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ENLARGEMENTS OF QUANTUM LOGICS

MIRKO NAVARA, PAVEL PTAK AND VLADIMIR ROGALEWICZ

Let A" be a quantum logic whose state space is nonvoid. Let B be
a Boolean algebra and let C be a compact convex subset of a locally
convex topological linear space. Then K can be enlarged to a logic L
such that the centre of L equals B and the state space of L equals
C. (The result remains valid when we replace the word "logic" with
"orthomodular lattice".)

1. Introduction and preliminaries. An orthomodular partially or-
dered set L ("a quantum logic") naturally induces one algebraic and
one measure-theoretic structure: The centre, C(L), which is the set of
all absolutely compatible elements in L, and the state space, ^{L),
which is the set of all "states" (= probability measures) on L. When we
investigate the interplay of C(L) and y(L), a natural question arises
whether one can construct logics with given centres, state spaces and
preassigned sublogics. (This question seems to be of certain signifi-
cance also from the physical point of view if one wants to clarify the
dependence, resp. independence, of the centre and the state space in
the model. It should be noticed that, for instance, in the von Neu-
mann algebra model, the state space determines the centre—see [1],
[6], [13].)

Since centres of logics are exactly Boolean algebras (see e.g. [5])
and since state spaces of logics are (up to an affine homeomorphism)
exactly compact convex subsets of locally convex topological linear
spaces (see [11]), our question reads as follows: Given a Boolean al-
gebra B and a compact convex set C of LCTLS, can every logic be
enlarged to a logic L with C(L) — B and S?{L) = C? In this paper we
answer the latter question in the affirmative (obviously under "condi-
tio sine que non" that the state space of the initial logic is nonvoid).
We need rather advanced construction techniques with logics in some
places—apart from applying key results and methods of the papers
[3], [4], [9], [10], [11] we have to develop a fairly nontrivial "pasting"
technique. This effort is needed mainly for establishing the following
interesting lemma: Every logic K with S?{K) / 0 can be enlarged to
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a logic L with card^(L) = 1. It turns out that this very special case
of our problem becomes in fact equivalent to the general case.

Let us start the investigation with reviewing basic definitions and
facts.

DEFINITION 1.1. A (quantum) logic is a partially ordered set L with
a least and a greatest element, 0, 1, together with an operation x —* x'
(an orthocomplementation) mapping L to L, such that the following
conditions are satisfied for any a,b G L (the symbols V, A mean the
lattice operations induced by <):

(i) W = a,
(ii) a < b implies b' < a',

(iii) a\/a' = 1,
(iv) if a < b' then a V b exists in L,
(v) if a < b then b = a V (a' A b) (the orthomodular law).

Typical example of logics is a Boolean algebra or the lattice of all
projections in a von Neumann algebra. Naturally, a logic need not be
either distributive or a lattice. In what follows, let us reserve the letter
L for logics.

DEFINITION 1.2. Let a, b be in L. We call a, b orthogonal (abbr.
a _L b) if a < b', and we call a, b compatible if there are mutually
orthogonal elements x, y, z € L such that a = x V z, b = y V z.
The centre C(L) of L is the set of all absolutely compatible elements
(C(L) = {c e L | c is compatible to any d e L}).

PROPOSITION 1.3 (see [5]). The centre C(L) of a logic L is a Boolean
algebra (with the operations V, A,' inherited from L). Further, we have
C(L) = L if and only ifL is a Boolean algebra. (Thus, obviously, every
Boolean algebra is a centre of a logic.)

DEFINITION 1.4. Let K, L be logics and let / : K -* L be a mapping.
Then / is called a (logic) morphism if the following conditions hold
true:

(i) / (0) = 0,
(ii) f(a') = f(a)' for any a e K,

(iii) f(a V b) - f(a) V f(b) whenever a,b eK and alb.
When / is bijective and both / and f~l are morphisms, then / is
said to be an isomorphism. When f:K —• f(K) is an isomorphism
then / is called an embedding. In this case we call K a sublogic of L
and L an enlargement of K. (Since a sublogic K of L is intrinsically
identical with f(K), we shall sometimes identify K with f(K) c L.)
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Let us now introduce measure-theoretic notions we shall need in the
sequel.

DEFINITION 1.5. A state on a logic L is a mapping s.L -> (0,1)
such that

(i)
(ii) if a, b e L and a ± b then s(a \/b)= s(a) + s(b).

Let us denote by S?(L) the set of all states on L (called "state space").
The set ^(L) is naturally endowed with a topological and convex
structure (as a subset of (0, l)L). When understood this way, ^(L) is
obviously a compact convex set. In fact, we have the following result.

PROPOSITION 1.6 (see [11]). State spaces are (up to afflne homeomor-
phisms) exactly compact convex subsets in locally convex topological
linear spaces.

In the constructions which follow later we shall frequently use the
following corollary of Proposition 1.6. There are logics S, R with
card^OS) = 0 (i.e., 3>(S) = 0) and card^(i?) = 1 (i.e., 3>(R) is
a singleton). We call the former logics stateless and the latter logics
rigid. (Obviously, a stateless logic cannot be Boolean. There are non-
Boolean rigid logics—for instance, it suffices to put i? = 5 x { 0 , l } f o r
a stateless logic S, see [10]).

Let us finally recall a simple construction. Observe first that the set
(0, a) = {x € L\x < a} (resp. (b, 1) = {x e L\x > b}) becomes a
logic when considered with the ordering and the orthocomplementa-
tion naturally inherited from L (see e.g. [7], [12]). Using this fact, we
can easily prove the following proposition.

PROPOSITION 1.7. (A straightforward generalization of '[3], Theorem
3.4; we can also obtain a proof of this proposition as a by-product of
the final part of the proof of Theorem 2.2 in the next paragraph): Let
K, L be logics. Suppose that, for an element a € K n L, we have
KoL = (0, a) U (a1,1), where (0, a) (considered as an interval in K) is
isomorphic to (0, a) (considered as an interval in L). Then M = K\jL
becomes a logic (called the (a, a')-pasting ofK and L) if endowed with
the partial ordering < such that a <b in M if and only if a<b in K
or in L, and with the orthocomplementation ' inherited from K and L.
Moreover, both K and L become sublogics ofM.
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Particularly, if a = 0 we call the latter construction the (0, \)-pasting
of K and L. We have the following result which will be frequently
used.

PROPOSITION 1.8. Let L be a logic. Let S {resp. R) be a stateless
(resp. rigid) logic. Then the following statements hold true:

(i) IfM denotes the (0, \)-pasting ofL and S then M is stateless.
Moreover, if cardL > 2 then C{M) - {0,1};

(ii) If M denotes the (0, \)-pasting of L and R then S?(M) and
S*(L) are affinely homeomorphic.
Moreover, if card L > 2 and cardi? > 2 then C(M) = {0,1}.

The proof of Proposition 1.8 is elementary.

2. Results. The first result says that we solve our problem as soon
as we can embed arbitrary logics into rigid logics. (As always in what
follows, the sign "=" means "Boolean isomorphic" when applied for
two Boolean algebras, and "affinely homeomorphic" when applied for
two state spaces.)

THEOREM 2.1. Let R, H be logics and let B be a Boolean algebra.
Let us suppose that R be rigid. Then R can be embedded into a logic
L such that C{L) = B and<9>(L) =

Proof. Denote by M the (0,1)-pasting of R and H. Denote further
by P the (0, l)-pasting of M and a stateless logic S. Then S>(M) =
S?(H) and S*(P) = 0. We may suppose that C(M) = C(P) = {0,1}.

Let us assume that B is a Boolean algebra of subsets of a set X.
Choose a point z G X. Let L be the set of all functions f:X-*P
with the following three properties:

(i) the range of / is finite,
(ii) the set f'l(b) = {x e X\f{x) = b} belongs to B for any beP,

(Hi) f(z)€M.
Let us endow the set L with the usual "pointwise" partial ordering
and orthocomplementation inherited from P. (We put / = g', resp.
/ < g, if f(x) = g{x)', resp. f(x) < g(x), for any x € X.) A routine
verification gives that L is a logic. Obviously, the mapping h.R —• L
such that (h(k))(x) = k (k e R, x e X) is an embedding. It remains
to be shown that C(L) - B and S*(L) = ^{H).

To show that C(L) = B, let us observe that a function / e l belongs
to C{L) if and only if f(x) € {0,1} for any x e X. Indeed, if it is
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not the case, we have f{x) = b eM -{0,1}. Since C{M) = {0,1},
there is an element c e M which is not compatible with b. Take a
function g:X —• L such that g{x) = c for f{x) = b, g(x) = f{x)
otherwise. Then g e L and g is not compatible to / . We see that
C{L) are exactly the "characteristic functions" of the subsets of X
which belong to B. Thus, C{L) = B.

Let us now consider y{L). Let us first notice that if Y is a subset of
X such that Y EB and z £ Y, then the set Ly of all constant functions
h:Y —>• P forms a stateless logic (isomorphic to P). Suppose now that
s € <5^(L). By the foregoing property, we easily see that if / G L
such that f{z) = 0 then s(f) = 0. Thus, for any f e L, the value of
s(f) depends only on f(z). It follows that the mapping a:5^{M) —*•
5^{L) defined by the equality a(t)(f) = t(f(z)) (t € S"{M)) is an
affine homeomorphism and therefore S?(M) = 5^{L). The proof of
Theorem 2.1 is complete.

The question now remains whether an arbitrary logic admits an
embedding into a rigid logic. A positive answer to this question is
given in the following theorem. It is obvious that the combination of
Theorems 2.1, 2.2 establishes our main result.

THEOREM 2.2. Let K be a logic and let s belong to ^(K). Then
there is a rigid logic R and an embedding e.K -> R such that, for the
{only) state s e 5*(R), we have se = s.

Proof. We shall need a few lemmas. Since the arguments are fairly
technical in some places, the reader acquainted with the papers [3],
[10], [11] will probably find himself in a more convenient situation.

LEMMA 2.3. Suppose that H^ is a three-dimensional Hilbert space
and suppose that L{Hj) is the logic of all projections in HT,. Suppose
further that a is an atom in L(H?,) {i.e., we suppose that a is a projection
on a one-dimensional subspace). Then there is precisely one state s e
5^{L{HT)) such that s{a) = 1 and, moreover, for any real number
r G (0,1), we can find an atom ar e L{Hi) such that s{ar) = r.

Proof. Lemma 2.3 immediately follows from the description of
states on L{H^) given by the Gleason theorem (see [2]).

LEMMA 2.4. Let a real number re (0,1) be given. Then we can
construct a rigid logic Rr such that, for an atom ar e Rr and the {only)
state s G S?{Rr), we have s{ar) — r.
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Proof. For r = 1, the rigid logic R\ (with the appropriate atom a\)
was constructed in [11], Lemma 2. If r ^ 1, then we can choose an
atom a e L(H^) and identify a with a\ {a\ e R\) and, dually, a' with
a\. We also identify the zeros and units of L(H^) and R\. Then the
(a, a')-Pasting of L(H$) and R\ can be taken for Rr (Lemma 2.3).

LEMMA 2.5. Let K be a logic and let s belong to <9*{K). Choose
an element a e K. Then there is a logic La such that the following
conditions are satisfied (for a logic L the symbol (0, X)L, resp. (x1, \)L,
means the interval (0,x), resp. (x1,1), considered in L):

(i) KnLa = (0,a)Ku{a', l)K = (0,a)LaU(a', l)La and the partial
ordering and orthocomplementation in K and in La coincide on
KDLa;

(ii) for any t e ^(La) we have t(a) = s(a),
(iii) ifti,t2 e ^{La) and tx{k) = t2(k) for any k € K n La, then

h =t2;
(iv) there exists a state s € ^(La) such that s(k) = s(k) for any

keKDLa.

Proof. Put r = s(a). By Lemma 2.4 we can find a rigid logic Rr and
an atom ar £ Rr such that t(ar) = r for the state t e S^(Rr). In the
logic Rr we first fill the interval (0, a)x in (0, ar)nr and identify a with
ar. We obtain a set Rr. Further, for all b e Rr with b L ar and all
c G (0, a)fc, we add the elements bv c lo Rr and identify by a with
by ar. We obtain a set La. We endow La with the partial ordering
equal to the transitive closure of the orderings in Rr and (0, O)K and
with the orthocomplementation defined as follows: If b € La - Rr,
then we can write b = c V d, where c e (0, a'r)nr and d e (0, a)n, and
define b' = (c' A a'r) V (d' A a), and if b e Rr, then b' is defined as the
orthocomplement of b in Rr. It can be easily checked that La becomes
a logic. (The above construction is quite intuitive and thus we allow
ourselves to leave the details to the reader. A thorough investigation
of the construction together with further generalizations can be found
in [8].)

The intersection KnLa consists of all elements of (0, O)K and their
complements. Every state t e ^{K) restricted to (0, O)K has an ex-
tension to a state on La if and only if t{a) = s{a). We infer that La

possesses all the properties required in Lemma 2.5.

LEMMA 2.6. Let Kbea logic. Let us call a subset S ofK overlapping
if a < b' for no pair a,b 6 S. Let us denote by 5" the collection of all
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overlapping subsets ofK and let us order the set S' by inclusion. Then
there is a maximal element T in 5? and, moreover, for any a e K we
have aeTora'eT.

Proof. The existence of a maximal set T € & follows immediately
from Zorn's lemma. Suppose that {b, b'} n T — 0 for some b e
K. Since T is maximal, there exist c,d e T such that c < b' and
d < (b'Y = b. It follows that d < b < c' and therefore d < c'—a
contradiction. This completes the proof of Lemma 2.6.

Let us now return to the proof of Theorem 2.2. Let us first take a
maximal overlapping subset of A", some T, and put V = {a € K\a = b'
for some b e 7"}. For each a & T' take a logic La from Lemma 2.5.
We may (and shall) assume that (La - K) n (Lb - K) = 0 for a ^ b.
Let us put m = {K} U {La\a <E T'}. Let i? = \JPe^P. Define <, '
in R as follows: We have c < d (resp. c = d') if and only if there is
P G ̂  such that c < ^ in P (resp. c = d' in P). We claim now that R
is a logic with the properties required in Theorem 2.2. We first show
that R is indeed a logic. This will be verified in the following four
statements.

Statement 1. If P, Q e 31 and P # Q then P n (? is a subset of AT
which is closed under the formation of the least upper bounds (in K)
of orthogonal elements. Moreover, with any x e P r\Q the set P n Q
contains either the entire set (0,X)K or the entire set (x, 1)K-

Indeed, we have

LaDLb = {La n K) n (Lb n A")
= ((0, a)* u (a', 1)JC) n ((0, b)K u <&', 1)*).

Since both a, b belong to T', we have ensured that a' is not orthogonal
t o b' a n d t h e r e f o r e (O.f l )* n (b1, l ) K = 0 = (0,b)K n (a1, l ) K . W e
obtain

La n Lb = ((0, a)*: n (0, b)K) U ((a', 1)^ n (b't l)K).

Also, LaDK = (0, a)/i:U(a') 1)^. Thus, using this expression for Pf)Q,
we immediately have that P C\Q possesses the required properties.

Statement 2. The relation < is transitive on R.
Indeed, if b < c in P and c < d in Q for P, Q e 31, then c ePnQc

K. The set PnQ contains either the entire (0, C)K or the entire (c, 1)^.
Hence either b or d belongs to P n Q. Thus either P or Q contains all
the elements b, c, d and therefore we have obtained b < d as desired.
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Statement 3. Let V be a subset of R such that for any pair x,y GV
there is a logic belonging to the collection & which contains both x
and y. Then the entire V is contained in a logic belonging to ^ .

Indeed, if V is not contained in K, then there is an element x such
that x e V — K. Then there is exactly one logic P e M containing x
and therefore we have V c P.

Statement 4. The set R is closed under the formation of the least
upper bounds of orthogonal pairs.

Indeed, let b, c e R be orthogonal in R. Then there is a logic P € 3?
which contains the triple {b, c, bVc}, where the l.u.b. is taken in P. If
d is an upper bound of b, c in R then b, c, d are contained in a logic
Q G J and therefore bye (in P) belongs to P n Q. Hence 6 V c (in
P) is not greater than d (with respect to the ordering in Q) and we
have b V c (in P) = 6 V c (in i?).

It is obvious that the foregoing statements verify that R is a logic.
Moreover, the natural inclusion mapping e.K —> i? embeds AT into i?.
Finally, let 5 € ^ ( U ) . Since T U T' = K, we see that Se = s. By
the construction, every state on La was completely determined by its
values on (0, a) (Lemma 2.5). Therefore R admits only one state and
the proof of Theorem 2.2 is complete.

Let us now state our main result. In view of the characterization of
the state spaces of logics [11], we can formulate it as follows. (More-
over, if we take the trouble in verifying the lattice stability of the
constructions—and the authors did—we can also add the lattice ver-
sion.)

THEOREM 2.3. Suppose that we are given a Boolean algebra B and
a compact convex set C of LCTLS. Then every non-stateless logic K
(resp. every non-stateless orthomodular lattice K) can be embedded in a
logic L {resp. can be lattice-theoretically embedded in an orthomodular
lattice L) such that C(L) = B and S?(L) = C.
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