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SPECTRUM AND MULTIPLICITIES FOR RESTRICTIONS
OF UNITARY REPRESENTATIONS

IN NILPOTENT LIE GROUPS

LAWRENCE CORWIN AND FREDERICK P. GREENLEAF

Let G be a connected, simply connected nilpotent Lie group, and
let AT be a Lie subgroup. We consider the following question: for

<G GA, h o w d° e s o n e decompose U\K as a direct integral? In his
pioneering paper on representations of nilpotent Lie groups, Kirillov
gave a qualitative description; our answer here gives the multiplicities
of the representations appearing in the direct integral, but is geometric
in nature and very much in the spirit of the Kirillov orbit picture.

1. The problem considered here is the dual of the one investigated
by us and G. Grelaud in [2]: give a formula for the direct integral
decomposition of Ind^ o, a € KA. T h e a n s w e r , t o o , c a n b e r e g a r d e d

as the dual of the answer in [2]. Let g, t be the Lie algebras of G,
K respectively, and let g*, t* be the respective (vector space) duals;
P: g* —• 6* denotes the natural projection. Given n € G, we want to
write

re
n\Kc± I n{a)odv(o);

we need to describe n{o) and v. To this end, we review some aspects of
Kirillov theory. In [7], Pukanszky showed that V can be partitioned
into "layers" Ue, each Ad*(AT)-stable, such that on Ue the Ad*(K)-
orbits are parametrized by a Zariski-open subset ~Le of an algebraic
variety. (See also §2 of [2].) We can thus parametrize Kby the union
of the *Le. Let @n c g* be the Kirillov orbit corresponding to n. There
is a unique e such that <fnnP~l(Ue) i s Zariski-open in <?n. Let £* C Se

be the set of /' e T.e such that P{@n) meets K • /'. It turns out that
27 is a finite disjoint union of manifolds. Let k* be the maximal
dimension of these manifolds; define v to be A:*-dimensional measure
on the manifolds of maximum dimension and 0 elsewhere. Then we
will have

where a> corresponds to /' G 27 via the Kirillov orbit picture.
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It remains to describe «(/')• For / e @n, define

TO(/) = dim(G- /) + dim(A" • PI) - 26im{K• I),

where the action of G, K is the coadjoint action (so that Gl = (fK and
K • PI is the Kirillov orbit in V corresponding to Pi). This number is
a constant, To, on a Zariski-open subset of @%, and we have

/!(/') = oo, v-a.e. /' e 27, if T0 > 0.

When To = 0, we have

«(/') = number of Ad*(#)-orbits in P~X(K • l')n<?n;

moreover, this number is uniformly bounded a.e. on 27. This is the
essential content of our Theorems 4.6 and 4.8. In fact, we note in
Remark 4.7 that To > 0 whenever the number of AT-orbits in P~l(l ') n

<fn is generically infinite.
It may be helpful to consider the simplest example of the theorems,

where K is of codimension 1 in G. This situation was investigated
in [4]. For / € @n, let t/ be the radical of/. There are two cases to
consider. If t/ ^ t, then P is a diffeomorphism of <?„ onto K• PIC V,
and (fn = K-1; furthermore, 7I\K is irreducible, n\x = oP[. Thus 27
reduces to a single point (corresponding to o>/), and, for /' e P{<?*),
P~[(K-1') n&n = &n, so that n(l') = 1. It is easy to see that TO(/) = 0,
and that Theorem 4.8 says that 7I\K = O\, (where /' € 271 c o r r e s p o n d s

to K • PI). If t , C t, then choose X e g\t. In this case, P0n =

gRK-XfPI, where xt = exp tX (acting on PI by Ad*;notethat K is
normal) and the union is disjoint. Furthermore, P~' •*"> = &n (i.e.,
<9n is P-saturated), andP~\K• xt • Pi) = K• xt • I. Thus

te

' " * °x ,-ndt-

Again, To = 0, and Theorem 4.8 gives this same decomposition. For in
this case, 27 consists of representatives for the orbits < ?t

K = K-(xt-Pl).
It is easy to see from the formula P~l(K-xrPl) = Kxtlthat n(l') = 1
for/' representing <ft

K.
The proof in the general case is in essence an induction applied to

this example. (In a sense, it is also dual to the proof in [2].) We con-
struct a chain of subgroups from K to G, each of codimension 1 in the
next, and restrict step by step. Keeping track of the geometry, how-
ever, soon becomes difficult. To keep matters straight, we introduce a
fibration of most of ffn. More precisely, we show that a Zariski-open
set U c < ?„ can be fibered into manifolds U = \Ji€Xf fy, such that all
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points in the fiber Nj project to the same AT-orbit in t*: P • Nj = K• PL
The M let us keep track of the way that the tangent space to a A>orbit
grows as the Lie algebra grows from t to g. When To = 0, N/ is (gener-
ically) the AT-orbit of /, but when To > 0, it is an infinite union of
AT-orbits. Our construction of the N[ is somewhat ad hoc, and we do
not know if they have any further significance. (In some cases, they
do depend on the chain of subgroups from K to G.)

Our first decomposition of U\K is as a direct integral over the iVj.
We actually express it as a direct integral over the transversal Xf.
This set is parametrized by a polynomial map X:Rk •'"' w h e r e

2k = dim Gl- dim AT • Pi for generic / e<?n; X i s a diffeomorphism
on a Zariski-open set Af c Rk, a n d & = X(Af). T h e n w e p r o v e t h a t

JVLk

where du is Euclidean measure. We also show that Xf and the iV)
have the following properties:

(i) leN,, =>l ' e Nt (the Nt partition 0n)\
(ii) for generic /, dim W = r + k (r = dim K • PI);

(iii) for I eXf — X{Af), TV/ and Xf are transverse;
(iv) f o r / € * / , Nlr\Xf = {l};

(v) \JleX N[ is an open dense subset of full measure in &„;

(vi) P{Ni)CKPl.
This means that the direct integral in (1) can be taken over Xf. We
show next that if To > 0, then Af fibers into manifolds of dimension
> 1 that are taken into the same Ad*(AT)-orbit by P o X; this gives
the infinite multiplicity case. When To = 0, the N/ are generically the
orbits K • I, and the number of points in P~X{V) n Xfis t h e n u m b e r

of M in P~X(V) C\&n\ this, plus some technical work, gives the finite

multiplicity formula.

The integral (1) (our Theorem 3.5) is, of course, also a direct integral
decomposition, though not a canonical one. It is useful, however,
because it leads to a proof of the following results:

THEOREM 1.1. Let G be a connected, simply connected complex
nilpotent Lie group, and let K be a complex Lie subgroup. IfneG,
then 7Z\K is of uniform multiplicity.
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THEOREM 1.2. Let Gbea connected, simply connected real nilpotent
Lie group, and let K be a Lie subgroup. For n e G , write

r®
n\K = / n{o)odv(o).

Then either
n{o) = oo, v-a.e.,

or n(a) is even, v-a.e.,
or n(a) is odd, v-a.e.

The proofs of these theorems are similar to the proofs of the corre-
sponding theorems for induced representations, given in [1], and we
shall not give further details here.

The duality between the results in [2] and those here is, of course,
an aspect of Frobenius duality; in particular, the formula for n(n) in
Ind^cr is the same as the formula for n(a) in n\fc- There are general
results of this form; one is found in Mackey [5]. Mackey's theorem
applies to almost all n and almost all a, while our results apply to all
n € G and all a e K (except that, of course, n(n) and n(o) are denned
only a.e.) Mackey's theorem also gives information on the measures in
the direct integral decomposition. We hope to be able to say something
about these measures on the exceptional set of representations not
covered by Mackey's theorem, and about other aspects of Frobenius
reciprocity; we defer these topics to future papers.

The outline of the rest of the paper is as follows: in §2, we construct
the Nfs and describe various other algebraic constructions like those in
§2 of [2], but somewhat more complicated. Section 3 is devoted to the
proof of the noncanonical decomposition (1), and our main theorems
are proved in §4. We give some examples in §5, including one of
a tensor product decomposition. For a number of proofs, we rely
heavily on results of [2]. We also use a number of results concerning
semialgebraic sets; a sketch of the main facts about these sets is found
in [2]. (See [9] for further details.)

2. Here we decompose g* into sets Us adapted to both G and K; for
each / € g*, we construct a set A7 /with a n u m b e r o f u s e f u l properties
analogous to those for the sets M/ constructed in §2 of [2]. Since the
proofs closely follow proofs in [2], we will sometimes be quite sketchy
about details.

Let t be a subalgebra of a nilpotent Lie algebra g. We fix a strong
Malcev basis {X\,...,XP} for 6 and extend it to a weak Malcev basis

...,Xp,Xp+i,...,Xp+m} for g. Let g, = R-span {X{,...,Xj},
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and let { I p . . . , X*+m} c 9* be the dual basis to the given basis for
0. Note that Gj = expg7acts on both Q*J and 0* by Ad*, and that
these actions are intertwined by the canonical projection Pj• -. Q* —• 0^.
Also, K acts on each 0*, and these actions commute with Pj because
X\,..., Xp give a strong Malcev basis for t. We often write P for

Define dimension indices for / e 9* as follows:

ej(l) = dimAd*(K)Pj(1) (= dim ad* (t)Pj(I)) if 1 <j < p;

dj{l) = dimAd*(Gj)Pj(l) (= dimad*(Qj)Pj(l)) ifj > p;

A = {Se Zp+m: 3 / € °* w i t h

Us = {i€Q*: 6(1) = S} for<SeA.

(2.1) PROPOSITION. Let K CG and a basis {X\.... ,XP,..., Xm+P}
be given as above. Then:

(a) IfS — {S\,..., dm+p) e A, then dj - Sj-i = 0 or 1 ifj < p and
Sj - Sj-i =0or2 ifj > p (we set So = 0). HenceAisf i n i t e .

(b) There is an ordering of A, A - {<5(1

each 3 G A, thesetVs = \JS,>SU§, isZariski-open ing*.

Proof, (a) For j < p, this is clear, since the same group K acts on
each g* and dim0* increases by 1 at each step. Forj > p, we have the
coadjoint action of Gj — exp(&j) on 0^; orbits are even-dimensional
and both Gj, 0* increase in dimension by 1 at each step.

(b) Order the e's as in Theorem 1, (b), of [2]. For all 8 = (e,d)
with fixed e, further order the d's as in Proposition 2 of [2]. Now take
the lexicographic order on A: (e, d) > (e', d') if e > e' or e = e' and
d > d'. The proof of Proposition 2 of [2] is easily modified to show
that this ordering has the desired properties. •

Now fix 6 — (e, d)\ set

R'2 = R'2(S) = R'2(e) = {j:l<j<p and ej - *?,• _, # 0 } ,

R'{ = R»(S) = R»(d) - {j: p <j < p + m and dj - dj-i ? 0}

(where dp = ep). Similarly, define

R\ = R\{8) = R\{e) = {j: 1<j<p and ej = e}-(\,
R'[ = R'((S) = R'l(d) = {j: p < j < p + m and dj = dj-i},
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and let

R2 = R2(S) = R'2uR2
,
 Ri = Ri(S) = R[ L)R'(.

Define corresponding vector subspaces of g*:

E\ = R-span {X* :jeR\}, E'{ = R-span {X*: j e R"},

E'2 = R-span {X*:jeR'2}, E'2' = R-span {XJ:jeR"},

Ex =E[®E'{, • E2 = E'2®E'{.

Then R\, R'2 are complementary subsets of {1,2, . . . . p}, and R\, R2
are complementary subsets of {1,2,... ,m + p}. Hence we obtain
splittings

V=E[®E'2.

If / € Ud and R2{d) = R'2 U R'2f = ft < • • • < ir < • • • < ir+k} ( w i t h

ir < P <h+\), as above, a set of vectors y— {Y\,..., Yr+^} C 0 is
called an "action basis at /" if

l ) = P ™, a n d

YjEt if 1 < 7 < r, YjZQ^ ifr+l<j<r + k

(recall that X*,...,X*is the dual basis in g*). Note that the ij depend
on 5. Given y at /, define a mapping y/;: Rr+k —

(3) y/t(t) = (exp(tiYi)—--exp(tr+kYr+k))-l,

where gl = Ad*(g)l, and set N/ = N^y) = y/t{W+k). T h e n e x t r e s u l t

shows that the Ni{y) are independent of the action basis y, partition
Us, and can be chosen to vary rationally on U§.

(2.2) PROPOSITION. Fix notation as above andfixde A; letRi{S) =

Us can be covered with a finite numberofZariski-open sets Zac 5*
on which are defined rational nonsingular Yita: Za-+Q such that

{Y\,a(l), • • • , Yr+k,a{l)} is an action basis at I for every I eUsf) Za.
If I € Us andy -={Y\,..., Yr+k) is any action basis at I, then

(a)N,(Y)CUdnG-l,
(b) The Njctiare°<&>h0edily <<kftnM(ylf I <NW$) jQtytatiififfcr^

yrl \ is any »
r+k>

) = N[ is independent ofy, and Us is partitioned by the sets N[.p
(c) NiQK-l + t1.



RESTRICTIONS OF REPRESENTATIONS IN NILPOTENT GROUPS 239

(d) //"Prj, Pr2 are the projections ofg* = E\ © E2 onto E\, E2

respectively, then Vx2 = N/ ->• R r + ^ = E2 is a diffeomorphism. {Infact,
t H-> Pr2 y/i(t) is a diffeomorphism.)

Proof. We use induction on dimg/6. If t = g, this is essentially
the theorem in [7] on orbits applied to the unipotent action of K =
expf on V, with X\,..., X* as the Jordan-Holder basis. Then W =
K • I = Ad*(AT)/; (b) and (c) are thus trivial, (a) follows because the
Us are always Ad*(AT)-invariant, and (d) is one part of Pukanszky's
parametrization of orbits in U$.

If dimg/6 > 0, the proof is a nearby verbatim adaptation of the
proof of Proposition 3 in [2]. •

The following observation about the properties of the action basis
generating W will be useful, and can be proved without going into
details of the proof of Proposition 2.2.

(2.3) LEMMA. Let ij e R"(S), let I e Us, and let Y e g,, satisfy

Then YE0/>1.

Proof. Since we are projecting onto g(J, there is no loss of generality
in assuming that g^ = g, ij = m +p, and j = r + k. Writing r2 — r + k,
n = m + p, go for gn-\, P$ for Pn-\, etc., in what follows, we have
(4) (ad*Y)l=X*n, withy eg.

Obviously Y is determined modt/, the radical of/. Because the orbit
dimension increases as we pass from GQ • Po(l) to G • I, we have

dimt/ = dimg - dim^f/ = dimg0 - dim^/y - 1 = dimt/y - 1;

it follows easily that t/ A f W Q °° - T h u s i t suffices to show that
i So tincl

there exists some Y € go such that (4) holds. But if Y is any vector in
*Po{i)N '

l([Y,Oo\) = (O), /([7,0])^(O) (hence l([Y,Xn]) ? 0).

By scaling, we may assume that l([Xn, Y]) = 1; this gives (4) with
Ye 00.

Next, we show that the partition of Ug into the W respects the
action of Ad*(AT). (It is easy to check that Ad*(AT) takes each Us to
itself.)
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(2.4) LEMMA. If 6 eAandle Us, then Ad* (K)l c Nh

Proof. Ad*(K) acts unipotently on g* andX\,..., X*+m is a Jordan-
Holder basis for this action. Therefore, as in Pukanszky's parametri-
zation theorem (see [6]), we may define dimension indices

c(/) = (fii (/),..., *„(/)), n = p + m, «,-(/) =dimK-Pj(l),
_ f 7n\ e = e(l) for some / 1 g*}, layers Uf and sets of

the set eK ~ fe e z

"jump indices" R2(e). Here, e, - £,_i = 0 or 1 and is 1 iff / €
If / € Uf and R2(e) = {j\ < • • • < A}> t n e n we c a n n n ( i

" f a c t i o n vectors" yK{l) = {Yi(l),.... Yk(l)} c t such that
ad* Yj(Ph(l)) = Ph{Xl)-,

moreover,

Ad*(K)l = {Ad^exp^F! • • -cxptkYk)l: h>^ h e R } .

(This last statement is proved on pp. 50-54 of [6].)
Now let / € Usn Uf. It suffices to show that i?f(e) Q Rii^), since

this will imply that the set PK(1) can be extended to an action basis
at / for the action of G. Then (4) and Proposition 2.2 imply that
Ad*(K)l c Nh as desired.

So choose / e i?f(e). If 1 < / < p, then

Pf-(/)) - dim(A" • P/

and this implies that / e R'2{S) c i?2(<5)- If p + 1 < / < w + p,
then there is an X € i with ad*(X)P((/) / 0 and ad*(X)P,_!(/) = 0.
Therefore X € t ^ ^ / ) and X £ tpt(i). It follows from p. 149 of [6]
that dim Ad* G,-(P/'(~/)) = dim Ad* G)_I(P/_I(/)) + 2, or that i e /Ĵ (<5) c
R2{3). D

3. Here we give our first decomposition of n\x as a direct integral.
In this section we let < ? = <fn. Let 5 be the largest index in A such that
Us meets @. Then Us (~)<fis Zariski-open in the R-irreducible variety
0.

Let

R2(d) = R2 = R'2UR'{ = { ; , < • • • <

with jr < p< yV+i. Define ^: R^ x (ffi n f/j) -» ^ by

(5) <?(«,/) = Ad*(exp(WlX,v+l)—-- exp(M
^

+J)/,
and, for fixed fe&nUs, let Xj = £(Rk, / ) . T h e s e t X ° m a y e x t e n d

outside of Us', to deal with this and with technical details of later
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arguments, we define a "Zariski-open subset" Xf as follows. Let Af
be the subset of u e Rk s u c h t h a t

(6) i(0,...,0,us,...,uk,f)€Ud, for each s < k.
Now we define

(7) Xf — £{Af,f), all / G Us n <?.

Then Af is a non-empty Zariski-open set in R^ because / G U H <9\
Us n (f is Zariski-open in <f, and £ is polynomial in w with range in
*£ Obviously Xf C <^ n Ug; Xf will be the base space in our first
decomposition of n\x into irreducibles.

(3.1) PROPOSITION. Let @K be an orbit in g*, let 8 G A be the largest
dimension i§dQpsu£h^ »thpf ty§ gffift^ ikwhwd (feffae MfS)fixed{j\lemehf 6f <
jr+k) md '
Usn0n. Then:

(a) £(• ,/) is injectivefrom Af to Xf,

(b) Each variety iV/ in Us meets Xf in at most one point.

Proof. Consider two points /, /' e Xf of the form / = £(u, /), /' =
£{v,f) with u, v e Af, such that /' e W n Xf. If an action basis
y -^ l^-wr Yr+k) is specified at / € Ug, wehave y/[{ T)= I' f° r s o m e

t € Rr+k. We will show that u = v and t = 0. This clearly proves (b),

and part (a) is the special case / = /'.
We use induction on dimg/t. When i = g, the result is trivial

because Xf = {/} and N[ = K • I = @n. Thus we assume the result
for Qm+p-\ = go and prove it for g. Let J(S) be d with the last index
removed (J(d) = (S\,..., 8m+p-\)); J(d) is a dimension index for go-

There are two cases.

Case 1. m + p £ R2(d). Then Po: g* -> g£ maps 0K = G • f
diffeomorphicallyto^o = Go-Po(f), and PO(US) Q V Thus y is an
action basis at P0(l) in Um, PoVi(t) = y/Po{i)(t), and P0(Ni) = NPo{n.
The layer Us is P0-saturated: PQ1P0(U3) = Us (since G • X*m+p =
X*m+p). Therefore PQ(UgC\@n) is topologically open and dense in Go •
Po/- Thus if we define the dimension index set AQ for g^ using the

{Xj\ j G RjiS)} used to define ^ are precisely the ones needed to
define £o: Rfc x (&b n UJA» ^ A°" T h i s m a p s a t i s f i e s

(9) PQ(£{u, /)) = Z0(u, Pof)
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We can say more:

P0{usn*) = uJ(i) n<r0.

except that dm+p(l) = 2 + dm+p-\. However, the ordering of indic
in (A, >) satisfies 8' > 8 in A if 8\ > 8t for all i. Then 3(1) > 8 e A.
But 8 is the largest index with Us meeting G • f; this contradiction
proves (10).

We conclude from (9) that Af = AP(j{f); thus P0(l), PQ(I') lie in
Po{Xf) = Xpo(fy Now the claim that u = v and / = 0 is immediate by
induction, since PQ is a diffeomorphism on G • /

Case 2. m+p€ J?2(<5)- We write u = («', «o), with UQ = Mr+̂ ,and
use similar notation for v and A note that yr+

^ = m + p. We have
if/t(t) = I', which means that

!<W)(0 =£(*>./).
or

(exp(/iFi) • • • exp(tr+kYr+k)exp(uiXJr+l)

)Qxp(u0Xm+p)) •
) - - •exp(vk_lXjr^_l)<ixp(voXm+p)) • f.

Write this as X\ • f = X2 • /, and let Rf = exp(t^). Then X \ Rf=
Since / € Us, we have *po(f) 2 ty; thus ty c g 0 and X\GQ — x^Go-
From Lemma 2.3, we have Yj eg,-,, Cg0 for all 7, so we get

exp(u0Xm+p) = exp(^0Xm+p) modC?o,

or u0 = v0. Now let fx = exp{uoXm+p)f and /0 = Po(/i). Since
u GAy, it follows that f\&Us', hence / o G ^ / ( < j ) - b i n c e

We show next that /(J) is the first index Jo e Ao such that U6 a

meets Go • /o- Since we are in Case 2, the set GQ • f\ is P o - s a t u r a t e d

and PQ\ GQ • f\ —> Go • /o is a surjective open mapping. Hence Uj^

meets &o = GQ • /o in a nonempty open set. The first layer Us0 to meet
Go • /o intersects in a Zariski-open set; hence 8Q = J{8). Therefore
{Xij: r + 1 <7 < r + A:— 1} is the set of vectors corresponding to
R2'(J(3)), and these are the vectors used to define the map £0: Rk~
(^0 n UJ{s)) - ^0 (= GQ • Pofi = GQ • /o) and the variety Xfo = XPofr
Since PQ intertwines the actions of Gon g* and $JQ, we have

, «o;/)) = ZoW. Poifi)). all u' G R A K
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In particular, for our u, v we have

(11) P0(l) = Pat(u.f) = Zo(u', Po(fi)) = &(«'./o);

These lie in <f0 n Uĵ )- If P = {Y\,..., Yr+k} is an action basis at
/ € Us, then pb = {Yh• Y+^^c] i s a n action basis at P0(l) eUj(S),
from the description of J(S) given above. Moreover, Yr+k • I =
since m + p e R'^iS), and thus

A<T(x0 • exp(RYm+p))l = x0 • I + / ^ A ^ aU Xo e GO.

It follows that Nt{y) = P~lNpo(l)(poy, in particular, P0(l') e NPo{l).
The induction hypothesis applies once we show that PQ{1), PQ(I') are
in the variety XPo^ C G o • /o nC//^).F
showing that u',v' e. -4/>0(/,) Q R
v' is nearly identical. Since M e ̂ , we have

^(O,...,O,«5,...,Mjfc_i,«o;/) e Us, alls.

Hence

= P0i(0,...,0,us,...,uk_l,u0;f) €

for all s, and this means that u' € ̂4po(/,)-
Since ad Yr+k acts trivially modker/o, we have

By induction, u' = v' and /' = 0. But now we have u = v, and

/ = /' = Ad*(exP r o r r + / t ) / = / + t o

Therefore to = 0, and we are done. •

(3.2) PROPOSITION. Let & = @n be on orbit ing*, let S be the largest
index in A such that Us meets (fn, and fix a base point f € Us n &n.
Define the varieties N;, I e Us, as in Proposition 2.2, and for any set

S CUS define its saturant [S] to be \J{Nt: I eS}. Define Xf c Us n
^

as in Proposition 3.1. Then [Xf] is semialgebraic and is topologically
dense in @n; hence it contains a dense open set in @n and is co-null with
respect to invariant measure on <9n.

Proof. Any semialgebraic set S has a stratification (see, e.g., [9]);
that means, among other things, that S can be written as a finite dis-
joint union of manifolds that are also semialgebraic sets. Let dim S
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be the largest dimension of any manifold in the stratification; this is
independent of the stratification. If T c S is semialgebraic and dense,
then necessarily dim(5' \ 7 ) < dim S; this follows from the fact that S
has a stratification compatible with T. In particular, S \ T is null with
respect to (dim5')-dimensional measure on S. Thus the proposition
will follow once we show that [Xf] is semialgebraic and dense in S.

Since Xf is the polynomial image of a Zariski-open set in Rk, k
R'{(S), it is semialgebraic. We can cover Ug by finitely many Zariski-
open sets Za C g* on which are defined rational nonsingular maps
{Yf(/ ),..., Y*+k(l)} that give an action basis at each I e ZanUs

(Proposition 2.2). Let

t) = exp(t{ Yf(/)) • • • cxp(tr+k Y?+k(l)) I, leZa,te

i S a = ^**/. f t Jhen [Sa] = y/a(s #+*). is semialgebraic,
and [Xf], the union of the Sa, is also semialgebraic.

To prove the density of [Xf], we work by induction on dim(g/t);
the result is clear if g = i. In general we have two cases, as in previous
proofs; the first, where m + p ^ Ri(8), is easy because the projection
map PQ is a diffeomorphism for all the objects under consideration.

Thus we assume that m + p e Ri{S). We know that Af is Zariski-
open in Rk a n d ° e Af. H e n c e Si = {t e R: (0, . . . , 0, /) € Af} i s

nonempty and Zariski-open in R, and

( € 5 , => / , = f ( 0 . . . . , ( ; / ) = Ad*(exp^ m + P ) / e Ud,

where ^: Rk x (Us n ^ —• & is a s ^n ^' ^ s o ' ^ is a disjoint union

of Go-orbits in g*,

d? ={J Ad*(Go)ft (disjoint);

see pp. 147-150 of [6]. For each t, GQ• f i s P0-saturated, and Po: GQ-
ft —»• Go • ^ (/ J ) is surjective and intertwines the actions of Go. By
the open mapping theorem for homogeneous spaces, this map is also
open. The union of the Ad*(Go)/?, t e S\, is dense in &.

Fix / € <9. We want to show that [Xf] contains points arbitrarily
close to /. Given e > 0, there is a t e Si such that dist(/, Go • ft) <
e/2, where we take Euclidean distances on g*, g^ compatible with the
projection Po. S e t ^ = G0-f, 0? = P0((ft) = G
Zariski-open in <ft and is nonempty (because /Tis°m% Jters^r/<£n9?
An argument like the one in Proposition 3.1 now shows that Uj($) H^P
is Zariski-open in @f and that 3(5) is the largest index 8$ e Ao with
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to %) for
"/• '(/' t} € Afj- S i n c e °~GBf> Bfi is nc

= {t' G Rk~'
and Zariski-open; it is also easy to verify that

Bf AAl

Let

YPo{fl) = {Pattf, t-J):fGBf} = {&C.W/)): t'eBf}.
where £o is denned as in (5), but on go- We have Ypo(f,) Q Xpo{fty

 A

h h [Y
{f,

we can show that [YPo^] is dense in ^ ° , t h e n weare done.Forthe
appl ing PQ1, w e h a v e ( s i n c e ^ = P~ *' ^ e ^ K e serond rjaW
the proof of Proposition 3.1)

{Ni(t',t;f)'- t' € Bf} dense in Go • ft.

Therefore there exists ^ ' *> e Af a n d A e N"r» w i t h d i s t ^ ' ^ < e,

as required.
The induction hypothesis tells us that [XPg^] is dense in ^f. It

suffices, therefore, to show that [1VO(/,)] is dense in [XPo^]. Suppose
that (p' € Nn, q>Q G XPo(fy Choose rationally varying maps on a
Zariski-open set Z C g* to get an action basis {Y\{q>),..., Yr+k_\{(p)}

on Z n UJ(S), with (pQ G Z, we maywrite<p0 = €o(t'o,Po(ft)), with
t'o GAPo(fy Then for some u G W+k~

Let {t'n} be a sequence in.-Sy; converging to ^ such that €o(t'
is always in Z. Then {^(M,<^O( .̂̂ O(/<)))} is a s e q u e n c e i n

converging to cp', as desired. n

(3.3) THEOREM. Letg be a nilpotentLie algebra, t a subalgebra, G "2
K the corresponding simply connected Lie groups, and P: g* —• V the
natural projection. Let n EG, and let & = &K be the corresponding orbit
ing*. Fix a basis X\,..., Xp,..., Xm+P through I as in Proposition 2.2,
anddefine

A, U3, £: R* x (<? n Us) -»• (9 {k =

Fix any f G & n U$, and define the sets Afc Rk, Xf = £(Af, f) as in
Proposition 3.1. Let dpi on Xf be Euclidean measure on Af (or Rk),
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transported via the map £. Then
r® r®

(12) *\K= I <rp{i)d/i(l)= aPmJ))dt,
JX, JRk

where a9 E K is the representation corresponding to <p E t*.

Proof. We use induction on dimg/fc, the case t = g being trivial.
As usual, let go = 9m+p-i> an<i l e t PQ: g* —• g£ b e the n a t u r a l map.Pr

The inductive step divides into the usual two cases. Case 1, where
m + p $. R2(d), is easy: 7I\G0 is then irreducible, and Xf projects
difFeomorphically to Xpo(f), since PQ{<9 n U§) = PQ{@) n UJ^) (see the
proof of Case 1 of Proposition 3.1). In Case 2, m + p € R2IS) and we
know (see, e.g., Lemma 6.3 of [4]) that

fs = Ad*(expsXm+p)f.

Let k - cardR'2 '(^), let P': Q^ —> t* be the canonical projection, and
let Si = {teR: (0 , . . . ,0,0 e A°f}, so that /, = i(0,... ,O,t;f). For
each t E Si, do = J{6) is the largest index in AQ such that [/<$„ meets
A0 = Poi&t), where tft = Go-ft', this was proved in thecourseofproving
Proposition 3.2. The corresponding maps £o,t'- Rk~
rpO are all denned in the same way, using the vectors {XIJ: 1 < j <

k - 1} corresponding to R2'(J(S)):

i and ? € 51) w e n a v e 4 " ° tp'
Thus for u' G Rk~

The inductive hypothesis says that for t E Si, we have

JO " °
,,Fo(f,)XK=~ L AP'ioAW.Pof,)A

JRk~'
r®

= / °PZ{u',ij)du',

since P'Po = P- Thus (13) (plus the fact that Si has full measure in
R) gives

r® r® w . _ r
*\K= / I Gpz(u',tj)dW dt = / aPi{u.f)du.

JR JRk-< JR

As Jy^ is Zariski-open in Rk, t h e r e s t o f t h e t h e o r e m i s c l e a r .
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We note two important facts about our constructions. Fix / e &n n
Us and define Xf as above; cover U$ with Zariski-open sets Za c g*
equipped with rational maps {Ff (/),..., Yf+k{l)}, k+r = card(i?2(<*)),
that provide an action basis at each / e Ug n Za and thus generate
the variety JV/ through /. Recall our labeling of the jump indices:
j\<• • • <jr<• • • < j r + k, wherej r <p <jr+x.

(3.4) L E M M A . For every I e XfC\Za, the vectors {Yf (/),..., Y°+Ic(l),
Xjr+I,..., Xjr+k} are linearly independent and span a complement to the
radical t/. In particular, the map X{u) = £ ( « , / ) has rank k at u = 0
and is a local diffeomorphism into @n near u = 0.

Proof. If g = t, then k = 0 and we have Pukanszky's parametri-
zation of <?a = K • I = Nh so that the lemma holds. We proceed by
induction; we have the usual two cases.

Case 1. m+p £ R2(S). Thenjr + k < m+p, and as in the discus skm
of this step in the proof of Proposition 3.1,.Po:U " y a m a p s <f = Gf
diffeomorphically onto GQ • Pof, carrying UsCX? onto Uj^ n G$ • PQ/

and Xf onto XPof. We have Af = APof = A (say), and £0(u, Pof) =
P(i£{u,f), all u € A. Since g \ go contains an element of t/ (t/ £ go
because t/ ngo Q t/0 and a computation gives dimt/ = dimt/o + 1), the
inductive step is now easy.

Case 2. m+p e R.2(S)- Then Xjr+k = Xm+P, t/ has codimension 1 in

xf • C ^ ° ' , a n d t p o / = R F r + ^ ( / ) © t / . By induction, {Y^l),... ,Yr+k^(l),
Xjr+I,..., Xjr+k} span a complement to rPo/ in g0. The first part of the
lemma is now clear. At u = 0, A(0) = /; from the way that cj; is defined
by the {Xji, r + 1 < i < r + k} at /, we have rank(fiW)0 = k. D

(3.5) REMARK. Let X D Y be semialgebraic sets in Us. As the
argument at the start of Proposition 3.2 shows, their saturants [X],
[Y] are semialgebraic. Furthermore, if Y is dense in X (in the relative
Euclidean topology), then

(i) [Y] is dense in [X];
(ii) dim[X] = dim[7] > dim([X]\[Y]).

In particular, the canonical measure classes for [X], [Y] are the same.
(If dim[X] = m, the canonical measure class for [X] is m-dimensional
measure on the submanifolds of dimension m in a stratification of
[*]• )

4. In this section, we give the geometric interpretation of the direct
integral decomposition in Theorem 3.3.
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Let & = <fn be the orbit in g* for n G G, and let t c g be a subalgebra.
Fix a basis X\,..., Xp,..., Xm+P for g through t as in §2, and define
A,d = (d,e), Ud, k = cardR'{(S), r = cssdR'2{S), £: Rkx(&nUs) -> 0,
etc., as in §3. Fix / G Ug C\(fn and let X: Af —• Xf be given by
X(u) - £(w,/). We need some information about Xf, which acts as
the base space in the decomposition of Theorem 3.3. We already know
that the varieties N[ (I G Xf) are transverse to Xf in the set-theoretic
sense; we need a differentiable version of this fact.

(4.1) LEMMA. In the above notation, there is a Zariski-open set Bf c
Af, containing 0, such that:

(a) X: Bf —• Yy = £(Bf,f) is a bijective local diffeomorphism on

(b) dimXf \Yf < dim Yf = k (thus Xf, Yf have the same canon-
ical measure classes);

(c) For allI € Yf, the following result holds between tangent spaces:

Proof. From Proposition 2.2, the N[ are defined by rationally vary-
ing families {Y\(l),..., Yr+k(l)} defined on Zariski-open sets Za that
cover Us- Fix an index a such that / e Za. Lemma 3.4 says that

for all / e ZanXf, the vectors {Y^l),... ,Yr+k(l),Xjr+, Y, J
span a complement to t/, and that rank(c/A)o = k = dim^y. This
maximal rank is achieved on a nonempty Zariski-open set BI C Af
containing 0, since k is polynomial. Thus Y\ = X{B\) is a dense open
subset of Xf (in the relative Euclidean topology), and X: B1 *
is a bijective local diffeomorphism. At / = X(0) G 7 | , the tangent
space to Yf is 7/(7}) = R-span{ad* Xit(/): r + 1 < / < r + k},
as one sees by direct calculation. (This need not hold elsewhere.)
From the definition of the sets of jump indices R'2(S), R'^iS), we
know that r + 2k = d i m ^ ; by the definition of the Nh we have
Ti(N,) = R- span{r/(/): 1 < i < k + r}, all/ G U8 nZa. Taking / = /,
we have

by Lemma 3.4. But dim Ti(<fn) = r + 2/c everywhere on ^ , while the
subspaces T[(Y\), 7}(iV/) have respective dimensions fc, r+fc, and vary
rationally on Yj-C\Za. Since transversality is generic, there is a Zariski-
open set Bf c tfj-rU-HZa) such that 7}(^) = 7}(F})© r,(JV,) for all
/ = A(w), w G 5 /. This proves (a) and (c), and (b) follows because Yf
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is dense in Xf and both are semialgebraic.(See the start of the proof
of Proposition 3.2 for a similar argument.) •

We now consider the maps shown in Figure 1:

R* 2 Af — i -> XfCUgn^D [Xf] ^ — Xf x W
+k

p

V w T/ nT . V ( - T/

FIGURE 1

Here, P: g* —• f * maps (/,$ in to£/* (where d = (e, d)); Uf is a layer in
6* for the strong Malcev basis {X\,..., Xp). (Since P~l(Uf) c o n t a i n s

a Zariski-open subset of </? e is the largest index in the ordering of
layers in V such that P~x{ Uf) m e e t s &n.) T h e m a p P~x:Uf->Iex
AC^V^ A^ _ Tm\/Tta\-^ i cfne inverse of the Pukanszky parametrization

for this layer (see [7]), and n$, nx are the projections splitting t* =
Vr(e) © Ks(e)- Define

f = nToP-{ oP: @nC\P~x{U¥)-+I.e;

Note that f/^DP'7 ^ ^ 2 ^ r n Us; both are Zariski-open in <?n. These
maps are rational and nonsingular. Fix a stratification & of X^ (it has
dimension = dimX9 — k), and define

(14) K = max{rank( ^ ) / : /€ UsD<?n}

= maxlrank^),: / € P~l{V*) rt(fx},
ko = max{rankc/(^|5)/: I eS,S G ^ . d i m ^ = k},

k\ = max{rank(dM>)M: u G Af}.

As the maximal rank of d(0\s)i is attained on an open subset of S e 3s,

and as the pieces of maximal dimension in 3s are o p e n i n Xf, it fo
lows that ko, does not depend on the stratification 3°. Alsg., ^ m § t t a i ^
rank k\ on a Zariski-open set i n R L , ^ c | s i n c= A \s a l o c a l diffeomor.
is open in Xf, A~l(S* ) i s o p e n i n K

phism on the Zariski-open set Bf, we conclude that ko = k\. It is now
easy to see that

ko = ky<k* and k\< k = dimXf.

More is true, in fact.
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(4.2) LEMMA. In the above situation, A;* = k\ = k0< k = dimXf.

Proof. In view of the above remarks, we need only show that k* =
k\. Let 9° be a stratification of Xf compatible with Yf, as defined
in Lemma 4.1. All k-dimensional pieces of & lie in Yf, since
dim(Xf \ Yf) < k. From Proposition 2.2(c) and Lemma 2.4,
K • Ic JV,c K• I + ex f o r a n y / € U3. T h u s P(JV,) = K• PI and <p
is constant on each JV/ with / <E UsC\(fn.

Consider a Zariski-open set Z 9 C g * containing / and such that
the action bases {Yx(l)t..., Y^^l)} are rationally defined on Zar\Us
(see Proposition 2.2). Define

P(u,t) = ya(i(u,f),t) = y/a(A(u),t),

where y/a(l,t) = i//j(t), as in (3); note that 0 e E and that E is Zariski-
open in Bf. Clearly Range(/? ) = [Za n W/ sinceX is bijectiveonBf.

The set £ xW+k c o n t a i n s (0,0) a n d is Zariski-open in Rk x
The set £ xW+k c o n t a i n s (0,0) and is Zariski-open
Lemma 3.4 (plus an easy computation) shows that Rank(d/?)(0 0) =
r + 2k. This rank is clearly maximal and is achieved on a Zariski-open
set S C E x Rr+fc; f u r t h e r m o r e , (0,°) € 5. Then Sx = Sn(E x {0})
is a Zariski-open set in R^ x {0} containing (0,0). The maximality of
rank implies that /?: S — • &n is a local difFeomorphism and that/?(>S)
is open in <fn. Let (wi,0) e Si, and let JV = / x J C Rk x R

rectangular neighborhood on which ft is a diffeomorphism onto some
open neighborhood of/j = fi(ui,0) in ^ ( S ) c [Za n Yf] C ^. We
have /j G ZQ n Yf.

As we remarked earlier, <p is constant on each JV/; thus <p o fl is
constant on {u} x / for all u e I. Therefore <po p\N is determined by

(15) max{rankd(0>o/?)(M?): (u,t) e JV}

- max{rank(p o yS|/x{O})(M,o): « e /}
= max{rankc/(^ o A)M: M G /}

= max{rank{(/(9» oX)u: M6 5/} = fci.

The penultimate equality holds because the maximum is achieved on
a Zariski-open set and hence on any open set. As <p{N) is open in
Us n ^ r , (15) implies that

K = max{rank^($? ° P)(u,t)'- {u,t) e N} = kx,

as desired. •
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The number k\ (the generic rank of d{(poX) on Bf) is an important
constant for our geometric analysis of multiplicities. It is convenient
to introduce the "defect index"

(16) To = dim^r - 2(generic dimension {K• I: I e &n})

+ generic dimension {K • PI: I e tfn}.

We will show that k = k\ o- To = 0.
The definitions of r and k show that dim <$n = r+2k. The generic (=

maximal) dimension ofK• I, I €. @n, is achieved on a Zariski-open set;
hence it equals the (constant) dimension ofK-1,1 e U§V\(9n. Similarly,

^ • PI: I eUsr\@n}- S i n c eis Zariski-open in &n, w e have

(17) generic dimension {K• PI: Ie <?n} = dim{AT • (p: cp € Uf} = r.

Since dimN[ = k + r for generic / e @n, we have

(18) dim^ + dim is: P / -2d im Â / = 0 for generic /e <fx n Us.

An immediate consequence is:

(4.3) L E M M A . We have rQ = 0 iff'Nt = K • I for generic I e @ n n Us.

Proof. Formulas (16) and (18) show that To = 0 iff dim N[ = dimKl
for generic /. From Lemma 2.4, Kl CTV/; since both of these varieties
are graphs of polynomial maps, they have the same dimension iff they
are equal as sets. •

We need another lemma to relate To and k\.

(4.4) TRANSVERSALITY LEMMA. Let S" = {I e [/jfK?,:
is maximal). Then ker(d<p)i = ad*(g)/n t£(/)for all I € S", where

and the annihilator is taken in g*.

Proof. There are Zariski-open sets Zp C t* covering Uf, plus ra-
tional nonsingular maps Qp defined on them, such that on Zp n Uf,
QP = n * (Pe is the Pukanszky parametrizing map described earlier

Up= P ^ ^ ^j ® Sf
sets ing* covering pJuJ) a n d ^PoF f
Hence <p = nTo

in this section). Let Up= P ^ ^ ^j ® Sf
JuJ)> and ^PoF f
P on S" n Up. (Since S"c C/j and P(US) C C/f,

we have S" QP~l{Uf) automatically.) >
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Fix / e S". Since rank(aty>) is constant on S", a standard result (see
Lemma 1.3 of [8]) shows that S" foliates into leaves on which (p is
constant; at /, there is a rectangular coordinate neighborhood N =
/ x J in 5"' (with / a /^-dimensional cube and / a ^-dimensional cube,
say), such that (t) x J is the intersection of a <p-\eafwith N and values
of <p are distinct on each (t) x /, t e /. Since (p\s>< = TIT°Pj~* °P\sn
and

{/' € P-\U*): nT oPe"' o/>(/') = nT oPe~
l o/>(/) = <p{l)}

= {/' G p-\Uf): K-PV = KPl} = P~\KoPl),

we see that the #>-leaf through / is contained in P~l(K • PI). T h e

p-leaf through / is obviously in <fn = G• I; henceit is contained in
G-lnP~l(K- PI). The tangent space to G• I is ad*(g)/ = xf, and the

tangent space to K Pi is ad*(€)P/ = t^-* (=annihilatorinV of XN);
thus the tangent space to P~l(K- PI) i s P~ 1

(19) ker(d(p)i = tangent space to $?-leaf through / cxj- nt^ , .

On the other hand, if / e 5"', then we can find an index /? with
I € Up. Ont/jgn S", (p is the restriction of %T ° Q^ ° P, defined on
Up. It is easy to see that

ker(d<p)iD (tangent space to S" at /) nkerd(nr °Qp° P)i-

But nj oQpoPis constant on t/^ fi P - 1 (K• PI), a n d s o

(20) ker ( ^ ) ,Dt / -n r ^ .

Comparing (19) and (20) gives the lemma. •

(4.5) COROLLARY. With notations as above, we have

k-kX= j

In particular, N[ = K • I iffk = k\, i.e., generic rank {d<pim. I e ^ =
Card R'{(S).

Proof. Lemma 4.4 says that for all generic /,

ker(d<p)i = xj- nt^ = (tl + tp,)1.

Hence, for all such /,

)/ = dim9 - dimt/ - dimt/>/ + dim(t/ n r w )

t + (dimt - dimrP/) - (dimt - dim(t/
+dim(K• PI)-dim(K• I),
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and

kx=k*= generic rank{ker(ofy>)/: / e @n}
= dimtfx - generic dim{ker(cfy>): / e &n)

= dimK • I - dimK • PI (for generic le@n).

Since k = ^(dim^f/ - dim(K • PI)) for generic /, see (17), we see that
To = 2(k - k\). The final claim now follows from Lemma 4.3. D

We now deal with the case To > 0; this correspon
infinite multiplicity, as we will see. Regard <p = HJ0P^x°
on P~x{Uf), a n d n o t j u s t o n &n n C/j as above. Let

(21) / / '

i*

2/ = 9{Xf). i

These are semialgebraic sets with 27 D U5 D 2 / ; h e n c e Y7

stratification <?> compatible with ~LS a n d 1/.Notice that dimE* =
diml^ = k\ = k* = generic rank{(flty>)/: / G <fn}.

(4.6) THEOREM. Let g be a nilpotent Lie algebra, i a subalgebra; let
{Xi,..., Xp,..., Xm+P} be a basis ofg through t as in §3. Let n € G
and let @n be its coadjoint orbit. Define d = (e, d), as in §2, to be the
largest index with Us meeting @n, andletP:g*->Vbe'kgtty]Wmi
map; define T0 as in (16), and I.71,I.s,1/asin(21). L

canonical measure class on 57. Then:
(a) 27, "L6,1/ differ by sets having lower dimension than 27, so that

they all determine the same measure class [v].
(b) IfT0 > 0, then

n\K = / oo

Proof. The discussion so far applies to any base point / e (fn n U$.
Fix such an /. We have seen that P{Us) Q Uf. Theorem 3.3 gives us
a decomposition

X\K = \

where k(u) = £(u,f) (see (5)) and m is Lebesgue measure on R^, k
as above. We know that k* = generic rank{d?(^ o X)u: u e Af} and
that this rank is achieved on some Zariski-open set E* C Af. Let
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Z* = ((pok)(E*) C Z-^; clearly dimZ* = K. The map <poX corresponds
to a foliation of E* with g> o X constant on each leaf; in fact, for any
u G E* there is a centered coordinate patch Wu= / x / (/ C Rk-,

T C R*-fc-) s u c * hat q> o A is constant on fibers (?) x / and has distinct

values on the transversal / x (0)—see Lemma 1.3 of [8]. Hence if
U C E* is open, then (p o X(u) contains a k*-dimensional manifold.

Stratify Z*, letting Zp be the union of the A:*-dimensional pieces and
Z* the rest. Call this stratification 3°. Let E* = [<p O X)-l(L

*
 ) n l '

£ * = £ • * n {(p o A)-1(Z*). These sets are semialgebraic and partition

E*\ further, E* is open in E* because Zp is open in Z* and poA
is continuous. In addition, E* cannot contain a A:-dimensional piece,
since such a piece would be open in E* and hence contain a coordinate
patch W = I x J like the one above. But then dim(^ o X{W)) would
be k*, contradicting the definition of ZJ. Thus dim(E^) < k and E*
has full measure in Af.

Let S\,..., Sp e S6 ^ e ^ e &*-dimensional pieces in Z*, so that the
pullbacksEj = (cp o X)'1 (Si) n E* are d i s j o i n t °p e n s e t s f i l l i ng E*
Take rectangular patches Wj = Ij x Jj covering E*, each lying in a
single pullback £,. We may assume that (p oX is a diffeomorphism of
/ , x {0}. Therefore Fi = cp oX(I{ x {0}) = ( p o A ^ 1S o p e n i n Z '
and dirnF, = dim/,. Lebesgue measure ^«i x du2 on ^ = /, x /, is
equivalent to m on Wh and c?Mi is transferred under <poX to a measure
on F; equivalent to v there. So

/• © /• ©

/ G<po\(u)du= \ O<poX(uuUi)dU\XdU2
JWi JI,xJ,

I

The sets G( = F /AdJ ^ / ^ j ) p
are disjoint in E* and have the form M, = AT, x /,-, where Kt C /, is
such that Gj = ((poX)(Ki x {0}) = (poX{Mt). Hence

ff<poX{u) du=~ I oo * tfAvk(<^(,Q)diti)aui= I oo • IQ4V(1),

and hence (writing ^ i > ni to indicate that 712 is equivalent to a
subrepresentation of n\) we get

f
J M

JZiJM,JZi

/ OO-<J,,dv{V).
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On the other hand, if (X,fi) is a measure space and X = \jf=lXj
(Xj measurable, but not necessarily disjoint), then we can easily show,
by partitioning X compatibly with the Xj, that

N r®

oo -nx du= © I oo-nx du.

Hence

V
Jx

N

1=1

k{u)du

v dv(l') (since oo • oo = oo)

OO
J-L;

Summing over
oo r®

*w <L © / „

we get
r®

<x>o9oKu) du < 00 / oo(T/, du(l') = / OOCT/, dv(V)
r

<TI\K (from above).

The "Schroder-Bernstein Theorem for representations" says that these
representations are equivalent.

We now show that S* and I71 d i f f e r by s e t s o f d i m e n s i o n < k*,
and so determine the same canonical measure: [v{\ = [1/]; this will
complete the proof. (This part of our discussion works for any value
of To.) Let

S2 =

The set k{E*) is semialgebraic and dense in Xf = k{Af). From Re-
mark 3.5, S\ = [X(E*)] satisfies dim((fn \ Si) < d i m ^ and contains
a dense open subset of &n. Next, Zj, X2 partition Z*. Then maximal
rank{(c/p);: / e <fn} = k* is reached on an open set of S\, so that
dimX] = K. Stratify 27 compatibly with Z1; Z2- If £2 contains a
piece of dimension > K, this set is open in the relativetopologyof
jji, and the pullback" of this set is open in jfn n P~xf •>''

disjoint from S\. This contradicts the fact that S\ is dense in @n.
Therefore k* > dim(Z2) = dim(S?r \ L *), a s required. D
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(4.7) REMARK. When To > 0, we have dimKl < dim W for generic
1 €(fn. From Lemma 2.4, W is a union of ^-orbits, so in this case TV/
contains infinitely many A^-orbits. Hence so does @n n p~x ' * l> =
(fn n (K• I +1-1), f o r g e n e r i c / €<?n. Thus the multiplicity of oj, in n\x
is equal to the number of Ad*(^T)-orbits in &n n pJ (K ' r) f o r v - a . e .
I' € 27 (provided that we do not distinguish among infinities). This
interpretation of multiplicity as the number of certain Ad*(/Q-orbits
also holds in the finite multiplicity case, To = 0, as the next theorem
shows.

(4.8) THEOREM. Let g be a nilpotent Lie algebra, t a subalgebra,
and G, K the corresponding (connected, simply connected) groups. Let
{X\,...,Xp,...,Xm+p} be a basis for g through t, as in §3. For
% € G, let @n be its coadjoint orbit, and let e be the largest index

for layers in V such that P~l(U*f) meets @n, where P: g* - * t* is the
natural projection. Define the defect index To as in (16), and define
27 = (p(P'x(U^ )r\(fn) with its canonical measure class [v] as in (21).

Suppose that To = 0, and let

(22) n(l') = number ofK-orbits in P~l(K-1') n °K> r G 2 7 .

Then for v -a. e. I' el71,

(a) P~l(K • I') n <fn is a closed submanifold and its connected com-

ponents are K-orbits;
(b) There is a common bound N such that n(l') < N;
(c) We have

n\K=~ rn(l')ardu(l'),
Jz*

where o\, 6 K corresponds to K• /'Ct*.

Proof. The proof is fairly long, and we divide it into a number of
steps. Fix / G <fn n Us and define X: Af ->• _x>,.v. -JUJfln&n -+
27 cH as before. We have Af c Rk, k = cardR^(d)= dirnX/; from
Lemma 4.2 and Corollary 4.5, our assumption that To = 0 gives

k = k* = generic rank{ ( ^ ) / : / e (fn} = dim27

and
k = generic v&nk{d((p o X)u: ue Af}.

For any set A C P~\Uf)C\@n, w e define its ^-saturant, [A^, by
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Note that [l]9 = ^niK-l+t-1) = WP~\K-Pl) for / € (fnr\P-\Uf).
The proof proceeds as follows:

Step 1. We construct a semialgebraic set HC KXf c ( f n
with the following properties:
(23) (i) H is ^-saturated: [H]v = H.

(ii) The complement of H is of measure 0 in @n n P~
(iii) A (\h - I/7 i s s e m i a lg ebraic and of full measure in 27.

(iv) For I e H, [l]9 is a union of AT-orbits, each of which is a
connected component of [l]9.

(v) F o r / € / / , N, = K• I.
(vi) The set B° = // n Xy is a semialgebraic set of full measure in

Xf, and C° = X~l(B°) c ^ ^ a s ^ ^ measure in Rfc.

Once Step 1 is completed, part (a) of the theorem is proved; further-
more, it will suffice to prove (c) when the integral is over ~LH i n s e a

of I*.

efine ZH(j) = K e S^: the number of
"• T ^ e S A 0 ) o b v l o u s l y Partition U1

we show that they are semialgebraic and that they are empty once j is
sufficiently large. This proves (b).

Step 3. Let C, = {<pok)-\I.HU)). W e s h o w t h a t

Step 2. For 1 < j < oo, define Z ^ K
isf-orbits in P~l(K~- ^ ~ n ^ 1 S " T ^ e S ^ O ) o b v i o u s l y partition U1;Step2.For1<j<oo,defineZH(j)={/'

If/' € Ig), pick / e P~\K• /') n ffK. Then <p(l)=/' G <p(H), or
i A . i'\n^f r>x(K 4)nH ana / = <<(/).

/ G [#], = H. Hence P " l l')n<fx = P -

Since

(from Theorem 3.5 and (vi) of Step 1), this proves (c).

Proof {Step 1). Let
(7 = {/€/>-|(C/e

/i:)r!^r: rank(d<p)t = k},
x) = xf n u n f/j.

All A^-orbits in t/j have dimension r + k; thus dim A' • I =• r + k for
/ G UsH(fn, andr+A: is the generic dimension of Af-orbits in < ?„. The set
U is Zariski-open in &n, and is Ad*(A")-invariant, since Ad*(A:), k G A",
is a difFeomorphism of ^ that fixes A"-orbits and commutes with (p.
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For all / e UgC\U, N{ = K • I, since N{ 2 K • I, both are connected,
and their dimensions agree (Corollary 4.5); in particular, Ug n U =
[Us n U], where [A] is the iV/-saturant defined in Proposition 3.2. The
set B = X~l{Xf) = Afr\{t (-Rk: 'f) snU^ i s Z a r i s k i - ° p e n m

Rk and is nonempty because [Xlf] = [Xff)UsnU] = [Xf] D Usf)U is

dense in <fn. Hence B is dense in Af and Xi = X(B) is a dense open
semialgebraic set in Xf.

For all / €E Un C/j, we have dimK • I = dimN[ = k + r, dimG-1 =
dim ^ t = /-+2A:, and rank(aty)/ = A;. The map ^ foliates C/nt/,5; if L/ is
the leaf through /, then K-l c Lj, and dimL/ = dim(fn - r a n k ( ^ ) / =
dim^f• /. Since Ar• / andL\ are connected manifolds andK• I is closed
in £/ n Us, we must have

(24) Li = K-l = Nh al\leUnU
s.

Moreover, if / € [l]^ nUnUs, then the leaf Lj coincides locally with
[/]p D Un Us- But this last set is a closed subset in Un Us, stable under
K. Hence it is the union of the AT-orbits it meets, and these are open
in the relative topology coming from <fn because each AT-orbit is a leaf
of the foliation. Thus the components of [1]^, n Un Us are AT-orbits.
We conclude that (iv) and (v) hold provided that H C U n Ug and (i)
holds.

Since B is Zariski-open, X\ = X(B) is semialgebraic; we noted above
that it is dense in Xf. In particular, dim(Xy\X|) < k = dimXf.
Define

H = {P-x{U?)Kd?n) \ ^

Then // clearly satisfies (i). Since H C K • XfC U nUs, (iv) and (v)
hold as well; furthermore, F and H are easily seen to be semialgebraic.
The key fact to prove is:

(25) dim((p(F)) < dimS*.

For if (25) holds, then (iii) is immediate, since YF = I,71 \ <p(F).
Furthermore, dimfF^ < d i m ^ , and (ii) follows. (Otherwise, [F],p
contains an open set in <?„, and hence in &n n P~l(Uf). S i n c e dip
has maximal rankm on every open set, <p(F) = <p[F]v would contain
an open set in IF, and this contradicts (25).) Finally, [Xf n H] =
Hf\ [Xf] is dense in <?n. Now define Bf C Af as in Lemma 4.1. Then
A: Bf —»• Fj is abijective local diffeomorphism. Fix fo £ # / , / = ^(^o);
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\ as m
taking a rationally varying action basis, define F(u, t) = if/x(t)(u)

(3) for t near to and u e W+k. I f V i s a neighborhood of V then
F(W+k, V) = [X(V)] contains an open neighborhood of IQ in < ?n, by

Lemma 4.1(c). Hence [X(V)] meets H = [H], so that A(K) meets H.
Because X is bijective on Af, V meets C° = X~l(H n X y ) . T h u s C ° i s

dense in 5y and H f\Xf is dense in Xy. Since C° is semialgebraic,
(vi) follows.

We thus need only prove (25) to complete Step 1. Let & be a strat-
ification of U1 c o m p a t i b l e w i t h t h e s e t s <p{Xf) - (p(K• Xl) a n d q>{F).
We suppose that there is a piece MQ C (p(F) with dimAf^ = k and
produce a contradiction. Let ^ be a stratification of ^ compatible
with pJ(u?>n#-' t h e Qi. n A ( < 5 ; e A)> q>-^~> m?K> ^' M™
The set Af^ is covered by ^-images of pieces lying in F; on one of
them (Mo, say), we have

TGM)} J . . , „
maximum rank{d(<P\MO)I : I G M ) } .

Hence A/b meets 17, and hence A/Q A Q. The tangent space (TMQ)I, I e
Afo, must thus contain subspaces of dimension k that are transverse
to the leaves of the ^-foliation of U; therefore there is a submanifold
A/ C A/Q, dimAf = k, such that <P\M is a diffeomorphism to an open
set in MQ.

Let Si G A be the largest index such that Us, meets M. Then Us, n Af
is nonempty and open, by Proposition 2.1 (b); we may assume that
Af c USi. From Proposition 2.1 (a) and (c),N, c (K-l + t^n^nUs,
for all / € Af; since (p is a diffeomorphism on Af and is constant on
each N[, M meets N/ only at /. We claim:

(26) The set Y = [J{N,: I € Af} = [Af]c USi n
 ^ contains an

open subset of tfnnP~l(U^).

Assume this for the moment. Since (fnnP~l (Us) i s Z a r i s k i - o p e n i n (fn,
we have dj = S. Furthermore, [Xl] = K • Xi contains an open dense
set of (fn, because Xi is dense and open in Xf (see Proposition 3.2
and Remark 3.7). Hence 7n[X|] contains an open subset S C Ur\U$.
Since K-X\ contains every N/ meeting it, Af meets K-Xl. But M CF
is disjoint from K • X\, and this contradiction gives (25).

We now prove (26). We have A f c Us, D P"x(Uf) nUD(?n. We
know that dim(K • Pi) = r for all / € U6,'n P~{(Uf) n < 9 % , and that
dim(G• /) = dim(fn = Ik + r. Since / € Us,, we also have

dimA" • PI= Ca rd i? ^ , ) , dimG• / = Cardi? ^ ^ ) + 2Card/?£((*,• ),
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from the definitions of R'2(di), R'2'(Si); it follows that

CardR'2(Si) = r. CardR'2'(Si) = k,

and hence that dim N[ = r + k for all / € Ugr In particular, this holds
for all / e M. Parametrize M via aC°° diffeomorphism /?: Q —• M,
where Q is open in R^. By perhaps shrinking M slightly, we may
assume that these are rational maps {Y\(l),..., Yr+k(l)} providing an
action basis at each I e M. As in §2, we may define a nonsingular
map

Vn(I,t) = {txptlYlV)---exptf+kYr+k(l))-l, leM, teRr+k,

which defines the Nh Let h(s,t) = ya(fi(s),t) for (s,t) e Q x Rr+k.
Then Range/? = [M] = Y. Since t H-> h(s, d gives N\L while s i->
/ z(51,0) gives M, and since Ni is transverse to M, we see that

) = dimM + dim A^
(5) = 2A; + r =

This proves (26) and completes Step 1.

Proof (Step 2). For / e H, we know that [/]p is a union of AT-orbits
Kl> = N,,, all I'eUn Us. But each iV/; / e [X}] D //, meets X) in a
single point. Thus for all I eH,

(27) n(<p(l)) (see (22)) = number of tf-orbits in (K • I + tL) n &»

= number of ^-orbits in (K • I+11)nH

Recall that Xj. = k{B) for some Zariski-open set B C Af C Rk. T h e

map P o A : R^ —>• V is polynomial. We also have the rational nonsin-
gular parametrizing map Pe: Ee x F5(e) -*

5(e) -*Uf,such that r k ; PE(L',T)

is polynomial for each /' € lLe. Fix /' € EH C Zf; then K• /'Cr
is the range of -Pe(/', W), and the map of W Xo K • /' is a diffeomor-
phism. Consider the polynomial R(s, t) = Pjr t) -(PoX)(s), defined
on B x Rr.The r o ° °*R(S> M = 0 correspond precisely to the points
in P '(K- /') n xh> a n d t h i s intersection is (K • I + t±)n Xj f o r a n y

111 1~

I € p 'H' ' ) n ^ t . Thus thenumber ofroots of U(j,0 = 0 is j iff
/' G ZH^'' < < 0 0 ' S i n c e o A is a local dirfeomorphism on/' G
5 when to = 0, the roots must be isolated; that is, there is no one-
parameter family of roots in B x W. Now we use the following result.

LEMMA. Let Z C R " bea %a0yfflmi?eP %==(& e

0}, and let P:Rn ^ Rmb
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there is a number N, depending only on m, n, d e g A , . . . , degfm, and
deg(2, such that either P(x) - 0 has a l-parameterfamily of solutions
in Z or the number of solutions to P(x) = 0, x e Z, is bounded by N.

We omit the proof, since this is essentially part of Theorem 4 of
[2].

To complete Step 2, we need to show that the A ^ a r e s e m i a l g e -

braic. This proof is essentially the same as t h ^ feT^pjgpi 4 (b) °f
[2]. For instance, /' e U/>2 ^HU) i f /' € Z

Pe{l',h)~{PoX){Sx) = Q,
Pe(l',t2)-(PoX)(s2) = 0,

\ti-t2\
2 + \s1-s2\

2>0

has a solution. By taking relative complements, one sees that the £"(,/)
are all semialgebraic. •

rrU_ as before, and let
Proof (Step 3). Define Cj = (y o X)~l(I.HU))>asbefore,andl

Hj = X(Cj). As noted earlier, we may integrate over C (the disjoint
union of the Cj) instead of Af in the direct integral decomposition of
Theorem 3.5. On Cj, the map q> oX is ay-to-1 map onto XH(j), a n

(27) says that

/ :
')a,. du(l') = Qf javdu{l').

To prove the theorem, therefore, it suffices to prove that
r® r®

(28) / javdv{V)=I a{9ok){u) du.

To do this, we
*LH{J), and let

the pieces of lower dimension. Since <p oX is a local diffeomorphism,
/ oAV'TZ'2-* dimension < k in Cj and is therefore negligible.

Recall that (p oX is defined on Af CR4 , w i t h i m a g e T/\ w e h a v e ~L" !l
1 / c_p , and these ^iifej
work with JH- i r ^work with J
hence (^ oA)(£a) i s o p e n i n Af a n d l i e s i n Cj. L e t {Cyj: / ? e ^ b e t h e

(open) connected components of this set. Since Cj is semialgebraic,/
is finite. Furthermore,poX is a local diffeomorphism on (q>oX)~x(

5. Fix x € SQ a n d d ef i n e mp(x) —card{« € Cp: cpoX(u) = x}. Then
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Tf XO C Ia *
mp{x) is integer-valued, and l.pmp(x) = j on Ha.IfXQ G
then for each /? there is a neighborhood Np C I" of Xo on which
mp{x) > mp{xo), all x G A^. Let N = f]p Np. For x G iV, we have

fi p
Thus the mp{x) are constant on N. In particular,eachw^ is

constant on EQ' W e c o n s t a n t b e c a u s e H

(p o A: Cp — * Za is a covering map with uniform covering index nip,
and so

r® ^ r®

I oVoX{u)du= \ mpoi,dv{l').

Summing over fi e /, we get

/ ovoX{u)du= • I jovdv{l'),
J{(p°X)-\lj>) JZ"

since Zpmp = j . Now summing over a gives (28). D

5. We give here some examples and miscellaneous results.

(5.1) LEMMA. Suppose that K is a normal Lie subgroup of the con-
nected, simply connected nilpotent Lie group G. Then for n G G, TI\K
is either uniformly of multiplicity 1 or uniformly of multiplicity oo.

Proof. We show that for any /' G 57, <p~x{V) T\@n i s connected. Let
x = <p~l{l')r\&n\ pick / G X, such that P{1) = /'. Since t is an ideal,

G acts on 6* by Ad*, and P: Q* —> t* intertwines these actions of G.
Let S = StabG(/') = {X<EG: Ad*(x)l' = / ' } ; S is connected, since the
action of G on V is unipotent.

Now suppose that Ad*(*)/ e X for some x eG. Then P(Ad* x)l G
K • V and therefore there exists k G K such that

Ad*(fot)/' = -P(Ad* kx)l = (Ad* k)P(Ad*x)l = I1.

That is, kx G 5, or x G ATS (a subgroup, since AT is normal). Con-
versely,

y<EKS=> P(Ad*y)l e <9V => (Ad* y)l GX,

or X = Ad*(AT5")/ is connected.
It follows that if T0 = 0, then n{l) = 1 for all /. (If T0 > 0, then the

lemma is trivial.) •

(5.2) EXAMPLE. Let g be the 5-dimensional Lie algebra spanned

by X\, X2, X3, X4, and X5, with nonzero brackets [X5,X4] = X3,
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[X5,Xi\ = X2, and [X5,X2] = X\\ G is the corresponding simply
connected group. We considered g (with slightly different notation)
in Example 4 of [2]; it turns out that the orbits in general position
are parametrized by elements / = a\l\ + 03/3 + 04/4, a.\ / 0, where
l\,..., l5 is the dual basis in g* to X\,..., X5; moreover,

( ta-x t*
\ a 4 + Z ; + - - /

t* \

Let t = R-span{Z4}, K = expt. A calculation shows that for / =
Ej=i fijlj' Ad*(A")/ = / + R/5 if h ^ 0 and = / if fo = 0 .

We have t* = R in the obvious way; P maps ^ to 1 and the other
basis elements to 0. Each point in R is an Ad*(/T)-orbit.

Let n correspond to / = ai/i + 03/3 + a4/4, a\ ^ 0, and let Xx ^ K
correspond to X € R:

We have TQ = 0, since generically on &n,

d i m G / = 2, dimA'-/=l> dimK• Pi = 0.

Thus Theorem 4.8 gives

JR

where

nx = number of Ad*(.K)-orbits in P~l(X)

= number of real solutions to —A -̂  -\ + a^= X.

(In this case, H excludes the points where 03 + t2/2a 1 — 0 ; t h e s e

are also the only points where there can be repeated roots.) Hence
n(X) = 3 on a set of positive measure and = 1 on a set of positive
measure; that is, n\fc does not have uniform multiplicity.

(5.3) EXAMPLE. Let g be the Lie algebra with basis vectors Z, Y,
X, W and nontrivial commutators

[W,X] = Y, [W,Y] = Z,
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and let G be the corresponding Lie group. We let Z* , . . . , W* be the
dual basis for g*. Write

(z, y,x, w) = exp zZ exp y Y exp xX exp w W,

[a,p, y,d] = aZ* + PY*+yX* + SW*.

A direct calculation gives

(29) Ad*{z,y,x,w)[a,p,y,d)
= [a,p -wa,y- wfi + w2a/2,6 + & + ^ - wx)a].

Thus the radical of [a, /?, y, d] is

(30) x[a,p,y,S] = R-span{Z,aX-pY} ifa^O;

= R-span{Z, Y} if a = 0 ̂  p.

The generic orbits are those having dimension indices given by e^ =
(0,1,1,2), for which UeW = {l:a

^0} and Ze,., = {[a,0,y,0]: a ^ 0,
y e R}. From (29), a typical orbit in UeW = U^L) i s

(31) (?a,y = G• [a,0,y,0] = {[a,s,y + s 2 / 2 a , t ] : s , t €R}.

Denote by 7rQ;7 m e corresponding representation of G.
The next layer consists of those elements having dimension indices

given by e^ = (0,0,1,2); we have Uem = £/(2) = {/: a = 0,p ̂  0},

Ze(2, = {[0,p, 0,0]: p / 0}. A typical orbit in U^ is

(32) <ffi = G- [ 0 , p , 0 , 0 ] = { [ 0 , p , s , t ] : s , t e R } ,

and we let n^ be the corresponding representation of G.
Now consider G x G, with Lie algebra g © g, and take Z\, Z 2 , . . . ,

W\, Wi to be the basis of g © g (with the obvious brackets). Let Kbe
the diagonal subgroup; its Lie algebra I has a basis

we have [W,X~] =Y, [W,Y] = Z. The dual basisjn g* ©_g* will
be denoted by Z\, Z\,..., W\, W}, and that in V b y T,..., W*\ the
projection P: (g ffig)* —* t* thus satisfies

...,Sl,S2] = (e*i + a2)T + • • • + (^ + S2)W*.

By an obvious change in notation, (31) and (32) describe orbits in t*;
orbits in (g © g)* are Cartesian products of orbits in g*.
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W e shall compute nait7i ® na2iy2 = nai>yi x 7 i
that a\,a2 / 0. The orbit representative for^7 2^ 7«W2,6^S,'7l^!
0,0] = /o, say; then
(33)<?x=

rr s> $ i l
= i< a-xa s ~*~ ? — ' ^ 2 *̂~ ? — ' ^ 1 - ^ 2 : . . « / / e R > •

k L ' >/ j )

Assume first that a\ + 02 / 0. Then P maps ^ into t /O, since every
element of P{< ?n) is of the form {a\ + a2)Z* + • • • . We must thus
take a typical orbit representative / = [a, 0, 7, 0] € 2*,, and compute
<?* n P-'(AT-/). Notice first that

dirndl = 4, dimA:-/ = 2, dim ^ • / = 3 for generic / e @n

(from (29));

thus To = 0.
From (31) and (33), we see that / € (fnnP~l(K • •# M there e x i s t

s, t€R such that
(i) «i +a2 = a,

(ii) ^ + s2 = J,
(iii) 7, + 52/2a, + y2 + s%/2a2 = y + s2/2a,

(iv) f j + r2 = f.
Condition (i) shows that we must have a = a.\ + a2; (iv) shows that
A, h are free. From (i), (ii) and (iii) we get

s} si (s\ + S2)2

or
(34) (aii2 - a2s{)2 = 2{y - y{ - y2

as a condition ^""SV" dSd *|.05rnJ^nSlu\tbias-
(y — y\— y'2)a

set otherwise. That is,
)30 p P"1 (AT • [a, 0, 7,0]) ~ union of 2 copies of R

if (7 - 7i - yi){a\ + a2)aia2 > 0
~ one copy of R3 1 ^ ^2 = 7

~ 0 if (7 - 7i - 72)(«i + a2)a\a2 < 0.
Thus we may take

!* = {/= [«• 0,7,0]: a = aj + a2,

(7 - 7i - 72)(a 1 + a2)a\a2 > 0} « a half-line,
A = Lebesgue measure on the half line = dy,



266 LAWRENCE CORWIN AND FREDERICK P. GREENLEAF

and we have
re

x^.n = X\K = J

If an + a2 = 0, then P maps @n onto a set containing U^ but
missing U^\ For / = [0, /?, 0,0] e I^

2), w e have

d i m ^ = 4 , dimK • f = 2, dimK • I = 3 for generic / € ^ ,

as before; thus to = 0 again. Furthermore, / e A n P ~ ' ^ ' -^ i f t h e r e

exist S\, S2,s, t\, ti, t G R such that
(i) S\ + 52 = /?,

(iii) ^ + ^ 2 = f.
From (i), 51! i s free t o v a r y , b u t s2 i s t h e n determined; (ii) then deter-
mines 5, and (iii) lets us vary A and ti arbitrarily. The intersection is
th s = R3 + ' and w e

2^ = {/ = [0, fi,Q,Q]ifi? 0}, ^ = dp,

(5.4) REMARK. For some groups G, one can have n\ ®7i2 irreducible
even though U\ and ^

2 are infinite-dimensional. This is implicit in
some of the calculations in [3]. The simplest example is probably the
case where g is the group of strictly upper triangular 5x5 matrices.
Let Xjj, 1 < / < j < 5, be the obvious basis {Xtj has a 1 as its (i,j)
entry and zeroes elsewhere), and let //, be the dual basis for g*; a
tedious calculation shows that
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