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ISOMETRIC DEFORMATION OF SURFACES IN R3

PRESERVING THE MEAN CURVATURE FUNCTION

A. GERVASIO COLARES AND KATSUEI KENMOTSU

The purpose of this paper is to classify surfaces in Euclidean 3-
space with constant Gaussian curvature which admit non-trivial one-
parameter families of isometric immersions preserving the mean cur-
vature function. It is shown that the Gaussian curvature must be zero
and, if the mean curvature is not constant, then such isometric im-
mersions are some deformations of the cylinder over a logarithmic
spiral.

1. Introduction. The study of isometric deformations of surfaces in
a Euclidean 3-space i?3 preserving the mean curvature has a longstand-
ing history since the work by O. Bonnet [1]. He proved that a surface
of constant mean curvature can be isometrically deformed preserving
the mean curvature.

Recently S. S. Chern [3] has studied such a deformation for surfaces
of non-constant mean curvature and he gave an interesting criterion
for its existence.

On the other hand, W. Scherrer [7] and R. A. Tribuzy [9] have
found another necessary and sufficient condition for existence of such
deformations.

The purpose of this paper is twofold; first to give a simple and
unified treatment of Scherrer's and Tribuzy's result; second, to classify
surfaces with constant Gaussian curvature which admit non-trivial
isometric deformations preserving the mean curvature function, as an
application of our result. This generalizes a recent result by Roussos
[6].

By a non-trivial family of surfaces we mean surfaces which do not
differ by rigid motions. We suppose that surfaces in this paper do not
contain umbilic points.

Our theorems are local in nature, because a theorem of Lawson and
Tribuzy [4] says that if the mean curvature of a compact surface in
jR3 is not constant, then there exist at most two geometrically distinct
isometric immersions of the surface with the same mean curvature.

After the preparation of the first version of our manuscript, we knew
a preprint [6] by the kindness of M. doCarmo. We also wish to express
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our gratitude to S. Bando, the members of the differential geometry
seminar of Tohoku University, for all their help and encouragement,
and to the referee for his careful reading and useful comment of this
paper.

2. A surface theory. In this section we shall develop some local
theory for any surface in R3 which will be applied in the next section
to the study of isometric deformations of surfaces. As a result, we
can give a unified treatment of the above mentioned necessary and
sufficient conditions of Scherrer [7] and Tribuzy [9].

We consider a piece of oriented surface M in i?3 which does not
contain any umbilic point. Over M there is a well-defined field of
orthonormal frames x e\, e2, e$ such that x e M, e\, eι are unit
tangent vectors at x and e?> is the unit normal vector field at x e M.
We then have

(1) dx = wχβ\ +w2e2,

dβ\ =

where the w's are 1-forms on M, wχ2 is the connection form, w1 3 and
w23 define the second fundamental form of M in R3. They satisfy the
structure equations:

(2) dw\ = w2 ΛW21, dw2 = W\ Λ

dw\2 = -Kw\ Λw2,

= W\2 Λ 1^23. dW2Z = W2\ Λ

Let H be the mean curvature function of M. For fixed e\, β2 and
£3, there exist some functions x, y such that we can write w\$ =
(H+x)w\+yw2, w2τ> = yw\+(H-x)w2. Since the Gaussian curvature
K is written by K = (H + x)(H - x) - y2, we have that H2 - K =
x2 + y2, which is positive by our assumption. Therefore, we can write,
following Svec [8], for some a

(3) wx2 = (H + \JH2 -Kcosa\

W23 = \JH2 - KsmoίW\ + (H - \JH2 - Kcos a) W2

Now we shall remark that a in (3) depends on the frame e\, β2 and
β3. (Therefore the covariant derivatives of a in [8, formula (29)] shall
be defined in a modified fashion.) Let i\9 e2 be another unit tangent
frame and denote (έ\ + ie-i) = exp(/0)(ei + iβj), A simple calculation
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shows that a = a + 20, W\2 = W12 - dθ (mod 2π), where we are
denoting the quantities pertaining to the frame fields x e\, §2, £3 by
the same symbols with "~". It follows that da + 2w\2 is a globally
defined 1-form on M and we denote it by

(4) Da := da + 2w\2 = a\W\ + α^u^,

where a\ and a2 are coefficients of the 1-form Da.
For any tensor field α/ of (0, l)-type, we define its covariant deriva-

tives aij as follows:

(5) Dai : = dfa, + ^ ^5^5/ = ] ζ 0ίitjWjf 1 < / < 2.

It is easily verified that a\t\ + a2>2 is independent of the choice of e,
in case of the α/'s defined by (4) and we write Δα = a\t\ + 0:2,2-

Exterior differentiation of (3) gives, using (2) and (4),

(6) VH2 - KDa = QOSa(H\W2 + H2W1) - sina(H\Wι - H2W2)

wx - (yjH2 - K^ W2,

where /// and (VH2 - K)h i = 1,2, are exterior derivatives of the
scalar functions H and y/H2 - K, respectively.

We introduce the 1-forms

H
ι
w

ι
 -H

2
w

2
 H

2
w

x
 +H

x
w

2
(?) β = h =

By using the *-operator of Hodge, such that *W\ = w2 and *w2 = -
the formula (6) can be written

(6)' Da = - s i n α - β{ +cosα β2 - *dlog\JH2 - K,

which is one of the fundamental formulas in this paper.
In order to obtain the exterior derivative of (6)', we first calculate:

(8) dβx = / - i — [{ (log y/H2-K) H2

+ (log VH2 - K^ HX - 2Hi2}wιΛw2

- Kβ2 Λ wl2]

+ (log \/H2-lή H2 + Hu-

+2VH2 - Kβx Λ W12] ,

where Hi/s are covariant derivatives of H, above defined in (5).
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Using (4) and (8), the exterior differentiation of (6)' gives the con-
dition:

(9) -2A sinα + B cosα + P = 0,

where we set

(10) A = Hny/m -K-H2 (\///2 - K) - Hx [\/H2 - K) ,

B = (H22 - Hn)\/H2-K + 2H{ (\///2 - K)

P = (H2- K) (Δlog Vm-K - 2K) - I gradi/| 2,

and Δ is the Laplacian for the induced metric of M.
The formula (9) holds at non-umbilic points of any surface in R3.

We shall remark that this is essentially the same as the formula (3) in
§2 of Scherrer [7] and the formula (39) of Svec [8].

Now we shall give another important formula obtained from (6)'.
Applying the *-oρerator to (6)', we get

a\W2 — a2W\ = — sinα - β2 — cosα β\ + d\o%yH2 — K.

Exterior differentiation gives, using (4), (6) and (8),

(11) (H2 - K)Aa = 2Acosα + £sinα.

It follows from (9) and (11) that, for a given surface M in I?3, the
conditions A = B = 0 are equivalent to the conditions P = Δα = 0.
This will be used later as

(12) A = B = 0&P=Aa = 0.

3. Deformation of surfaces with constant Gaussian curvature. We
apply the local theory for a surface in i?3 developed in the previous
section to the study of a one-parameter family of isometric surfaces
having the same mean curvature at corresponding points. Such a fam-
ily is called an isometric deformation of surfaces preserving the mean
curvature function.

Here V denotes the covariant differentiation of the induced metric
and Z = (e{- ie2)/2.

THEOREM 1. Let M be a piece of an oriented surface in R3 such
that it has no umbilic points. Then, M admits a non-trivial isometric



ISOMETRIC DEFORMATION OF SURFACES 75

deformation preserving the mean curvature function if and only if one
of the following conditions holds:

(14) {H2 -K) (Mo%\/W-K-2K) - |grad#|2 = 0

and Δα = 0.

Proof. In order to construct some non-trivial isometric deformation
of M preserving the mean curvature function, it is necessary and suffi-
cient to find a family of α's such that, for each α, the forms (3) satisfy
the last equation of (2). Now we consider (6)' as a total differential
equation for unknown functions α. The complete integrability condi-
tion is given by (9). If the condition A = B = 0 or P = Δα = 0 holds
for the M, then, by (12), (6)' is completely integrable.

Conversely, if M admits a non-trivial isometric deformation pre-
serving the mean curvature function, then (6)' is completely integrable,
and so (9) and (11) hold for α's. By differentiation of (9) twice with
respect to the direction of the deformation, we get 2A cos a+B sin a =
-2A sin a + Bcosa = 0. Coupling these formulas with (9) and (11),
we get P = Δα = 0 on M, which is equivalent to A = B = 0.

Finally, (13) is simply the complex representation of A = B = 0: in
fact, we have

(15) 4(H2 - Kγ'2V (J^K) (Z, Z) = -{B + 2iA).

This proves Theorem 1.

REMARK 1. Equation (13) is another representation of Scherrer's
condition [7, p. 81] in complex notation. On the other hand, a complex
representation of (14) has been obtained in a different way by Tribuzy
[9, Proposition 3.2]. Our calculation shows that these two conditions
are closely related and only the exterior differentiations of (6)' and the
dual of (6)' in the sense of *-operation are essential.

REMARK 2. By [3], we know that on a surface with non-constant
mean curvature, the condition (13) or (14) implies that the metric
ds2 := β2 + β\ has constant Gaussian curvature equal to - 1 . It is
clear that this is also proved by our method: we denote by β\2 and K
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the connection form of the new metric ds2 and its Gaussian curvature,
respectively. Some calculation shows that

(16) /?i2 = - sin a - β\ + cos a - βι - dot.

Exterior differentiation of this and the equation (6)' give K = - 1 .

As an application of Theorem 1, we can classify surfaces with con-
stant Gaussian curvature which admit an isometric deformation pre-
serving the mean curvature function.

THEOREM 2. Let M be a piece of an oriented surface in i?3 without
umbilic points such that the Gaussian curvature K is constant on M.
If M admits a non-trivial isometric deformation preserving the mean
curvature function, then K must be zero.

Proof. If M is a minimal surface, then K is zero by a theorem of
Pinl [5]. In case of H φ 0, we consider a tensor field of (0, l)-type
defined by f = Hi/H2 — K, i = 1,2. Since K is constant, we have
fUj = {(H2-K)HiJ-2HHiHj}/{H2-K)2. By conditions A = B = 0,
there exists some scalar function λ with fj = λ<5,y. By taking the trace
of these equations, we have

_ (H2-K)AH-2H\gmdH\2

- (H2-K)2

On the other hand the condition P = 0 is equivalent to

(H2 - K)AH - 2H\ grad/7|2 =2 =

These formulas give that λ = K/H, and so we have

(17) Hfu = Kδijf l<i,j<2.

Since K is constant, we have, from (17),

(18) Hkfij - Hjfa + H(fiJ>k - fiXj) = 0.

Now, we need the Ricci identities of the tensor field f on a two di-
mensional Riemannian manifold:

(19) fx,2Λ-fxΛ2 = Kf2, /2.1.2-/2.2.1=*/l

By (17), (18) and (19), we have KHt = 0, i = 1,2. If Hj = 0, i = 1,2,
then H is constant and /}/s vanish identically. Therefore K must be
zero, finishing the proof.
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COROLLARY. Non-umbilical surfaces with non-zero constant Gauss-
ian curvature do not admit any non-trivial isometric deformation pre-
serving the mean curvature function.

4. Examples of deformations. Theorem 2 shows that flat surfaces
having the property (13) should be studied. Let M be a piece of
Euclidean 2-plane with the standard flat metric ds2 = du2 + dυ2. We
consider an isometric immersion X(u,v): M —• i?3 such that it has
no umbilic points which implies non-vanishing of the mean curvature
H and satisfies the condition (13).

We put W\ = du and w2 = dv9 and so we have W\2 = 0. The
condition (13), then, is equivalent to

(20) HHUV - 2HUHV = 0,

(21) H(Hυυ - Huu) + 2(H2 - H2) = 0.

We shall determine w^ and w2?> of X in (3). If H is constant, then
X is a piece of plane in R3 or a circular cylinder within isometries of
(M, ι;)-domain and i?3. We may assume H φθ. Then
(22)

Xt(u,v)= (j^cos(2Hύ)f — sin(2Hu)fϋJf te (-00,00),

where we set ύ = cos t u - sin t v and v = sin t u + cos t v, is the
non-trivial isometric deformation preserving the mean curvature of
the circular cylinder. This is a special case of the Bonnet's Theorem
[1] and also see J. A. Wolf [10].

From now on, we assume that H is positive and not constant. The
general solution of (20) is H(u,v) = l/(φ(u) + ψ(v))> where φ and ψ
are any functions. Considering (21), we get

H(u,v) = —-75 ^T—r j ,
J a(u2 + v2) + bu + cv+d

where a,b,c and d are some real numbers. We shall study, separately,
two cases according to the value of a. At first we assume a = 0. By
taking some orthogonal transformation and parallel translation of the
standard coordinates of i?2, we may assume that

(23) H(u,v) = ^,

where b is a non-zero real number.
By (6) and (23), we have

da __ sin a da _ 1 — cos a

du~~ u dv "~ u
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This is integrable and any solutions are

(24) tan - =
2 l-υt'

where t is any real number. By (3), (23) and (24), we get a 1-parameter
family of isometric immersions Xt preserving the mean curvature
function. The square norm of the Da in case of (24) is given by

(25) \Da\2 = , Ί

 4* -r.
v J ' ' u2t2 + {\-vt)2

Therefore, any Xt is not congruent with Xv, for t φ tr, t,t' > 0.
The total differential equation (1) of Xt can be written easily. By a
similarity transformation of X, we may assume b = 1/2. In particular,
putting t = 0, we get

X0(u,v) = ί / coslogw du, I sinlogw du,v ) .

We put ξ = logu and τ = v. Then this gives a cylinder over a logarith-
mic spiral:

(26) X0(ξ, τ) = (±=e* cos (ί - J ) . -j=e* sin (ξ - ΐ ) , τ) .

Moreover, we know that the curvature and the torsion of the curve
Xt(u,vo), for a fixed VQ, are (1 - v0t)

2/u(u2t2 + (1 - voO2) a n d

-/(I - v0t)/(u2t2 + (1 - voO2)> respectively. For a fixed w0 > 0,
the curvature and the torsion of the curve Xt(uo,v) are given by
u0t

2/(u0t
2 + (1 - vt)2) and - ί ( l - vt)l(u\t2 + (1 - itf)2), respectively.

By the Theorem 3 of Roussos [6], Xoo is a generalized flat cone. In
fact, if we assume t = oc in (24), then we have

sinα = -2uυ/(u2 + v2) and cosα = -(u2 - v2)/(u2 + v2).

Put u = rcosθ and υ = rs inθ in the total differential equation (1)
of XOQ. It is easily verified that X^r cos θ, r sin θ) = rE\(θ)9 where
E\(θ) = cos0 < e\ + sinθ ^2 is a unit vector in i?3 and the geodesic
curvature of E\(θ) as a curve on the unit sphere is l/cos0.

By those observations, one can imagine the isometric deformation
Xt of XQ preserving the mean curvature function. Conversely, it is
easily proved that the flat cylinder (26) satisfies the condition (13).

Now we shall prove that the constant a must be zero. If a is not
zero, then, by taking some orthogonal transformation and parallel
translation of the standard coordinates of i?2, we may assume that
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H(u, v) = l/a(u2 + υ2) + d. By using the polar coordinates, (6) can
be written, in this case,

da -2ar . /f>n .
— = —= 7 sin(20 - a),
dr ar2 + d v }

But this system is not integrable. Thus we have proved the following.

THEOREM 3. Let M be a flat surface in R3 without umbilic points
and H the mean curvature function of M. If H is not constant and
satisfies the differential equation (13), then there exists a non-trivial
isometric deformation Mt preserving the mean curvature function such
that M = Mt for some t, Mo is a cylinder over a logarithmic spiral and
Moo is a generalized cone.

REMARK 3. Simple calculation proves that there is no flat circular
cone that admits a non-trivial isometric deformation preserving the
mean curvature function. Hence, Mt is not a flat circular cone for any
t (< oo).
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