A NONLINEAR ELLIPTIC OPERATOR AND ITS SINGULAR VALUES

P. T. Church and J. G. Timourian

The boundary value problem $\Delta u+\lambda u-u^{3}=g$ on $\Omega, u \mid \partial \Omega=0$, where $\Omega \subset \mathbf{R}^{n}(n \leq 4)$ is a bounded domain, defines a real analytic map A_{λ} of the Sobolev space $H=W_{0}^{1,2}(\Omega)$ onto itself. A point $u \in H$ is a fold point if A_{λ} at u is C^{∞} equivalent to $f \times \mathrm{id}: \mathbf{R} \times E \rightarrow$ $\mathbf{R} \times E$, where $f(t)=t^{2}$. (1) There is a closed subset $\Gamma_{\lambda} \subset H$ such that (a) at each point of $A_{\lambda}^{-1}\left(H-\Gamma_{\lambda}\right)$ the map A_{λ} is either locally a diffeomorphism or a fold, and (b) for each nonempty connected open subset $V \subset H, V-\Gamma_{\lambda}$ is nonempty and connected; thus Γ_{λ} is nowhere dense in H and does not locally separate H. Suppose that $n \leq 3$ and the second eigenvalue λ_{2} of $-\Delta u$ on Ω with $u \mid \partial \Omega=0$ is simple. Define $A: H \times \mathbf{R} \rightarrow H \times \mathbf{R}$ by $A(u, \lambda)=\left(A_{\lambda}(u), \lambda\right)$. (2) There is a connected open neighborhood V of $\left(0, \lambda_{2}\right)$ in $H \times \mathbf{R}$ such that $A^{-1}(V)$ has three components U_{0}, U_{1}, U_{2} with $A: U_{i} \rightarrow V$ a diffeomorphism for $i=1,2$ and $A \mid U_{0}: U_{0} \rightarrow V C^{\infty}$ equivalent to $w \times$ id $: \mathbf{R}^{2} \times E \rightarrow \mathbf{R}^{2} \times E$ defined by $(w \times \mathrm{id})(t, \lambda, \nu)=\left(t^{3}-\lambda t, \lambda, \nu\right)$.

We continue the study [BCT-2] of the equation

$$
\Delta u+\lambda u-u^{3}=g \quad \text { on } \Omega, \quad u \mid \partial \Omega=0,
$$

where $\Omega \subset \mathbf{R}^{n}(n \leq 4)$ is a bounded domain. If H is the Sobolev space $W_{0}^{1,2}(\Omega)$, define

$$
\left\langle A_{\lambda}(u), \varphi\right\rangle_{H}=\int_{\Omega}\left[\nabla u \nabla \varphi-\lambda u \varphi+u^{3} \varphi\right]
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$, and define $A: H \times \mathbf{R} \rightarrow H \times \mathbf{R}$ by $A(u, \lambda)=$ ($\left.A_{\lambda}(u), \lambda\right)$.

Let $S A_{\lambda}$ be the singular set (0.1) of the real analytic map A_{λ}. By Theorem (1.8) and Remark (1.9) there is a closed subset $\Gamma_{\lambda} \subset A_{\lambda}\left(S A_{\lambda}\right)$ such that (a) $A_{\lambda}^{-1}\left(H-\Gamma_{\lambda}\right)$ consists entirely of regular points ($u \notin S A_{\lambda}$) and fold points (0.1) and (b) for every nonempty connected open subset V of $H, V-\Gamma_{\lambda}$ is nonempty and arcwise connected (so that H is not locally separated by Γ_{λ} at any point). Roughly, this states: most solutions g of $A_{\lambda}(u)=g$ come from only regular points [Sm , p. 862, (1.3)], and of the rest most come from only fold points. The relation between (1.8) and [Mi] is discussed in (1.10). A comparable
result holds in the domain [CDT]: int $S A=\varnothing$, and if $\Lambda \subset S A$ is the set of nonfold points and $V \subset H \times \mathbf{R}$ is a nonempty connected open subset, then $V-\Lambda$ is nonempty and connected.

There are [BCT-2, (3.9)] a connected open neighborhood V of $\left(0, \lambda_{1}\right)$ $\in H \times \mathbf{R}$ and C^{∞} diffeomorphisms φ and ψ such that $A \mid A^{-1}(V)$: $A^{-1}(V) \rightarrow V($ with $n \leq 3)$ is $\psi \circ(w \times$ id $) \circ \varphi$, where $w \times$ id: $\mathbf{R}^{2} \times E \rightarrow$ $\mathbf{R}^{2} \times E$ is given by $(w \times \mathrm{id})(t, \lambda, v)=\left(t^{3}-\lambda t, \lambda, v\right)$. Now suppose that λ_{2} is a simple eigenvalue of $-\Delta$ on Ω (with null boundary conditions). Then there is (2.4) a connected open neighborhood V of $\left(0, \lambda_{2}\right)$ in $H \times \mathbf{R}$ such that $A^{-1}(V)$ has three components U_{0}, U_{1}, U_{2} with $A: U_{i} \approx V$ a diffeomorphism for $i=1,2$ and $A \mid U_{0}: U_{0} \rightarrow V$ being $\psi \circ(w \times \mathrm{id}) \circ \varphi$ above. That $A_{\lambda}(u)=0$ has exactly five solutions u for $\lambda_{2}<\lambda<\lambda_{2}+\varepsilon$ and $\varepsilon>0$ sufficiently small was previously noted in [AM, p. 642, Theorem (3.4)].

The set of (weak) solutions of the boundary value problem for a given g and λ is the point inverse set $A^{-1}(g, \lambda)$, and we are naturally led to a study of the singularities and structure of A, as in this paper. For a more detailed discussion see [CT-2, Introduction].
0.1. Definitions. Let E_{1} and E_{2} be Banach spaces, let U be open in E_{1}, let $u \in U$, and let $A: U \rightarrow E_{2}$ be a $C^{k}(k=1,2, \ldots$ or $\infty)$ map. If $D A(u)$ is surjective, we say that u is a regular point of A. The singular set $S A$ is the set of nonregular points. We say that the map A is Fredholm at u with index ν if $D A(u)$ is a Fredholm linear map with index ν, i.e., $a=\operatorname{dim} \operatorname{ker} D A(u)$ is finite, Range $D A(u)$ is closed, and its codimension b in E_{2} is finite, with $\nu=a-b$; if A is Fredholm at each point of U, we say that A is a Fredholm map.

If $k \geq 2$ with (0) A Fredholm at u with index 0 , (1) $\operatorname{dim} \operatorname{ker} D A(u)=$ 1 (and therefore range $D A(u)$ has codimension one), and (2) for some (and hence for any) nonzero element $e \in \operatorname{ker} D A(u)$

$$
D^{2} A(u)(e, e) \notin \text { Range } D A(u)
$$

then we say that u is a fold point of A.
If (2) is replaced by its negation, and we add (3) for some $\omega \in T_{u} E_{1}$,

$$
D^{2} A(u)(e, \omega) \notin \text { Range } D A(u)
$$

then we say that u is a precusp point of A (see [BCT-1, p. 3, (1.6)] and [BCT-2, (3.1), (3.2)]).

These notions are invariant under coordinate change [BCT-1, p. 9, (3.2)].
0.2. Theorem ([BC, p. 950], [BCT-1, (1.5)] and (1.7)). If A has a fold at \bar{u}, then A at u is locally C^{k-2} equivalent $[\mathbf{B C T}-1,(1.2)]$ to

$$
F: \mathbf{R} \times E \rightarrow \mathbf{R} \times E, \quad(t, v) \rightarrow\left(t^{2}, v\right) \text { at }(0,0) .
$$

If $k \geq 4$, the converse is true.
0.3 . Notation. An ordered pair in $X \times Y$ is denoted by (x, y), while the inner product of x and y in a Hilbert space H is denoted by $\langle x, y\rangle_{H}$. Real analytic [$\mathbf{Z}, \mathrm{p} .362,(8.8)$] is denoted by C^{ω}. Assume throughout that Ω is a bounded connected open subset of $\mathbf{R}^{n}(n \leq 4)$. In general, notation follows that in [BCT-2] and [CT-2].

Church thanks Syracuse University for research leave during 198687, and the University of Alberta for its hospitality and support during that period.

1. The exceptional set $\Gamma_{\lambda} \subset A_{\lambda}\left(S A_{\lambda}\right)$. Our goal in this section is the proof of Theorem 1.8. "Dimension" is defined in [HW, p. 10 and p. 24].
1.1. Lemma [B, p. 14, Proposition]. Let M^{n} be an n-manifold without boundary, and let X be a closed subset. Then:
(a) $\operatorname{dim} X \leq n-1$ if and only if X contains no nonempty open subset of M^{n}; and
(b) $\operatorname{dim} X \leq n-2$ if and only if X contains no nonempty open subset of M^{n}, and for every connected open subset V of $M^{n}, V-X$ is connected.

In [Bo, p. 14, Proposition] use $L=Z$, the group of integers under addition. See also [HW, p. 24; p. 26, Theorem III 1; p. 41, Theorem IV $1 ; \mathrm{p} .48$, Theorem IV 4 ; and pp. 151-152].
1.2. Lemma. Let M^{n} be an n-manifold without boundary, let E be a connected locally connected topological space, and let X be a closed subspace of $M^{n} \times E$.
(a) If $\operatorname{dim}\left(X \cap\left(M^{n} \times v\right)\right) \leq n-1$ for every $v \in E$, then X contains no nonempty open subset of $M^{n} \times E$.
(b) If $\operatorname{dim}\left(X \cap\left(M^{n} \times v\right)\right) \leq n-2$ for every $v \in E$, then for every nonempty connected open subset V of $M^{n} \times E, V-X$ is nonempty and connected.
(c) Let $\pi_{1}: M^{n} \times E \rightarrow M^{n}$ and $\pi_{2}: M^{n} \times E \rightarrow E$ be projections. If $\operatorname{dim} \pi_{1}(X) \leq n-1$ and $\pi_{2}(X)$ contains no nonempty open subset of E,
then for every nonempty connected open subset V of $M^{n} \times E, V-X$ is nonempty and connected.

Proof. Conclusion (a) is immediate from (1.1)(a). Let S_{1}, S_{2} and S_{3} be the following statements:
$\left(S_{1}\right) \operatorname{dim}\left(X \cap\left(M^{n} \times v\right)\right) \leq n-2$ for every $v \in E$.
$\left(S_{2}\right)$ If B and D are nonempty connected open subsets of M^{n} and E, respectively, then $(B \times D)-X$ is connected and nonempty.
$\left(S_{3}\right)$ If V is a nonempty connected open subset of $M^{n} \times E$, then $V-X$ is connected and nonempty.

We first prove that S_{1} implies S_{2}. Let U be a component of $(B \times D)-X$, so U is open in $B \times D$. By (1.1)(b) $(B \times v)-X$ is connected for every $v \in D$, so if $(B \times v)-X$ meets U, then $(B \times v)-X \subset U$. The set $S(U)$ of $v \in D$ such that $(B \times v)-X \subset U$ is nonempty, open, and closed (since $S\left(U^{\prime}\right)$ is open for the other components U^{\prime} of $(B \times D)-X)$. Since D is connected, $S(U)=D$, i.e., $U=(B \times D)-X$ so that $(B \times D)-X$ is connected.

Next we prove that S_{2} implies S_{3}. Let V be any connected open subset of $M^{n} \times E$, let W be a component of $V-X$, and suppose $W \neq V-X$; since $V \cap \bar{W} \subset W \cup X, V \cap \bar{W} \neq V$. Let $y \in V \cap$ bdy \bar{W}. There are connected open subsets B and D of M^{n} and E, respectively, such that $y \in B \times D \subset V$, and thus $(B \times D) \cap W \neq \varnothing$. Since $(B \times D)-X$ is connected open in $V-X,(B \times D)-X \subset W$, so $B \times D \subset V \cap \bar{W}$. As a result, $y \in V \cap \operatorname{int}(\bar{W})$, contradicting its choice. Thus $V-X$ is connected, as desired.

Conclusion (b) results from the two previous paragraphs.
We next prove that the hypotheses of (c) imply S_{2}. By [HW, p. 41, Theorem IV 1] there exists $\bar{x} \in B-\pi_{1}(X)$, and thus

$$
\bigcup\left\{x \times D: x \in B-\pi_{1}(X)\right\} \cup \bigcup\left\{B \times v: v \in D-\pi_{2}(X)\right\}
$$

call it Y, is a connected subset of $(B \times D)-X$. Let U be the component of $(B \times D)-X$ containing Y, and let $(x, v) \in(B \times D)-X$. There are connected open B^{\prime} and D^{\prime} in B and D, respectively, such that $(x, v) \in B^{\prime} \times D^{\prime} \subset(B \times D)-X$, and since $\left(B^{\prime} \times D^{\prime}\right) \cap Y \neq \varnothing,(x, v) \in U$. Now (x, v) is arbitrary, so $(B \times D)-X$ is connected.

Since S_{2} implies S_{3}, conclusion (c) follows from the previous paragraph.
1.3. Remark. Lemma 1.2 can be generalized with the same proofs. Replace M^{n} by any connected, locally connected topological space M,
replace " $\operatorname{dim}\left(X \cap\left(M^{n} \times v\right)\right) \leq n-1$ [resp., $\left.\operatorname{dim} \pi_{1}(X) \leq n-1\right]$ " by (i) " $X \cap(M \times v)$ contains no nonempty open subset of $M \times v$ [resp., M ", and replace " $\operatorname{dim}\left(X \cap\left(M^{n} \times v\right)\right) \leq n-2$ " by (i) and (ii) "for every connected open subset V^{\prime} of $M \times v, V^{\prime}-X$ is connected".
1.4. Definitions [Mi, p. 288]. Let Y be a locally arcwise connected metric space. A subset S of Y does not disconnect locally if for every $x \in S$ there exists a fundamental system \mathscr{B} of open spheres with center at x, arcwise connected, and such that, for every $B \in \mathscr{B}, B-S$ is still arcwise connected. A subset S of Y is said to be supermeager if S is meager (i.e., of first category) and does not disconnect locally.
1.5. Lemma. Let Y be a Banach manifold, and let $S \subset Y$ be a countable union of closed subsets of Y. Then S is supermeager if and only if, for every nonempty connected open subset $V \subset Y, V-S$ is nonempty and arcwise connected.

Thus, if E in (1.2) is a Banach manifold, then the conclusion in (1.2)(b) and (c) may be restated: X is supermeager. Lemma 1.5 is true for any locally arcwise connected metric space Y, if $\operatorname{int}_{Y} S=\varnothing$.

Proof. Assume S is supermeager and write $S=\bigcup_{j=1}^{\infty} S_{j}$, where each S_{j} is closed and (1) we may suppose that $S_{1}=\varnothing$.

We first prove that (2) each S_{j} is supermeager. Let $x \in S_{j}$, let \mathscr{B} be given by (1.4) for S and x, let $B \in \mathscr{B}$, and let $x_{1}, x_{2} \in B-S_{j}$. Choose arcwise connected open subsets $U_{i} \subset B-S_{j}$ with $x_{i} \in U_{i}$, and use the Baire Theorem to choose $z_{i} \in U_{i}-S(i=1,2)$. There is an arc in $B-S$ joining z_{1} and z_{2}, and thus a path in $B-S_{j}$ joining x_{1} and x_{2}; (2) results.

Let $V \subset Y$ be any nonempty connected open subset, and let $y_{0}, y_{1} \in$ $V-S$; we prove that there is a path $\gamma \subset V-S$ joining y_{0} to y_{1}, and thus obtain the desired conclusion. The proof is given in [Mi, Proposition 1 , beginning at the top of p . 289], except that B is replaced by V, we use (1), and $2 b_{1}=\min \left\{1, d\left(\Phi_{1}([0 ; 1]), S_{1}\right)\right\}=1$. [The word "radius" is omitted in "whose radius is $r \leq \min \left\{b_{1}, 1 / 4\right\}$ ".]
1.6. Lemma. Let X and Y be C^{2} separable manifolds over (real) Banach spaces, and let $A: X \rightarrow Y$ be a C^{2} Fredholm map of index 0. Let $S^{*} A$ be the set of $u \in X$ such that either
(a) $\operatorname{dim} \operatorname{ker} D A(u)>1$, or
(b) u is a precusp point (0.1).

Then, for every nonempty connected open set $V \subset Y, V-A\left(S^{*} A\right)$ is nonempty and arcwise connected.

The conclusion is equivalent (1.5) to: $A\left(S^{*} A\right)$ is supermeager in Y. (See the following proof.)

Proof. Let $R A$ and $C A$ be the set of $u \in X$ satisfying hypotheses (a) and (b), respectively. For each $u \in C A$ there is [BCT-1, p. 9, (3.3)] an open neighborhood W of u and a C^{2} diffeomorphism β^{-1} of W onto an open set in $E_{1}=\mathbf{R} \times E \times \mathbf{R}$ such that $\beta^{-1}(u)=(0,0,0), E$ is a Banach space,

$$
A \beta: \beta^{-1}(W) \rightarrow E_{2}=\mathbf{R} \times E \times \mathbf{R}, \quad(t, v, \lambda) \rightarrow(h(t, v, \lambda), v, \lambda)
$$

with

$$
\begin{gathered}
(\partial h / \partial t)(0,0,0)=0, \quad\left(\partial^{2} h / \partial t^{2}\right)(0,0,0)=0, \quad \text { and } \\
\left(\partial^{2} h / \partial t \partial \lambda\right)(0,0,0) \neq 0 .
\end{gathered}
$$

There is [$\mathrm{Sm}, \mathrm{pp} .862-863,(1.6)]$ an open neighborhood V of $(0,0,0)$ such that $\bar{V} \subset W$ and $A \mid \bar{V}: \bar{V} \rightarrow Y$ is proper and thus closed. By the Implicit Function Theorem [Z, p. 150, 4.B] there are an open neighborhood P of $(0,0)$ in $\mathbf{R} \times E$, an open interval I about 0 in \mathbf{R}, and a C^{1} map $\lambda: \bar{P} \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
S(A \beta) \cap(\bar{P} \times \bar{I})=\operatorname{graph} \lambda \subset \bar{P} \times \bar{I} \subset V . \tag{1}
\end{equation*}
$$

Define $\mu: \bar{P} \rightarrow \bar{P} \times \mathbf{R}$ by $\mu(t, v)=(h(t, v, \lambda(t, v)), v, \lambda(t, v))$; since $\partial h / \partial t \equiv 0$ on graph λ and $\partial^{2} h / \partial t^{2}=0$ if and only if $\partial \lambda / \partial t=0$, (2) $C(A \beta) \cap(\bar{P} \times I)$ is the set T of $(t, v, \lambda(t, v))$ for which $\partial \lambda / \partial t=0$. For each fixed v, define $\mu_{v}(t)=(h(t, v, \lambda(t, v)), \lambda(t, v))$. According to [C, p. 1037, Proposition 4] (3) if $f: M^{n} \rightarrow N^{p}$ is a $C^{\max (n-k, 1)}$ map and $R_{k}(f)$ is the set of points $x \in M^{n}$ at which $D f(x)$ has rank at most k, then $\operatorname{dim}\left(f\left(R_{k}(f)\right)\right) \leq k$. It follows that (4) $\mu(T \cap(\mathbf{R} \times v))$ has dimension at most 0 . Alternatively, define $\pi_{i}: \mathbf{R}^{2} \rightarrow \mathbf{R}(i=1,2)$ by $\pi_{1}(x, y)=x$ and $\pi_{2}(x, y)=y$. From Sard's Theorem [Sa, p. 883] $\pi_{i}(\mu(T \cap(\mathbf{R} \times v)))$ has dimension $0(i=1,2)$, and (4) results from (1.2)(c) and (1.1)(b). That $A \beta(T)$ is supermeager follows from (4) and (1.2)(b). Now $\beta C(A \beta)=W \cap C A[B C T-1$, p. 9, (3.2)], and it follows from (1) and (2) that (5) for each $u \in A$, there is an open neighborhood Q of u in X such that $A(\bar{Q} \cap C A)$ is a closed supermeager set in Y.
According to [Mi, p. 291, Theorem A] (or [CT-1, Theorem 1] and (1.5)) $A(R A)$ is supermeager in Y; since A is locally proper [$\mathbf{S m}, \mathrm{pp}$.

862-863, (1.6)], for each $u \in R A$, there is an open neighborhood Q of u in X such that $A(\bar{Q} \cap R A)$ is a closed supermeager set in Y. Since X is separable, there is a countable collection of open sets Q_{i} of X such that $R A \cup C A \subset \bigcup_{i} Q_{i}$ and $A\left(\bar{Q}_{i} \cap(R A \cup C A)\right)$ is a closed supermeager subset of Y. The conclusion follows from [Mi, p. 288, Proposition 1]: if Y is a Banach space and S is the countable union of closed supermeager subsets of Y, then S is supermeager.
1.7. Hypotheses. In (1.8) assume the following hypotheses on $f: \mathbf{R} \rightarrow \mathbf{R}:$ (1) f is C^{2}, (2) $f(0)=0=f^{\prime}(0)$, and (3) for every $s \neq 0$ in \mathbf{R}, (a) $f^{\prime}(s) \geq 0$ and (b) $f^{\prime \prime}(s) \neq 0$. It follows from the Mean Value Theorem that (4) $f^{\prime \prime}(0)=0$ and (5) for every $s \neq 0$ in \mathbf{R}, (a) $f^{\prime}(s)>0$ and (b) $s f^{\prime \prime}(s)>0$.

Let Ω be a bounded domain in $\mathbf{R}^{n}(n \leq 4)$, let $H=W_{0}^{1,2}(\Omega)$, and formally define $A_{\lambda}: H \rightarrow H$ by

$$
\left\langle A_{\lambda}(u), \phi\right\rangle_{H}=\int_{\Omega}[\nabla u \nabla \phi-\lambda u \phi+f(u) \phi]
$$

for every $\phi \in C_{0}^{\infty}(\Omega)$, and $A: H \times \mathbf{R} \rightarrow H \times \mathbf{R}$ by $A(u, \lambda)=\left(A_{\lambda}(u), \lambda\right)$. Assume sufficient hypotheses of f and n so that A_{λ} is C^{2} (e.g., f is C^{3} and $f^{(3)} \in L^{\infty}(\Omega)$).

An example is $f(s)=s^{3}$.
1.8. Theorem. Let A_{λ} be as given in (1.7), and let $C A_{\lambda}$ be the set of singular points not fold points (0.1). Then, for every nonempty connected open $V \subset H, V-A_{\lambda}\left(C A_{\lambda}\right)$ is nonempty and (arcwise) connected. An analogous result holds for A and $H \times \mathbf{R}$.

Thus $A_{\lambda}\left(C A_{\lambda}\right)$ is supermeager in H ((1.5) and [Sm; pp. 862-863, (1.6)]). The theorem states roughly: most solutions g of $A_{\lambda}(u)=g$ come from only regular points $u[\mathbf{S m}]$, and of the remainder most come from only fold points. For $\lambda<\lambda_{1}, A_{\lambda}$ is a diffeomorphism [BCT-2, (2.3)], and 0 is the only singular point of $A_{\lambda_{1}}$ [BCT-2, (2.7)i)].

Proof. Since A_{λ} is C^{1} Fredholm of index 0 [BCT-2, (2.5)], $A_{\lambda}\left(S A_{\lambda}\right)$ is meager in H by the Smale-Sard Theorem [$\mathbf{S m}$, p. 862, (1.3)]. That $A_{\lambda}\left(C A_{\lambda}\right)$ is supermeager in H will follow from (1.6), once we prove: (1) If $u \in S A_{\lambda},(u, \lambda) \neq\left(0, \lambda_{i}\right)(i=1,2, \ldots)$, and $\operatorname{dim}\left(\operatorname{ker} D A_{\lambda}(u)\right)=1$ with generator e, then there exists $\omega \in H$ such that

$$
0 \neq\left\langle D^{2} A_{\lambda}(u)(e, \omega), e\right\rangle_{H}=\int_{\Omega} f^{\prime \prime}(u) e^{2} \omega .
$$

Suppose that (1) fails for $\omega=u$. By (1.7) $s f^{\prime \prime}(s)>0$ for $s \neq 0$, so that (2) $u e=0$ a.e. By (1.7) $f^{\prime}(0)=0$ and thus $\int_{\Omega} f^{\prime}(u) e \psi=0$ for every $\psi \in H$; since $\left\langle D A_{\lambda}(u) \cdot e, \psi\right\rangle_{H}=0, \lambda=\lambda_{i}$ and $e=\phi_{i}$, the i th eigenvalue and eigenvector of $-\Delta$ with null boundary conditions on Ω $(i=1,2, \ldots)$. Since ϕ_{i} is real analytic [BJS, p. 136 and pp. 207-210], $\phi_{i}(x) \neq 0$ a.e., so that $u(x)=0$ a.e. Thus (1) is satisfied, and the conclusion for A_{λ} results.

For A note that (1) becomes

$$
\left\langle D^{2} A(u, \lambda)((e, 0),(0,1)),(e, a)\right\rangle_{H \times \mathbf{R}} \neq 0,
$$

where (e, a) is orthogonal to the codimension 1 subspace Range $D A(u, \lambda)$ and $a=\langle u, L e\rangle_{H}=\int_{\Omega} u e$ [BCT-2, proof of (3.5)]; (1^{\prime}) is $-\langle L e, e\rangle=$ $-1 \neq 0$.
1.9. Remark. In case $f(u)=u^{3}, A$ and A_{λ} are proper [BCT-2, (2.8)] so that $\Gamma_{\lambda}=A_{\lambda}\left(C A_{\lambda}\right)$ is a closed subset of H satisfying the conditions stated in the introduction. More generally, sufficient conditions for $f(u)$ in (1.7) to be proper are given in [BCT-2, (2.9)].
1.10. Remark. In [Mi] the author discusses smooth Fredholm maps of index 0 , and calls a singular value $y \in A(S A)$ an ordinary value if every $u \in A^{-1}(y)$ is either a fold point or a regular point (0.1). In the introduction [Mi, p. 288] she states (1) "Finally we ha[v]e that for a smooth proper Fredholm map of index 0, the critical values y are ordinary value[s] (i.e., y is image of a finite number of singular point[s] in each of which the operator behaves locally making a fold) ex[c]ept [for] a supermeager set". Statement (1) is false in the generality claimed: define $A: \mathbf{R} \rightarrow \mathbf{R}$ by $A(t)=t^{3}$.

One may put together [Mi, Proposition 1, p. 288; Theorem A, p. 291; and Theorem D, p. 296] to obtain (1) under an additional hypothesis: this result is Lemma 1.6 (see (1.5)), except that she assumes C^{4}, rather than our C^{2} hypothesis in (1.6).
2. The structure of A at $\left(0, \lambda_{2}\right)$. The main result of $\S 2$ is (2.4), which gives the structure of $A \mid A^{-1}(V): A^{-1}(V) \rightarrow V$, where A is the map of the introduction, V is an open neighborhood of $(0, \lambda)$, and $\lambda<\lambda_{2}+\varepsilon$ for some $\varepsilon>0$. Theorem 2.4, as well as the other results of $\S 2$, applies to a more general map (2.1), used in [BCT-2] and [CT-2], so that map is now defined.
2.1. Definition [BCT-2, (1.2)]. The abstract map A. Consider any Hilbert space H over the real numbers and a map $A_{\lambda}: H \rightarrow H$ defined
by

$$
A_{\lambda}(u)=u-\lambda L u+N(u)
$$

where L and N have the following properties:
(1) L is a compact, self-adjoint, positive linear operator $\left(\langle L u, u\rangle_{H} \geq\right.$ 0 and $=0$ only if $u=0$). It follows [D, pp. 349-350] that H is separable and the eigenvalues $\lambda_{m}(m=1,2, \ldots)$ of $u=\lambda L u$ are positive, $\lambda_{m} \leq \lambda_{m+1}$, and (if H is infinite dimensional) $\lambda_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Let $\left\{u_{m}\right\}$ be an orthonormal basis of H of eigenvectors.
(2) The first eigenvalue λ_{1} is simple.
(3) (a) The map N is $C^{k}(k=1,2, \ldots$ or ∞ or $\omega)$ such that $D N(u)$ is nonnegative self-adjoint $\left(\langle D N(u) \cdot v, v\rangle_{H} \geq 0\right.$ for every $\left.v \in H\right)$.
(b) If $\left\langle D N(u) \cdot u_{m}, u_{m}\right\rangle_{H}=0$ for some $m(m=1,2, \ldots)$, then $u=0$. [Statement $\left(\mathrm{b}_{1}\right)$ is: $\left\langle D N(u) \cdot u_{1}, u_{1}\right\rangle_{H}=0$ implies $u=0$.]
(c) $k \geq 2$ and $D^{j} N(0)=0$ for $j=0,1,2$. [Statement c_{j}) for $j=0,1,2$ is: N is C^{j} and $D^{j} N(0)=0$.]
(d) $k \geq 3$ and $\left\langle D^{3} N(u)(v, v, v), v\right\rangle_{H}>0$ for $0 \neq v \in H$.
(e) $D^{4} N(u) \equiv 0$. From Taylor's Theorem [Z, p. 148, Theorem 4.A] it follows that N is real analytic, and assuming (3)(c), (3!) $N(u)=$ $D^{3} N(0)(u, u, u)$, so that $2 D N(u) \cdot v=D^{3} N(0)(u, u, v)$.

We refer to a map A_{λ} satisfying (1) and (3)(a) above, and to A defined by $A(u, \lambda)=\left(A_{\lambda}(u), \lambda\right)$, as abstract A_{λ} and A. If a result requires an additional hypothesis from the list above, that fact is explicitly indicated.
2.2. Example [BCT-2, (1.3)]. The standard map A. Our main example of abstract A is the map A of the first paragraph of this paper; it satisfies all the properties of (2.1) and we call it standard A. Here H is the Sobolev space $W_{0}^{1,2}(\Omega)[\mathbf{B}-1$, p. 28], where Ω is a bounded connected open subset of \mathbf{R}^{n} with $n \leq 4$, and the operators L and N are defined by

$$
\langle L u, \varphi\rangle_{H}=\int_{\Omega} u \varphi \quad \text { and } \quad\langle N(u), \varphi\rangle_{H}=\int_{\Omega} u^{3} \varphi
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$, the space of C^{∞} real valued functions with compact support in Ω. Standard A is proper for $n \leq 3$ [BCT-2, (2.8)]. For more information about standard A, see [BCT-2, (1.3)], and for a generalization with certain functions $f(u)$ in place of u^{3}, see [BCT-2, (1.4)].

Other examples of (2.1) are given in [BCT-2, (1.7) and (1.8)]. The von Kármán equations for the buckling of a thin planar elastic plate
yield an operator A satisfying most of the properties of (2.1) (see [BCT-2, §4, especially (4.6)]).

If $\lambda_{j}(u)(j=1,2, \ldots)$ is the j th eigenvalue of $v-\lambda L v+D N(u) \cdot v=$ 0 , then $S A(0.1)$ is the union of the graphs of $\lambda_{j}: H \rightarrow \mathbf{R}$ [CT-2, (1.5)]. We first consider the action of the group $\mathbf{Z} / 2 \mathbf{Z}$ on $H\left(A_{\lambda}(-u)=\right.$ $-A_{\lambda}(u)$), and now observe that graph $\lambda_{j}(j=1,2, \ldots)$, the singular set $S A$, the set of fold points, and the set of cusp points are all invariant under this action.
2.3. Remark. Consider abstract A_{λ} with (2.1) (3)(c) and (e), $u \in H$ and $\lambda \in \mathbf{R}$. Then:
(i) The eigenvalues $\lambda_{j}(-u)=\lambda_{j}(u)$ and their eigenspaces are the same ($j=1,2, \ldots$).
(ii) If u is a singular point [resp., fold point, cusp point] (0.1), then so is $-u$ and $\operatorname{ker} D A_{\lambda}(u)=\operatorname{ker} D A_{\lambda}(-u)$.
(a) For a fold point $u,\left\langle D^{2} A_{\lambda}(u)(e, e), e\right\rangle_{H}\left(\int_{\Omega} u e^{3}\right.$ in the standard case (2.2)) reverses sign if u is replaced by $-u$.
(b) For a cusp point u,

$$
\left\langle D^{3} A_{\lambda}(u)(e, e, e), e\right\rangle_{H}-3\left\langle D^{2} A_{\lambda}(u)(e, y), e\right\rangle_{H},
$$

which for standard A_{λ} is

$$
\int_{\Omega} e^{4}-3 \int_{\Omega} u e^{2} y
$$

(see the proof of [BCT-2, (3.6)]), preserves sign if u is replaced by $-u$, where

$$
y \in\left[D A_{\lambda}(u)\right]^{-1}\left(D^{2} A_{\lambda}(u)(e, e)\right)
$$

and $y(-u)=y(u)\left(\right.$ modulo $\left.\operatorname{ker} D A_{\lambda}(u)\right)$.
(iii) If A_{λ} is proper and every component of $A_{\lambda}^{-1}(0)$ is a point, then $A_{\lambda}^{-1}(0)$ has an odd number $m(m=1,3,5, \ldots)$ of points (solutions).

A degree argument does not yield (iii), since 0 may be in $A_{\lambda}\left(S A_{\lambda}\right)$. If we assume (2.1) (2) (3) $\left(\mathrm{b}_{1}\right)(\mathrm{c})$ and (d), by [BCT-2, (3.8)] there is an open neighborhood V of $\left(0, \lambda_{1}\right)$ in $H \times \mathbf{R}$ such that $A \mid A^{-1}(V)$: $A^{-1}(V) \rightarrow V$ is C^{∞} equivalent to $w \times$ id given by $(w \times \mathrm{id})(t, \lambda, v)=$ $\left(t^{3}-\lambda t, \lambda, v\right)$; thus, if u is any fold point of A_{λ} and $A_{\lambda}(u)=g$ where $(g, \lambda) \in V$, then $A_{\lambda}^{-1}(g)$ has precisely two points. As a result, 0 in (iii) cannot be replaced by arbitrary $g \in A_{\lambda}\left(S A_{\lambda}\right)$. From (2.2), for $n \leq 3$ standard A satisfies the hypotheses of (2.3).

Proof. By (2.1) (3)(c) and (e) $D A_{\lambda}(u)=I-\lambda L+D N(u), 3!N(u)=$ $D^{3} N(0)(u, u, u), 2 D N(u) \cdot v=D^{3} N(0)(u, u, v), D^{2} N(u)(v, w)=$ $D^{3} N(0)(u, v, w), D^{3} N(u)(v, w, x)=D^{3} N(0)(v, w, x)$, and $D^{j} N(u) \equiv$ 0 for $j \geq 4$; thus $D^{j} N(-u)=(-1)^{j+1} D^{j}(u)(j=0,1, \ldots)$. Conclusion (ii) is immediate, and since $\lambda_{j}(u)$ is the j th eigenvalue ($j=1,2, \ldots$) of $v-\lambda L v+D N(u) \cdot v=0$ [CT-2, (1.1)], conclusion (i) results.

For (iii), from the properness of $A_{\lambda}, A_{\lambda}^{-1}(0)$ is a compact 0 -dimensional set; since A_{λ} is real analytic, $A_{\lambda}^{-1}(0)$ is finite. Now $A_{\lambda}(0)=0$, and if $u \neq 0$ and $A_{\lambda}(u)=0$, then $A_{\lambda}(-u)=0$, yielding conclusion (iii). Conclusion (iii) is related to Borsuk's Theorem [D, p. 21, Theorem 4.1].
2.4. Theorem. Consider a C^{k} ($k=3$ [resp., ∞]) proper map abstract A satisfying in addition (2.1) (2)(3)(b)(c)(d) and (e), e.g. standard A with $n \leq 3$ [BCT-2, (1.3) and (2.8)]; the symbol \approx below means homeomorphism [resp., C^{∞} diffeomorphism]. Let $\lambda<\lambda_{2}+\varepsilon$ for $\varepsilon>0$ sufficiently small, and if $\lambda_{2} \leq \lambda<\lambda_{2}+\varepsilon$, assume that λ_{2} is a simple eigenvalue of $v=\lambda L v$, e.g. of $-\Delta$. Then there is a connected open neighborhood V of $(0, \lambda)$ in $H \times \mathbf{R}$ such that $A^{-1}(V)$ has $2 m+1$ components U_{i} with $A\left(U_{i}\right)=V(i=0, \pm 1, \ldots, \pm m)$ and $(0, \lambda) \in U_{0}$.
(a) For $\lambda<\lambda_{1}, m=0$; for $\lambda_{1}<\lambda<\lambda_{2}, m=1$; for $\lambda_{2}<\lambda<\lambda_{2}+\varepsilon$, $m=2$; and $A: U_{i} \approx V(i=0, \pm 1, \ldots, \pm m)$.
(b) For $\lambda=\lambda_{1}, m=0$ and there are φ and ψ such that the diagram

commutes, where $\varphi\left(0, \lambda_{1}\right)=(0,0,0)=\psi\left(0, \lambda_{1}\right), E$ is closed subspace of H and $w(t, \lambda)=\left(t^{3}-\lambda t, \lambda\right)$ (cf. [BCT-2, figure 1] and [GG, p. 147]).
(c) If $\lambda=\lambda_{2}$, then $m=1, A: U_{1} \approx V(i= \pm 1)$, and $A \mid U_{0}: U_{0} \rightarrow V$ is $\psi(w \times \mathrm{id}) \varphi$ as in (b).

Proof. Conclusion (a) for $\lambda<\lambda_{1}$ is [BCT-2, (2.3)] and (b) is [BCT-2, (3.8) (and (3.9))].

The singular set image ($w \times \mathrm{id}$) $S\left(w \times \mathrm{id}\right.$) separates $\mathbf{R}^{2} \times E$ into two components C_{1} and C_{3} such that if $p \in C_{i}$, then $(w \times \mathrm{id})^{-1}(p)$ has i points ($i=1,3$); and $S(w \times i d)$ separates $\mathbf{R}^{2} \times E$ into two components B_{1} and B_{3}, where $w \times$ id: $B_{3} \approx C_{3}$. Because of the equivalence in (b),
$A \mid U_{0}: U_{0} \rightarrow V$ has the same property, giving components $B_{1}^{\prime}, B_{3}^{\prime}, C_{1}^{\prime}$, C_{3}^{\prime} with $A: B_{3}^{\prime} \approx C_{3}^{\prime}$. Since λ_{1} is simple (2.1), if $(g, \lambda) \in V$ (and V is sufficiently small) then $\lambda<\lambda_{2}$; thus $S\left(A \mid U_{0}\right)$ is part of the graph of $\lambda_{1}: H \rightarrow \mathbf{R}$ [CT-2, (1.5) and (2.2)]. Now (u, λ) is in one component or the other of $U_{0}-S\left(A \mid U_{0}\right)$ depending on whether $\lambda<\lambda_{1}(u)$ or $\lambda>\lambda_{1}(u)$. If $T=\left\{(u, \lambda): \lambda<\lambda_{1}\right\}$, then $A \mid T: T \approx T$ [BCT-2, (2.3)]. Thus B_{3}^{\prime} must be $\left\{(u, \lambda): \lambda>\lambda_{1}(u)\right\},(0, \lambda) \in B_{3}^{\prime}$ for $\lambda_{1}<\lambda<\lambda_{1}+\delta$ for some $\delta>0$, and (1) $\left(A \mid U_{0}\right)^{-1}(0, \lambda)=A^{-1}(0, \lambda)$ had three points for such λ.

By [CT-2, (3.1) (ii)], (2) if $\lambda_{1}<\lambda \leq \lambda_{2}$, then $(0, \lambda) \notin A(S A)$ except that $A\left(0, \lambda_{2}\right)=\left(0, \lambda_{2}\right) \in A(S A)$ [BCT-2, (2.6)]. Since A is proper, the image $A\left(\right.$ graph $\left.\lambda_{1}\right)$ is closed in $H \times \mathbf{R}$ and $\left(0, \lambda_{2}\right) \notin A\left(\operatorname{graph} \lambda_{1}\right)$. Thus (3) there is an $\varepsilon>0$ sufficiently small that $(0, \lambda) \notin A\left(\operatorname{graph} \lambda_{1}\right)$ for $\lambda_{2}<\lambda<\lambda_{2}+\varepsilon$. (4) If, in addition λ_{2} is simple, then $(0, \lambda) \notin A(S A)$ by [CT-2, (3.1)(i)].

For $\Gamma=\left\{(0, \lambda): \lambda_{1}<\lambda<\lambda_{2}\right\}, A^{-1}(\Gamma) \rightarrow \Gamma$ is a proper local homeomorphism by (2), and thus is a finite-to-one covering map [$\mathbf{P}, \mathbf{p} .128$]. Since Γ is simply connected, A maps each component of $A^{-1}(\Gamma)$ homeomorphically onto Γ [Ma, p. 159, Theorem 6, or p. 160, Exercise 6.1], and (by (1)) (5) $A^{-1}(0, \lambda)$ has three points for each λ with $\lambda_{1}<\lambda<\lambda_{2}$. Conclusion (a) for $\lambda_{1}<\lambda<\lambda_{2}$ results from [BCT-2, (3.7)].

Conclusion (c) for some number of components results from [BCT2, (3.6) and (3.7)] and $m=1$ follows from (5) and (2).

Let $\Lambda=\left\{(0, \lambda): \lambda_{2}<\lambda<\lambda_{2}+\varepsilon\right\}$ where ε is given in (3) and (4). As for Γ above, by (4) each component of $A^{-1}(\Lambda)$ is mapped homeomorphically on Λ. By (c) and the argument of the second paragraph applied to $A \mid U_{0}: U_{0} \rightarrow V$ about $\left(0, \lambda_{2}\right)$, there are three components of $A^{-1}(\Lambda)$ inside U_{0} for ε sufficiently small; and since by (c) $A: U_{1} \approx V$ and $A: U_{-1} \approx V$, there are five components altogether. Conclusion (a) for $\lambda_{2}<\lambda<\lambda_{2}+\varepsilon$ results from [BCT-2, (3.7)].

That $A_{\lambda}(u)=0$ has exactly five solutions u for λ_{2} simple and $\lambda_{2}<$ $\lambda<\lambda_{2}+\varepsilon$ with ε sufficiently small was noted in [AM, p. 642, Theorem 3.4]. That it has three solutions for $\lambda_{1}<\lambda<\lambda_{2}$ was noted in [B-2], in each case for a class of maps A including standard A.
2.5. Remark. For standard $A(2.2)$ and each A_{λ} with $n \leq 3$, degree $A=$ degree $A_{\lambda}=1$ and for U_{i} given by (2.4) (c) (at λ_{2}), degree $A \mid U_{i}=1$ for $i=-1,1$, and degree $A \mid U_{0}=-1$.

Proof. For $(u, \lambda) \in(H \times \mathbf{R})-S A$ and U a bounded open neighbourhood of (u, λ) such that A maps U diffeomorphically onto its
image, let the local degree of A at $(u, \lambda), \operatorname{deg} A \mid U=\operatorname{deg}(A, U, A(u, \lambda))$ [D, p. 56]. From [D, p. 56, (D3)] it is constant on each component of $(H \times \mathbf{R})-S A$. By [D, p. 64, Theorem 8.10] for $(u, \lambda)=(0, \lambda)=A(u, \lambda)$ it is +1 if $0<\lambda<\lambda_{1}$ and -1 if $\lambda_{1}<\lambda<\lambda_{2}$. From the argument of (2.4), especially the second paragraph, the U_{1} and U_{-1} of (2.4)(c) are in the same component as $(0, \lambda)$ for $0<\lambda<\lambda_{1}$, and U_{0} is in the same component as $(0, \lambda)$ for $\lambda_{1}<\lambda<\lambda_{2}$, and the local conclusions result.

Now degree A means $\operatorname{deg}(A, H \times \mathbf{R}, y)$ [D, p. 56 and p. 87] for any $y \in H \times \mathbf{R}$; we may take $y=(0, \lambda)$ for $0<\lambda<\lambda_{1}$, so degree $A=1$. (Since $\sum_{i=0}^{2}$ degree $A \mid U_{i}=1$, this conclusion is confirmed [D, p. 56, (D2)].)

References

[AM] A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal., (1979), 635-645.
[B-1] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
[B-2] , Nonlinear problems with exactly three solutions, Indiana Univ. Math. J., 28 (1979), 689-698.
[BC] M. S. Berger and P. T. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem. I, Indiana Univ. Math. J., 28 (1979), 935-952. Erratum, ibid., 30 (1981), 799.
[BCT-1] , Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. I, Indiana Univ. Math. J., 34 (1985), 1-19.
[BCT-2] ___ Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. II, Trans. Amer. Math. Soc., 307 (1988), 225244.
[BJS] L. Bers, F. John, and M. Schecter, Partial Differential Equations, John Wiley and Sons, New York, 1964.
[B] A. Borel, Seminar on Transformation Groups, Annals of Mathematical Studies, Number 46, Princeton Univ. Press, Princeton, NJ, 1960.
[C] P. T. Church, On points of Jacobian Rank k. II, Proc. Amer. Math. Soc., 16 (1965), 1035-1038.
[CDT] P. T. Church, E. N. Dancer, and J. G. Timourian, preprint.
[CT-1] P. T. Church and J. G. Timourian, Critical values of Fredholm maps, Proc. Amer. Math. Soc., (to appear).
[CT-2] , The singular set of a nonlinear elliptic operator, Michigan Math. J., (to appear).
[D] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
[GG] M. Golubitsky and V. Guillemin, Stable Mappings and their Singularities, Springer-Verlag, New York, 1973.
[HW] W. Hurewitz and H. Wallman, Dimension Theory, Princeton Univ. Press, Princeton, NJ, 1948.
[Ma] W. S. Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, 1967 (fourth corrected printing, 1977).
[Mi] A. M. Micheletti, About differentiable mappings with singularities between Banach spaces, Analisi Funzionale e Applicazioni, Boll. Un. Mat. Ital. Supp., 1 (1980), 287-301.
[P] R. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc., 92 (1959), 125-141.
[Sa] A. Sard, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc., 48 (1942), 883-890.
[Sm] S. Smale, An infinite dimensional version of Sard's Theorem, Amer. J. Math., 87 (1965), 861-867.
[Z] E. Zeidler, Nonlinear Functional Analysis I. Fixed-Point Theorems, SpringerVerlag, New York, 1986.

Received August 19, 1987 and in revised form March 1, 1988. Both authors partially supported by NSERC Contract A7357.

Syracuse University
Syracuse, NY 13244-1150
AND
University of Alberta
Edmonton, Alberta, Canada T6G 2G1

