost integral over 7? if f | £ i [ ^ : ' 'I + 0- T h u s t almost integral
over 7? implies that t is not spotty over 7?.

THEOREM 2.1. Let c and d be elements ofR with f(x) = ex - d.
Ify = c/d is spotty over R, then I = (f(x)k[x]) n R[x] is not almost
principal, not divisorial, and I = Iec, but I / cl(7).

By Theorem 1.19, it suffices to show that 7 = Iec with 7 ^ cl(7).
We need the following lemma from unpublished work of Arnold.
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LEMMA 2.2. Ify e k is not almost integral over R, then l{x) = yx—1
satisfies (I) = (l)ec.

Proo/. Let g = Ih e R[x], h e R[[x]], and write h{x) = a0 + axx +
• • •. Let n be the degree of g. We have

a w y - a w + i = 0 ,

an+\y -an+2 = 0,

which implies that any
k eR for all k. Hence an = 0 and an+t = 0 for

all i. Thus g e (/).

Proof of Theorem 2.1. Since 3; = c/d, note that(cx — d)k[x] =
(yx - l)fc[x], so by Lemmas 1.17 and 2.2,1 = Iec. However, if s e R
andsyki ei?, thensyk txk i-s = s(yx-l)(yki~lxki~l+' -+1) el. Thus
5 = ~-(syk'Xk' -s)+ syk'xki e I + xk'R[x]. It follows that s e cl(/)\ / .

The elements ty and t in Arnold's Example satisfy the hypothesis
of Theorem 2.1 since ty/t = y is spotty over R. For linear / ( x )
it is natural to conjecture that the spotty condition is necessary to
construct a bad example. However, if (ex - d)k[x] n R[x] = / is not
almost principal, it does not follow that c/d is spotty, as the following
example illustrates.

Example 2.3. Let R = F[{xi}f=v {x/yOSiL w here i7 is any field
and i? C /^[{x/},};] with y,x\,xli... independent indeterminates
over F. Set c = x\y and d = xx with / = (ex - d)k[x] n i?[x].
It is easily verified that y = c/rf is not spotty. We show that / is not
almost principal. Let

Then (ex - d)hn(x) is in R[x] so it suffices to show that no nonzero
element s of R multiplies all hn(x) into R[x]. First note that a
monomial x[lx£• • • xl

n
nyj in F[y,xi,X2,--] is in R if and only if

j = i\ +2if
2-i h ni'n9 where 0 < /{. < ir for r = 1 , . . . , n. Sup-

pose 5/ C (ex - d)k[x] n R[x] = (^(yx - l)i?[x]. Then since

xnynxn -xn = (yx - l)(xnyn-lxn~l + ... + xn)eI,

we have s(xnyn~lxn~l H— +xn) e R[x], so sxnyl e R for each n with
1 < n. In particular, ^X2mj^w G i? for all m. We may assume that s is a
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monomial in F[y, X\, x2 • • • ], and write s = x\l • • • xl
n

nyj. Since s e R,
we have j = i\ +2if

2-\ \-ni'n as above. Choose m > i\ +2i2-\ \-nin.
Then sx2mym e R implies m = i'[ + 2V{ + • • • + ni% + 2ml, where / is
zero or one and 0 < /" < ir. / = 1 is clearly impossible, and / = 0 is
impossible by the choice of m. Thus / is not almost principal.

Thus we fail to establish a necessary and sufficient condition on c/d
for (cx-d)k[x]nR[x] to be almost principal. We can show, however,
that the not almost integral aspect of a spotty c/d is necessary to create
a bad example.

THEOREM 2.4. If c/d e k is almost integral over R, then I =
{ex - d)k[x] n R[x] is almost principal.

Proof. Let
Ii = (cx-d)k[x]nR[c/d][x].

Then (l/d)(cx - d)R[c/d][x] is principal in R[c/d][x]. Let t be a
nonzero element of R with t(c/d)n e R for all n, then tdl c
(ex - d)R[x].

It can be shown that the ideal / in Example 2.3 is not diviso-
rial, but does satisfy condition (3) of Theorem 1.19. It is, however,
easier and more interesting to show that (3) does not imply (2) of
Theorem 1.19 by taking advantage of the fact that the question of
which f(x) produce almost principal or divisorial ideals / is sym-
metric in the coefficients. That is, if f(x) = ao + a\x + h anxn,
then fr(x) = aoxn + • • • + an behaves like / with respect to the
two properties of divisorial and almost principal. To see this, let
S = {/(JC) € A:[JC]|/(O) / 0}. The map / - > / ' = Jcdeg//(l/.x) is a
monoid automorphism of S which extends to a group automorphism
of Si = {fig e k(x) | / (0) / 0, g(0) ^ 0} under multiplication. Using
this idea the following lemma and proposition are straightforward.

LEMMA 2.5. Let f e R[x] with / (0) ^ 0 and I = fk[x] n R[x] as
usual. For V = fk[x] nR[x] where f = xde*ff(l/x), then

(l)I = {xrg\r>0,geInS}.
(2) J-1 = {xru | r > o, u e rl ns{}.
(S)iv = {xrg\r>o,gelvnS}.
(4) (insy = rns.
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PROPOSITION 2.6. Let f e R[x] with / (0) ^Oandl = fk[x]nR[x]
as usual For V = f'k[x] n R[x] where f = xde*ff(l/x), then

(a) / is almost principal if and only iff is almost principal.
(b) J"1 = R[x] if and only (7')"1 = R[x].
(c) / is divisorial if and only if I' is divisorial.

Now, the symmetry of the divisorial property provides an easy proof
that (3) of Theorem 1.19 does not imply (2) because property (3) is not
symmetric. If R = F[t, {ty2"}], then y is spotty and / = (yx- l)k[x]n
R[x] is not divisorial by Theorem 2.1. By the above comments, / ' =
(x-y)k[x]nR[x] is not divisorial. However, R[y] = F\t, y] is a UFD
and f| ynR[y] = 0 so / ' satisfies V = cl(/').

The almost principal question for a linear f(x) is, of course, more
accessible than a general f(x), so one might hope that / = f(x)k[x]n
R[x] almost principal for all linear f(x) might imply that all such /
are almost principal for any / ( x ) . The authors have an inconclusive
quadratic example which suggests that this is not the case. However,
it is easy to handle the case where k is algebraically closed.

THEOREM 2.7. Ifk is algebraically closed and if all I = (cx-d)k[x]n
R[x] are almost principal, then R[x] is an almost principal ideal do-
main.

Proof. This follows easily from Lemma 1.5, since every f(x) factors
into linear factors. Recall that it is sufficient to show all the contracted
ideals or uppers to zero are almost principal.

Noetherian domains are almost principal because the finite number
of generators of/ in R[x] allow a common denominator s to yield si C
(f(x)). From the first section, if a set of bounded degree generates /, /
was shown to be almost principal. Our final example merely shows
that neither condition is required for / to be almost principal.

EXAMPLE 2.8. Let S = R[z,{zyJ}°°=l], where R is the ring in
Arnold's example, and / is the ideal contracted from (tyx - t)k(z)[x]
to S[x]. The element z will be the element s ^ 0 that makes / almost
principal.

3. Generators for / = f(x)k[x] n R[x] mthf(x) = a0 + axx + • • • +
anx

n. In his 1973 paper [R], Ratliff developed equivalent conditions
to / = f(x)k[x] n R[x] being linearly generated for f(x) = a$ +
axx (n = 1). Observe that if / is linearly generated then / is almost
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principal. We extend many of the results to when f(x) is of arbitrary
degree n.

THEOREM 3.1. For f{x) = ao+aiX-\ \-anxn, elements of degree n
generate I = f(x)k[x]nR[x] if and only if for each gel, the constant
term ofg(x) is an element off]"=d(^o)' (fl/)k-

Proof. We assume that elements of degree n generate / . Let g{x) E I
with degg(x) = m> n. If we write

then since nth degree terms of the form tif(x) generate J,
s

g(x) = ]T hi(x)tj(x) for ht(x) e R[x], tt e k,

and

1=1 /=1

for Co, the constant term in ht(x). Observe that f/a,- E R for each i
and j since ttf{x) e R[x]. Thus

J for each /

Hence boer\[(ao): (at)]R.

For the other direction, assume that the constant terms are in the
intersection. Let g(x) e I be of least degree in / so thztg(x) is not
an i?[;c]-linear combination of nth degree terms. Since g(x) e I,
we may write g(x) = h{x)f{x) for some h(x) in k[x]. Let h(x) =
J2]Li(cj/dj)xJ'' Then ao(co/do) is a constant term in / and is in the
intersection f)[(ao): (a/)]j?. Hence(co/^o)^/ G i? for each /. Thus

and

-(I)
Now, g(.x) - (co/do)f(x) is a multiple of x and can be written in
the form xf{x)l(x) with f(x)l{x) e i?[x] and /(x) in A:[x]. By the
definition of / , f(x)l(x) e I. But the degree of f(x)l(x) is m - 1, so
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f(x)l(x) can be written in terms of degree n polynomials. It follows
that

g(x) = xf(x)l(x) +Co/dQ f(x)

can be so expressed and / is generated by degree n polynomials.

COROLLARY 3.2. The image of I under the homomorphism given by
x -+ 0, r -> r for each r e R, is fl/Li [(<*(>)' (<Z/)IR if and only if degree
n polynomials generate I.

Proof. If b e fl?=i[(*<))•• (fl/)ta> t h e n (b/ao)f(x) e I has constant
term b so the intersection is always contained in the image. Theorem
3.1 implies / is generated by degree n polynomials if and only if the
other containment holds.

Note that for n = 1,7 has a "linear base" if and only if [(a0)".
equals the constant terms in / .

THEOREM 3.3. Let I = (anxn + • • • + axx + ao)k[x] n R[x] and In

the R-module consisting of elements of I of degree n. Then

where /u denotes the minimum number of generators.

Proof Let G = {tj) be a generating set for flJU[(*»): (*/)]• W e l e t

fj(x) = (tj/an)f(x). To show that {//(*)} generates the polynomials
in / of degree n, note first that fj(x) e I since each tj e f][(an): (a/)]
and thus (tj/an)(ii G R for each /. Now let ^(JC) be of degree n
in / . Since g(x) e I,g(x) = sf(x) for some 5 G k. For t = sa^,
t e f|[(fl«): (^i)l a nd ^us ? = Y^rjtj* W e rewrite #(*) as

To see the correspondence in the other direction, let {gj(x)} be a
generating set for /„. For each j,gj(x) = Sjf(x). In this case let
tj = Sjdn. Each tj e f\[(an): (a,-)] since

£•* + ^ ) €
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To see that the set {tj} generates f|[(«n): («/)]> let t e HLM' (a,-)].
Then (t/an)f{x) e R[x], hence (t/aH)f(x) e I. Thus

or

COROLLARY 3.4 (to both theorems). If<&: R[x] -• R is defined by
setting x = 0 and * ( / ) c n?=il(flo): (at)]R then

Proof. The hypothesis and proof of Corollary 3.2 guarantee that
degree n terms generate / . The minimal number of degree n generators
of / is equal to the minimal number of generators of C\[{an): (a/)].

We can see from this final corollary that for n = 1, the ideals
[a0: a\]R and [a\: ao]R "determine" the number of generators of / =

a{x)k[x])nR[x].
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