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A REMARK ON THE
LIMITING ABSORPTION PRINCIPLE

FOR THE REDUCED WAVE EQUATION
WITH TWO UNBOUNDED MEDIA

YOSHIMI S A I T O

Eidus recently proved the limiting absorption principle for the re-
duced wave equation with two unbounded media, and he used it to
show the limiting amplitude principle for the wave equation. In this
paper we shall show that his limiting absorption principle can be im-
proved so that it holds on the same weighted Sobolev spaces as were
used in the case of the Schrδdinger equation.

1. Introduction. Let us consider the reduced wave operator

(1.1) Hu = -μ(x)~ιA

in R^, where Δ is the Laplacian in R^ and μ(x) is a positive function
in R^. The operator H can be regarded as a selfadjoint operator in
the Hubert space <%" of all measurable functions f(x) on R^ such that
f(x)y/μ(x) is square integrable over R^ (see §2). The reduced wave
operator H is obtained from the wave equation

(1.2) μ(x)d-^--Aw=0

by separation of the time variable t.
Through this work it is assumed that the function μ(x) on R^ with

N > 2 has the form

(1.3) μ(x) = μι (x eΩ/,/= 1,2),

with positive constants μ\ (μ\ Φ μi) and disjoint open sets Ω/, / = 1,2,
given by

(1.4) Ωi = {x e RN/XN > <p{x')} and

Ω2 = {x e RN/xN < φ(x')},

where x = (X',XJV), x ; = (x\,x2,... ,xN-\) and φ e Cl(RN'l\{0}).
The separating surface S is defined by

(1.5) 5 = {̂ R
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and Πι(x) = {nn(x),ni2{x)t..., nιN{x))> I = 1,2, denote the outward
unit normal of the boundary #Ω/ of Ω/ at x e *S\{0}.

Eidus [4] proved that the limiting absorption principle and the lim-
iting amplitude principle hold for the reduced wave operator H and
the wave equation (1.2), respectively, under the following conditions
on the surface S:

Assumption 1.1. The separating surface S has a "cone-like" shape
in the following sense: Let nι(x) be as above. Then,

(i) the Nth component ΠιN{x) of nι{x) satisfies

(1.6) \nlN(x)\>c{ ( 7 = 1 , 2 ,

with a positive constant C\
(ii) and we have

(1.7) |JC - Λ/(JC)| < c2 ( / = 1 , 2 ,

with a positive constant c2, where x nι(x) means the inner product
of the vectors x and Λ/(JC) in R^.

Let us define the resolvent R(z) of the operator H by

(1.8) R(z) = (H-zΓι

for z G C\R. The resolvent R(z) is a bounded linear operator on
the Hubert space & which is now equivalent to the usual Li space
/^(R^). Let us introduce the weighted Li space L2>β(RN) by

(1.9)

with its norm

(1.10) β [ J R N

where β is a real number. (In Eidus [4], L2fβ(RN) and || ||^ are denoted
as L\β and || \\2β, respectively.) Then Eidus' result on the limiting
absorption principle is stated as follows:

THEOREM 1.2 {Eidus [4], Theorem 3.2). Let Assumption 1.1 be sat-
isfied. Then there exist the limits

(1.11) lim R(λ + iη) = R±(λ) in
7 / ± 0
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for each λ > 0, where B(X,Y) is the Banach space of all bounded,
linear operators from X into Y. Furthermore, the limit i?±(A) are
Holder continuous in λ in the topology ofB(L2t\(RN)f L2r.\(RN)).

The limiting absorption principle for partial differential operators
has been studied for about twenty years. Especially many works have
been done for Schrόdinger operators

(1.12) T = -A+V(x)

in R^ to find various sufficient conditions on the potential V(x) that
the limiting absorption principle holds for Γ. Among them, we re-
fer to Jager [6], Saitό [10], Agmon [1] for the short-range potential,
Ikebe & Saitό [5], Lavine [8] for the long-range potential. Mochizuki
& Uchiyama [9], Devinatz & Rejto [2] for the oscillatory long-range
potential. It is shown by these works that under certain conditions on
V(x) there exist the limits

(1.13) lim Rτ(λ+ iη) = R±{λ) in B(L2>δ(RN),L2>_δ(RN))f
η—*±Ό

where Rτ(z) = (T - z)"1, λ belongs to the continuous spectrum of Γ,
and δ is a constant such that

(1.14) δ> 1/2.

The condition (1.14) is in a sense best possible, because, in general,
u = Rf(λ)f does not belong to L2-β(RN) for β < 1/2.

In this work we shall prove some new estimates (Propositions 3.3,
3.8, 3.10 etc.) for u = R(z)f which, combined with the methods and
results of Eidus [4], enable us to show, under Assumption 1.1, that for
a set K in C\R of the form

(1.15) K = {z = λ + iηeC/λo<λ<λl9 0<to|<ifo}

with positive constants AQ < λ\ and ηo there exists a positive constant
C = C(K) depending only on K such that

(1.16) \\R(z)f\\2,-6 < C\\f\\δ (zeKJe L2>δ(RN)),

where δ is a constant satisfying (1.14) and || ||2,_<5 denotes the norm
of the wieghted Sobolev space H*δ(RN) of all functions u such that
all the derivatives up to the second order belong to the weighted L2

space L2_δ(RN) (cf. Eidus [4], Corollary 2.2). It is easy to see from
(1.16) and Theorem 1.1 that the limits

(1.17) s-lim R(λ + iη)f = R±{λ)f inH
ηά0

exist for all / e L2δ(RN), where s-lim means the strong limit.
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Let us explain our main idea. When we studied the limiting absorp-
tion principle for various Schrόdinger operators, the classical Sommer-
feld radiation condition

(1.18) - — iku = small at infinity
or

or its modifications played a very important role (e.g., Jager [6], Saitό
[10], Ikebe & Saitό [5], Mochizuki & Uchiyama [9], Saitό [11], [12]).
First, as is well-known, the radiation condition guarantees the unique-
ness of the solution. At the same time it has been known that we
can show the limiting absoφtion principle through a priori estimates
of the radiation condition. It will be seen in our case that it is use-
ful for getting the estimate (1.16) to introduce a "modified radiation
condition-like" term which contains a surface integral over the sepa-
rating surface S given by (1.5). The limiting absorption principle for
the operator H will be obtained through estimating the above "mod-
ified radiation condition-like" term. However, it seems that we need
further investigation to see whether our radiation condition fully guar-
antees the uniqueness of the solution.

In §2 some basic a priori estimates on u = R(z)f, which were
obtained by Eidus [4], will be given. In §3 we shall prove some more a
priori estimates on the "modified radiation condition-like" term and
u = R{z)f. The estimate (1.16) and the limiting absoφtion principle
will be shown in §4.

2. A priori estimates for u = R{z)f. In this section we shall give
some a priori estimates for u = R(z)f with z e C\R and / e L 2(R i V),
N >2. All these estimates except for Lemma 2.4 are proved in Eidus
[4].

Let us now call some usual notation for some function spaces which
will be used in the sequel. Let m and β be a nonnegative integer and
a real number, respectively, and let G be an open set in R^. Then the
weighted Sobolev space Hf(G) is defined by

(2.1) Hf{G) = {ve 3f\G)/{\ + \x\γdav e L2(G), \a\ < m},

where 3ϊ\G) is all distributions on G, a = {a\, c*2,..., aN) is a multi-
index with |α| = OL\ + a2 H h OLN and

(2 2 >
with

dXj
U=\,2,...,N).
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The space Hf(G) is a Hilbert space with its inner product

(2.4) (v,w)mtβtG= Σ ί(l + \x\)2β(
\*\<mJG

and norm

(2.5) \\v\\m.β.G = l(v.v)mιβ,G

We set

(2.6) H°β(G) = L2>β(G),

and the subscript 0 in (, )otβ,G 0 Γ II \\o,β,G wiU be omitted as in ( , ) β G
0 Γ II Wβ.G When G = R^, the subscript G will be also omitted as in
( , )β. Let M? be the Hilbert space defined by

(2.7) MT = {/(*) on RN/ jΓ^ \f(x)\2μ(x) dx < 00}

with its inner product

(2.8) (f,g)jr= [ f(x)JUT)μ(x)dx
JRN

and norm

(2.9) \\f\\jr = [(f,f)*>Ϋ/2.

Since μ(x) is a positive step function on R^, the Hilbert space M? and
L2(R^) are the same as sets.

Let us define the operator H in ^ by

(2.10) Hu = -μ(x)-ιA,

(2.11) D(H) = H2(RN),

where £>(//) means the domain of H and the Sobolev space H2(RN)
is regarded as a subset of <#". It is easy to see that H is a selfadjoint
operator. We denote the resolvent (H - z)~x by R(z).

In order to evaluate some integrals over the separating surface S let
us prepare the following lemma due to Eidus [4].

LEMMA 2.1 (Eidus [4], (2.9)). Suppose that μ(x) is a bounded mea-
surable function on RN such that inf μ(x) > 0. Let H and R(z) be as
above. Let

(2.12) u = u( ,z,f) = R(z)f
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with f e L2(RN) and z = λ + iη e 11,11 being a bounded set in C\R.
Then there exists a constant C — C(Π,μ) depending only on Π and
μ{x) such that

(2.13) \η\f (\Vu\2 + \u\2)dx<C(\f\,\u\)0.
JRN

Here ( , )o is the inner product ofL2(RN).

Proof. Let us first notice that u = R(z)f, z e C\R, satisfies the
equation

(2.14) -Au-zμ(x)u = μ(x)f

and u belongs to H2(RN). Multiply both sides of (2.14) by % integrate
over R^ and take the imaginary part. Then the estimate for the term
\η\f\u\2dx is obtained. If we multiply both sides of (2.14) by \η\u
and take the real part, we get the estimate for the term \η\ f \Vu\2 dx.Π

Let us now study the surface integrals of u = R{z)f over the sep-
arating surface S. Suppose that υ e H2(RN)\0C. Then the traces of v
and djV (j = 1,2,..., N) on S are well-defined as elements of î OS îoc-
These traces on S will be denoted as v and djV again. As usual, the
inner product ( , )$ and norm || \\s of L2{s) are defined by

(2.15) (v,w)s= f vwdS and \\υ\\s = [(v,v)s]V2.
Js

LEMMA 2.2 (Eidus [4], (2.14)). Assume (1.6). Let u = R(z)f with
f e L2(RN) and z = λ + iηe C\R. Then u e L2(S) and there exists a
positive constant C = C(μ) depending only on μ(x) such that

(2.16) \λ\\\u\\2<C(\f\,\u\ + \dNu\)0.

Here ( , )o means the inner product ofL2(RN).

Proof. Multiply both sides of (2.14) by d^u, integrate over R^ and
take the real part. Then

(2.17) - Re / (Au)dNudx - Re / zμ{x)u{dNu) dx

= Re / μ{x)f{dNu) dx.

By the use of integration by parts, we have

(2.18) Re / (dfu){dNϊi)dx = -Re / {djU){dNdjU)dx
JRN JRN

= -2~ι f dN{\djU\2}dx = 0
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for j = 1,2,..., N, which implies the first term in the left-hand side
of (2.17) is identically zero. Let us next estimate the second term of
the left-hand side of (2.17):

(2.19) - R e / zμ(x)u(dNΰ)dx
JRN

= λ Re / μ{x)u(dχϊi) dx
JRN

- η Im / μ(x)u(dtfU) dx = Iχ - I2.
JRN

The terms I\ and I2 are estimated as follows:

(2.20) /
R"

μ(x)dN(\u\2)dx

/ ,
\u\2n2N(x)dS

>2-ιcι\λ(μ2^μι)\f\u\2dS>Js
where we have used (1.6), and

(2.21) \l2\<\η\(\u\,\dNu\)o<Cx(\f\,\u\)o

with a constant Cj, where we have used Lemma 2.1. The right-hand
side of (2.17) is estimated as

(2.22) Re / μ{x)f(dNΰ) dx
R/V

Combining these estimates, we obtain (2.16). D

Using Lemmas 2.1 and 2.2, Eidus proved the following proposition:

PROPOSITION 2.3 {Eidus [4], Lemma 2.1). Let us assume (1.6). Let
f e L2(RN), y > 3/2 for N = 3, γ = 3/2 for N> 3,

(2.23) 0<\η\<\ and - 1 < λ < M,

where z = λ + iη as above and M is some constant Then

(2.24) INI-y.i

for u — R(z)f, where the constant C — C(M, γ) does not depend on
f λ, η (but may depend on M, y).

For the proof see Eidus [4], p. 33-34. As for djU on the separating
surface S we have the following estimates:
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LEMMA 2.4. Assume (1.6). Let u = R(z)f with f e L2(RN) and
z e Π, Π being a bounded set in C\R. Then there exists a positive
constant C = C(Π, μ) depending only on Π and μ(x) such that

(2.25) l|Viι||s

where \\ \\Q is the norm ofL2(RN) and

(2.26) || v « | |

Proof. Let BR = {xe RN/\x\ < R} and SR = {xe RN/\x\ = R} for
R > 0. By the Green formula we have

(2.27) ί
JΩ\nB

\Vu\2nlN(x)dS+ ί \Vu\2xndS,
BR JΩIΠSR

where n\N(x) is the TVth element of the outward normal of dΩ\ at x
and Jcjv = XNI\X\- By using (1.6) we obtain from (2.27)

(2.28) cί \Vu\2dS
JSΠBR

\dNdjU\ \djU\ dx + f \Vu\2 dS.
WR JΩIDSR

ISΠBR

N

Let R —• oc along an appropriate sequence {i?w} so that the second
term of the right-hand side of (2.28) converges to zero. Then we have

(2.29) f\Vu\2dS<C2\\u\\l0

Js
with a constant C2, where || ||2,o is the norm of H2(RN). The estimate
(2.25) follows from (2.29), the well-known estimate

(2.30) IN|2.O<C3{||ΔM||O +Hullo}

with a constant C3 and the equation (2.14). D

3. More a priori estimates. In this section we shall introduce a
"modified radiation condition-like" term for the solution u of the
equation (2.14), i.e., -Au - zμ(x)u = μ{x)f, where z e C\R. Some
estimates for it will be proved. These estimates can be regarded as
modifications of the estimates of the usual radiation conditions given
in, e.g., [6], [5], [11], although we treat here only the case that z e C\R.
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By using these estimates, we shall also show some estimates for the
norm ||w||_τ with τ > 1/2. They will be used in §4 to show the limiting
absorption principle for the operator H.

Let us start with some notation. For z e C\R and x e RN we set

(3.1) k = k(x) = k{x, z) = [zμ{x)]χl2,

(3.2) a = a(x) = a(x, z) = Rek(x, z),

(3.3) b = b(x) = b(x, z) = Imk(x, z),

where the branch of [zμ{x)]ιl2 is taken so that b(x,z) > 0. With
fixed z the functions k(x)9 a(x) and b(x) are step functions on R^
which are constant in each Ωi and Ω2. Let us next introduce some
differential expressions of the first order;

(3.4) 3fju = djU + {(N - l)/(2r)}xju - ik(x)xju

(r = \x\,xj = xj/r, j = 1,2, ...,N),

(3.5) l)/(2r)}jcιι - /

(3.6) Σ
7=1

1/2

(3.7) X = ^

(3.8) 3fnu =

where n is a unit vector in

n)u - ik(x)(x • n)u,

LEMMA 3.1. Let u € H2(RN)loc and set f = μixy^-A - k2)u,
where k = [zμ{x)γl2 with z e C\R. Let ξ e Cι([0, oo)) with ξ(r) = 0
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in a neighborhood ofr = 0 and set φ(x) = ζ(\x\). Then we have

dS(3.9) 2-1/ ^ W ^ + ^ f f.Ίm{k %.v)
JBR dr ί^JdO,Γ)Bκ I d n J

+ / bφ\2u\2dx
JBR

= Re / φμ{x)f{3fru)dx
JBR

l 0 ix

sR

for each R > 0, wAere 9/9« m ίΛe integrand of the surface integral over
ΘΩIΠBR means the directional derivative in the directon of the outward
normal ofdΩίf BR is the open ball with center x = 0 and radius R, SR
is the sphere with center x = 0 and radius R and

(3.10) cN = (N

Proof Since k(x) is a constant [zμ\]1/2 or [zμiΫ^2 in each region
i or Ω2, the equation -Au - k2u = μ(x)f is rewritten as

(3.11) -
7 = 1

in Ωi or Ω2, where 3fjU and 3ίru are as above, dj = d/dxj and
is given by

(3.12)

(cf. Ikebe & Saitό [5], (2.10)). Multiply the both sides of (3.11) by
φ{βru), integrate on each BRΓ\Ωι (/ = 1,2) and take the real part.
Then, using integration by parts or the Green formula and making
the sum of these two integrals, we obtain the relation (3.9) (cf. [5],
Lemma 2.2). D

In order to get our first a priori estimate we are going to introduce
the following weight functions.
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Notation 2>2. (i) Let p{r) be a C 2 function on [0, oo) such that

(3.13) />(r) = 0 (0<r<R0), = 1 ( r > i ? 0 + l )

with Ro > 0, 0 < />(r) < 1 and p'{r) > 0.
(ii) For each ε > 0 the function σε(r) is defined by

(3.14) σε(r) = txp{-e~ι(l + r)~ε} (r > 0).

PROPOSITION 3.3. Let us assume Assumption 1.1. Let u = R(z)f
with z = λ + iη e C\R and f e L2(RiV). Here z = λ + iη moves in a
bounded set K of C\R such that

(3.15) |λ| > λ0 > 0 (z = λ + iηe K)

with a positive number k$. Then there exists a constant C = C(K)
depending only on K such that

(3.16) 2"1 / ξ-{p2σε}\&u\2dx

2

+

holds for each 0 < ε, where

(3.17) ERo = {x/\x\>Ro}>

the functions p and σε are as in Notation 3.2 with r = \x\.

Proof Set φ(x) = />(|jc|)2cre(|jc|) in (3.9). We are going to evaluate
each term of (3.9). Noting that

(3.18) — - - ^ = ρ2σε{r~ι - (1 + r)~ι~ε} - 2pρ'σε > -2pp'σεr or

and

Ί o Ί du 2

(3.19) \^u\2 - \Sfru\2 = |Vw|2 - — > 0 ,
or
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we have for R> RQ

(3.20)

> -2 f pp'σε{\Vu\2 - \u\2}dx > -2 ί pp'σε\Vu\2 dx.
JBR JBR

Therefore it follows from (3.9) that

/ rim

(3.21)

< R e / φ-μ'f'(Sfru)dx + 2 [ pp'σε\Vu\2dx
JBR JBR

+ 2~x f φ(2\2)ruγ - \&uγ - cNr~2\u\2) dx.
hR

Since u = R(z)f e H2(RN), the fifth term of the right-hand side of
(3.21) will converge to zero when R —• oo along a suitable sequence
{Rm}. Thus we obtain from (3.21)

(3.22) 2-

<Re / φ-μ f JβrU)dx + 2 [ ppfσε\Vu\2dx

where we should note that the surface integrals over #Ω/ in (3.22) is
absolutely convergent, because u, Vw e L2(S) by Lemmas 2.2 and 2.4.

Let us denote by / the third term of the right-hand side of (3.22)
and let us estimate the surface integral /. It follows from (1.7) in
Assumption 1.1 that

(3.23) |/ |<Ci ί φ(l + \x\)-{\u\2dS (zeK),
Js
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where the constant C\ = C\ (K) depends only on the bounded set K
(and the constant c2 in (1.7)). Set

(3.24) υ(x) = φι'2(l + r)-χl2u = pa\l\\ + r)-χl2u = ψu.

Since v satisfies the equation

(3.25) -Δv - k2v = ψμf - 2{Vψ) (VM) - (Δ^)iι = F

it follows that Lemma 2.2 that

(3.26) \J\<CX ί\v\2dS< C2(\F\,\ψu + dN(ψu)\)0

Js
with a constant Cι = C2(ΛΓ). By a straightforward computation we get

(3.27) \daψ(x)\ < C3σe(\x\)ι'2(l + |JC| )- ( 1 / 2 ) - | Q |

(\x\>R0,\a\ = 0,1,2),

with daψ(x) = 0 for \x\ < Ro (\a\ = 0,1,2), where C3 is a posi-
tive constant depending only on RQ though the constant i?o is fixed
throughout this work. Since it follows from (3.27) that

(3.28) |F| \ψu + dN(ψu)\ < C4σε{\f\ (|Viι| + \u\)

with a constant C4 = C^K), we have

(3.29) μ | < C 5 |

ERO J
with C5 = C5(K).

The other three terms in the right-hand side of (3.22) can be easily
evaluated. Thus we get (3.16). D

COROLLARY 3.4. Let p, σε,K and φ = p2σε be as above. Then there
exists a positive constant C = C{K) such that

( 3 . 3 0 ) / ^-\Vu-ikxu\2dx + 2Y [ φ Ίmlk — ϋ) dS
JERa or JTlJdΩ, I on J

+ ί (l + |x|)-2σe(|VM|2 + | M | 2 ) ^
jRo

holds for u = R{z)f with f e L2(RN), ε>0and zeK.
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Proof, The estimate (3.30) directly follows from (3.16) by noting
that

(3.31) \&u\2 - I Vw - ikxu\2

\2\ (N-l)b\u\2 (N-l)2\u\2

 Ql (d\u\2\
\ dr )2r \ dr ) r + 4r2

REMARK 3.5. (i) It should be noted that the constants C in (3.16)
and C in (3.30) do not depend on ε in the function σε.

(ii) The estimate (3.16) or (3.30) can be regarded as a (weaker)
generalization of the estimate

(3.32) / (1 + \x\)2δ-2\Vv - ikxv\2dx < C{\\g\\2 + |M|2_,}

with δ > 1/2 for solutions υ of the Schrόdinger equation

(-A + Q(x)-k2)υ = g

with a short-range or long-range potential (cf. e.g., Ikebe & Saitό [5],
Lemma 1.7).

The estimate obtained above will be used to prove an a priori esti-
mate of the H[s(RN)-noτm of u = R(z)f. First we need the following
lemma.

LEMMA 3.6. Let S be the separting surface as above. Then there
exists R\ > 0 such that

(3.33) / F(x)
JSΠER

dS

JR \JS»->
*

holds for any R > R\ and any ίntegrable function F(x) over S Π ER,
where ER = {x e RN/\x\ > i?}, ̂ ^" 2 is the unit sphere in RN~l, ω e
SN~2, t = t{r,ω) is defined by r = (t2+φ(tω)2)1/2 andVφ = (Vφ)(tω).

Proof By use of the relation

(3.34) dS = (l + \Vφ\2)ι/2dx'

= (1 + \Vφ\2)xl2tN-2dtdω (xf = to)

it follows that

(3.35) f FdS
JSΠER

= ί dω I F{tω,φ{tω))(\ + \Vφ\2)χl2tN-2dt.
JSN~2 J{t2+φ{tω)2γi2>R
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For fixed ω e SN~2 let us consider the relation

(3.36)

Then

(3.37) ! =

Since the outward normals n/(x) of <9Ω/ are expressed as

)φ dφ dφ

(x = {x',xN)eS),

the inner product nι(x) • x (x € S) in R^ has the form

(3.39)

with r' = \x'\. By setting xf = tω in (3.39) and using (1.6) and (1.7)
in Assumption 1.1, we obtain

(3.40) = r

where the term O(t~ι) is uniform for ω e S^" 2 . Here we should note
that the boundedness of \Vφ(x')\ on ^ - ^ { 0 } follows from (1.6)
since the Nth component nίN(x) of the outward normal nι(x) has the
form ±(1 + \Vφ(x')\)-1'2. It follows from (3.40) that

(3.41) ^ = {t + Γιφ(tω)2 + φ{tω) O(Γι)}{t2

= {l + Γ2φ(tω)2 + Γιφ(tω) O(Γ1)}{1

= {1 + r ^ ( t o ) 2 } 1 / 2 + Γιφ(tω){\ + Γ2φ{tω)2}-1'2

as ί —• oc. Therefore there exists a positive number Rι (> i?0)
that rfr/Λ > 0 for all r > Rγ. Therefore the inverse function t = t(r) =
ί(r, ω) is well-defined and is a C 1 function. Thus we have (3.33). D

In the following proposition we shall study some integrals which are
closely related to the left-hand side of (3.30).

PROPOSITION 3.7. Let us assume Assumption 1.1. Let u = R(z)f
with z e C\R and f e L2{RN).
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(i) Then we have

= - ί b(\Vu\2 + \k\2\u\2)dx

- ί μ(x)-lm(kf-ΰ)dx,

where k = [zμ]χl2, b = Irak and n in the surface integral over
means the outward unit normal

(ii) We have

dS(3.43) / IVM - ikxu\2 dS + 2 Y" f Im [k • ^ ΰ)
Jsr ' ^Jao.πEr \ On )

= ί
JS

(\u\2 + \k\2\u\2)dS-2 [ b(\Vu\2 + \k\2\u\2)dx
Sr JEr

- 2 f μ(x) • lm(k • f u) dx,
JE,

for r > 0, where Sr = {x e RN/\x\ = r), Er = {x € RN/\x\ > r} and
n in the surface integral over dΩιΓ\Er means the outward unit normal
of d£lι.

Proof. Multiply the equation -Au - k2u = μf by ku and integrate
on Er. Then we have

0 . 4 4 ) - y ; / " k — uds+fk — 'Έ
jrίJ 9n Js, dr

+ ί k\Vu\2dx- ί k\k\2\u\2dx= f kμ(x)fΰdx.
JE, JEr JE,

The relation (3.42) is obtained by taking the imaginary part of (3.44)
and letting r —• 0 along a suitable sequence {rm}. The second relation
(3.43) follows from (3.44) and

(3.45) / \Wu-ikxu\2dS
Js,

= ί (|Vw|2 + \k\2\u\2) dS - 2 ί Im Ik • ^ ΰ) dS. o
Js, Js, I όr J

Let us now evaluate the norm ||«||_j,£f.
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PROPOSITION 3.8. Suppose that Assumption 1.1 is satisfied Let R\
be as in Lemma 3.6. Let σε(r) be as in Notation 3.2. Let u = R{z)f
with z e K and f e L2(RN), where K is as in Proposition 3.3. Then
there exists a positive constant C = C(K) such that

(3.46) ί (1 + μc|Γ2τ<7ε(|Vw|2 + \u\2)dx
JER

ί )
εRι J

holds for all R>R\ + \ and all pairs (τ, ε) satisfying

(3.47) 0 < β < 2 τ - l ,

where ( , )o means the inner product o/L2(RΛΓ).

Proof. The proof will be divided into several steps.
(I) Set

(3.48) j*(r)=j/(r,z,/)= [ (\Vu\2+ \k\2\u\2)dS.
Jsr

Let p(r) be as in Notation 3.2 with RQ replaced by R\ and let R >
Ri + 1. Then we have

(3.49) f
JE

2τσ(\Vu\2\x\y2τσ£(\Vu

= Γ
JR

JR

-1-*') f

where we should note that 2τ - 1 - ε > 0, /?(r) = 1 for r > R\ + 1 and

(3.50) §-r{p(r)2σε(r)} > p(r)2(l + r)-^σe(r) > 0

forr >Rι.
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(II) It follows from (3.43) that

(3.51) f " η £

+ 2 ί b(\Vu\2 + \k\2\u\2)dx
JE,

+ 2 ί μ(x) • lm(k • f u}dx\ dr,

where we set φ = p2σε. Let us first look at the term

(3.52) Ji-Γψlf Irak-^.ΰ)ds\ dr.
JRι dr [JdςϊιnEr \ dn J J

It follows from Lemma 3.6 that the term // is expressed in the form

(3.53) Jι = J^y^F^dsjdr,

whence we get

(3.54) /, = Γ φ(r)F,(r) dr = ί φ • Im \k ^ ΰ) dS.

JR, JdΩ, I a n )
Here we should note that φ(r) = p(r)2σε(r) = 0 for r < R{. Thus,
together with Corollary 3.4, we obtain
(3.55) Γ° d4- \ ί |VM - ikxu\2 dS

JR,
 dr Us,

+ 2 Σ ί lm (k-^ ΰ\ ds] dr

= f ^Vu-i
JERI orERI

/ (l + \x\)-2σε(\Vu\
E R I

with a constant C\ = C\(K).
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(III) It is seen from Lemma 2.1 that we have

(3.56) / b{\Vu\2 + \k\2\u\2) dx < C2(\f\, \u\)0

with a constant C2 = C2(K), where we should note that lab = μ(x)η
and \a\ > \fλό. Therefore we obtain

(3.57) Γ%\( b{\Vu\2 + \k\2\u\2) dx + / μ • lm(k • f • ΰ) ds] dt
JR, ot UE, JE, 1

<C3(|/|.M)o

with C3 = Cz(K), where we have used the fact that φ{r) -+ 1 as r -*• oo.
The estimate (3.46) follows from (3.49), (3.51), (3.55) and (3.57). •

The estimate (3.46) can be improved in the following way.

COROLLARY 3.9. Let K,Rχ be as above. Then there exist positive
constants C = C{K) and R2 = R2(K) such that

(3.58) ί (
JER

f
N ) , zeK)

holds for τ and ε satisfying 0 < ε < 2τ - 1 and ε < 1. Here we set

(3.59) BRuR2 = {xe RN/Rι < \x\ < R2}

and σε is as in Notation 3.2.

Proof. It follows from (3.46) that

(3.60) ί (1 + |x|Γ2τσe(|VM|2 + |M|2) dx
JER
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for R > R{ + 1 and u = R(z)f with z e K and / e L2(RN), where
C = C(K). Take R2 = R2(K) (> R{ + 1) so that

(3.61) C ( l + Λ 2 ) " ( 1 " β ) < ^

where we should note that 1 - ε > 0. Setting τ = 1 and R = R2 in
(3.60), we get

(3.62)/
JE

, \Vu\ + |iι|)o + / (1 + \x\)-2σ£{\Vu\2 + \u\2) dx.
J

The estimate (3.58) directly follows from (3.62) and (3.46) with C =
2C. D

By the use of Proposition 2.3 the second term in the right-hand side
of (3.58) can be eliminated.

PROPOSITION 3.10. Let Assumption IA be satisfied. Let σε(r), τ,
R\, R2 and ε be as above. Let K be a bounded set in C\R such that
Re z > λo for z e K with a positive constant λ$. Then there exists a
positive constant C = C{K) such that

(3.63) / (1 + |x|)-2 τσε(|Vw|2 + |w|2) dx
JER

(R > R{ + 1, u = R(z)f, f e L2(RN), z e K).

Proof. By the use of Proposition 2.3 the integral over BRχRl in (3.58)
is estimated as

(3.64) / (1 + |;c|Γ2<τε(|Vw|2 + |w|2) dx
JβRχRl

+ \u\2)dxί
R{R2

<(l+R2)
2v-2C(\f\,\Vu\ + \u\)0,

where the constants γ and C are as given in Proposition 2.3. The
estimate (3.63) is obtained from (3.58) and (3.64) by noting that R2 =
R2{K) depend only on K. D

4. The limiting absorption principle. The results obtained in the
preceding section will be used to show the limiting absorption principle
for the operator H.
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THEOREM 4.1. Suppose that Assumptions 1.1 are satisfied. Let K be
a bounded set of C\R such that we have for z = λ + iη eK

(4.1) λ>λo>O

with a positive number λo. Let δ be a real number such that

(4.2) <5>l/2.

Then there exists a positive constant C = C(K, δ) such that

(4.3) Il*(*)/ll2.-* < C\\f\\s

holds for any f e L2fs(RN) and any z e K, where R(z) is the resolvent
ofH.

Proof (I) Let us first show that

(4.4) \\R(z)f\\lf_, < C\\f\\δ {zeK.fe L2>δ(RN)).

We can assume with no loss of generality that

(4.5) l/2<<5< 1.

Let us assume (4.4) is false. Then there exist sequences {zm} c K and
{fm} C L2>δ(RN) such that

(4.6) \\R(zm)fm\\lι-δ = l and \\fm\\δ<l/m (m = l , 2 , . . . ) .

We shall set

(4.7) um = R(zm)fm.

Since the sequence {zm} is contained in a bounded subset K of C,
there exists a subsequence of {zm} which converges to an element
ZQ of C. For the sake of avoiding complication of notations we shall
express the subsequence by {zm} again. Since um satisfies the equation

(4.8) -Aum - zmμ(x)um = μ(x)fm,

it follows from the Rellich Lemma and the interior estimate that there
exists a subsequence of {um} which converges to u$ in Hι ( R ^ ) ^ . The
subsequence will be denoted by {um} again.

Set τ = <J, ε = (2δ - l)/2, u = um, and / = fm in (3.63). Here we
should note that the conditions 2τ - 1 > ε > 0 and ε < 1 are satisfied.
Then we have

(4.9) / (l + |x | )- 2 ^σ ε ( |V^ | 2 + | w m | 2 ) ^
JER

<C{\+ RΓ{2δ-ι)/2(\fm\, \Vum\ + \um\)0 (m = 1,2,...)
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for any R > R{ + 1, where R\ is given in Lemma 3.6. Note that

(4.10) 0 < e x p ί - e - ^ l + i*i)~ε} < σe(r) < 1 (r > i?i,ε > 0),

and the term (|/w |, |Vwm |+|ww |) is uniformly bounded for n = 1,2,...
by (4.6) and the Schwarz inequality. Thus it follows from (4.9) and
(4.10) that

(4.11) \\umhM<Cx{\+RT^-VI2 (m = l,2,...)

with a constant C\9 where || ||i,-j,^Λ is the norm of H}_S(ER) with
ER = {x e ΈίN/\x\ > R}. Thus the (sub)sequence {um} not only
converges to Wo in Hι(RN)\0C but also has a uniformly small H[δ(ER)-
norm when i? —• oo. Therefore we have shown that the sequence {um}
converges to UQ in H[δ(RN). Especially we have

(4.12)

Let m —• oo and R = R\ + 1 in (4.9). Then, since {um} is proved
to converge to w0 in Hlδ(RN), in the left-hand side of (4.9) we have

(4.13) lim

On the other hand, by (4.6) and the Schwarz inequality, the right-hand
side of (4.9) converges to zero as m —• oo. Therefore we arrive at

(4.14) wo = O o

which implies, by noticing that UQ is a solution of the elliptic equation
-Au-zoμ(x)u = 0 and by the use of the unique continuation theorem,
that Wo is identically zero on R^. This contradicts (4.12). Thus we
have proved (4.4).

(II) It is easily seen that (4.3) follows from (4.4) and the fact that
u is a solution of the equation -Δw - k2u = μ{x)f. •

REMARK 4.2 As we have seen, Proposition 3.10 plays a crucial role
in the above proof of Theorem 4.1, and Proposition 3.10 is an im-
provement of Corollary 3.9 by Proposition 2.3. It might be interest-
ing to discuss what we can get if we use only Corollary 3.9 without
using Proposition 2.3. Let us suppose that (4.6) holds with {zm} e K,
{fm} c L2>δ(RN) and {um} = {R(zm)fm}. We can assume, with no
loss of generality, that the sequence {zm} converges to a positive num-
ber λ\ (if the limit is a nonreal number, a contradiction follows much
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more easily). It follows from the estimate (3.58) in Corollary 3.9 that
there exists a subsequence of {um}> which will be denoted by {um}
again, such that

(4.15) s-lim um = uQ in Hίτ(RN)
m—*oo

for any τ > 1/2. As has been shown, wo is a solution of the homoge-
neous equation -Au - λxμ(x)u = 0.

Let ε satisfy 0 < ε < 1 and set τ = (1 + ε)/2, u = um, f = fm and
R = Rt = Max{i?i + 1, R2} and (3.58). Then we have

(4.16) ί
JER.

with a constant C which is independent of ε in (0,1). Let m —• oo in
(4.16). Then we get

(4.17) ί (l + |x|)
JER.

<C ί (1 + |jc|)-2σε(|V«0|
2 + |«ol2) dx.

JBRIR2

By noting that

(4.18) σε(r) > σε(R<) > σε(R2) = exp{-ε~ι(l +R2Γ
1} (r > Λ )

and

(4.19) σε(R2)-{-σε(r)<ϊ

it follows form (4.17) that

(4.20) /
JE

<C ί

for any ε in (0,1), whence we get, by letting ε to zero,

(4.21)

i.e., we have u0 e Hlϊ/2{RN).
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If wo is a solution of the homogeneous Schrόdinger equation

(4.22) -Au +Vu-λxu = 0 (λx > 0)

with, e.g., a short-range or long-range potential V(x)9 then, by the the-
orems on the asymptotic behavior of a solution of the equation (4.22)
(e.g., Kato [7], Eastham & Kalf [3]), the estimate (4.21) is sufficient to
guarantee that Wo is identically zero. However, it seems to be an open
problem whether the above theorems on the asymptotic behavior of
the solution can be extended to our case.

Now that the estimate (4.3) has been shown, we can make use of
Theorem 1.2 to show that the limiting absorption principle for the
operator H holds between L2δ(RN) and L2_δ(RN).

THEOREM 4.3. Suppose that Assumptions 1.1 are satisfied. Let R(z)
be the resolvent of the selfadjoint operator H and let δ> 1/2. Then for
each λ>0 there exist the operators i?±(λ) in B(L2>δ{RN), L2>_δ(RN))
such that we have

(4.23) s~ lim R(λ + iη)f = R±(λ)f in Hl
dtO

for all f e L2>δ(RN). Furthermore, R±(λ) is an Hlδ{RN)-valued,

strongly continuous function on (0, oo) for each f e L2δ(RN).

Proof It is sufficient to assume that 1/2 < δ < 1. Let us show
the existence of the limit (4.23) only when η —• +0. The case where
η —• - 0 can be treated in the same way. Let us denote by i?+(A) the
operator in B(L2f\(RN), L2>_ι(RN)) whose existence has been proved
by Theorem 1.2. Thus we have

(4.24) s-lim R(λ + iη)f = R+(λ)f in L2 -i(R^)
> 7 + 0

2 , ( )

Let us first prove (4.23) for / e L2ι(RN). Let {ηm} be an arbitrary
positive sequence such that ηm —• +0 and let um = R(zm)f with
zm = λ + iηm. Then, proceeding as in the proof of Theorem 4.1, we
can find a subsequence {umj} of {um} which converges strongly to an
element UQ in H^δ(RN) with the estimate

(4.25) ||κo||2>-j < C\\f\\δ

with a positive constant C which remains bounded when λ moves in
a compact set in (0, oo). On the other hand it follows from (4.24) that
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the sequence {um} itself converges to R+(λ)f in L2t-\(RN). Therefore
we have w0 =

(4.26) s-lim umj = R+(λ)f in Hlδ(RN),

and

(4.27) ||Λ+(λ)/ll2.-* < C\\f\\δ.

Since the sequence {ηm} was taken arbitrarily, we can conclude that
(4.23) is true for / = L2Λ(RN). It follows from (4.27) and the dense-
ness of L2Λ(RN) in L2>0(RN) that R+(λ) can be uniquely extended to
a bounded linear operator from L2>δ(RN) into H^δ(RN). The exten-
sion will be denoted by i?+(Λ) again. Then, by use of the denseness
of L2Λ(RN) in L2>δ(RN) and the estimates (4.3) and (4.27), it is easy
to see that (4.23) is true for / e L2>δ(RN). Noting that u = R+(λ)f
satisfies the estimate (3.63) as well as (4.27), we can almost repeat the
above arguments to show the continuity of i?+(A)/ in H*δ(RN) with
respect to λ for any / e L2(RN). •
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