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SPECTRUM AND MULTIPLICITIES FOR RESTRICTIONS
OF UNITARY REPRESENTATIONS
IN NILPOTENT LIE GROUPS

LAWRENCE CORWIN AND FREDERICK P. GREENLEAF

Let G be a connected, simply connected nilpotent Lie group, and

let AT be a Lie subgroup. We consider the following question: for
n <G G* how does one decompose U\K as a direct integral? In his

pioneering paper on representations of nilpotent Lie groups, Kirillov
gave a qualitative description; our answer here gives the multiplicities
of the representations appearing in the direct integral, but is geometric
in nature and very much in the spirit of the Kirillov orbit picture.

1. The problem considered here is the dual of the one investigated
by us and G. Grelaud in [2]: give fi formula for the direct integral
decomposition of IndA o, a € K™ The answer, too, can be regarded
as the dual of the answer in [2]. Let g, ¢ be the Lie algebras of G,
K respectively, and let g* 1* be the respective (vector space) duals;
P: g* —e 6* denotes the natural projection. Given n € G, we want to
write

re
N\kex o nfa)odv(o);

we need to describe nfo) and v. To this end, we review some aspects of
Kirillov theory. In [7], Pukanszky showed that V can be partitioned
into "layers” U, cach Ad*(AT)-stable, such that on U, the Ad*(K)-
orbits arc parametrized by a Zariski-open subset ~L, of an algebraic
variety. (See also §2 of [2].) We can thus parametrize K by the union

of the *L., Let @, ¢ g* be the Kirillov_orbit corresponding to n. There
is a unique e such that <f,pp~! (Ve) 18 Zariski-open'in <7, Let £% C S,

be the set of /' e T.. such that P{@,) meets K » /'. It turns out that
27 1is a finite disjoint union of manifolds. Let k* be the maximal

dimension of these manifolds; define v to be A:*-dimensional measure

on the manifolds of maximum dimension and O elsewhere. Then we

will have

D
7l = / n(ap dv(l'),
b

"

where a> corresponds to /' G 27 via the Kirillov orbit picture.
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It remains to describe «(/') For/ e @, define

To(/) = dim(G- /) + dim(A" = PI) - 26im{Ke I),

where the action of G, K is the coadjoint action (so that G/ = (fx and
K - PI is the Kirillov orbit in V corresponding to Pi). This number is
a constant, To, on a Zariski-open subset of @g, and we have

NN =o00, v-ae e, ifTy> 0.
When To = 0, we have
«(/") = number of Ad*(#)-orbits in P~

moreover, this number is uniformly bounded a.e. on 27. This is the
essential content of our Theorems 4.6 and 4.8. In fact, we notc[-, in
Remark 4.7 that To > O whenever the number of AT-orbits in PJ( )n
<fx is generically infinite.

It may be helpful to consider the simplest example of the theorems,
where K is of codimension 1 in G. This situation was investigated
in [4]. For /€ @, let t/ be the radical of /. There are two cases to
consider. Ift/ * ¢, then P is a diffeomorphism of <?,, onto K* PLCV,
and (f, = K-1; furthermore, 7NK is irreducible, n\x = op[, Thus 27
reduces ,50 g)‘single point (corresponding to 0>/), and, for /' e P{<?¥*),
PJ(K’] n&, =&, so that n(l') = 1. It is easy to see that To(/) = (),
and that Theorem 4.8 says that 7NK = O\ (where /' € 27 corresponds
to Ko PI). Ift,_C ¢ then choose X e g\. In this case, PO, =

UrrK-Xf PI, where X, = exp tX (acting on PI by Ad%_note that K is
normal) and the union is disjoint. Furthermore, P~’%P<?’3 = gn (e,

<9, is P-saturated), and P~\K * X, o Pj) =Ks x,+ I Thus
_ o f &
ox di-

Again, To = 0, and Theorem 4.8 gives this same decomposition. For in
this case, 27 consists of representatives for the orbits <?X = K-(x.-Pl).
It is easy to see from the formula p-MKXPl) = Kxj.that n(l') = 1
for /' representing <fX-

The proof in the general case is in essence an induction applied to
this example. (In a sense, it is also dual to the proofin [2].) We con-
struct a chain of subgroups from K to G, cach of codimension 1 in the
next, and restrict step by step. Keeping track of the geometry, how-
ever, soon becomes difficult. To keep matters straight, we introduce a

fibration of most of ff,. More precisely, we show that a Zariski-open
set U ¢ <?,, can be fibered into manifolds U = Viey fy, such that all

XK 1)n<?,
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points in the fiber Nj project to the same AT-orbit in t*: P» Nj =K+ PL
The Ni let us keep track of the way that the tangent space to a A>orbit
grows as the Lie algebra grows from 7 to g. When To = 0, N/ is (gener-
ically) the AT-orbit of /, but when To > 0, it is an infinite union of
AT-orbits. Our construction of the N/ is somewhat ad hoc, and we do
not know if they have any further significance. (In some cases, they
do depend on the chain of subgroups from K to G.)

Our first decomposition of UNK is as a direct integral over the iVj.
We actually express it as a direct integral over the transversal Xf.
This set is parametrized by a polynomial map X:R* —~ </» where
2k = dim Gl.- dim AT » Pi for geneti¢ / e <?,- X is a diffeomorphis
on a Zariski-open set Af ¢ RS and Xf = X(Af). el $it prove s

®
(D a2 | Oporyw di;
it
where du is Euclidean measure. We also show that Xf and the iV)
have the following properties:
() leN,, =>I"¢ N; (the N, partition 0,)\
(i1) for generic /, dim TV =r+ k (r = dim K+ PI);
(iii) for I eXf — X{Af), TV and Xf are transverse;
(v) for/€*/, Nin\Xf = [lI};
(V) Viex N[ is an open dense subset of full measure in &, ;
(vi) P{Ni) CKPI.
This means that the direct integral in (1) can be taken over Xf. We
show next that if To > 0, then Af fibers into manifolds of dimension
> 1 that are taken into the same Ad*(AT)-orbit by P o X, this gives
the infinite multiplicity case. When To = 0, the N/ ar¢ generically the
orbits K » 1, a)nccl\the number of points in P~X{]‘\// )n Xf% is the nu‘m‘ber
of Ni in P-X(V) C\&\ this, plus some technical work, gives the finite
multiplicity formula.

The integral (1) (our Theorem 3.5) is, of course, also a direct integral
decomposition, though not a canonical one. It is useful, however,
because it leads to a proof of the following results:

THEOREM 1.1. Let G be a connected, simply connected complex
nilpotent Lie group, and let K be a complex Lie subgroup. IfneG,
then 72\K is of uniform multiplicity.
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THEOREM 12. Let Gbea connected, simply connected real nilpotent
Lie group, and let K be a Lie subgroup. For n ¢G, write

- e
N« = [/ nfo)odv(o).

Then either
nfo) = 0o, v-a.e.,
or n(a) is even, v-a.e.,
or n(a) is odd, v-a.e.

The proofs of these theorems are similar to the proofs of the corre-
sponding theorems for induced representations, given in [1], and we
shall not give further details here.

The duality between the results in [2] and those here is, of course,
an aspect of Frobenius duality; in particular, the formula for n(n) in
Ind”cr is the same as the formula for n(a) in n\fc- There are general
results of this form; one is found in Mackey [5]. Mackey's theorem
applies to almost all n and almost all a, while our results apply to all
n€Gandalaek (except that, of course, n(n) and n(o) arc defined
only a.c.) Mackey's theorem also gives information on the measures in
the direct integral decomposition. We hope to be able to say something
about these measures on the exceptional set of representations not
covered by Mackey's theorem, and about other aspects of Frobenius
reciprocity; we defer these topics to future papers.

The outline of the rest of the paper is as follows: in §2, we construct
the Nfs and describe various other algebraic constructions like those in
§2 of [2], but somewhat more complicated. Section 3 is devoted to the
proof of the noncanonical decomposition (1), and our main theorems
are proved in §4. We give some examples in §5, including one of
a tensor product decomposition. For a number of proofs, we rely
heavily on results of [2]. We also use a number of results concerning
semialgebraic sets; a sketch of the main facts about these sets is found
in [2]. (See [9] for further details.)

2. Here we decompose g* into sets, Us adapted to both G and K; for
cach / € g*, we construct a sct A’ with a number of useful properties
analogous to those for the sets M/ constructed in §2 of [2]. Since the
proofs closely follow proofs in [2], we will sometimes be quite sketchy
about details.

Let ¢ be a subalgebra of a nilpotent Lic algebra g. We fix a strong

Malcev basis {X\..,Xp} for 6 and extend it to a weak Malcev basis
{X{,...,XP,Xp+i,...,Xp+m} for g. Let g, L= R-span {X{’---’)(j}’
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and let {ID..., X}m} ¢ 9% be the dual basis to the given basis for
0. Note that Gj = expgr acts on both Q*J and 0* by Ad*, and that
these actions are intertwined by the canonical projection Pje -, Q* —e 0N,
Also, K acts on each 0%, and these actions commute with Pj because

X\..., X, give a strong Malcev basis for 2. We often write P for
Pp'.Q '~
Define dimension indices for / € 9* as follows:

ej(l) = dimAd*(K)Pj(1) (= dimad*(OPj(I)) if 1 <j < p;
djfl) = dim Ad*(Gj)Pj(l) (= dimad*(Qj)Pj(l)) ifj > p;
ely=(e(l),....ep(N)),  d(l)=(dprs(D), ... dpim(D));
o(l) = (e(!),d(l)) C ZP*™;

A= [Se zim 3 €0% with 5(1) = §);

Us={leg*:6(l)=S} for<SeA.

(2.1) proroSITION. Let K CG and a basis {X\... Xp,..., X,.p)
be given as above. Then:

(@) IfS = [S\..., dnip) ¢ A, then dj - Sj-i = 0 or 1 ifj < p and
Sj - Sj-i =00r2 ifj > p (we set So = 0)., Hqufﬁ.i&ﬁnitf; such that for

(b) There is an ordering ofA, A ——{<5(1 >£
each 3 G A, the set Vs = Vs s US, is Zariski-open ing*.

Proof, (a) Forj < p, this is clear, since the same group K acts on
each g% and dim0% increases by 1 at each step. Forj > p, we have the
coadjoint action of Gj = exp(&j) on O, orbits are even-dimensional
and both Gj, Oi‘; increase in dimension by 1 at each step.

(b) Order the e's as in Theorem 1, (b), of [2]. For all 8 = (e,d)
with fixed e, further order the d's as in Proposition 2 of [2]. Now take
the lexicographic order on A: (e, d) > (e’,d’') ite > e’ or e = ¢’ and
d > d'. The proof of Proposition 2 of [2] is easily modified to show
that this ordering has the desired properties. .

Now fix6 = (e, d)\ set

R = RYS) = Rie) = {jil<j<p-and ¢ - *2» _, # 0},
R{ =R¥S) =R(d)-{j: p<j<p+manddj-dj-i ?0}
(where d, = ¢,) Similarly, define

R\=R\/8) =R\{e) = {j: 1<j<pandej=e)(\
R[ =R'((S)=R'ld) ={j: p<j<p+manddj = dj-ij,
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and let

, i
R: = R(S) = RuR, Ri = Ri(S) = R L)RY.
Define corresponding vector subspaces of g*:

E\ = R-span [X* :jeR\}, E'{f = R-span {X}: j e R},

E’, = R-span {X*:jeR"}, E>’ = R-span {XJ:jeR'},
E. =E[®E'f, » E, = E"»®E'.

Then R\ R’ are complementary subsets of {1,2,.... p}, and R\, R2
are complementary subsets of {I,2,... ,m + p). Hence we obtain
splittings

O*=Ex®E,, V=E[®FE",,

If/ € Us and Rz{d) =R>UR'S ™ iy <o o ¢ <j <00 o <« lr+k} (Wlth
ir < P <'h+\), as above, a set of vectors y=— {\..., Y,,A1 C 0

called an "action basis at /" if

@ ¥ TP i(l) = PyX*)  and
YiEr if 1 <[ <, YjZoN ifrtl<j<r + k

(recall that X%,..., X*is, the dual basis in g*). Note that the ij depend
on 5. Giveny at /, define a mapping y/:: R+~ * by

(3) V/{(t) = (exp(tiYi)-—-exp( Urik¥rk))-1,
where g = Ad*(g)l, and set N/ = N%y) = y/ w9 The next result

shows that the Nify) are independent of the action basis y, partition
Us, and can be chosen to vary rationally on U§.

(2.2) PROPOSITION. Fixnotation as above andfixd e A; let Ri{S) =

RZURZ—{/<...<lr< . . — .
Us can be covered with a ﬁrlute numberlbﬁa)%’lgl—dpeﬁ Befs ¥t skhen

on which are defined rational nonsingular Yia: Z,-+ Q such that

(Pofl), o o =, ¥, .afl)] is an action basis at I for every I eUsf) Z,,

Ifl € Us andy -={Y\..., Y.x) is any action basis at I, then
(a)N(Y)CUinG-1,
(b) The I\Qﬂa'rewcéhélﬂedtly Bepinddi(YIf 3 NPYY) aifypartioiar,
is any
Y e}
Ni(¥) = N[ is independent ofy, and Us is partitioned by the sets NJ.
(c) NiQK-I + "
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(d) //"Prj, Pr2 are the prOJectlons ofg* = I\ © E; onto E\ E,
respectively, then Vx, = N/ —> R+ = E2 is a diffeomorphism. {Infact,
t B> Pr2 y/i(t) is a diffeomorphism.)

Proof. We use induction on dimg/6. Ift = g, this is essentially
the theorem in [7] on orbits applied to the unipotent action of K =
expf on V, with X\..., X* as the Jordan-Holder basis. Then TV =
K+ I = Ad*(AT); (b) and (c) are thus trivial, (a) follows because the
Us are always Ad*(AT)-invariant, and (d) is one part of Pukanszky's
parametrization of orbits in U$.

If dimg/6 > 0, the proof is a nearby verbatim adaptation of the
proof of Proposition 3 in [2]. .

The following observation about the properties of the action basis
generating TV will be useful, and can be proved without going into
details of the proof of Proposition 2.2.

(2.3) LEMMA. Let ij e RY(S), let I e U, andlet Y e g, satlsfy
ad*( Y)P,‘}([) =PF, (X;)
Then YEO/>1.

Proof. Since we are projecting onto g, there is no loss of generality
in assuming that g* =g, ij = m+p, andj = r+ k. Writing r, = r +k,

n=m+p, go for g,-\ P$ for P,\ etc., in what follows, we have
) (ad* Y)I = X*, withyeg.
Obviously Y is determined modt/, the radical of /. Because the orbit
dimension increases as we pass from GQ ¢ Po(l) to G+ I, we have

dimt/ = dimg - dim"/ = dimgo - dim?/y - 1 = dimt/y - 1;
it follows easil ,{I&at t/ /\ Po(i) Q 00- Thus it suffices to show that
there e)gsfg S“ame Y€ go such that (4) holds. But if Y is any vector in
Pofi) N

UIY,00N = (0), [(I7,0DMO) (hence [([Y,X,]) ? 0).

By scaling, we may assume that I(/X,, Y]) = 1; this gives (4) with
Ye 00. *

Next, we show that the partition of Ug into the TV respects the
action of Ad*(AT). (It is easy to check that Ad¥(AT) takes each Us to
itself.)
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(24) LemMA. If6 eAandle Us, then Ad*(K)l ¢ Ny

Proof. Ad*(K) acts unipotently on g* and X\...., X*%,,, is a Jordan-
Holder basis for this action. Therefore, as in Pukanszky's parametri-
zation theorem (see [6]), we may define dimension indices

N = ((/),..., *.)), =p+ AN = dim K-Pj(l),
hC() K(_({Z o 7 e( ):) e(l) for sofne /¢ g*}, faygle)rs U},H;lnd s]e(tg of
the set e”

'"jump indices” Rfe). Here, e, - £:4 = 0 or 1 and is 1 iff / € Ryfog
If/ € Uf and R2F€) — {j\ < o se < A‘}> tnen we c&n nn(l

"faction vectors” ykfl) = {Yi(l),... Yl)} ¢ ¢ such that
ad™ Y;(P (1)) = P (X} );
moreover,
Ad¥(K)l = {Ad"exp"Fls o -cxpti¥yr: p,..., 1 ¢ R).

(This last statement is proved on pp. 50-54 of [6].)

Now let / € Us n Uf. It suffices to show that i?f(e) Q Rii*), since
this will imply that the set PK(I) can be extended to an action basis
at / for the action of G. Then (4) and Proposition 2.2 imply that
Ad¥K)l ¢ Ny as desired.

So choose / e i?7f(e). If 1 < /< p, then

dim(X - P()) - dim(A" » P/_i())) = 1,
and this implies that / e R%{S) ¢ i%<5)- If p+1</<w+p,
then there is an X € i with ad*(X)P(/) / 0 and ad*(X)P;_!(/) = 0.
Therefore X € t""/) and X £ ipqi). It follows from p. 149 of [6]
that dim Ad* GAP/(~/)) = dim Ad* G)_1(P/_1(/))+2, or that i e IN<S) ¢
Rz(é) D

3. Here we give our first decomposition of n\x as a direct integral.
In this section we let <? = <f,. Let 5 be the largest index in A such that
Us meets @. Then Us (~)<f is Zariski-open in the R-irreducible variety
0.

Let
Rod) = R, = ROURY = {‘;,<. . o< ]<rfr+1 <o < Jrakhs
with j, < p< yVH. Define *: R* x (ffi n f/j) -» ~ by
&) <N«l) = Ad*(exp(wiX,v41)---exp(wA

+DLs
and, for fixed fe&nU,, let Xj = £(R® /). The set Qfmay extend
outside of Us’, to deal with this and with technical details of later
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arguments, we define a "Zariski-open subset” Xf as follows. Let Af

be the subset of u ¢ R such that

(6) i(O""’O’uS""’uk,f)€Ud’ for each § < k.
Now we define

(7) X, =E&(4y, f). all feUsne.

Then Af is a non-empty Zariski-open set in R* because / G Us N &,
Us n (f is Zariski-open in <, and £ is polynomial in w with range in
M. Obviously Xf C_ <" n Ug, Xf will be the base space in our first
decomposition of n\x into irreducibles.

(3.1) PROPOSITION. Let @k be an orbit in g*, let 8 G A be the largest
‘.hm,f)”siffl apdsxpugh they s awsis, wiend defige BifS)fized!/elefent® of
jr+
Usn0),, Then:

(8) (a) £(= ,/) 1S injective from As to X
(b) Each variety iV/ in Us meets Xf in at most one point.

Proof. Consider two points /, /' ¢ Xf of the form / = £(u, /), /' =
£{v,f) with u, v e Af, such that /' ¢ TV n Xf. If an action basis

—= (N, Y.l i ‘ ) =TI
);€ RQ/Z\’ We wi é%g%e%%%duaé /v€arllj ’;Vied?aﬁ%/é{é)aﬂ'y Iprfoo\yegotgi
and part (a) is the special case / = /'.

We use induction on dimg/t. When i = g, the result is trivial
because Xf = {/} and N[ = K+ I = @, Thus we assume the result
for Omip\ = go and prove it for g. Let J(S) be d with the last index

removed (J(d) = (S\..., 8mip-\); J(d) is a dimension index for go-
There are two cases.

Case 1. m +p £ Ryd). Then P,: g* > gf maps Ox = G f

- - AN —
dlffeomorphlcally to 0 = Go-Po(f), and Po( Us) Q Unysy Thusy is an
action basis at Py(l) in U, PoVi(t) = ¥/roi)(t), and Py(Ni) = Npopn
The lgyer Us is Po-saturated: poPoUs) = Us (since G ® X*,, =
X*nip). Therefore PO(UgC\@,) is topologically open and dense in Go *
Po/- Thus if we define the dimension index set AQ for g* using the
basis {X\..., X, +f}\l;J in /9,i$HE2ari Sk pén the <oist Tayarit) meckebirs
POf = A an '] 6)

N\ j used to define * are precisely .the ones needed to
{X\j G RfiS)} d to define » isely .th ded
define £o: RE X (&b n U™)) —> "o- This map satisties

(9) PQ(;E{M, /)) = Zo(u, Pof) (ueRk’fosl’l 'ﬁ)
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We can say more:

(10) Pofum*) = uys n<r,
Forif / e Gf and Py(]) ¢ U,\P
" O(Us , then *~(/) = ¢ dd —

except that dmip(l) = 2 + dyip-\. However, tﬁ?e ordre?ilrllg S e
in (A, >) satisfies 8’ > 8 in A if 8\ > & for all i. Then 3(1) > 8§ ¢ A.
But 8 is the largest index with Us meeting G » f; this contradiction
proves (10).

We conclude from (9) that Ay = Apjp; thus Pyl), porr) lie in

Po{Xf) = Xpo(fy Now the claim that u = v and / = 0 is immediate by
induction, since PQ is a diffeomorphism on G * f.

Case 2. m + p € <5 We write u = («', «0), with UQ = M.~ and
use similar notation for v and A note that y,A = m + p. We have

if/i(t) = I' which means that

I<W)(0 =£(*>.)).

or

(exp(/iFi) ¢ o exP(tr+kYr+k)exp(uiXJ,+1)

o oo exp(uhiX;, ., )Oxp(uoX,
_t mtp)) ®
el (exp(leJrM) M cxp(vk— IX;]H-!.'—I ) e){p(‘U{)Xm+P)) ‘ If:

Write this as X\ ¢ f= X2+ /, and let Rf = exp(t"). Then X\Rf %2R.

Since / € Us, we have *p,(f) 2 ty; thus ty c-go and NGO = X2 (.
From Lemma 2.3, we have Yj eg,:,, Cgo for all 7, so we get

eXP(MOXmﬂ; ) = eXp(AoXm+p) modC?o,

or Up = v, — . .

u G Ay, it Eollows thi f(&zfs", GRlucXrelf yad) fo = Po(/i).  Since
We show next that /(J) is the first index J, ¢ Ao such that U,
meets Go * /o- Since we are in Case 2, the set GQ * A is PO_satuI'ngd
and PO\ GQ* A —> Go* /o is a surjective open mapping. Hence Uj*
meets &o = GQ+* /o in a nonempty open set. The first layer Usy to meet
Go * /o intersects in a Zariski-open set; hence 8Q = J{8). Therefore
{Xij: r + 1 <7 <1+ A— 1} is the set of vectors corresponding, tp

R3'(J(3)), and these are the vectors used to define the map £0: R

("0n Uys) - "0 (= Go = Pyfi = GQ+ /o) and the variety X
. f . 9 - ® o = X 0
Since PQ intertwines the actlgns of Gon g* and $J®), we havg : por

Poll(e | «0:/)) = ZoW. Poifi)). all u' G RM
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In particular, for our u, v we have

(11) Py(l) = Pat(uf) = Zo(u', Po(fi)) = &(«'.10);

Po(I'y = &(v', fo)-
These lie in <o n Uj)- If P = (Y\.., Y} is an action basis at
/€ Us, then pb = I/Ylt Yr+k t b t P .
from the description of J(S) given ablosvél nl\%cofg(?ve? S]f’rik X :eX,Ln/]Jr(i?)"
since m + p ¢ R"™S), and thus

A<T(xg exXp(RYmip))l = xp o T + RX™,, all x5 ¢ G,

It follows that Nyfy) = B~NPow(poy, in particular, Py(l’) e Npogy.
The induction hypothesis applies once we show that rgf1), pPo(r) are

in the variety Xp C-Go » /0 0, CHf9- gifEome (rbbrthis ametritsoo
showmg that u',v' e. 4>y/) O R
v’ is nearly identical. Since M ¢ *, we have

A(O,...,O,«S,...,Mij_i,«o;/) e US’ alls.

Hence
Eo(0,..., 0 tts, ..o itp_1; Po f1)

= POl(O, .0, Us,..., U luof) € UJ{6)
for all s, and this means that u' € ’\4p0(/)

Since ad Y+« acts trivially modker/0, we have
Weiue o () = o', fo).
By induction, #’ = v’ and /' = 0. But now we have # = v, and

/=1 = Ad*(eXProrH/t)/ [+ Loy

Therefore to = 0, and we are done. .

m+p.

(3.2) PROPOSITION. Let & = @, be on orbit ing*, let S be the largest
index in A such that Us meets (f,, and fix a base point f € Us n &,
Define the varieties N;, I ¢ Us, as in Proposition 2.2, and for any set

S CUs define its samrant [S] to be \J{N:: I eS]. Define X;
as in Proposition 3.1. Then [Xf] is semialgebraic and is topologzcalllly

dense in @,; hence it contains a dense open set in @, and is co-null with
respect to invariant measure on <9,

Proof. Any semialgebraic set S has a stratification (see, e.g., [9]);
that means, among other things, that S can be written as a finite dis-
joint union of manifolds that are also semialgebraic sets. Let dim S
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be the largest dimension of any manifold in the stratification; this is
independent of the stratification. If 7 ¢ § is semialgebraic and dense,
then necessarily dim(5'\7 ) < dim S; this follows from the fact that S
has a stratification compatible with 7. In particular, S\ 7 is null with
respect to (dim5')-dimensional measure on S. Thus the proposition
will follow once we show that [Xf] is semialgebraic and dense in S.
Since Xf is the polynomial image of a Zariski-open set in R®

R'{(S), it is semialgebraic. We can cover Ug by finitely many Zariski-
open sets Z, C g* on which are defined rational nonsingular maps

{Yf(/),.... Y*ul)} that give an action basis at each I e ZupU,
(Proposition 2.2). Let

Yoll, 1) = exp(t; YF())) » * * cxplter Y2,1)) I, leZyt0 R
Let S, = Z, UAX . . .
and [Xf] the union of the'S;, 1ésaa{sozse%i('ﬁg e, Semileebraic

To prove the density of [Xf], we work by induction on dim(g/t);
the result is clear if g = i. In general we have two cases, as in previous
proofs; the first, where m + p ™ Ri(8), is easy because the projection
map PQ is a diffeomorphism for all the objects under consideration.

Thus we assume that m + p e Rz{S ). We know that Af is Zariski-
open in R* and 0 ¢ Az Hence Si = {r e R: (0,...,0,/) € Ay is

nonempty and Zariski-open in R, and

teS = fi=4(0.....1; /) = Ad"(exp tXin+p) f € Us,

where A- R* X (Usn(?) — & is asin (5). Also, <9 is a disjoint union

of Go-orbits in g¥*,

d? ={J AdNG,)fr (disjoint);
1eR
see pp. 147-150 of [6]. For each 7, GQ * fis Py-saturated, and P,: GO-
ft = Goe " (/]) is surjective and intertwines the actions of Go. By
the open mapping theorem for homogeneous spaces, this map is also
open. The union of the Ad*(Go)/?, t ¢ S\ is dense in &.

Fix / € <9. We want to show that [Xf] contains points arbitrarily
close to /. Given e > 0, there is a t e Si such that dist(/, Go ¢ fr) <
e/2, where we take Euclidean distances on g*, g compatible with the
projection P, Setr = Gyf 0? = P _

Zariski-open in <f; and is n]gnempty z{)gtcause /0 18 m)fhg Hﬁ%r%%’\f&ﬂ)s
An argument like the one in Proposition 3.1 now shows that Uj($) H*P

is Zariski-open in @f and that 3(5) is the largest index 8% ¢ Ao with
Us,NEL #+ O
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. . . N A an * *et A
WL foschsiarichy IoushaiiGh HiMdgo®10 (6) for A €
R " (tf’ t) € Af}. Since 0 G Bf, Bﬁ is noﬁbmgp&
QQ. Let Bﬁ = {l" G RkN
and Zariski-open; it is also easy to verify that

Bf; A APO(f;y
Let

Xpip) = {Co(t'. Po(f)): ¥ € Appy},

Yrot) = (Pattf, t-): fG Byj = {&C.W/)): t'e By,
where £o is denned as in (5), but on go- We have Ypo(f.) O Xpoff)- A
we can show that [Yp,AT is d in A° ath d
e oo We e (SR 1 VRS, Wt oRConlputtedt
the proof of Proposition 3.1)

{Ni(f',t;f)'- ' € By} dense in G,  f,

Therefore there exists (£ t) e Af and N\ e NM.rj) with dist(/, h) < e,
as required.

The induction hypothesis tells us that [XpA] is dense in . It
suffices, therefore, to show that [1Vo(/)] is dense in [XpA], Suppose
that (p' € Ni, g>0Q G Xpo(fy Choose rationally varying maps on a
Zariski-open set Z C gi* to get an action basis {N¢>),..., Y. \{(p)}
on Zn Uys), with (pg G Z, we may , wWigiiChae = €0(t', Po(ft)), with
o G Apo(fy Then for some u G W ™~

o' = w(u.So(ty, Po(f1)))-

Let {1} be a sequence in.-Sy; converging to * such that €o(t, o(ft
is always in Z. Then {*(M,<rO(*.r0@/<))} ' ° sequence 1{1 T?PW%)
converging to ¢p’, as desired. n

(3.3) THEOREM. Let g be a nilpotent Lie algebra, t a subalgebra, G "2
K the corresponding simply connected Lie groups, and P: g —e 'V the
naturalprojection. Let n EG, andlet & = &g be the corresponding orbit

ing*. Eix a basis X\..., Xp,..., Xpuip through I as in Proposition 2.2,
anddefine '

AU £: R* x @n Uy) e (9 fk =card 5(8)).

Fix any f G & n U$, and define the sets A ¢ R® Xr = £(Af, f) as in
Proposition 3.1. Let dpi on Xf be Euclidean measure on Af (or Rk)’
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transported via the map £. Then

r® r®
(12) AK=I <rpfi)d/i(hk apmyydt,
JX, JR*

where ay E K is the representation corresponding to <p E t*.

Proof. We use induction on dimg/fc, the case t = g being trivial.
As usual, let g0 = 9m+p-i> an<1 flet Q: gL —e gf be t%e nattiral map.

The inductive step divides into the usual two cases. Case 1, where
m + p $. R2(d), is easy: 7NGy is then irreducible, and Xf projects
difFeomorphically to Xp,(f), since Po/<9n U§) = Po/@)n UJ) (see the
proof of Case 1 of Proposition 3.1). In Case 2, m + p € R2IS) and we
know (see, e.g., Lemma 6.3 of [4]) that

0
(13) TTleo o I Wrogds,  fy = Ad¥(expsXos,)f

Let k = cardR,'(1), let P': Q* —> t* be the canonical projection, and
let Si ={teR: (0,...,0,0 ¢ A% so that /, = i(0,...,0,¢;f). For
cach 1 E Si, do = J{6) is the largest index in AQ such that [K§, meets
N = Poi&kt), where if; = Go-ft', this was proved in Ehé‘c(&{ifs%) S pPoving

Proposition 3.2. The corresponding maps £0,f- R*
(0 are all demned in the same way, using the vectors {X;: 1 < j<

k - 1} corresponding to R>'(J(S)):
u, ) =exp(u; X)) explug -
ol ! gd ?€12-(1) o v XPUR= X ye
Thus for u' G R~
o (u' Pofy) = P, 15 1)

The inductive hypothesis says that for ¢ E Si, we have

I+ ©
BONK=" L AP'i0AW.Pof, )M
JR
8
=/ | °PZ{u'ij)du’,
JR*

since P'Po = P- Thus (13) (plus the fact that Si has full measure in
R) gives

r® r® r
*\Ké'v ’ / sz(u,,lj)dW dt - 14 aPi,{u.f)du_
JR JR"S JR
%, the rest of the theorem is clear. .

As Jy* is Zariski-open in R
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We note two important facts about our constructions. Fix / € &, n
Us and define Xf as above; cover U$ with Zariski-open sets Z, ¢ g*
equipped with rational maps {Ff(/),..., Y1)}, k+r = card(i?x(<*)),
that provide an action basis at each / ¢ Ug n Z, and thus generate
the variety JV/ through /. Recall our labeling of the jump indices:

j\<o o o <jr<- o o <j’+krWh'erejr<p<jr+x,

(3.4) LEMMA. For every I e XfC\Za’ the vectors {Yf(/),..., ¥Ouu(l),

Xjrsty..., Xjrik} are linearly independent and span a complement to the
radical t/. In particular, the map X{u) = £(«,/) has rank k at u = 0

and is a local diffeomorphism into @, pear u = 0.

Proof. If g = ¢, then k = 0 and we have Pukanszky's parametri-

zation of <7, = K'« I = N, so that the lemma holds. We proceed by
induction; we have the usual two cases.

Case 1. m+p £ R2(S). Thenj,.; < m+p, as in the discussi
of this step in the proof of Proposition 3.1,.P0?6Lg' da maps <f - ]8?
diffeomorphically onto GQ ¢ Pof, carrying UsCX? onto Ui n G$ « PQ/
and Xf onto Xpf. We have Af = Apof = A (Saly), and £(y, POP —
P(if{uf), all u € A. Since g \ go contains an element of t/ (t/ ¥ go

because t/ ngo Q o and a computation gives dimt/ = dimty, + 1), the
inductive step is now easy.

Case 2. m+p ¢ R.2(S)- Then Xj.rx = X,,.p, / has codimension 1 in

tpo _ ) )
pof) € go, andtpo = RFELA(HOL, By induction, {YM),... YD),

Xjret,..., Xjrik) span a complement to sy in :
lemma is now clear. At u = 0, A0) =/; from %é \:\l;e}llye tfllg%tcj? % tdgtflrg}el

by the {X;; r+ 1 < i< r+k} at/, we have rank(fiw)y = k. D

(3.5) REMARK. Let X D Y be semialgebraic sets in U;, As the
argument at the start of Proposition 3.2 shows, their saturants [X],
[Y] are semialgebraic. Furthermore, if Y is dense in X (in the relative
Euclidean topology), then

() /Y] is dense in [X];

(i) dim[X] = dim[7] > dim([XNY]).

In particular, the canonical measure classes for [X/, [Y] are the same.
(If dim[X] = m, the canonical measure class for [X] is m-dimensional
measure on the submanifolds of dimension m in a stratification of
[*]*)

4. In this section, we give the geometric interpretation of the direct
integral decomposition in Theorem 3.3.
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Let & = <f, be the orbitin g* forn G G, and lett ¢ g be a subalgebra.

Fix a basis X\..., X, .., X,.,p for g through t as in §2 and define
Ad = (de), U, k = cardR'{(S), r = cssdR’{S), £: R™ &nUs) -> 0,
etc., as in §3. Fix / G Ug C\(f, and let X: Af —= Xf be given by
X(u) = £(w,/). We need some information about Xf, which acts as

the base space in the decomposition of Theorem 3.3. We already know
that the varieties N/ (I G Xf) arc transverse to Xf in the set-theoretic
sense; we need a differentiable version of this fact.

(4.1) LEMMA. In the above notation, there is a Zariski-open set Bf ¢
Af, containing 0, such that:

(@) X: Bf — Yy = £(Bf,f) is a bijective local diffeomorphism on

(b) dimXf\Yf < dim Yf = k (thus Xf, Yf have the same canon-
ical measure classes),
(c) Foralll € Yf, thefollowing result holds between tangent spaces.

T}(&x) = Ti(Y¢) @ Ti(N)).

Proof. From Proposition 2.2, the N are defined by rationally vary-
ing families {Y\(I),..., Y.i(l)} defined on Zariski-open sets Z, that
cover Us- Fix an index a such that / ¢ Z, Lemma 3.4 says that
for all / e ZinX; the vectors (YM),... r+k(l) Xjr% i
span a complement to t/, and that rank(c/A)o = {s
maximal rank is achieved on a nonempty Zarlskl open set B] C Af
containing 0, since k is polynomial. Thus Y\ = X{B)) is a dense open
subset of Xf (in the relative Euclidean topology) and X: B ,
is a bijective local diffeomorphism. At/ = X(0) G 71, the tangent
space to Y} is 7/(7}) = R-span{ad* Xi(/y: r + 1 < / < r + k),
as onec sees by direct calculation. (This need not hold elsewhere.)
From the definition of the sets of jump indices R'(S), R™iS) we
know that r + 2k = dim”; by the definition of the N, we have
Ti(N,) = R-span{r/(/): 1 <i<k+r}, all/ G UsnZ, Taking/=/,
we have

TH&)=Tr(¥Y;) & Tr(Ny),

by Lemma 3.4. But dim Ti(<f,) = r + 2/c everywhere on #, while the
subspaces T/(Y}), 7}(iV/) have respective dimensions fc, r+fc, and vary
rationally on Yj-C\Z,, Since transversality is generic, there is a Zariski-

open set By ¢ tfj-rU-HZa) such that 7}(*) = 7HFDNO r,JV,) for all
/ = Aw), w G 5/. This proves (a) and (c), and (b) follows because Yf
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is dense in Xf and both are semialgebraic.(See the start of the proof
of Proposition 3.2 for a similar argument.) .

We now consider the maps shown in Figure 1:
R* 2 Ay —i> XfCUgn™D [X;] A X, x W

P
b |
TiK V ow T W .V T

FIGURE 1
Here, P: g* —e {* maps (/$ into,£/* (where d = (e, d)); Zg is a layer in
6* for the strong Malcev basis /X\..., X,). (Since p-(Uf) contains

a Zariski-open subset of <?, ¢ is the est index in the quderin
layers in V such that pl ﬁf) fmeets (}g{% The map P~~ o . ng
ASEp> Ne = UPVT(e)> istne inverse of the Pukanszky parametrization

for this layer (see [7]), and n$, nx are the projections splitting ¢* =
Vr(e) © Ks(e)- Define
g=nroP o P: & n PN (UF)~Z,;
DP=9poldids— I
§=9lx,: Xy — Ze.
Note that (f,pp” (U 2 "t 10 U both are Zariski-open in <?,, These

maps are rational and nonsingular. Fix a stratification & of X” (it has
dimension = dimX? — k), and define

(14) K = max{rank(®)/: /€ U, D <2}
= max{rank(dg);: ! € P~H{UX) ne&,},
ko = max{rankc/(*5)/: I eS,§ G*.dim”" = kJ,
k\ = max{rank(dM>)m: 4 G Af}.
As the maximal rank of d(O\s)i is attained on an open subset of S e 3”
and as the pieces of maximal dimension in 3° ¢ OPeR 11 XJ, it fol-
lows that ko, does not depend on the S$_tratiﬁc*ati_0r\1j ?;, CI}M}Q’ it sttaing

. . . Since §* =
rank k\ on a Zarlskl—*(jp_en set 1n, Rl}ek, and since A is a local diffeomor-

is open in Xf, A M(5%)"1s open 1n
phism on the Zariski-open set Bf, we conclude that ko = k\ It is now
casy to sce that

ko = ky < k* and k\ <k = dimXf

More is true, in fact.
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(4.2) LEMMA. In the above situation, A* = k\ = ko< k = dimXf.

Proof. In view of the above remarks, we need only show that k* =
k\. Let 9° be a stratification of Xf compatible with Yf, as defined
in Lemma 4.1. All k-dimensional pieces of & lic in Yf, since
dim(Xf \ Yf) < k. From Prop smon 22(P) and Lemma 2.4,
Ke IcIV,cK-e I+ ¢* forany/ Us. Thus JV, = K- PIand<p
is constant on each JV/ with / <E UsC\(f,.

Consider a Zariski-open set ZoCg* containing / and such that

the action bases {Yx(l)..., YMI)} are rationally defined on Z,AUs
(see Proposition 2.2). Define

P(uwt) = Ya(i(uf)t) = Yu(Au)),
teR** ue E=¢YZ,)n By,

where )’/a( Lt) = i//j(t), as in (3); note that O ¢ E and that E is Zariski-
Bf. Clearly R N = [Z,

o o ek eontas. (0:0) 4 W ZRSR g gethie 0B

Lemma 3.4 (plus an easy computation) shows that Rank(d/?)p0 =

r+ 2k. This rank is f aﬁly maximal 8nd is_achieved on a Zariski-open

st § C E x RO érmore, Then S, = Sn(E x {0})

is a Zariski- open set in R x {0} containing (0,0). The maximality of

rank implies that /?: § — &, is a local dlfFeomorphlsm and t[hﬁt B

is open in <f,. Let (wi,0) ¢ Si, and let JV =/ x J C R*
rectangular neighborhood on which ft is a diffeomorphism onto some

open neighborhood of /j = fi(ui,0) in “(S) ¢ [Zan Y] C A We
have /j G Zg n Y

As we remarked earlier, <p is constant on each JV/; thus <p o fl is
constant on {u} x / for all u e I. Therefore <po p\y is determined by

¢ o Blix(oy and
(15) max {rankd(0>0/?)y2): (u,t) e IV}

- max{rank(p o ySlxo})(mo0): « e /}
= max{rank ¢/(* 0 Ay M G/}
= max{rank{(/(9» 0X),: M6 5/} = fci.
The penultimate equality holds because the maximum is achieved on
a Zariski-open set and hence on any open set. As <p{N) is open in
Us n~r, (15) implies that
K = max{rank™$? ° P)(y,1)"- {ut) e N} = k

as desired. .
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The number K\ (the generic rank of df(poX) on Bf) is an important
constant for our geometric analysis of multiplicities. It is convenient
to introduce the "defect index"

(16) To = dim”r - 2(generic dimension (K I I ¢ &,))
+ generic dimension {K'e PI: I e tf,).
We will show that k = k\ o- To = 0.
The definitions of r and k show that dim <$,, = r+2k The generic (=

maximal) dimension of K 1, I € @, is achieved on a Zariski-open set;
hence it equals the (constant) dimension of K-1,1 e USV\(9,. Similarly,

encric dm{AT- PI: I e @,} = ic dim{Ke PI: I eU, e
%Nx( Uﬁ)g.l\n(‘(l?{n is Zariski—ope}n ingecfrcl,,e’ rl\%e ﬁﬁée eUsN\@,)- Since

(17) generic dimension {K'e PIl: Ie <?,] = dm{AT* (p: cp € Uf} =r.
Since dim N/ = k + r for generic / € @,, we have
(18) dim” + dimis: -P/-2dim AY = 0 for generic /e <f; n U,

An immediate consequence is:

(4.3) LEMMA. We have ro = 0 jffN, = K« [for genericl e @, n U,

Proof. Formulas (16) and (18) show that To = O ifftdim N/ = dim Kl
for generic /. From Lemma 2.4, KI C_TV/ since both of these varieties
are graphs of polynomial maps, they have the same dimension iff they
are equal as sets. .

We need another lemma to relate To and A\

(4.4) TRANSVERSALITY LEMMA. Let §" = {I e [/jfK?,: ank(dg),
is maximal). Then ker(d<p)i = ad*(g)/ nt£y, for all I € S", where

rp(g) = {X ct: 3d*(X)PI = 0},

and the annihilator is taken in g*.

Proof. There are Zariski-open sets Zp C t* covering Uf, plus ra-

tional nonsir;gular maBs Op defined on them, such that on gp n Uf,
Op = P~ (P: is the Pukanszky parametrizing map described earlier

in this section). Let UFU: PJSZP)- };he_n glel lojig %1;16 %ﬁ}sl- 0D
sets ing* covering p-! 'f), and QpoP = P~

HCI’ICG < =n " . "
we havepS" égN Pﬂ%%o?nar%ig]ﬁlyg)SIHCC S¢ Cj and P(Us) € Cff,
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Fix / e §”. Since rank(aty>) is constant on S”, a standard result (see
Lemma 1.3 of [8]) shows that S” foliates into leaves on which (p is
constant; at /, there is a rectangular coordinate neighborhood N =
I'xJin 5" (with / a /A-dimensional cube and / a A-dimensional cube,
say), such that (¢) x J is the intersection of a <p-\eqf with N and values
of <p are distinct on each (¢) x /, te /. Since (p\s>< = TIT ° Pj~* ° P\s"
and

{(FeP UK rroP o P(lY=nro P o P(1) = (1)}
= {/ G p\Uf): K-PV = KPl} = P~\KoPl),
we see that the #>leaf through / is contained in pl(K* P T). The
-leaf through / is obviously in <f, = G [ it i i i
g_ I nPJ(K— %’I ). The tanger)llt spage to %- 6’ %eggg(lgt)} Szco}ftaéﬂﬁdtﬁ%
tangent space to K- Pi is ad*(€)P/ = tA-* imlaforamdV of x,)-
gent sp : ﬁgpnmikmqﬁi )
thus the tangent space to P~
(19 ker(d(p)i = tangent space to $?-leaf through / ¢ xj- n tA,.

On the other hand, if / e 5", then we can find an index /7 with
I € Up. On thgnS”, (p is the restriction of %T ° Q" ° P, defined on
Up. It is easy to see that
ker(d<p)L_D (tangent space to S"” at /) n ker d(nr °QOp° P)i-
But nj o Op o P is constant on t/A fi P! (K+ PI), and so
(20) ker(”),Dt/-nr”.

Comparing (19) and (20) gives the lemma. .

(4.5) corOLLARY. With notations as above, we have
kkx= Yjto.
In . _ o . _ . . P tﬁC} =
particular, N[ = K+ I jffk = k\ i.e., generic rank {d<pi
Card R'{(S).
Proof. Lemma 4.4 says that for all generic /,
ker(d<p)i = xj- nt* = (t; + tp )"
Hence, for all such /,
dimker(dg); = dim9 - dimt/ - dimt/>/ + dim(t/ nr,)
=dim&z + (dimt - dimrp)) - (dimt - dim(t/ Nt#))
=dim&r + dim(Ke PI)-dim(Ke 1),
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and
ki=k*= generic rank{ker(ofy>): / ¢ @,}
= dimifx - generic dim{ker(cfy>): / e &,)
=dimKe I-dimKe PI (for generic le@,).

Since k = }‘(dim"f/ - dim(K » PI)) for generic /, see (17), we see that
To = 2(k - k\). The final claim now follows from Lemma 4.3. D

We now deal with the case To > 0; this Correspond%t@pﬂh% darmed
infinite ultlph&lty, as we will see. Regard <p = H.

on p~UD not just on &, n Cfj as above. Let
3y " = o(@ n P~ (ULY)
30 = @{Gr O Us)
I = 9Xp.

. 1 has a
These are semialgebraic sets with 27 D l(f ]/?_ 2/,‘henlcle 1517 B —
stratification <?> compatible with ~L° and /7~ Notice that dimE* =

dimX? = i\ = k* = generic rank{(flty>): / G <f,,}.

(4.0) THEOREM. Let g be a nilpotent Lie algebra, i a subalgebra; let

{(Xi,.., X,,..., Xmip} be a basis ofg through t as in §3. Let n € G
and let @, pe jts coadjoint orbit. Define d = (e, d), as in §2, to be the
largest index with Us meeting @, ancg leg/ Py gy TZH‘)V Eétfﬁﬁ]nﬁé“fﬁ’é
map; define Ty as in (16), and 1.” L

canonical measure class on 57. Then
(2) 27 ”L / differ by sets havmg lower dimension than 27, so that

they all determine the same measure class [v].
(b) IfTy > 0, then

@
xlx’%—’/ oo - 6y dv(l).
xS

Proof. The discussion so far applies to any base point / e (f, n US.
Fix such an /. We have seen that P{Us) Q Uf. Theorem 3.3 gives us

a decomposition
®

Al =\ Opoiguy dm(u),
£
where k(u) = £(u.f) (see (5)) and m is Lebesgue measure on R”, k
as above. We know that k* = generic rank{d?(* 0 X),: u e Af} and
that this rank is achieved on some Zariski-open set E* C Af. Let
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7* = ((pok)(E*) C Z-, clearly dimZ* = K. The map <poX corresponds
to a foliation of E* with g> 0 X constant on cach leaf; in fact, for any
* . . - i,

3 é} Ri_fc- hgﬁghl%h%thegtoe g%scc%%&g%%tgnpﬁlgce}%s ‘(/Kj' X7 and ﬁag/d%tigct
values on the transversal / x (0)—see Lemma 1.3 of [8]. Hence if
U C E* is open, then (p o X(u) contains a k*-dimensional manifold.

Stratify Z*, letting Zp be the union of the A:*-dimensional [%fgf:% %]*d
Z¥ the rest. Call this syratifigation 3% Let E% = [<p QX))
£% = £ % 0 {(p 0 A)! 2%). ese sets are sernialgebraic and ‘partition
E*\ further, E* is open in E* because Zp is open in Z* and poA
is continuous. In addition, E;" cannot contain a A:-dimensional piece,
since such a piece would be open in E* and hence contain a coordinate
patch W = [ x J like the one above. But then dim(” o X{W)) would
be k* contradicting the definition of ZJ. Thus dim(E") < k and E*
has full measure in Af.

6 be the &*-dimensional pieces in Z*, so that the
puﬁggci\;"gjsp:e (i p 0 X)" (Si) n Er* are disj%int open sets filling E:"
Take rectangular patches Wj = [j x Jj covering E¥ each lying in a
single pullback £,. We may assume that (po X is a difgeomorghism of
/,x {0}. Therefore Fi = cp o X(If x {0}) = (p 0 A(W" 15 open 1n Zr’
and dirnF; = dim/,. Lebesgue measure *«i x du2 on » =/, x /, is
equivalent to m on W;, and ¢M is transferred under <poX to a measure
on F; equivalent to v there. So
/- © /- ©

/ G<po\(u)du'=u \ O<poX(uuUi)dUNXdU?2
JWi JILxJ,
© g

a4 —~

/
The sets G, = F/AdIN Aj) pangnon 32 the sts M. 22 ikl y -1 (@)
are disjoint in E¥ and have the form M, = AT} x /,-, where K; C /; is
such that Gj = ((poX)(Ki x {0}) = (poX{M,). Hence

® . fe . k@ ,
]M Ogpoiiy) du= = 00 o fcfA(fA(dA(,O)dld)a'ui:I 00 * radv(l'),

and hence (writing A > ni to indicate that 712 is equivalent to a
subrepresentation of n\) we get

® 0 - ©
ik g/ T poi(n) du> L Opoi(u) du
E; Jz7i "™

¥

@
o~ |©/ oo - op dv(l') "=‘/ oo - o dv{l’).
z

i=\ JIG<
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On the other hand, if (X, fi) is a measure space and X = \if_; Xj

(Xj measurable, but not necessarily disjoint), then we can easily show,
by partitioning X compatibly with the Xj, that

rOO-nxdu —©,l 00-1n; du.

Hence
N r® <p0
“ood
/® . 00y dV= O/ k) du
U. % j=1 YW
N
vdv(l') (since 00 ® 00 =00)
i=t
®
= I 00 * O, av{l).
J-L;

Summing over N, we get
0w m® ® ®

K <O/ y <x>000Ku)du < 00 / ool du(l') = / 00cT, dw(V)

<TNK (from above).

The "Schroder-Bernstein Theorem for representations” says that these
representations are equivalent. ) ) )

We now show that S* and 17! differ by sets of dimension < k¥
and so determine the same canonical measure: [v/\ = [1/]; this will
complete the proof. (This part of our discussion works for any value
of To.) Let

= [MEN = J(N: e (M},
S, = (@ P USHNe™ (9(S1)),
= @(S1) =p(AE*)) =Z" I, =9(5)
The set k{E*) is semialgebraic and dense in Xf = kfAf). From Re-
mark 3.5, S\ = [X(E*)] satisties dim((f, \ Si) < dim” and contains

a dense open subset of &, Next, Zj, X2 partition Z*. Then maximal

rank{(de¢);: / € <f,} = k* is reached on an open set of S\ so that
dimX, = K. Stratify 27 compatibly With Zi. Zo- If £2 contains a

pic, O HESRIRGR 5 0 2510 5P B g, sineptomlogsst

disjoint from S\ This contradlcts\ th fact that S(} is dense in @13
Therefore k* > dim(Z2) = dim(S™ » s require
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(4.7) REMARK. When To > 0, we have dimKl < dim TV for generic

I €{f.. From Lemma 2.4, TV is a union of A-orbits, so in this case TV
contains infinitely many A”-orbits. Hence so does @, n P~X(K * P =
(fun(Ks I+]-1) for generic / €<2, Thus the multiplicity of oj, in n\x

is equal to the number of Ad*("T)-orbits in &, n P~' (K I') for v-a.e.
I' € 27 (provided that we do not distinguish among infinities). This

interpretation of multiplicity as the number of certain Ad*(/Q-orbits

also holds in the finite multiplicity case, To = 0, as the next theorem

shows.

(4.8) THEOREM. Let g be a nilpotent Lie algebra, t a subalgebra,
and G, K the corresponding (connected, simply connected) groups. Let
{X\...XD,...Xmip} be a basis for g through t, as in §3. For
% € G, let @, pe its coadjpipt, orbit, and let e be the largest index
for layers in 'V such that PJ(]ﬁ]{)E meets %l"’ where P: g* R S the

natural projection, . Define the defect index To as in (16), and define
27 = (p(va( UA)’”Q(fn) with its canonical measure class [v] as in (21).

Suppose that To = 0, and let
(22) n(l') = number ofK-orbits in P~I(K_],) nl /' G27.
Then for v-a.e. I’ el’"
(@) p-'K* 1) <fuis a closed submanifold and its connected com-

ponents are K-orbits;
(b) There is a common bound N such that n(l'’) < N;
(¢c) We have

@
i [, n)or v,
ZR
where o\, 6 K corresponds to K [-Ct*.

Proof. The proof is fairly long, and we divide it into a number of

steps. Fix / G <f, n U, and define X: A, - . (UIn&, -+
27 ¢ H as before. We have Ay ¢ Rb }}g =eard RX(d)yz Bﬁme/ ; from

Lemma 4.2 and Corollary 4.5, our assumption that To = 0 gives
k = k* = generic rank{(")/: / € (f,} = dim27

and
k = generic v&nk{d((p o X)u: ue Af).

For any set A_C P~\Uf)O\@,, we define its ~-saturant, [A® by
[Aly = ¢~ (@A) =G| J(K -1 +¥-: 1 e 4}
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Note that [l]9 — /\nl-K_l_'_Z__]) = WP"'\K‘PZ) fOI‘ / € (ﬁlr\P'\Uﬂ.
The proof proceeds as follows:

Step 1. We construct a semialgebraic set H.C KX ¢ (fnﬂP_I(UeK)
with the following properties:
(23) (i) H is M-saturated: [H], = H.
(i)) The complement of H is of me(?sur%uO in @, n P~f‘Nf)'
(i) A»(if) = 1/7 18 semialgebraic and of full measure 1n 27.
(iv) For I e H, [l]s is a union of AT-orbits, each of which is a
connected component of [I]y,
(v) For/€//,N, =K+ L

(vi) The set B° =// n Xy is a semialgebraic set of full [neasure in
X; and C° = x-U(B°) ¢ » has full measure in R™

Once Step 1 is completed, part (a) of the theorem is proved; f_urthela
more, it will suffice to prove (c) when the integral is over ~L"” instea
of T*.

Step 2. For 1 < i < oo, defi n(j) = {/ ¢ S*: the number of
Sf of‘é)its in ;IJ(K: /])_n 10{0 18 ??HCT e SMO) obviously partition Ut
we show that they are semialgebraic and that they are empty once j is
sufficiently large. This proves (b).

Step 3. Let G, = {<p0k)_\I.HU)). We show that

@ .
/C amj(u)du: 1 jop dv(l).

4

If /' € 1g), pick / ¢ P\K o /' —
g), pic e yn ffk Thenx(ﬁ?(!)')nH/an% j<p=(FQ,(/.<3l'f

/ G [#], = H Hence P"'"* In<f =.P-
Since
A= /L©aq>01;m)du
Je

(from Theorem 3.5 and (vi) of Step 1), this proves (c).

Proof {Step 1). Let
U={le P (UKYn@&,: rank(dp), = k},
x) = Xrn u n fjj.
All A*-orbits in t/j have dimension r + k; thus dimA'e I =+ r + k for

/' G UsH(f,, and r+A: is the generic dimension of Af-orbits in < ?,,. The set
U is Zariski-open in &,, and is Ad*(A")-invariant, since Ad*(A:), k G A",
is a difFeomorphism of A that fixes A"-orbits and commutes with (p.
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For all / ¢ UgQ\U, N{f = K+ I, since Nf 2 K+ I, both are connected,
and their dimensions agree (Corollary 4.5); in particular, Ug n U =
Usn U], where [A] is the iV/-saturgnt defingd in Proposition 3.2. The
éet B :] XJ{Xf)[:] ANt (=R* /%?f) €f ?fsll’lU} ispZariski—open in
g+ and is nonempty because (xil = X HUnUT = [X] D UpHU is

dense in <f, Hence B is dense in Af and Xj = X(B) is a dense open
semialgebraic set in Xf.

For all / €E Un C/j, we have dimKe* [ = dimN/ = k+ r, dimG-1 =
dim”t = /-42A:, and rank(aty)/ = A, The map * foliates C/nt/,5; if L/ is
the leaf through /, then K-l ¢ Lj, and dimL/ = dim(f, -rank(*)/ =
dim~fe /. Since Are /and I\ are connected manifolds and K [ is closed
in £/ n Us, we must have

(24) Li = K-l =N, alNeUnU,

Moreover, if / € [[]* nUnUj, then the leaf Lj coincides locally with
[/Ip D Un Us- But this last set is a closed subset in Un Us, stable under
K. Hence it is the union of the AT-orbits it meets, and these are open
in the relative topology coming from <f, because each AT-orbit is a leaf
of the foliation. Thus the components of [1/A, n Un Us are AT-orbits.
We conclude that (iv) and (v) hold provided that H C. Un Ug and (1)
holds.

Since B 1s Zariski-open, X§ = X(B) is semialgebraic; we noted above
that it is dense in Xf. In particular, dim(Xy\Xl) < k = dimXf.
Define |

F=P N USHNE) K- X},
H = (pAUDKI) N 2=1g(F)) = (PH(UK) N80 (F,.

Then // clearly satisties (i). Since H C K * X.C U nU, (iv) and (v)
hold as well; furthermore, F and H are casily seen to be semialgebraic.
The key fact to prove is:

(25) dim((p(F)) < dimS*.

For if (25) holds, then (iii) is immediate, since YF = 17\ <P(F)

Furthermore, dimfF* < dim”, and (i1) follows. (Otherwise, [F/,p
contains an open set in <?,, and hence in &, n p(Uf). Since dip
has maximal rankm on every open set, <p(F) = <p[F], would contain
an open set in /F, and this contradicts (25).) Finally, [Xfn H] =

HA [Xf] is dense in <7, Now define Bf C Af as in Lemma 4.1. Then
A: Bf — Fj is a bijective local diffeomorphism. Fix fo £ #/, / = ~("0);



RESTRICTIONS OF REPRESENTATIONS IN NILPOTENT GROUPS 259

taking a rationally varying action basis, define, F(u, t) = if/x(t w)
(3) fir ¢ near toyand yu f £ I Visa neigh(borﬁoodfof( '%g, then

F(W+k, V) = [X{(V)] contains an open neighborhood of IQ in <?, by

Lemma 4.1(c). Hence [X(V)] meets H = [H], so that A(K) meets H.
Because X is bijective on A; V meets C° = x-[(HnXy). Thus C° is
dense in Sy and H AXf is dense in Xy. Since C° is semialgebraic,
(vi) follows. |

We thus need only prove ,([25) to complete Step 1. Let & be a strat-
ification of U compatible with the sets <p{Xf) — (p(K* XI) and g>{F).

s
We suppose that there is a piecce M@ C (p(F) with dimAf* = k and

roduce a_contradiction. Let N be a stratificatio { compati
\Pivith p_I{U?) n#, the Cf, nM(<5; e A), q>—’l(c&g~l} '%?K’ 019’ Aanélbba

The set Af* is covered by ~-images of pieces lying in F; on one of
them (Mo, say), we have
M)}

maximum rank{d(<P\Mp)F °

Hence Ab meets 17, and hence aQ » (/. The tangent space (TMQ)I, I
Afo, must thus contain subspaces of dimension k that are transverse
to the leaves of the ~-foliation of U; therefore there is a submanifold
A/ C A/Q, dimAf = k, such that <P\M is a diffeomorphism to an open
set in MJ™.

Let Si G A be the largest index such that Us, meets M. Then Us, n Af
is nonempty and open, by Proposition 2.1 (b); we may assume that
Af ¢ Usi, From Proposition 2.1 (a) and (c),-N, ¢ (K-l + **n*nUs,
for all / € Af; since (p is a diffeomorphism on Af and is constant on
ecach N[, M meets N/ only at /. We claim:

(26) The set Y = [J{N,: 1€ Af} = [Af]l ¢ Usi n* contains an
open subset of trp~1(U")-

= dim My

Assume this for the moment. Since (fup~! (Us) 18 Zariski-open in (f,,

we have dj = S. Furthermore, [X[]/ = K+ Xi contains an open dense
set of (f,, because Xj is dense and open in Xf (see Proposition 3.2

and Remark 3.7). Hence 7n[X|] contains an open subset S C UAUS.

Since K—X\J contains every N/ meeting it, Af meets K—)gl. But M CF

is disjoint from K ¢ X\ and this contradiction gives (25).

We now prove (26). We have Af ¢ Us, D prdUf) nUD(?,. We

know that dim(K * Pi) = r for all / € Us'n p~/(Uf) 1<%, and that
dim(Ge /) =dim(f, = Ik + r. Since / € Us,, we also have

dimA"e Pl =Cardi?%,), dimGe /=Cardi?"")+2 Card/?£((*,» ),
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from the definitions of R'(di), R"/(Si); it follows that
CardR'y(Si) = r. CardR"(Si) = k,

and hence that dim N/ = r + k for all / € Ug, In particular, this holds
for all / e M. Parametrize M via a C°° diffeomorphism /?: Q — M,
where @ is open in R*. By perhaps shrinking M slightly, we may
assume that these are rational maps {Y\(),..., Y1)} providing an
action basis at each I e M. As in §2, we may define a nonsingular
map

Vi(lt) = {IXPUYV ) XplyoiY i 1))-1, leM, teR™

which defines the N, [et h(s,t) = Ya(fi(s)t) for (st) e Q x R
Then Range/? = [M] = Y. Since t B> h(s, 1) gives N') v¥hile s >
/Z(51,O) gives M, and since Ni 1s transverse to M, we sec¢ tha

rank(dh)s0) = dimM + dim A”s) = 2A; + r = dim &,
This proves (26) and completes Step 1.

Proof (Step 2). For / ¢ H, we know that [/[p is a union of AT-orbits
Kl> = N, all I'eUn U;. But each iV, / ¢ [X}] B //, meets X) in a
single point. Thus for all I eH,

@27) n(<p(l)) (see (22)) = number of tf-orbits in (K I+ ¢ 0
= number of A-orbits in (K I+Z]) nH
= Card{(K -/ +¥¢H)n X}}.

Recall that Xj. = k{B) for some Zariski-open set B C A; C R* The

map P o A: R* —> V is polynomial. We also have the rational nonsin-
gular parametrizing map Pe: E. x Fy,, _* [J h that 1 ic Pyl

is polynomial for each /' € [L, ij( /)' € E’f’ _é%f; li]hen K 7(_1_(7‘ e
is the range of -Pe(/, W), and the map of W Xo K+ /' is a diffeomor-

hism. Consider the polynomial R(s, t) = P./]’ ) -. ; i
En B x R+ 1he roots pof (s, t) = O(cor{*espon{cf pf)ecm(ﬁ?}{)o“dﬁ,edegﬁﬁ%

in PJ(K— /Y n Xj., and this intersection is (K * [ + ti)n Xj for any

/ € p'H!') n~t._Thus th f.roots of U(j,0 = 0 is j iff
/ GPZH(j),) ﬁl <7 <u(§0. %lggem EQC(I)‘ X igoe(l) focoal di(flfeomorphllssrr{ on

5 when to = 0, the roots must be isolated; that is, there is no one-
parameter family of roots in B x W. Now we use the following result.

LemMA. Let Z CGRY bepg Zagiskinpneinisep Z==(#F. ¢ R Of),)
0}, and let P:R" "R o reerm). Wen
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there is a number N, depending only on m, n, degA,...,degln, and
deg(2, such that either P(x) = 0 has a l-parameter family ofsolutions
in Z or the number of solutions to P(x) = 0, x e Z, is bounded by N.

We omit the proof, since this is essentially part of Theorem 4 of
[2]. .

To complete Step 2, we need to show that the A7) are scmialge-

braic. This proof is essentially the same as thaa ﬁ%@%{gﬁfn 4 (b) of
[2]. For instance, /' ¢ U/>2 aU) it €7

Po(l', 1) = (PoA)(s) =0,
P(l\t2)-(PoX)(s2) = 0,
ty — 21 + |8y — 52/* > O

has a solution. By taking relative complements, one sees that the £ ()

arc all semialgebraic. .
z(I.HU) )> o before, and let

Proof (Step 3). Define Cj = (y o X)~
Hj = X(Cj). As noted earlier, we may integrate over C (the disjoint
union of the Cj) instead of Af in the direct integral decomposition of
Theorem 3.5. On Cj, the map ¢> o0X is a’y-to-1 map onto X"/’ and
(27) says that

& D
[, nla. dul) = Q f  jadur).
/

To prove the theorem, therefore, it suffices to prove that
® ®
(28) / jav dV{V)N: .1 Q{90k){u) du.

To do this, a2 € aesnessivelyr tiradotimensiangd pieisaair
e, 0 Ol e AR wiind fhpicsany

the pieces of lower dimension. Since <p o X is a local diffeomorphism,
(cp 0A)"'(Z’2) has dimension < k in Cj and is therefore negligible,

. . H
Recall that (p 0 X is defined on Af CR*’ with image TA we have ~L -
I'/cp, and these difley by sitepdciapgneienid. ZEDGrelotpaye impy

work with J.* ' ) . . .

hence (A OA)(£a) is open in Af and lies in Cj. Let {Cyj: /7 ¢ /} be the

(open) connected components of this set. Since Cj is semialgebrajg,
)

is finite. Furthermore, poX is a local diffeomorphism on X( >0X)~"
5. Fix x € sQ and define mp(x) — card{« € Cp: cpo gu) ='x). Thet
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a 1s fixed,
mp{x) is integer-valued, and Lpmp(x) = j on H* EXQG1
then for each /? there is a neighborhood Np C I" of Xo on which
mp{x) > mpf{xo), all x G A*. Let N = f]p Np. For x G iV, we have

J=3 mp(xp) > mplx)=J
fi p

Thus the mp{x e constant on N. In particyla 1 a
c orlllstant onpé& aIlience constant becausg H]"C Habofitfe. 1THR }IJSX

(poA: Cp —* 72 is a covering map with uniform covering index nip,

and so

e ®

I ovoX{u)du= \  mpoi,dv{l').

Summing over fi ¢ /, we get

/ Ovox{u)du="+1  jo,dv{l’),
T {(p°X)Nj>) Jz"
since Zpmp = j. Now summing over a gives (28). D

5. We give here some examples and miscellaneous results.

(5.1) LEMMA. Suppose that K is a normal Lie subgroup of the con-
nected, simply connected nilpotent Lie group G. Then for n G G, TNK
is either uniformly of multiplicity 1 or uniformly of multiplicity oo.

Proof. WS show that for any /' G 57, <£~x{ V) T\@"_is conpecteq. Let
X = <p~l{l N&\ pick / G X, such that P{1) = /. Since ¢ is an ideal,
G acts on 6* by Ad*, and P: Q* —> r* intertwines these actions of G.
Let § = Stabg(/") = /x<EG: Ad*(x)l' = /'}; S is connected, since the
action of G on V is unipotent.

Now suppose that Ad*(*)/ e X for some x eG. Then P(Ad* x)l G

K ¢ V and therefore there exists k G K such that
Ad*(fot)/' = -P(Ad* kx)l = (Ad* k)P(Ad* x)] = I-

That is, kx G 5, or x G AIS (a subgroup, since AT is normal). Con-
versely,

y<EKS=> P(Ad*y)l e <9y => (Ad* y)| G X,
or X = Ad*(ATS"Y is connected.

It follows that if To = 0, then nfl) = 1 for all /. (If Ty > 0, then the
lemma is trivial.) .

(5.2) EXAMPLE. Let g be the 5-dimensional Lie algebra spanned
by X\ Xz, X3, X4 and X5 with nonzero brackets [X5,X4] - X3,
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[Xs, X3] = X2, and [X5X2] = X\ G is the corresponding simply
connected group. We considered g (with slightly different notation)
in Example 4 of [2]; it turns out that the orbits in general position
are parametrized by elements / = a\\ + 03/3 + 04/4, a\ / 0, where

I\..., Is is the dual basis in g¥ to X\..., X5; moreover,

t2
(;l= {Q’]ll +f[2+ (C\!3+ Tﬂ]) h

( eyt !
+ \a4+a;+a{f//4+ul5: LueRY.
\ Vi

Let 1 = R-span{Z4}, K = expt. A calculation shows that for / =
Ej=i fijlj’ Ad*(A"Y =/+R/s if h A0 and =/ if fo = 0.

We have t* = R in the obvious way; P maps ” to 1 and the other
basis elements to 0. Each point in R is an Ad*(/T)-orbit.

Let n correspond to / = ai/i + 03/3 + a4/4, a\ " 0, and let Xx K

correspond to X € R:
Xa(exptXy) = 2™,
We have TQ = 0, since generically on &,
dimG/=2, dimA'-/=l. dimKe* Pi=0.
Thus Theorem 4.8 gives

o
g T | n(d)xadA,
JR

where

13 = number of Ad*(.K)-orbits in P~{X) 1</n
3

. H to
= number of real solutions to 67/'\ —\a—3+ ar=X.
j t

(In this case, H excludes the points where 03 + t2/2a1 = 0; these
are also the only points where there can be repeated roots.) Hence
n(X) = 3 on a set of positive measure and = 1 on a set of positive
measure; that is, n\fc does not have uniform multiplicity.

(5.3) EXAMPLE. Let g be the Lie algebra with basis vectors Z, ¥,
X, W and nontrivial commutators

[WX] =Y [WY] =72
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and let G be the corresponding Lie group. We let Z*,..., W* be the
dual basis for g*. Write

(z, v,x, w) = exp zZ exp yY expxX exp wh,
[a,p,y,d]=aZ*+ PY*+yX*+SWH*,

A direct calculation gives

(29) Ad*{zy.xw)lap.y.d)

=lap-wa y - wfi + W2a/2,6 +xfl + (y - wx)a].

Thus the radical of [a, /7, y, d] is

30 xla,p,y,S] = R-span{Z,aX-pY} ifa”O;
= R-span{Z, Y} ifa=0"p.

The generic orbits are those having dimension indices given by e® =
(0,1,1,2), for which Uew = {1:a"0} and Z.,, = {/a,0,5,0]: a " 0,
y e R}. From (29), a typical orbit in U,y = pyA? 18

(31) (g = Gv [a,0,9,0] = {[a,s,y pg/totls st €R ),

Denote by 7o, the corresponding representation of G.
The next layer consists of those elements having dimension indices

given by e = (0,0,1,2); we have U = £@ = (Fa=0p "0},
72, = {[0,p, 0,0]: p / 0}. A typical orbit in U is

(32) <fs=G-10,p,0,0] ={[0,p,s,t]:5,teR},

and we let n* be the corresponding representation of G.

Now consider G x G, with Lie algebra g © g, and take 2\ Z, |
W\ Wi to be the basis of g © g (with the obvious brackets). Let K be
the diagonal subgroup; its Lie algebra I has a basis

?=Z|+Zz,..., W=W|+W2;

we have [WX~] =Y, [WY] = Z. The dual basisjn g* © g* will
be denoted by 2\, 2\...., W\, W}, and that in V by 7,..., WA the
projection P: (g thigy* —* r* thus satisfies

P[az,az,...,Sz,Sz] = @+ ayT + o o o + (> + Sywr
By an obvious change in notation, (31) and (32) describe orbits in £*;
orbits in (g © g)* arec Cartesian products of orbits in g*.
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We shall compute 747 @ nay, = Raisyi

that a\a> / 0. The orbit representative for “ 1’§ ‘[a(f\&g 6%)»7‘16%1
0,0] = /o, say; then

(33) <2 = (GX G) - Iy

( 2 2
+ + o2t i eR
= a'x’aZ,Sx,Sz,y\ 2" 12 205" ] )

Assume first that a\ + 02 / 0. Then P maps * into t/O, since every
element of P{<?,) is of the form {a\ + az)Z* + « « . We must thus
take a typical orbit representative / = [a, 0, 7, 0] € 2%,, and compute
<¥ nP-'(AT-/). Notice first that
dirndl =4, dimA:-/ =2, dim” e / = 3 for generic / e @,
(from (29));
thus To = 0. i i
From (31) and (33), we see that / € (fp-AK ¢ ) ift there exist
s, t € R such that
(l) « +ap = a,
() N +s2 =17,
(i) 7, +52/2a, +y2 + s%/2a; = y + #2a,
W fj+n=f
Condition (i) shows that we must have a = a\ + az; (iv) shows that
N\ I are free. From (i), (ii) and (iii) we get
st + 53 (s1+8)?
20y 20 2oy +a;)

=¥Y—" 72
or i
(34) (aiiy - azs;)? = 2y - yr - Y2)aiq, n&
as a condition a@l@ﬂw 2 %, OTAJIOGINNGHRS o pairiibtllihescwipty
[y — W\— 21"
set otherwise. That is,
0,np"! (AT » [a, 0, 7,0]) ~ union of 2 copies of R}

if (7 -71 f ){l){a\ + az)azaz >0
~onecopyofR31 WYz =

~0if (7 -7 - 120« + az)a\a, < 0,
Thus we may take
1% = {/ = [« 0,7,0]: a=aj +a,

(7-Ti-72@l +az)a\a; > 0} « a half-line,
A = Lebesgue measure on the half line = dy,
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and we have

@
o QR Z x|y = .
LTI 2.2 |x [D’ 2ftal+a2,y dy.

If an + a, = 0, then P maps @, onto a set containing UM but
missing UM For / = [0, /7, 0,0] e I";), we have

dim”* =4, dimKe f=2, dimKe =23 for generic/<€",

as before; thus to = 0 again. Furthermore, / ¢ » n P~ (K f) if there

exist S\ S2,5, A\ i, t G R such that
1 SN+5,=/2,
fity » ¢ P AN . s P i
(i) *"+1r2 = f ) ) B
From (i) 5l is free to vary, but s, is then determined; (ii) then deter-

mines 5, and (iji) lets us vary A and # arbitrarily. The intersection is
thus = R3 Ior (all)/? + 8, and’we find that Y

I"={f=[0,00]: § £0}, dv=dp,
nal:)’l ® 7{02-}’2 = an E/; Tt'ﬁ dﬁ

(5.4) REMARK. For some groups G, one can have n\ ®72 irreducible
even though U\ and *; are infinite-dimensional. This is implicit in
some of the calculations in [3]. The simplest example is probably the
case where g is the group of strictly upper triangular 5x 5 matrices.
Let Xjj, 1 </ <j < 5, be the obvious basis {X;j has a 1 as its (i,j)
entry and zeroes elsewhere), and let //; be the dual basis for g*; a
tedious calculation shows that

Ty, @7y, = Tl s+ba
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