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THE NONCOMMUTATIVE TOPOLOGY
OF ONE-DIMENSIONAL SPACES

TERRY A. LORING

If X and Y are compact topological spaces, the unital star-homo-
morphisms from C{X) to C(Y) satisfy certain homotopy properties
when X is an absolute neighborhood retract. We show that two of
these properties still hold when C(Y) is replaced by a "noncommuta-
tive space", i.e. an arbitrary unital C* -algebra, but only under the ad-
ditional assumption that X is one-dimensional. Specifically, we show
that C(X) is semiprojective and that two unital star-homomorphisms
from C(X) to a C*-algebra A are homotopic whenever they are close.

Introduction. In topological shape theory, a space P with bad lo-
cal properties is realized as an inverse limit of absolute neighborhood
retracts (ANR's). The reason for using ANR's is that continuous func-
tions to ANR's have two nice homotopy properties. Let X be a com-
pact ANR. Two continuous functions from a space Y to X are homo-
topic whenever they are close in an appropriate sense [5, 1.5.3]. This
rigidity result is used to show that a function from an inverse limit of
spaces to X can be deformed to factor through one of those spaces [5,
1.3.2]. From this follows the fact, essential to shape theory, that two
inverse systems of ANR's which both have limit P are equivalent in
an appropriate way. Therefore, one may define the shape of P as the
equivalence class of these systems, and use a representative system to
study the global properties of P.

The Gelfand transformation translates the above into homotopy
results about either two homomorphisms from C(X) to A or a ho-
momorphism from C(X) to an inductive limit limAn, where A and
An are commutative unital C*-algebras. Our main results, Theorems
A and B below, show that these homotopy results still hold when X
is one-dimensional and the commutivity assumption on A and An is
dropped. The requirement that X be one-dimensional is necessary for
Theorem A to hold in general. In [4], it was shown that Theorem A
fails for the two-torus.

The question of whether Theorem B holds for the two-torus is equiv-
alent to the following open problem. Roughly, it asks whether close
commuting unitary pairs can be connected.
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Question. Does there exist ε > 0 such that, for any C*-algebra A
and unitaries UQ, UX, F O , VX e A satisfying

U0V0 = V0U0, UXVX = VXUX, \\U0 - C/iH < e, \\V0 - Vx\\ < ε,

there exist continuous unitary paths Uu Vt in A from ί/0 to C/i and
Fo to V\ satisfying

UtVt = VtUt for all te [0,1].

Unless otherwise stated, all C*-algebras shall be unital, and all ho-
momorphisms shall be unital star-homomorphisms.

THEOREM A. Let X be a one-dimensional finite CW-complex, B =
UmBn an inductive limit of a sequence of C*-algebras with not neces-
sarily injective connecting maps, and φ: C(X) —• B a homomorphism.
Then there exists N and a homomorphism ψ: C(X) —• B^ such that
the diagram

BN

v/ i
C{X) -> B

9

commutes up to homotopy.

THEOREM B. Let X be a one-dimensional finite CW-complex. There
exists ε > 0 and fx,..., fa e C(X) such that whenever φ, ψ: C(X) —• B
are two homomorphisms, from C(X) to a C*-algebra B, such that

\\9(fi)-ψ(fi)\\<* i = l.....fc

then φ and ψ are homotopic.

Effros and Kaminker [2] introduced the notion of a semiprojective
C*-algebra. A semiprojective C*-algebra retains, in the noncommu-
tative setting, enough of the properties of the algebra of continuous
functions on an ANR to be used in a workable shape theory for C*
algebras. Theorem A implies that, for X one-dimensional, C(X) is
semiprojective. In fact, the homotopy lifting property in Theorem A,
when restricted to injective inductive limits limi?^, is equivalent to
semiprojectivity ([2, 3.2]).

Semiprojectivity is a noncommutative analog of being homotopi-
cally dominated by an ANR. Blackadar [1] introduced a property for
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C* -algebras which is a noncommutative analog of a space being an
ANR. He called this property semiprojectivity, but since both this
and Effros and Kaminker's semiprojectivity are useful, we will call
a C*-algebra with Blackadar's property a noncommutative ANR. It
is unknown whether C(X) is a noncommutative ANR for X one-
dimensional.

The homotopy lifting property, stated in Theorem A for C(X)9

defines a class of C*-algebras lying between the semiprojective C -
algebras and the noncommutative ANR's. There is a nice characteri-
zation, in the finitely presented case, that a C*-algebra will belong to
this class if and only if it is defined by relations that are stable in the
sense of the conclusions of Lemma 4.3, excluding (iii) and (v), (cf.
notation 3.3). While a shape theory based on this class of C*-algebras
could be developed, it is not clear, at least at present, what advantages
it would have over the two existing shape theories.

It may not be clear why Theorem B is related to the rigidity property
for maps to ANR's. This property is related to the concept of %-
closeness, which we now consider. Let X and Y be compact spaces
and let ^i, ψι\ C(X) —• C(Y) be defined by functions h\, hi: Y -* X.
If % is a finite open cover, then h\ and hi are said to be ^-close if,
for each y e Y, there exists U e W such that A, (y) G U for / = 1,2.
Given ε > 0, f \ , . . . , fk e C(X), there is a finite open cover % such
that h\ and hi ^-close implies that

A converse also holds. If X is a compact ANR, then it is a theo-
rem ([5, 1.3.2]) that there is a finite open cover ^ such that func-
tions to X which are ^-close are homotopic. Theorem B is precisely
this statement, in the noncommutative setting, restricted to the one-
dimensional case.

The remaining sections are organized as follows. Detailed, elemen-
tary proofs of our main results are given in §2 for the simplest non-
trivial case, i.e., the circle. These are intended to illustrate our gen-
eral techniques involving generators and relations. A connected, one-
dimensional space is homotopic to a bouquet of circles S1 V V Sι.
§3 describes the C*-algebra C(SX v VS1) in terms of generators and
relations, and through a series of reductions shows that Theorems A
and B follow from a lemma on the stability of these relations. The
proof of this lemma, which contains the real work of this paper, is the
content of §4.
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2. A very special case. The key to proving Theorems A and B is
Lemma 4.3. For X = Sι, Lemma 4.3 is vacuous. We shall prove
Theorems A and B in this special case using some easy facts about the
polar decomposition. There is nothing new or difficult in this section,
but it serves to illustrate our approach for the more general case of

x = sιv -vsι.
If X is an element of a C*-algebra A, and if

| | j r j r - l | | < I and | | X r - l | | < 1,

then define P(X) = X(X*X)~1/2. The following properties of P(X)
are obvious:

(2.1) P{X) is a unitary in A,

(2.2) P is natural. I.e., if φ: A -> B then P(φ(X)) = φ(P(X)).

(2.3) If X*X = XX* = 1 then P(X) = X.

Defining a homomorphism φ: C(Sι) —• B is equivalent to specify-
ing a unitary t / G 5 a s the image of elπιx, where e2πιx is the generating
unitary of C(Sι). If B = l imB n, then lifting φ is equivalent to lifting
U to a unitary V e BN. By (2.1)-(2.3) it suffices to lift U to X e BN

with \\X*X - 1|| and ||XY* - 1|| small. More generally, we shall be in-
terested in finding approximate lifts of operators satisfying relations
to operators approximately satisfying those relations.

LEMMA 2.1. Suppose T\,...,Tr are elements of B = \\mBn and

P\,...,Pk ctre star-polynomials such that

Pi(Tlt...,Tr) = 0, / = l,...,fc

Let σn: Bn -+ B and σm>n: Bm —• Bn denote the canonical maps defined
by the connecting homomorphisms. For all ε > 0 there exists N and
S\,..., Sr G BN such that

1^(5/)-7/H < ε , i = l r,

and
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Proof, This follows easily from the density of Urt=i,...fOo σn{Bn) and
the equality

\\σn{X)\\=\imJσn>m{X)\\

ϊorXeBn. α

We now prove Theorem A for X the circle. Suppose φ: C(Sι) —• B
and 5 = liml?^ with σn: Bn -+ B the canonical maps. Let U =

φ(e2πix). By Lemma 2.1, there exist TV and X eBN such that

and

I W Λ - I | | < I . \ \ y t y ; - ι \ \ < i , o < ί < i ,

where y, = tσN(X) + (1 - t)U.
Let F = P(JSΓ), Wt = P(yt). Property (2.1) shows that sending

e2πix t 0 y (respectively Wt) defines a homomorphism^: C(Sι) —• JBJV

(respectively φt: C(Sι) -^ 5). Property (2.2) shows that σN(V) = Wu

hence σ^o^ = ^ 1 ? and (2.3) shows Wo = U, hence ^o = ί̂  Therefore
ψ is a lift of φ up to homotopy.

For X = S1, Theorem B is true with ε = 2 and / 0 = e2πix. This is
because, given φ0, φλ: C(Sι) -> Λ the path of unitaries

defines a path of homomorphisms from <p0 to ^i whenever
| < 2.

3. The proofs. Our plan of attack is first to show that it suffices to
prove Theorems A and B in the case X = Sι v V S1, a bouquet
of circles. We will describe the algebra C(Sι V V Sι) in terms of
generators and relations. Lemma 4.3 describes a construction which
perturbs operators which almost satisfy these relations so that they
satisfy them exactly. With this construction we prove our results for
X = S1V- VS1.

Every one-dimensional finite CW-complex is homotopy-equivalent
to the disjoint union of a finite number of finite bouquets of circles.
The reduction to the case X = Sι V VS1 therefore follows from the
next two propositions.
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PROPOSITION 3.1. If Theorem A {respectively B) holds for X, and if
Y is homotopically dominated by X, then Theorem A {respectively B)
holds for Y.

Proof. For Theorem A, the proof is exactly as for [2, 3.4].
Suppose α: C{X) -> C(7), β: C{Y) -> C(X) a n d α o ^ l . Sup-

pose also that the conclusion of Theorem B holds for ε > 0 and
/ i , . . . , Λ 6 C(Jf). If ?!, ^ 2 : C{Y) -> 5 satisfy the condition

then p j o α ^ ^ 0 ^ hence

0>l ~ φx o a o β ~ φ2 o a o β ~ φ2,

which shows that the conclusions of Theorem B also hold for ε and

PROPOSITION 3.2. If Theorem A {respectively B) holds for Xι andX2,
then Theorem A {respectively B) holds for their disjoint union X\

Proof. For Theorem A, the proof of this proposition is similar to
that of [2, 3.6] and is omitted.

We identify C ^ O θ C ^ ) with C{XX UX2) and C(X/) with C{X{)®
O o r O θ C{X2). Choose ε, > 0, / / , . . . , fl e C{Xt) such that the
conclusion of Theorem B holds for β/, {//,..., f£ }. Without loss of
generality, assume that ε\ = ε2 = ε, n\ = n2 = n and ||/y|| < 1. We
shall show that Theorem B holds for X\ u X2 with ε0 and

{ l θ 0 , 0 θ l } U { / ; | / = l , 2 , 7 = l , . . . ,n}

where εo is chosen below.
Lemma 1.8 of [3] implies that there exists δ > 0 such that, given

two pairs of orthogonal projections {Ex, E2}> {F\, F2} in a C*-algebra
A9 if \\Ei - Fi\\ < δ, i = 1,2, then there exists a unitary U e A such
that

| | t / - 1 | | <min{ε/3,l}

and

UEiU*=Fif ι = 1,2.

We let εo = min{<J, ε/3}.
Assume that
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are given, and let p\ = ^ ( 1 0 0),
q2 = ̂ (0 0 1). Assume further that

\\<p(fj)-ψ(fj)\\<eo>

\\Pi - Qi\\ < eo>

= φ(0 Θ 1), q\ =

/ = 1,2.
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0),

Because βo < <̂> there exists a unitary t/ e J9 with

and

Since ||l/ — 1|| < 1, ̂  is homotopic to
to show that the (unital) homomorphisms

)- C(Xi)

. Therefore, it suffices

are homotopic for / = 1,2.

For/ = /; ,

\\9{f)-AAuo¥{f)\\

< \\φ{f) - ψ{f)\\ + \\ψ(f) -

< \\9(f) - ^ ( / ) | | + 2||C7- 1|
\\uΨ(f) -

β.

By our original assumptions, this implies that φ\c(Xi) and
are homotopic. D

We now consider the case X = Sx V V Sx {N copies). Since X
sits naturally as a closed subset of the iV-torus, it is clear that C(X)
is generated by iV commuting unitaries. It is not hard to discover the
relations satisfied by these unitaries.

NOTATION 3.3. If V\,..., V^ are unitaries in a C*-algebra, we let

PROPOSITION 3.4. The C*-algebra C(SιV- VS1) is the universal C*~
algebra generated by N unitaries v\,..., v^ such that &(v\,..., υ^) =
0. IfS1 V -VS1 is realized as {1,.. ., N} x [0,1]/ ~, where - identifies
all endpoints, then the canonical generators are
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Proof. Let D denote the universal C*-algebra generated by N uni-
taries subject to &(v\,..., υN) = 0. The relation

implies that D is commutative, and so must be a quotient of C(ΎN).
More precisely, D = C(Z) where Z C T^ is the intersection of the
zero-sets of the functions

( z l f . . . , zπ) -> (1 - z/)(l - zj), zkeΎCC,

for i φ j . I.e., Z is the set of points (zx,..., zN) e ΊN C C^ where at
most one coordinate is not equal to 1. Q

Our proofs of Theorems A and B for X = Sι V - V Sι require
that, for a sufficiently small ε > 0, there should exist a mapping
(V\,..., VN) —• (V\,..., VN) of TV-tuples of unitaries as follows. When-
ever V\,...9VN are unitaries in A such that &(V\,..., VN) < ε, an
N-tuple (V\,...,VN) of unitaries in A should be defined so that the
following properties hold:

(3.1)

(3.2) (Vι,...,VN)-+(Vι,...,VN)is natural.

(3.3) Ifg{VΪ9...,VN) = 0, there exist continuous paths v\ι)

of unitaries from V{ to F, with W{vf9..., vf) = 0.

The main point of Lemma 4.3 is that such a mapping exists. Let us
now see how, for X = Sι V V Sι

9 Theorems A and B follow from
this. Fix an ε > 0 for which this mapping exists.

Suppose φ, ψ: C(Sι V V Sι) -+ B. Choose η > 0 such that

(3.4) ιι^(^ ) - ^ / ) i ι < ^ / = l iv;
implies that &{W\tS9...9 WNs) < ε, where

Here P(X) = X(X*X)-χl2 as in §2. Properties (3.1) and (3.2) imply
that Vi —̂  Wis defines a continuous path of homomorphisms as:
C(Sι V V Sι) -> B whenever (3.4) holds. Since WiΛ = φ(vi) and
Wito = ψ(Vi), property (3.3) implies φ ^ a\ ~ QIQ ~ ψ. This proves
Theorem B in this case.

Suppose φ: C(Sι V V S{) -• B is given, with 5 = Iim5w and
σn: Bn -> B the canonical maps. Applying Lemma 2.1 to φ(v\),...,
φ{vχ) produces elements X\,..., X^ G B^ with ||(1 -Xi)(l -Xj)\\ and
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— φ{Vi)\\ small. Consequently, if we define

Wt = P(Xi), Uu = P(5<x*(*,) + (1 -*)?(*/)),

. ., Wjv) and ^(C/i,j,..., £/jv,s) can be assumed to be small
enough so that Wt and t/ / 5 are defined. These define homomor-
phisms

φ:C{Sx\J"-\/Sx)^Bk and as: C(Sι V •• V Sι) -> B.

Property (3.2) implies o^(Wι) = ΪJi%\ hence a^φ = ot\. But αo ~ φ by
property (3.3), so ψ is a lift of φ up to homotopy, proving Theorem
A in this case.

4. Stability of the relations. This section is devoted to finding a nat-
ural method of perturbing unitaries V\,..., F# for which the relations

(4.1) ( l - F ί ) ( l - * 0 ) = O, i # 7 ,

almost hold into ones for which (4.1) holds exactly. The construction
proceeds iteratively, perturbing at each step only the first k unitaries
to force (4.1) to hold for i, j < k. In order to control the error in the
remaining relations, we keep track of the size of the perturbations. As
a result, Lemma 4.3 is stronger than the proofs of Theorems A and B
require.

Since we will use the polar decomposition P{X) = X{X*X)~χl2, we
need the following estimate.

LEMMA 4.1. Suppose U,Ve &{&) and U is unitary and \\U- V\\ <
C < 1 / 1 2 . Then \\U -P(V)\\ < 7C.

Proof. The spectral mapping theorem and a little calculus show that
p " 1 / 2 - 1|| < Δ whenever h > 0 and ||A - 1|| < Δ < 1/4. Trivial
estimates show that

and || V*V — 11| < 3C, so the required estimate follows immediate-
ly. D

The next lemma shows that, once the first n unitaries have been
perturbed to satisfy (4.1), the first n + 1 can be perturbed slightly so
that (4.1) holds for i,j < n + 1.

Recall, from notation 3.3, that %(V\,..., VN) measures the error in
(4.1) for unitaries V\,...,VN.

LEMMA 4.2. Let n be a positive integer, δ a real number 0 < δ < 1/4,
and A a C*-algebra. Given an (n + \)-tuple {Vχf... fVn,U) of unitaries
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in A such that

(n)g(Vι,...,Vn,U)<δ/l2V2n,
there is a natural assignment ofunitaries (Vf,..., Vδ, Uδ) in A such
that

(w)*(Vf,...,V*,Uδ) = 0,
(iv) \\U-Uδ\\<My/2nP(Vl9...,Vn,U)/δ,
(v)\\Vi-V*\\<δ/π,i=l,...,n,

(vi) ifg(VΪ9..., Vn, U) = 0 then there exist natural paths Vf'(, Uδ>(

ofunitaries from Vif U to Vf, Uδ such that r(*f ',.. ., Vδ>\ Uδ'1) = 0,
(vii) ifVι = = Vn = U=l then Vfa = = VδJ = U6* = 1.

Proof, We shall use the notation and description of Sι V -VS1 given
in Proposition 3.4. Suppose (Vlf... ,Vn,U) e %{A)n+x satisfy (i) and
(ii). By Proposition 3.4, sending v, to F/ defines a homomorphism
p: C(Sι V V Sι) —• A. We will abuse notation and identify p(g)
with g for any g e C(Sι V V S1), and so vt with F;.

Let / denote the function which takes the value 1 on the intervals
{/} x [2δ, 1 - 2δ]9 the value 0 on the complement of the intervals
{/} x [δ, 1 - δ]9 and is linear in between.

Define Uf and Uδ by

and define Vf, by

exp(2πι(ί - 2<5)/(l - 4δ)) if / = k and ί e [25,1 -
1 1 otherwise.

It is not yet evident that U' is invertible. However, assuming this
to be true, it is clear that Us

9 Vδ are unitary and the construction is
natural. Also, (v) is obvious. Assuming (iv), it is easy to see that the
paths Vf, U satisfy (vi) and (vii). (For (vii), note that p(g) = g{l, 0)1
when V\ = = Vn = U = 1.) Therefore, to finish the proof, we must
show that U' is invertible and prove (iii) and (iv).

Since (1 - Vδ)f = (1 - Vδ) and (1 - V*)y/\^f = 0, we see that
(l-V*)U' = {l-Vδ)Uf* = (l-Vδ). By approximating (U'*U')-ι/2 by
polynomials in U'*U'9 one finds that (1 - Vδ)Uδ = (1 - Vδ). Therefore
(iii) is true.

Our estimate of \\U - U'\\ will rest on the following. Suppose g e

satisfies | | ; | | < 1 and g(l, t) = Oift£[δ,l -δ]. Define

(g(l, t))/(e2πit - 1) if / = k and / e [δ, 1 - δ],

0 otherwise.
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Then | |/y <4Λ/2/<5 and

Therefore,

(4.2) ||(C7 - 1)*| | < Σ W - l)(Vk - l)\\\\hk\\
k

<4y/2n8r(Vl9...,Vn,U)/δ,

and the same estimate holds for \\g(U - 1)||.
The equality

+ [(£/- i)(vT^7-1) - (vT^7~ iχc/- i)]χ/Γ=7

implies the inequality

III/ - U'\\ < \\(U - 1)/| | + ||(I/ - l ) ( χ / Γ = 7 - 1)11

By (4.2), with g = / or g = \f\— f - 1, this implies

Thus C/' is invertible, and by Lemma 4.1, (v) holds. D

As previously remarked, Lemma 4.3 is stronger than is needed to
prove Theorems A and B. Conditions (iii), (v), and the naturality of
the paths VJp were added to allow a proof by induction. Condition
(iii) may, however, prove to be of interest.

LEMMA 4.3. For any ε > 0 and any integer N > 0, there exists η > 0
such that, given an N-tuple ofunitaries (V\,..., V^) in a C*-algebra
A satisfying

there is a natural assignment ofunitaries (V\,...,VN) in A such that

(w)\\Ϋk-Vk\\<eforallk,
(iv) if%{VX)..., VN) = 0 then there are natural, continuous paths

V{

k

ή ofunitaries from Vk to Vk such that ^{v[t],..., V$) = 0,

(v) ifVx = ... = VN = 1, then v[t] = ... = vjf> = 1.
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Proof. We shall proceed by induction on the number of unitaries.
Since &(U) = 0 for all unitaries U, the lemma is completely trivial
foriV= 1.

Assume the lemma is true for N - 1 unitaries. Let e > 0 be given,
and choose δ > 0 so that

(4.3)

(4.4)

Choose ε0 > 0 so that

(4.5)

(4.6)

(4.7)

<5<l/4,

δ/π < ε/2.

S4\Z2(N-\)εo/δ<ε/3,

ε0 < ε/2,

εo<<ty36Λ/2(JV-l).

We now use the induction hypothesis, with εo and N - 1 in place of ε
and N, to produce ηo > 0 for which (ii)-(v) can be fulfilled. Finally,
choose η > 0 so that

(4.8) η < i/o,

(4.9) η<δ/36V2(N-l),

(4.10) 84Λ/2(ΛΓ- l)f|/J < β/3.

Suppose that ^ ( K i , . . . , FAΓ) < //. By (4.8) and the induction hy-
pothesis, there is a natural choice (T 7 ! , . . . , VN-\) of unitaries such
that

(4.11)

(4.12) \\Vk-Vk\\<ε0.

If &{V\,..., VN) = 0, then by assumption there are natural paths of
unitaries ΎktU k< N, from Vk to Tk, such that &(Vιtt,..., ^ v - u ) =
0. Later, we will need to know that

(4.13)

To prove this, assume A c <%(jr). Let p be the spectral projection of
F)vfor theset {zeC| \z\ = \,zφ 1}. If p = 0 then (4.13) is trivial, so
assume that p Φ 0. By writing p as the weak limit of positive operators
in A and using Proposition 3.4, it can be shown that p( 1 - Vk)p = 0 for
k< N. (Note that p corresponds to the characteristic function of the
set {#}x (0,1).) τhusVkisintheC* algέbmpCx(l-p)&(Jr)(l-p)
and is sent to 1 under the projection of this C*-algebra onto pC = C.
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Condition (v) in the induction hypothesis and naturality imply that

Vktt = p + (l-pjVktt(l-p).

By our choice of p,

(1 - VN)(l -Vk>t) = [p(lzVN)p][(l - p)(l -Vk>t)(l - p)] = 0

proving (4.13).

Returning to the general case of g{V\,..., VN) < η, we have, for

any k< N,

||(1 - VN)(l - Vk)\\ < 11(1 - VN)(1- VK)\\ + (1(1 - VN)(Vk -

A similar estimate for the reverse product, together with (4.11), shows

V(Vι,...,VN-ι,VN)<η

Therefore, we may apply Lemma 4.2, by (4.7) and (4.9), and conclude

that there is a natural choice (V{,..., VN) = (y\,..., VS

N_X, V$) such

that

*(Pi....,P)v) = Of \\VN-ΫN\\<S4V2(N-l)(η + 2eo)/δ,

\\Vk - Vk\\ < \\Vk-Vk\\ + \\Vk ~ Vk\\ < eo + δ/π, k<N.

Since \\VN - VN\\ < ε, by (4.5) and (4.10), and \\Vk - Vk\\ <ε,k< N9

by (4.4) and (4.6), we have proven (ii) and (iii).

If %{V\,..., VN) = 0 then the concatenation of the paths

j k<N

and the paths

t-+Vktt, k<N,

t->vN

satisfy (iv) and (v).
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