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HOMOGENEOUS STELLENSATZE
IN SEMIALGEBRAIC GEOMETRY

ZENG GUANGXIN

In this paper, we introduce homogeneous (U, H7)-radical ideals of
a commutative graded ring A with 1, where both U and W are two
multiplicative subsemigroups of homogeneous elements in A such that
U C W, and apply these results to prove the homogeneous semialge-
braic Stellensatze. Finally, we investigate some quantitative aspects
related to these Stellensatze, and Problem 2 posed by G. Stengle is
answered affirmatively as a special example.

0. Introduction. In the study of real algebraic geometry, the Nullstel-
lensatz, Positivstellensatz and Nichtnegativstellensatz are important
results. These Stellensatze characterize polynomial functions which
are zero, positive or nonnegative on certain kinds of semialgebraic
sets. Various versions of these Stellensatze can be found in Bochnak,
Coste, and Roy [1], Colliot-Thelene [2], Delzell [3], Dubois [4], Lam
[5], and Stengle [9, 10]. In this paper, we give several more general
results, i.e., the so-called Homogeneous Stellensatze in semialgebraic
geometry, so that all results in the above-mentioned papers will be
obtained as direct consequences in some special cases.

First, in §1, we introduce the homogeneous (U, W)-radical of a ho-
mogeneous ideal and homogeneous (U, W)-radical ideals in a graded
commutative ring A with 1, for two multiplicative subsemigroups £/,
W of A, which are similar to the usual real radical of an ideal and real
radical ideals in a commutative ring. We obtain some basic results.

Next, in §§2, 3 and 4, by the basic results in §1 we prove the ho-
mogeneous semialgebraic Nullstellensatz, Positivstellensatz and Nicht-
negativstellensatz, respectively. Here, our proofs are different from
Stengle's method [10] of homogenizing his Positivstellensatz.

Now let R be a real closed field, let K be an ordered subfield (with
the inherited ordering), and write K+ = {a e K\a > 0}. Let / be
an X-homogeneous ideal of K[X, Y]9 where X := (Xo,Xι,...,Xn),
Y := (Y\,..., Ym) are indeterminates, let /, u\,..., us, W\,..., wt be
JΓ-homogeneous forms in K[X, Y], let U be the multiplicative subsemi-
group of K[X, Y] generated by the w/? and let W be the multiplicative
subsemigroup of K[X, Y] generated by the w, , and the Wj.
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Our Stellensatze here is:

THEOREM 2.3 {Homogeneous Semialgebraic NuUstellensatz). The
following are equivalent

(1) / is vanishing in R with respect to {U > Q\W > 0;/ = 0}.
(2) There is an X-homogeneous inclusion

uf2e

where e e N, av e K+, gυ e K[X, Y], u is a product of the Ui, and the
wv are (not necessarily distinct) products of the w, and Wj.

THEOREM 3.3. (Homogeneous Semialgebraic Positivstellensatz). The
following are equivalent:

(1) f is positive in R with respect to {U > 0; W > 0;/ = 0}.
(2) There is an X-homogeneous inclusion

f = u + Σa'zw'z8z2 (mod/)
z

where av, a'z e K+, gv, g'z e K[X, Y], u is a product of the uif and the
wv, w'z are (not necessarily distinct) products of the W/ and Wj.

THEOREM 4.3.(Homogeneous Semialgebraic Nichtnegativstellensatz).
The following are equivalent:

(1) f is nonnegative in R with respect to {U > 0; W > 0;/ = 0}.
(2) There is an X-homogeneous inclusion

( 2 e + £ Wg*) f = £ a!w'g2
uf2e + £ Wig*) f = £ a!zw'zgz

2 (mod/)
J

where e e N, av, a'z e K+y gv, g'z e K[X, Y], u is a product of the uif

and the wv, wz are (not necessarily distinct) products of the Ui and Wj.

In Theorem 2.3, if the number of the indeterminates X is zero,
then every element in K[Y] is an X-homogeneous form of X-degree
0. So the inhomogeneous semialgebraic NuUstellensatz (see [5] or [9])
is a direct consequence of Theorem 2.3. When U = {1}, as a direct
consequence, we may obtain Theorem 4.2 in Delzell [3].

Provided that the number of the indeterminates X is zero in The-
orem 3.3, we may establish the inhomogeneous semialgebraic Posi-
tivstellensatz, see (1) of Theorem 8.6 in [5], by Theorem 3.3 and the
remark in §3.
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If we specialize Theorem 4.3 to the case in which s = t = 1,
U\ = w\ = 1, and m = 0, then we obtain the main result in [10].
When the number of the indeterminates X is zero, we may obtain the
inhomogeneous semialgebraic Nichtnegativstellensatz, see Theorem 3
in [9] or (2) of Theorem 8.6 in [5].

Finally, in §5, we investigate quantitative aspects related to these
Stellensatze. Problem 2 in Stengle [10] is such a special example. We
show the existence of upper bounds related to the Stellensatze, by the
following result:

THEOREM 5. Given nf m, s, t and d e N there exist a, β e N
depending only on (n, m,s, t, d) such that, in the X-homogeneous in-
clusions of Theorem 2.3(2), Theorem 3.3(2) and Theorem 4.3(2), the
number of summands and the (totaΐ) degrees of all appearing forms
may be taken to be bounded by a and β, respectively, whenever all of
the (total) degrees of the uit wjf f and I <d.

Hereinabove, by the degree of an ideal / of K[X, Y] we mean the
smallest nonnegative integer d such that / can be written in the form
/ = (h\,..., hr), where the degree of h^ < d, k = 1,..., r.

Throughout this paper, the following symbols are kept:

N : = {0,1,2,...}; Z :={ . . . , -2 ,-1 ,0 ,1 ,2 , . . . } ;

Q := the field of rational numbers; and

R := the field of real numbers.

1. Basic results. In this section, for the preliminaries, we give some
notions and prove some lemmas.

Let A be a graded ring, i.e., A is a commutative ring with 1 equipped
with a direct decomposition of the underlying additive group, A =
®Z=oAn> such that An Άm C An+m. Thus a = Σ Λ =o β » f o r a e A>
where an G An is the homogeneous component of degree n of α, and
almost all of the components are zero. For 0 Φ a e A, we can write
a = #o + a\ + - - + aj with a^ ψ 0. Then we say that the degree
of a is d. It will be convenient also to say that the degree of 0 is
the symbol —oo and to adopt the conventions that -oo < n for every
» e N . From now on, we use the special symbol (a)n to denote the
homogeneous component of degree n of α, where n eN. Therefore
a = Σ£Lo(α)« f°Γ e v e r Y CLEA. For technical reasons, it is convenient
to define (a)q = 0 for every a e A and every negative integer q. An
ideal / of A is said to be a homogeneous ideal if / = ®™=o(InAn), i.e.,
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all homogeneous components of every element in / are also in /. We
shall call a relation of the form / + g H — G /, in which all summands
are homogeneous of the same degree, a homogeneous inclusion.

Now let U9 W be two multiplicative subsemigroups of homogeneous
elements in A such that U QW. Then, for a homogeneous ideal / of
A, we define the set

H(utψ)(!) = {/ G A\f is homogeneous and for some e G N, u G £/,
w\,...,wn e W, a\,...,an e A, uf2e + ΣΊ=i Wiάf e I is a homoge-
neous inclusion}.

By a proof similar to that of Delzell in [3], we can prove that the
set Hψ\w){I) has the following properties:

(1) If / G H(UtW)(I), and g e A is homogeneous, then gf e

(2) If/, g e H(UtW)(I) have the same degree, then f+g e H{U>W)(I).
(3) If U\g2e + uif + Σi Wiaj e / is a homogeneous inclusion, and

if / G H{ϋtW)(I), then g e H{UfW)(I).
In general, H^UW){I) is not closed under addition. However, we

denote the additive semigroup generated by H^UW){I) by {U'W^/Ί, and
we can obtain the following

LEMMA 1. With A, I, U and W as above, we have:
(1) (υiψϊ is a homogeneous ideal of A and I c ψ
(2) /// is homogeneous, then f e HiUtW)(I) if and only iff e (UVϊ

Proof (1) If / G {U ψϊ and he A, then, by the definition of {UV
f = Σi fh where f G H{UtW)(I). So

7=0 i

By Property (1) of H(ϋtW){I), (h)jf G H(ϋιW)(I)9 and hf G
Hence {υiψϊ is an ideal of A. Further, extracting the terms f of degree
d, (f)d is the sum of all summands // of degree d, and (f)d e (U' Λ/7.
Thus {UιVψl is homogeneous. Moreover, if g e /, then (g), G / for
every i G N, since / is homogeneous. Therefore, for one u G £/,
w(^)? G / is a homogeneous inclusion, and (#)/ G H(U>W)(I). There-
fore g = Σ%o(g)i € (C/\/7 by the definition of {Uψ7. Thus we com-
plete the proof of (1).

(2) It is obvious that / G H{UfW)(I) => f e {U ψl. Conversely,

if / G (t/V7 is homogeneous of degree d, then, by the definition of
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, f eJ2fh where f e H(U>W)(I). Extracting the terms f of
degree d, f is the sum of all summands of degree d. By Property (2)
ofH{UfW)(I),feH{UtW)(I). π

The ideal {U"ψΊ will be said to be the (£/, W)-radical of /. A homo-
geneous ideal / of A will be said to be a (homogeneous) (U, W^-radical
i f / = {UV7.

When OeU, obviously 1 e HiUtW)(I), and 1 G (Uψί. By Lemma

1(1),

LEMMA 2. With A, I, U and W as in Lemma 1, we have.
(1) {UlψΊ is a homogeneous (£/, W)-radical.
(2) / is a homogeneous (U, W)-radical if and only if the {possibly

inhomogeneous) inclusion uf2 + Σi Wiaj G /, where u G U, Wi G W,
and / , αf E A, implies that f e I and wiai e /.

Proof (1) If/ G {ϋW</^ψlΛhcnf = χ)Λ where/i G
Fix /. Then we have homogeneous inclusions uf?e+Σk w^al G {U"ψ
where ueU,wkeW,ake A. By Lemma 1(2), κ/)2* + Y,kwka\ G
H(u,w){I)> a n d there exist homogeneous inclusions

where tt j G W, a'j e A. Expanding out the binomial on the left, we
have homogeneous inclusions

m=l

Upon expanding ( ^ wkal)m, we see /} G H{U>W){I), and / = Σ/} €
(l/ V7. Therefore (l/V7 is a homogeneous ([/, fF)-radical.

(2) First we prove the "if9 part. Let / G H^UtW){I). Then we have
a homogeneous inclusion w/2* + Σi wiaj € / . By the hypothesis,
/ * G / , and for some s eN such that 2s > e, uf2' G / . Again using
the hypothesis, f2$~x G / . So, reusing the hypothesis s — 1 times, we
have / G / , and H{UtW){I) c / . By the definition of (ί/Λ/7, we have

(t/V7 c /, and {U VT'= I. Therefore / is an (U, ίF)-radical.
Next we prove the "only i f part. Suppose that / is a homogeneous

(U, W)-radical and that despite the inclusion uf2+Σi Witf € / , where
ueU, Wi G W9 / , Λ/ G A, either / ^ / or w/α/ ̂ έ /. By the preceding
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inclusion, we have

0 0 OO OO OO

Σ Σ«(/)«(/)«+Σ Σ Σ wt(*i)A*ι)k e /.
m=0 n=0 7=0 k=0 i

Now we may assert that at least one among the u(f)2

m and the

Wi(ai)j, where m, j G N, is not in /. Indeed, if u(f)2

m G I for every

m G N, and W/(fl/)j G / for every / and every 7 G N, then, since

u(wi(di)j)2 G / and / is an ({/, ίΓ)-radical, we have (/) m G /, and

tί7/(αι); G /. Thus / = E * = 0 ( / ) m G 7> a n d ™i*/ = Σ%Owi(ai)j « 7

for every j . This contradicts our supposition.
Let d be the smallest integer such that at least one component of

degree d is not in / among the u(f)m(f)n and Wi{ai)j(aϊ)k, where m,
n, j \ k G N. Then we may assert that every component of degree d,
which is not in /, is just of the form u(f)2

m or tu/(a/)j. Indeed, if a
component u(f)m(f)n of degree J is not in /, and m Φ n, say m > n,
then u(f)2 G /, for the degree of u(f)2

n < d. Since / is an (U, W)-
radical, (/)„ G /. Thus u{f)m(f)n G /, a contradiction. Moreover, if
a component w, (α, )7 (α, )fc of degree rf is not in /, and j Φ k, say j > k,
then we have Wi(ai)2

k e /, and u(Wi{ai)k)
2 e I. Thus Wi{ai)k G /, and

Wi{ai)j(ai)jc G /, a contradiction.
Assume that some component of degree of, which is not in /, is of the

form u(f)2

o. By the homogeneity of /, extracting all the components
outside / of degree d from the left of the preceding inclusion, we have
the homogeneous inclusion u(f)2

0 + Σv

 wv{^v)1

kv Ξ L where υ ranges
over some subset of the set of index /. Since / is an (£/, W)-radical,
we have (/)Λ o G /. Thus u(f)2

Q e /, a contradiction. Now assume
that every component outside / of degree d is not of the form u(f)2.
Then, by extraction, we have Συ wυ(av)]Cv G /, where v ranges over
some subset of the set of index /. Hence we have u(wv(av)ιCv)

2 +
Σzφv(uwvwz)(az)2

kz G /. Therefore Wy^Oy)^ G / for every v. This is
a contradiction. D

By the lemma above, it is easy to see that a (homogeneous) (C/, W)
radical is also a radical in the usual sense. In fact, if fe G / (a(U, W)-
radical), then, for an arbitrary u G U and some 5 E N such that 2s > e,
uf2$ G /, By Lemma 2(2), f2'~ι G /. Repeating the procedure, we have
fel.

LEMMA 3. Let A, U, W and I be as above, and let M be another
multiplicative subsemigroup of homogeneous elements in A. Let Ω be
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the set of all homogeneous (U, W)-radical J of A such that I c J, and
j n M = 0. If we suppose further that I is a proper (U, W)-radical
ideal of A such that IΠM = 0, then Ω is inductive under set inclusion,
and every maximal member in Ω is a prime ideal of A. In particular,
Ω contains at least one prime ideal.

Proof Let {Jχ}χeχ be a chain in Ω. Putting / = U ieΛ ^ it is e a s Y
to prove that / is a homogeneous ideal of A such that / ί l M = 0
and I c J. Moreover, if uf2e + J2t Wtaf e /, then for some λo G Λ,

uf2e + Σwiaϊ € Jh. Since Jλo is an (I/, WQ-radical, / ^Jλ0^
 J>that

is, / is also an (U, WK)-radical. Thus / G Ω, and Ω is inductive.

Let Q be a maximal member in Ω. If Q is not prime, then there
exist a,b eA such that ab e Q> a £ Q and b φQ. Since aφQ, not all
of the homogeneous components of a are in Q. Let ιΌ be the smallest
integer such that (a)io $ Q. Likewise, j 0 is the smallest integer such
that (b)j0 $ Q. Since ab € Q and Q is homogeneous, (ab)io+jo e Q,
i.e.,

By the choice of the /Q a n d y'ô

. / + Σ,Wio+jo-j(b)j 6 β;

thus (α) / o(*)Λ G β
It is easy to prove that Q + A(a)j0 is a homogeneous ideal. Indeed,

if / € Q + A(a)io, i.e., f - q + c(a)io, where g € Q, and c € A, then
(/)« = (9)« + (c(α)/0)« = {q)n + {c)n-iM)k By the homogeneity of Q,
(q)n € Q, and (/)„ e β+Λ(fl), 0. Similarly, Q+A(b)j0 is homogeneous.
So both «> y/Q + A(a)io and iυιψQ + A(b)jo are homogeneous (U, W)-
radicals properly containing Q. By the maximality of Q in Ω, we have
M Π iVlψQ+A(a)io φ 0 and M n <κV<2 + -4(*)Λ ^ 0 β y Lemma
1(2),

A(a)io)φ0 and M

So we have two homogeneous inclusions,

um2e + ΣWjCtj eQ + A(a)h
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and

j

where u, u! G U, wif wfj e W\ m, m1 e M, and #;, a'j e A.
Furthermore, we may assume e = s. Indeed, if e Φ s, say e > s,

then we may multiply the left of the latter inclusions by m'2(e~s\
Since (a)io(b)jo e β, the product of the preceding expressions gives:

))2(uu')(mm')2e + Σ(u!wi)(meai)2 + ̂ {uw'^m6 a))

i j

where uuf e U, and ufwiy uwj and wiw'j e W. Since Q is an (U, W)-
radical, mm1 e Q. Hence Q n M Φ 0, a contradiction. Therefore Q
is prime.

The last conclusion follows from Zorn's lemma. D

2. The homogeneous semialgebraic Nullstellensatz. Let F be a for-
m a l l y r e a l field, a n d l e t X : = ( X o , X Ϊ 9 . . . , X n ) a n d Y : = ( Y X , . . . , Y m )
be indeterminates. Then F[X, Y] = 0£Lo ^k-> where 4̂̂  is the additive
group of all X-homogeneous forms of JΓ-degree k. Under this conven-
tion, F[X, Y] can be regarded as a graded ring, in which the so-called
homogeneity is only related to the indeterminates X. Therefore, we
prefer to use the precise word "X-homogeneity" instead of the word
"homogeneity".

Now, let / be an X-homogeneous ideal of F[X, Y], U c W be
two multiplicative subsemigroups of F[X, Y], which consist of X-
homogeneous forms, and f e F[X, Y] be an X-homogeneous form.
Let (F*,P*) be an ordered extension of F, that is, F* is an exten-
sion of F with an ordering P*. Then, we shall say / is vanishing
in (F*,P*) with respect to {U > 0; W > 0;/ = 0}, if f(x,y) = 0
for every (x,y) e F * Λ + 1 x F*m such that u(x,y) >P* 0, Vw e U\
w(x, y) >P* 0, Vw e W\ and h(x, y) = 0, VΛ e I.

THEOREM 2.1. With F[X, Y], I, U, W and f as above, the following
are equivalent:

(1) / is vanishing in every ordered extension of F with respect to
{*7>0;fF>0;/ = 0}.

(2)feH(ϋtW)(I).
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Proof. (2)=>(1): Obvious.
(1) =• (2): Suppose that / £ H{U>W)(I). Then, by Lemma 1(2),

iUV7; Putting M = {fs\s e N}, then Mn (t/Λ/7 = 0, for (C/W is
a radical in the usual sense. By Lemma 3, the set Ω := {J\J D (t/V7 is
an X-homogeneous (U, fΓ)-radical ideal of F[X, Y] and M n / = 0}
contains a prime ideal Q of F[X, Y].

In the integral domain A* := F[X, y]/Q, each element is of the form
a = a + Q, where a e F[X,Y]. Since F n Q = {0}, we can consider,
by abuse of notation, that F c A*. Let F* be the field of fractions of
A*. Then F* is an extension of F. We denote the set {Σi7ϋ>is'i\wi G

W U {1}, Si e F*} by Γ. Then, obviously, Γ + Γ C Γ J Γ C Γ ,
and F* 2 c T. Furthermore, if -1 e Γ, then ~1 = E/^/^i^Γ 1) 2,
where wteWu {1}, 6/, 0 φ ct e A\ Thus, d2 + Σ/^i(M/) 2 e (2,
where d = ΠA: CΛ:> and rf/ = ΓU /̂ CA: Upon multiplying this inclusion
by any element u e U at all, we see, by Lemma 2(2), that d eQ, i.e.,
\[kck = 0, a contradiction. Therefore T is a preordering of F*. By
Corollary 3.7 in [5], Γ is contained in an ordering P* of F*. So, for
every w e W, w >P* 0.

Notice that UnQ = 0; otherwise we£/nζ?=^wl 2 eβ=> (since Q
is an X-homogeneous (I/, W )̂-radical) 1 e β. Hence w >p* 0, Vw G C/.
Therefore,Jbr ( I j ) € F*w+1 x F*m, where X = ( X 0 ^ i , . . . ,Ύn)
and y = (71, . . . , Yw), we have the following relations (*):

u(X, Y) = w(X 7) >/>* 0, Vu(X, Y) e U\

w(X,Ϋ) = w{X,Y) >P* 0, Vτi;(JΓ, Y) e W\

h(X,Ύ) = h(X,Y) = 0, VΛ(X, Y) e I, and

This contradicts (1). D

In order to establish the homogeneous NuUstellensatz on a semial-
gebraic set, we must give the following further notion.

Let V be a multiplicative subsemigroup of X-homogeneous forms
in F[X, Y], We shall say that V is finitely expressed, if there exist
finitely many X-homogeneous forms g\(X, Y),..., gs(X> Y) such that
every υ(X, Y) eV can be expressed in the form υ(X, Y) = ag\x gs\
where a e F, and kt e N for i = 1,..., s. In this case, we say also that
V is expressed by # i , . . . , gs for the sake of precision. Notice that we
do not say that a and the g/, / = 1,..., s, must belong to V.
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Let U C W be two multiplicative subsemigroups of F[X, Y], and
let W be finitely expressed. It is easy to see that U is also finitely
expressed.

By the above notion, we can obtain the following

THEOREM 2.2. Let F[X, Y], I, U, W and f be as above, and let W
be finitely expressed. Then the following are equivalent.

(1) / is vanishing in every real closure of F with respect to {U >
0;ίF>0;/ = 0}.

(2)feH(UtW)(I).

Proof (2)=>(1): Obvious.
(1) => (2): If (2) is false,_then, by the proof of Theorem 2.1, for

some ordered extension {F(X, Y), P*) of F we have the relations (*)
in the proof of Theorem 2.1.

Let R be the real closure of F with respect to its ordering P*nF, and
let W be expressed by g\,...,gs. Then, by Lang's Homomorphism
Theorem (see [6] or [7]), there is an F-algebra homomorphism τ from
F[X, Y] to R satisfying the following conditions:

(i) gi(a*,b*) and gi(X,Ύ) have the same sign, / = 1,...,s\ that is,
gi(a*,b*) = 0 i f gi(X,Y)_=_O, oτgi(a*,b*) >R+ 0 if gi(X,Y) >P* 0,
or gi(a*,b*) <R+ 0 if g^X, Y) </>* 0; and

(ii) f(a*,b*)^0, where

α* = (τ(X 0 ),τ(X!),. . . ,τ(X w )), b* = (τ(Ϋ{),..., τ(Ϋm)).

Observe that for every w eW the sign of w(a*, b*) (resp. w(X, Ύ))
depends only on the signs of the ̂ /(α*,Z?*) (resp. the gi(X,Ύ)). So,
for every u e U (c W) and every w e W, u(a*fb*) and u(X,Y)
have the same sign, and w(a*,b*) and w(X,Y) have the same sign.
Therefore we have:

u(a*,b*)>R+0, VueU;

w(a*,b*) >R+ 0, MweW.

Moreover, it is evident that h(a*,b*) = 0, VΛ e /. Thus / is not
vanishing in the real closure R of F with respect to {U > 0; W >
0;/ = 0}, refuting (1). D

By the theorem above, we can prove Theorem 2.3 in the introduc-
tion without difficulty as follows.
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Proof of Theorem 2.3. (2) => (1) is clear. It only remains to prove
(1) =• (2). Now let W* = {aw\a e K+, and w e W}. Then W c
W*, and W* is obviously a multiplicative semigroup expressed by
Uι,...,Us,Wι,...,Wt.

Suppose that (2) is false. Then / $ H(UtW*)(I). By Theorem 2.2,

/ is not vanishing in some real closure K of K with respect to {U >

0; W* > 0;/ = 0}. Thus, for some {a\ b*) e Kn+ι x Km, we have:

u(a*,b*)>T0, Viέ€t/;

aw(a*fb*) > τ 0, Vα € # + , Vty e FT;

h(a*,b*) = O, VΛ€/, but f(a*,b*)φθ.

Pick one wGί/. Then, for every α e A^+, αw € ^* 5 and αw(α*, fc*)
> r 0. Since u{a*,b*) > τ 0, α > τ 0. Thus ϋ:+ c ]f\ Therefore ^
is a real closure of the ordered field (K, K+).

Let K be the algebraic closure of K in R. Then, by Lemma 3.13 in
[8], K is real closed, and is a real closure of K. By the uniqueness
of real closures of an ordered field (see Theorem 3.10 in [8]), we
may agree that K = K c R. Therefore, / is not vanishing in R
with respect to {U > 0; W* > 0;/ = 0}, of course, with respect to
{U> 0; W > 0;/ = 0}. This refutes (1). α

3. The homogeneous semialgebraic Positivstellensatz. In this sec-
tion, the notation F, F[X, Y], /, U9 W and / is the same as in §2. Let
(F*, P*) be an ordered extension of F. Then we shall say that / is pos-
itive (nonnegative) in (F*,P*) with respect to {U > 0; W > 0;/ = 0},
if f(x, y) >/>* 0 (f(x, y) >P. 0) for every (JC, y) e F*n+ι x F*m such
that u(xf y) >P* 0, Vw € U; w(x, y) >/>* 0, Vw € W\ and h{x, y) = 0,
Vhel.

THEOREM 3.1. With F[X9 Γ], /, U, W and f as above, the following
are equivalent

(1) / is positive in every ordered extension ofF with respect to {U>
0;W>0;/ = 0}.

(2) There is an X-homogeneous inclusion

w'jg?
j

where ueU, wif w'j e W, and giy g'j e F[X, Y].

Proof (2) =»(!): Obvious.
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(1) =^ (2): Let W* be the multiplicative semigroup generated by W
and - / . Then we can assert that 1 G {υ'wψl. Indeed, if 1 £ w " 7 7 ,
then, by Lemma 3, the set Ω := {J\J D wyj j s a n X-homogeneous
(U, W*^radical in F[X,Y], and / n {1} = 0 } contains a prime
ideal Q.

As in the proof of Theorem 2.1, the field F* of fractions of the
integral domain A* = F[X, Y]/Q possesses an ordering P* such that
u(X, 7) >P* 0, Vw G *7; w*(X, Ύ) >P* 0, Vw* e W*\ and Λ(JT, Y) = 0,
VA e/._Since WCW* and-f e W\ w(X, Y) >P* 0, V^ e fΓ; and
-f(X, Y) >/>* 0, i.e., f(X, Y) </>• 0. This contradicts (1).

Thus 1 e (U wy7, hence 1 e H^w^I) by Lemma 1(2). So we
have an Z-homogeneous inclusion u + J2kwk^k Ξ ® (mod/), where
w € C/, w*k e W*, hk e F[X, Y]. Now the w£ can be written in the
form wk(-f)

Sk, where wk e W, and sk e N; the even powers of - /
may be included in h\. Thus, we obtain the following X-homogeneous
inclusion:

•)jg/ = O (mod/)

where u € U, wit w'j e W, and gi, g'j € F[X, Y]. Therefore we have

= u + Σw>i8? (mod/). D

When W is finitely expressed, we have

THEOREM 3.2. />ί F[X, Y], I, U, W and f be as above, and let W
be finitely expressed. Then the following are equivalent

(1) / is positive in every real closure ofF with respect to { U > 0; W >
0;/ = 0}.

(2) There is an X-homogeneous inclusion

i8ϊ) f = u + Σw ' j8j 2 ( m o d 7 )
j

where ueU, wif w'j G W, and gif g'j G F[X, Y].

Proof (2) => (1): Obvious.
(1) => (2): If (2) is false, then, by the proof of Theorem 3.1, /

is not positive in some ordered extension (F(X, Y),P*) of F with
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respect_to {U > 0\W > 0;/j=_0}, that is, u(X,Ϋ) >p _0, Vw e U;
w(X,Ύ) >P. 0, Mw e W\ h(X,Y) = 0, VΛ e /; but f(X,Ϋ) </>* 0.

Let R be the real closure of F with respect to its ordering P* Π JF,
and let W be expressed by g\,...,gs. By Lang's Homomorphism
Theorem, there is an F -algebra homomorphism τ from F[X, Y] to R
satisfying

(i) gi(a*, b*) and gi(X, Y) have the same sign, / = 1,..., s and

(ii) f(a*,b*) <R+ 0, where a* = (τ(X0),τ(Xι),...,τ(Xn))9 b* =
(τ(7i) , . . . ,τ(Γ m )) . From this, we have: u(a*,b*) >R+ 0, Vw G I/;
w(a*,b*) >R+ 0, VK; G Ŵ ; and it is evident that h(a*,b*) = 0, VΛ G /.
Thus / is not positive in the real closure R of F with respect to
{U >0\W> 0;/ = 0}. This refutes (1). D

By Theorem 3.2, Theorem 3.3 in the introduction can be easily
established. The proof of Theorem 3.3 is similar to that of Theorem
2.3, and we leave it to the reader as an exercise.

REMARK. In the inhomogeneous semialgebraic Poisitivstellensatz,
the required congruence is written in the form

u + Σu>igf ) f = u + Σ w ' j 8 ? (mod/)

where w, w, and w'j have the character similar to that in Theorem
3.1(2) (cf. Theorem 8.6(1) in [5]).

Here, we point out that for homogeneous forms such a homoge-
neous inclusion cannot in general be obtained. For example, in the
polynomial ring F[XQ]9 let U be the multiplicative semigroup gener-
ated by XQ, and W the one generated by Xo, and let 7 = 0. Then,
evidently, the homogeneous form XQ is positive in every ordered ex-
tension of F with respect to {U > 0; W > 0;/ = 0}. But the following
homogeneous inclusion is impossible:

Xo = u

where u e U, ιuif wfj e W, and &•, gj e F[XQ]. Indeed, the homoge-
neous forms on the left hand side must be of odd degree, and the one
on the right hand side must be of even degree.
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However, provided that there exist some U\, u2€ U such that U\f
and u2 have the same X-degree, then the expression in Theorem 3.1 (2)
may be improved as follows:

+ Σ wiSf ) / = uu2 + Σ w'jgj2 (mod/)
V i ) j

where u e U, wifw
fj e W, and gi9g'j e F[X,Y]. Indeed, by the

expression

= u

j

'j)8j2 ( m o d / ) a n d

(mod/).

Notice that all the summands in the expressions above have the
same ^-degree. Then the sum of the two expressions is required.

4. The homogeneous semialgebraic Nichtnegativstellensatz. In this
section, we shall adopt the same notations as in §3 to investigate the
representation of nonnegative forms.

First, we have

THEOREM 4.1. With F[X, Y], I, U, W and f as in Theorem 3.1,
the following are equivalent:

(1) / is nonnegative in every ordered extension ofF with respect to
{U>0;W>0;I = 0}.

(2) There is an X-homogeneous inclusion

( uf2e + Σ wιsf ) f = Σ w'jg'? ( m o d 7)
\ i J j

where e e N, ueU, wif w'j e Wy and gif gj e F[X, Y].

Proof (2)=>(1): Obvious.
(1) =» (2): Let U* be the multiplicative semigroup generated by

U and - / , and W* the one generated by W and - / . Then both
U* and W* are multiplicative semigroups of X-homogeneous forms
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in F[X, Y]. Here, we can assert that 1 € (t/*'%//. Indeed, if 1 £
iU'wV7, then the set Ω := {J\J D (U'WΨΊ is an X-homogeneous
(U*, W*)-radical ideal of F[X, Y], and /Π{1} = 0 } contains a prime
ideal Q.

As the proof of Theorem 3.1, the fielcLF* of fractions of F[X,Y]/Q
possesses an ordering P* such that u*(X, Ύ) >P. 0, VM* e £/*; w*(X, Ύ)
>^_ α Vw* € W*; and λ(X, J ) = 0, VΛ e /. From this^we have
u(X, Y) > P . 0, VM € U; w(X, Y) >P. 0, Vw; € W; and - / ( X , 7) >P .
0. Thus / is not nonnegative in (F*, P*) with respect to {U > 0; W >
0;I = 0}. This contradicts (1).

By 1 € (U*. W*)/y/ϊ, 1 G H{U.:W.}(I), and we have an X-homo-
geneous inclusion u* + Σk w*khl e I, where u* € U*, w^ e W*, and
hk € F[X, Y]. Now, u* can be written in the form u(-f)s, where
u € U, and s e N . Then, by the preceding inclusion, for every—in
particular, the least—e € N such that 2e + 1 > s, we have

Since the w£(-f)2e~s+ι can be written in the form Wk(-f)lk, where
€ N, and w^ e ^ , and the even powers of —/ can be included in
, we have the X-homogeneous inclusion

u(-f)2e+ι + ]Γ wt(-f)gf + Σ υήg'j2 e I,
i j

where u e U, wif w'j € W, and git g) e F[X, Y]. Therefore

(uf2e + ]Γ wigλ / = j ; w'jg]2 (mod/). D
V i / j

Likewise, we have

THEOREM 4.2. Let the notations be as in Theorem 4.1, and let W
be finitely expressed. Then the following are equivalent:

(1) / is nonnegative in every real closure ofF with respect to {U >
0;W>0;I = 0}.

(3) There is an X-homogeneous inclusion

2 (mod/),
j

where ueU, wif w'j e W, and gif gj e F[X, Y].
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The proof is similar to that of Theorem 3.2, and the reader can give
its procedure.

By Theorem 4.2, it is easy to prove Theorem 4.3 in the introduction.
The proof of Theorem 4.3 is similar to that of Theorem 3.3, and we
leave it to the reader as an exercise.

REMARK. In the inhomogeneous semialgebraic Nichtnegativstellen-
satz (cf. Theorem 8.6(2) in [5]), the required congruence is written in
the form

) f = uf2e+Σ w'jg? ( m o d / )
j

where the appearing symbols are as in Theorem 4.1.
Evidently, it is impossible that such a congruence is X-homogeneous,

if the X-degree of / is positive. However, provided that there exist
some U\, uι e U such that U\f and W2 have the same X-degree, then
the expression in Theorem 4.1 may be improved as follows:

igf) f = uu2f2e+ΣW'JS? ( m o d / )
\ i / j

Here, the argument is similar to the remark in §3.

5. Related quantitative aspects. The purpose of this section will be
to prove Theorem 5 in the introduction. In this section, we shall
adopt the same notations as in Theorems 2.3, 3.3 and 4.3. For con-
venience, we give a name "general X-homogeneous form". For d\,
d G N with d\ < d, the general X-homogeneous form g of type
(d\, d) is an X-homogeneous form in Z[X, Y, Γ], which has X-degree
d\ and (total) degree d, with parameter coefficients T = (Tk), 1 <

* < r Λ * ) r + ί ' * ) ; e χ P l i c i t l y g = ΣμMl.|σ|<*-4 T{λ§σ)Y°X\ where
(λ, σ) = (λ0,..., λn, ax,..., σm) e N " + 1 x N m is a multi-index, |λ| =

Σλh \σ\ - Σσj, *λ = *o ' "χλn> Yσ = γ ΐ ''' Ymm, and T{λ§σ) is a
reindexing of Tk. Evidently, every X-homogeneous form in K[X, Y]
of (total) degree < d can be obtained by substituting its coefficients
for parameters T in a general X-homogeneous form of type {d\, d)
for some d\ e N.

Before proving Theorem 5, we give the following

LEMMA. Given n, m and d e N, there exists r e N depending only
on (n,m,d) such that every X-homogeneous ideal of degree < d may
be generated by r X-homogeneous forms of degree < d.
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Proof. Let / be an X-homogeneous ideal of degree < d. Then / =
(h\,..., hs), where every h^ is of degree < d. By the X-homogeneity
of /, we may assume all the h^ are X-homogeneous. Furthermore,
since K[X, Y] can be considered as a vector space over K, we may
assume that {h^} is linearly independent.

Denote the number of all monic monomials of degree < d in K[X, Y]
by r; in fact, r = ( w + J + ύ f ) . Since every h^ is a linear combination of
the monic monomials, we have s < r. In case s < r, we may put
As+i = = hr = 0. This completes the proof. D

Proof of Theorem 5. We shall prove the result only for Theorem
2.3. Another two cases may similarly be proved.

Fix n, m, s, t and d. Let r be the number depending on (n, m,d)
as in the lemma above. Obviously, the number of all r + s + t + 1-
tuples (d\t...,dr+s+t+\) with dp < d is finite and depends only on
(d,n,m,s, t).

For a given tuple (d\,..., rfr+5+r+i), we denote the general X-homo-
geneous forms of type (d\,d),..., (dr+s+t+\, d) with parameter coeffi-
cients Tϊf..., Tr+s+t+γ by hi,..., hr, ux,..., us, W\ >..., wt, / , respec-
tively. Here, when / φ j , Tι and 7} have no common parameter. Put
T — {T\,..., Γ r + 5 + 1 + 1 ) and denote the number of all parameters in T
by \T\ (evidently, \T\ = |Γi| + ••• + | Γ r + 5 + / + 1 | ) . Then these general
forms are all in Z[Xf Y, T].

Now consider the following (elementary) statement with (parame-
ter) constants T:

ψ: V(X Y) ί (j\ύi(X, Y, T) > 0 j Λ ί j \ Wj(X, Y,T)>0

Λ ί l\ hk{X, Y, T) = 0 j -> f(X, Y, T) = 0 j .

By Elimination of Quantifiers for real closed fields (see Theorem
5.1 in [8]), there is a quantifier free sentence φ such that, for every
real closed field R and any to e ̂ I Γ I ,

If we take φ in disjunctive norm form, then φ may be written in the
form

φlVφ2V- 'Vφq

where φ\ is a conjunction of prime or negated prime formulas, / =
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For the elementary language of ordered fields enlarged by the con-
stants Γ, a prime formula is logically equivalent to a formula of the
form E{T) = 0 or E(T) > 0, where E{T) e Z[T]. Then, a negated
prime formula is logically equivalent to E(T) Φ 0 or E(T) } 0, and
it is thereby logically equivalent to E2{T) > 0 or -E(T) > 0. So, for
every /, φ\ may be written in the form

I ( \ Ek.(T) = θ)
k'=ι /

where $', t\ r1 e N, BV(T), Gy(T\ Ek,{T) e Z[T].
Let U* be the multiplicative semigroup generated by the Uι and

Bi'{T), let W* be the multiplicative semigroup generated by the ίbj,
Gj'(T) and [/*, and let /* be the ideal of Q[X, Y, T] generated by the
hk and Ek,. Then /* is X-homogeneous. Indeed, if h G /*, then
^ = Σk akhk + Σ)A:' bk,Ek,{T). Denote the X-degree of hk by dk for
fc = 1,..., r, we have (h)d = Σk{ak)d_dkhk + Σk,{bk,)dEk,{T) e Γ.

Now, we may assert that f(X, Y, T) is vanishing in R with respect
to {U* > O W* > 0;/* = 0}. Indeed, if false, then there is some
(xo.yo.to) € Rw+1 x Rm x RlΓl such that u*(xo,yo,to) > 0, Vw* e
ψ; w*(xo,yo,to) > 0, Vty* G ίF*; Λ*(xo^o^o) = 0, VA* e /*; but
/(xo.yo.to) Φ 0. From this, (R,ί0) •= 0/, and (R,ί0) *= 0. Since
(R,ίo) •= (ψ *-* Φ)> we have (R,*o) •= Ψ- Now w/(xo>yo^o) > 0 for
/ = 1,..., s\ Wj(xo, yo, to) > 0 for j = 1,..., t\ and hk(xOf yo> to) = 0

for k = 1,..., r, we have /(xo> yo> to) = 0, a contradiction.
Observe that every element in Q + is a sum of squares in Q. Then,

by Theorem 2.3, we have an ^-homogeneous inclusion (*)

(mod/*)

where e e N, w* e C/*, < G ̂ * , and &, G Q[Z Γ, T].
Along the way, we can obtain finitely many such inclusions (*) as

above. Moreover, we may point out that the Z-homogeneous inclusion
in Theorem 2.3(2) can be obtained by substituting suitable coefficients
for T in one of the obtained inclusions (*), if all the wh Wj91 and /
satisfying Theorem 2.3(1) are of degree < d.

Let u\,...,uS9 wι,...,wt9 f and / satisfy Theorem 2.3(1) and be
all of degree < d. By the lemma above, / = (h\,..., hr)9 where hk is
an X-homogeneous form of degree <d,/c = l , . . . , r . Then, there are
the general X-homogeneous forms ύi{X, Y, Γ), Wj(X, Y, T), hk{X, Y, T)
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and f(X, Y, T) of (total) degree d with parameter coefficients T such
that, for some c e K^, U[ = β/(ΛΓ, 7,c), Wj = t&/(ΛΓ, Y,c), hk =
Λ̂ (ΛΓ, 7, c), and / = /(X, 7, c), where / = 1,..., s\ j = 1,..., t\ k =
1,..., r, and the Λf-degrees of the fi, , i&y, Λ̂  and / constitute a r + 5 +
ί + 1-tuple (d\,..., ^r+5+r+i) with ^ < d.

As above, let ψ, φ be two sentences corresponding to the tuple
(d\,...,dr+s+t+ι). Then Theorem 2.3(1) implies that {R,c) N ψ.
Since (i?, c) N (^ ^ 0), (JR, c) t= 0, and (R, c) N <̂/ for some /.

Substituting c for T in the inclusion (*) corresponding to the φh we
have

u*(X, Y, c)f2e + Σ<(*> Y> c)gl(X> Zc) = 0 (mod/).

Here, u* = ύ(X,Y,T)B(T), where w is (not necessarily distinct) a
product of the #/, and J5(7") is (not necessarily distinct) a product
of the Bi*(T). Since (Λ,c) N φh Bv{c) > 0 for /' = 1,... ,s*. Thus
b := £(c) 6 ϋ: +

? and b φ 0. Hence w*(X 7,c) = *M5 where u :=
w(X F, c) is a product of the W/. Similarly, w*(X, Γ, c) = bυwVy where
fev E K+, and ϊ^t; is (not necessarily distinct) a product of the u\ and
ιy; . Therefore, we have

uf2e + Σavwυgl(Xf Y,c) = 0 (mod/),

where α^ = b~ιbv eK+. This completes the proof for the Nullstellen-
satz. D

REMARK. In reference [10], Stengle established the following result:
Let / € R[Xo> X\,..., Xn] be a homogeneous form. Then / is pos-
itive semidefinite iff there exists a homogeneous polynomial relation
φ(—f) = 0, where φ(Y) is a monic polynomial of odd degree with
coefficients which are sums of squares of forms.

Furthermore, by v(f), he denotes the lowest degree in Y of any
polynomial φ(Y) appearing in the preceding result. Then he posed
the following

Problem 2. If / is a positive semidefinite form of degree 2d in
XQ,X\,...,Xn, can v(f) be bounded (or effectively bounded) from
above in terms of d and nΊ

If we specialize Theorem 5 about the Nichtnegativstellensatz to the
case in which K = R = R, s = t = 1, ux = W\ = 1, / = 0 and m = 0,
then we give an affirmative answer to the problem above.
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