A REMARK ON SPINOR NORMS OF LOCAL INTEGRAL ROTATIONS I

Xu Fei

Abstract

The spinor norms of the integral rotations on the modular quadratic forms over a local field, which could not be expressed in the convenient closed forms in [1], are expressed in a convenient closed form.

The spinor norms of integral rotations on a modular quadratic form over a local field were determined in [1], but there remained one case to solve. In the present paper, we will solve this problem. Familiarity of [1] and [2] is assumed, and we also adopt the notations of [1] and [2]. Thus, F denotes a dyadic local field of characteristic $0, \mathcal{O}$ the ring of integers in $F, \mathscr{B}=\pi \mathscr{O}$ the maximal ideal of \mathscr{O}, \mathscr{U} the group of units in $\mathcal{O}, \mathscr{D}(\cdot)$ the quadratic defect function, V a regular quadratic space of dimension 2 over F, L a unimodular lattice of determinant d on V, a the norm generator, $O^{+}(V)$ the group of rotations on V, $O^{+}(L)$ the corresponding subgroup of units of L, and $\theta(\cdot)$ the spinor norm function.

Write $L \cong A\left(a,-\delta a^{\dashv}\right)$, adapted to a basis $\{x, y\}$, where $\mathscr{D}(1+\delta)=$ $\delta \mathcal{O}$ and $-\delta a^{-1}$ belongs to $w L$. Put $\operatorname{ord}(a)=\nu, \operatorname{ord}(2)=e$, and $\mu=$ $e-\nu$. We have the following proposition.

Proposition. If $e+[\mu / 2] \geq \operatorname{ord}\left(\delta a^{-1}\right)>e$, then

$$
\theta\left(O^{+}(L)\right)=\left(1+\mathscr{B}^{\circ \operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]) \dot{F}^{2} \cap Q(\langle 1, d\rangle) \dot{F}^{2}}\right.
$$

where $Q(\langle 1, d\rangle)=\{a \cdot c \mid c \in Q(\dot{V})\}$.
Proof. Take any symmetry $S z$ in $O(L)$ where z is a maximal anisotropic vector of L. Put $z=s \cdot x+t \cdot y$ where $s, t \in \mathcal{O}$ and one of them must be a unit. Since $\operatorname{ord}(Q(z))=\operatorname{ord}\left(s^{2} a+2 s t-t^{2} \cdot \delta \cdot a^{-1}\right) \leq e$, we obtain $0 \leq \operatorname{ord}(s) \leq[\mu / 2]$ and $Q(z)=s^{2} a \cdot\left(1+2 s^{-1} t a^{-1}-\left(s^{-1} t\right)^{2}\left(\delta a^{-1}\right) a^{-1}\right)$.

If s is a unit,

$$
\begin{aligned}
& \operatorname{ord}\left(2 s^{-1} t a^{-1}-\left(s^{-1} t\right)^{2}\left(\delta a^{-1}\right) a^{-1}\right)=\operatorname{ord}\left(2 s^{-1} t a^{-1}\right) \geq e-\nu \\
& \quad=(\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2])+(e+[\mu / 2]+\nu-\operatorname{ord}(\delta))+[\mu / 2] \\
& \quad \geq \operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2] .
\end{aligned}
$$

If t is a unit,

$$
\begin{aligned}
& \operatorname{ord}\left(2 s^{-1} t a^{-1}-\left(s^{-1} t\right)^{2}\left(\delta a^{-1}\right) a^{-1}\right) \\
& \quad \geq \min (\mu-\operatorname{ord}(s), \operatorname{ord}(\delta)-2 \nu-2 \operatorname{ord}(s)) .
\end{aligned}
$$

When $\operatorname{ord}(s) \geq \operatorname{ord}(\delta)+\mu-2 e$,

$$
\begin{aligned}
\min & (\mu-\operatorname{ord}(s), \operatorname{ord}(\delta)-2 \nu-2 \operatorname{ord}(s)) \\
& =\operatorname{ord}(\delta)-2 \nu-2 \operatorname{ord}(s) \\
& \geq \operatorname{ord}(\delta)-2 \nu-2[\mu / 2] \\
& =\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]
\end{aligned}
$$

When $\operatorname{ord}(s)<\operatorname{ord}(\delta)+\mu-2 e$,

$$
\begin{aligned}
\min & (\mu-\operatorname{ord}(s), \operatorname{ord}(\delta)-2 \nu-2 \operatorname{ord}(s)) \\
& =\mu-\operatorname{ord}(s)>2 e-\operatorname{ord}(\delta) \\
& =(\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2])+2(e+[\mu / 2]+\nu-\operatorname{ord}(\delta)) \\
& \geq \operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]
\end{aligned}
$$

By the theorem of [3], we obtain

$$
\theta\left(O^{+}(L)\right) \subseteq\left(1+\mathscr{B}{ }^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \dot{F}^{2}
$$

It is obvious that V is anisotropic in this case, so $\theta\left(O^{+}(V)\right)=Q<1$, $d>\dot{F}^{2}$. Hence, $\theta\left(O^{+}(L)\right) \subseteq\left(1+\mathscr{B}{ }^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \dot{F} \cap Q(\langle 1, d\rangle) \dot{F}^{2}$.

Take any $a \cdot h \dot{F}^{2} \subseteq\left(1+\mathscr{B}{ }^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \dot{F}^{2} \cap Q(\langle 1, d\rangle) \dot{F}^{2}$ where $h \in Q(\dot{V})$, so there exists z in \dot{V} such that $h=Q(z)$. Without loss of generality, we can assume that $z=s \cdot x+t \cdot y$ where $s, t \in \mathscr{O}$ and one of them must be a unit.

If $[\mu / 2]<\operatorname{ord}(s) \leq \mu-e+(\operatorname{ord}(\delta)-1) / 2$, then t is a unit. Since

$$
\begin{aligned}
\operatorname{ord}\left(\left(s t^{-1}\right) \cdot\left(a \delta^{\dashv}\right) \cdot 2\right) & =\operatorname{ord}(s)-\operatorname{ord}\left(\delta a^{-1}\right)+e \\
& \geq \operatorname{ord}(s)-[\mu / 2]>0
\end{aligned}
$$

we know that $\left(s \cdot t^{-1}\right) \cdot\left(a \delta^{-1}\right) \cdot 2-1$ is a unit. Let $\operatorname{ord}(s)=m$, so

$$
\begin{aligned}
a \cdot h & =a\left(s^{2} a+2 s t-t^{2}\left(\delta a^{-1}\right)\right) \\
& =(a s)^{2} \cdot\left(1+\left(s^{-1} t\right)^{2}\left(\delta a^{-1}\right) \cdot\left(a^{-1}\right) \cdot\left(\left(s t^{-1}\right) \cdot\left(a \delta^{-1}\right) \cdot 2-1\right)\right)
\end{aligned}
$$

in $\left(1+\mathscr{B}^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \dot{F}^{2}$. Notice

$$
\operatorname{ord}\left(\left(s^{-1} t\right)^{2}\left(\delta a^{-1}\right) \cdot\left(a^{-1}\right)\right)=-2 m+\operatorname{ord}(\delta)-2 \nu
$$

We obtain the equation

$$
\begin{equation*}
1+w \pi^{\operatorname{ord}(\delta)-2 m-2 \nu}=f^{2}\left(1+r \pi^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \tag{1}
\end{equation*}
$$

where $w \in \mathscr{U}, r \in \mathcal{O}, f \in \dot{F}$. Since

$$
\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]>\operatorname{ord}(\delta)-2 \nu-2 m \geq 1,
$$

we can assume $f=1+q \pi^{k}$ where $q \in \mathscr{U}, k \geq 1$. So the following equation is yielded from (1).
(2) $w \pi^{\operatorname{ord}(\delta)-2 \nu-2 m}-r \pi^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}-2 r q \pi^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]+k}$ $-r q^{2} \pi^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]+2 k}-2 q \pi^{k}=q^{2} \pi^{2 k}$.

Since

$$
\begin{gathered}
\operatorname{ord}(\delta)-2 \nu-2 m \leq e+[\mu / 2]+\nu-2 \nu-2[\mu / 2] \\
\quad=e-\nu-[\mu / 2] \leq e<e+k=\operatorname{ord}\left(2 q \pi^{k}\right)
\end{gathered}
$$

and $\operatorname{ord}(\delta)-2 \nu-2 m$ is odd, consider the orders of the elements at both sides of (2), a contradiction is derived.

If $\operatorname{ord}(s) \geq \mu-e+(\operatorname{ord}(\delta)+1) / 2$, then t is a unit again. Since

$$
\operatorname{ord}\left(a^{2}\left(s t^{-1}\right)^{2} \cdot \delta^{-1}\right)=2 \nu+2 \operatorname{ord}(s)-\operatorname{ord}(\delta) \geq 1
$$

and

$$
\begin{aligned}
& \operatorname{ord}\left(2\left(s t^{-1}\right) a \delta^{-1}\right)=e+\operatorname{ord}(s)+\nu-\operatorname{ord}(\delta) \\
& \quad \geq e+(1-\operatorname{ord}(\delta)) / 2 \geq e+(1-e-[\mu / 2]-\nu) / 2 \\
& \quad=(e-[\mu / 2]-\nu) / 2+1 / 2>0
\end{aligned}
$$

we know $\left(1-a^{2}\left(s t^{-1}\right)^{2} \delta^{-1}-2\left(s t^{-1}\right) a \delta^{-1}\right) \in \mathscr{U}$. Notice

$$
\begin{aligned}
a \cdot h & =a\left(s^{2} a+2 s t-t^{2}\left(\delta a^{-1}\right)\right) \\
& =\delta\left(-t^{2}\right)\left(1-a^{2}\left(s t^{-1}\right)^{2} \delta^{-1}-2\left(s t^{-1}\right) a \delta^{-1}\right)
\end{aligned}
$$

in $\left(1+\mathscr{B}^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \dot{F}^{2}$, so we obtain the equation

$$
\begin{equation*}
\delta \cdot \eta=\zeta \cdot f^{2} \tag{3}
\end{equation*}
$$

where $\eta \in \mathscr{U}: f \in \dot{F}, \zeta \in\left(1+\mathscr{B}^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \subseteq \mathscr{U}$. Since $\operatorname{ord}(\delta)$ is odd, consider the orders of the elements at both sides of (3), a contradiction is derived.

Now the only possibility is $0 \leq \operatorname{ord}(s) \leq[\mu / 2]$, so

$$
\operatorname{ord}(Q(z))=\operatorname{ord}\left(s^{2} a+2 s t-t^{2}\left(\delta a^{-1}\right)\right) \leq e
$$

and z is a maximal vector of L, thus $S z \in O(L)$, and $S x \cdot S z \in O^{+}(L)$. Notice

$$
\theta(S x \cdot S z)=a \cdot h \dot{F}^{2}
$$

hence, $\theta\left(O^{+}(L)\right)=\left(1+\mathscr{B}^{\operatorname{ord}(\delta)+2 \mu-2 e-2[\mu / 2]}\right) \dot{F}^{2} \cap Q(\langle 1, d\rangle) \dot{F}^{2}$.

Combining the above proposition with the results obtained in [1], we conclude that the spinor norms of integral rotations on a modular quadratic form over a local field are determined completely and all the results are expressed in the conventional closed forms.

References

[1] J. S. Hsia, Spinor norms of local integral rotations, I, Pacific J. Math., 57 (1975), 199-206.
[2] O. T. O'Meara, Introduction to Quadratic Forms, Berlin-Göttingen-Heidelberg: Springer, 1963.
[3] O. T. O'Meara and B. Pollak, Generation of local integral orthogonal groups, II, Math. Zeitschr., 93 (1966), 171-188.

Received October 6, 1987.

University of Science and Technology of China
Hefei Anhui
People's Republic of China

