A NONLINEAR ELLIPTIC OPERATOR AND ITS SINGULAR VALUES

P. T. CHURCH AND J. G. TIMOURIAN

The boundary value problem $\Delta u + \lambda u - u^3 = g$ on Ω , $u|\partial \Omega = 0$, where $\Omega \subset \mathbb{R}^n$ $(n \leq 4)$ is a bounded domain, defines a real analytic map A_{λ} of the Sobolev space $H = W_0^{1,2}(\Omega)$ onto itself. A point $u \in H$ is a fold point if A_{λ} at u is C^{∞} equivalent to $f \times \mathrm{id}$: $\mathbb{R} \times E \to \mathbb{R} \times E$, where $f(t) = t^2$. (1) There is a closed subset $\Gamma_{\lambda} \subset H$ such that (a) at each point of $A_{\lambda}^{-1}(H - \Gamma_{\lambda})$ the map A_{λ} is either locally a diffeomorphism or a fold, and (b) for each nonempty connected open subset $V \subset H$, $V - \Gamma_{\lambda}$ is nonempty and connected; thus Γ_{λ} is nowhere dense in H and does not locally separate H. Suppose that $n \leq 3$ and the second eigenvalue λ_2 of $-\Delta u$ on Ω with $u|\partial\Omega = 0$ is simple. Define $A: H \times \mathbb{R} \to H \times \mathbb{R}$ by $A(u, \lambda) = (A_{\lambda}(u), \lambda)$. (2) There is a connected open neighborhood V of $(0, \lambda_2)$ in $H \times \mathbb{R}$ such that $A^{-1}(V)$ has three components U_0, U_1, U_2 with $A: U_i \to V$ a diffeomorphism for i = 1, 2 and $A|U_0: U_0 \to V C^{\infty}$ equivalent to $w \times \mathrm{id}: \mathbb{R}^2 \times E \to \mathbb{R}^2 \times E$ defined by $(w \times \mathrm{id})(t, \lambda, \nu) = (t^3 - \lambda t, \lambda, \nu)$.

We continue the study [BCT-2] of the equation

$$\Delta u + \lambda u - u^3 = g$$
 on Ω , $u | \partial \Omega = 0$,

where $\Omega \subset \mathbb{R}^n$ $(n \leq 4)$ is a bounded domain. If H is the Sobolev space $W_0^{1,2}(\Omega)$, define

$$\langle A_{\lambda}(u), \varphi \rangle_{H} = \int_{\Omega} [\nabla u \nabla \varphi - \lambda u \varphi + u^{3} \varphi]$$

for all $\varphi \in C_0^{\infty}(\Omega)$, and define $A: H \times \mathbb{R} \to H \times \mathbb{R}$ by $A(u, \lambda) = (A_{\lambda}(u), \lambda)$.

Let SA_{λ} be the singular set (0.1) of the real analytic map A_{λ} . By Theorem (1.8) and Remark (1.9) there is a closed subset $\Gamma_{\lambda} \subset A_{\lambda}(SA_{\lambda})$ such that (a) $A_{\lambda}^{-1}(H - \Gamma_{\lambda})$ consists entirely of regular points ($u \notin SA_{\lambda}$) and fold points (0.1) and (b) for every nonempty connected open subset V of H, $V - \Gamma_{\lambda}$ is nonempty and arcwise connected (so that H is not locally separated by Γ_{λ} at any point). Roughly, this states: most solutions g of $A_{\lambda}(u) = g$ come from only regular points [Sm, p. 862, (1.3)], and of the rest most come from only fold points. The relation between (1.8) and [Mi] is discussed in (1.10). A comparable result holds in the domain [CDT]: int $SA = \emptyset$, and if $\Lambda \subset SA$ is the set of nonfold points and $V \subset H \times \mathbf{R}$ is a nonempty connected open subset, then $V - \Lambda$ is nonempty and connected.

There are [**BCT-2**, (3.9)] a connected open neighborhood V of $(0, \lambda_1) \in H \times \mathbf{R}$ and C^{∞} diffeomorphisms φ and ψ such that $A|A^{-1}(V)$: $A^{-1}(V) \to V$ (with $n \leq 3$) is $\psi \circ (w \times id) \circ \varphi$, where $w \times id$: $\mathbf{R}^2 \times E \to \mathbf{R}^2 \times E$ is given by $(w \times id)(t, \lambda, v) = (t^3 - \lambda t, \lambda, v)$. Now suppose that λ_2 is a simple eigenvalue of $-\Delta$ on Ω (with null boundary conditions). Then there is (2.4) a connected open neighborhood V of $(0, \lambda_2)$ in $H \times \mathbf{R}$ such that $A^{-1}(V)$ has three components U_0, U_1, U_2 with $A: U_i \approx V$ a diffeomorphism for i = 1, 2 and $A|U_0: U_0 \to V$ being $\psi \circ (w \times id) \circ \varphi$ above. That $A_{\lambda}(u) = 0$ has exactly five solutions u for $\lambda_2 < \lambda < \lambda_2 + \varepsilon$ and $\varepsilon > 0$ sufficiently small was previously noted in [AM, p. 642, Theorem (3.4)].

The set of (weak) solutions of the boundary value problem for a given g and λ is the point inverse set $A^{-1}(g, \lambda)$, and we are naturally led to a study of the singularities and structure of A, as in this paper. For a more detailed discussion see [CT-2, Introduction].

0.1. DEFINITIONS. Let E_1 and E_2 be Banach spaces, let U be open in E_1 , let $u \in U$, and let $A: U \to E_2$ be a C^k $(k = 1, 2, ..., \text{ or } \infty)$ map. If DA(u) is surjective, we say that u is a regular point of A. The singular set SA is the set of nonregular points. We say that the map A is Fredholm at u with index ν if DA(u) is a Fredholm linear map with index ν , i.e., $a = \dim \ker DA(u)$ is finite, Range DA(u) is closed, and its codimension b in E_2 is finite, with $\nu = a - b$; if A is Fredholm at each point of U, we say that A is a Fredholm map.

If $k \ge 2$ with (0) A Fredholm at u with index 0, (1) dim ker DA(u) = 1 (and therefore range DA(u) has codimension one), and (2) for some (and hence for any) nonzero element $e \in \ker DA(u)$

$$D^2A(u)(e,e) \notin \operatorname{Range} DA(u),$$

then we say that u is a *fold point* of A.

If (2) is replaced by its negation, and we add (3) for some $\omega \in T_u E_1$,

$$D^2A(u)(e,\omega) \notin \text{Range } DA(u),$$

then we say that u is a *precusp point* of A (see [BCT-1, p. 3, (1.6)] and [BCT-2, (3.1), (3.2)]).

These notions are invariant under coordinate change [BCT-1, p. 9, (3.2)].

0.2. THEOREM ([BC, p. 950], [BCT-1, (1.5)] and (1.7)). If A has a fold at \bar{u} , then A at u is locally C^{k-2} equivalent [BCT-1, (1.2)] to

$$F: \mathbf{R} \times E \to \mathbf{R} \times E, \quad (t, v) \to (t^2, v) \text{ at } (0, 0).$$

If $k \ge 4$, the converse is true.

0.3. NOTATION. An ordered pair in $X \times Y$ is denoted by (x, y), while the inner product of x and y in a Hilbert space H is denoted by $\langle x, y \rangle_H$. Real analytic [Z, p. 362, (8.8)] is denoted by C^{ω} . Assume throughout that Ω is a bounded connected open subset of \mathbb{R}^n $(n \le 4)$. In general, notation follows that in [BCT-2] and [CT-2].

Church thanks Syracuse University for research leave during 1986– 87, and the University of Alberta for its hospitality and support during that period.

1. The exceptional set $\Gamma_{\lambda} \subset A_{\lambda}(SA_{\lambda})$. Our goal in this section is the proof of Theorem 1.8. "Dimension" is defined in [HW, p. 10 and p. 24].

1.1. LEMMA [B, p. 14, Proposition]. Let M^n be an n-manifold without boundary, and let X be a closed subset. Then:

(a) dim $X \le n-1$ if and only if X contains no nonempty open subset of M^n ; and

(b) dim $X \le n-2$ if and only if X contains no nonempty open subset of M^n , and for every connected open subset V of M^n , V - X is connected.

In [**Bo**, p. 14, Proposition] use L = Z, the group of integers under addition. See also [**HW**, p. 24; p. 26, Theorem III 1; p. 41, Theorem IV 1; p. 48, Theorem IV 4; and pp. 151–152].

1.2. LEMMA. Let M^n be an n-manifold without boundary, let E be a connected locally connected topological space, and let X be a closed subspace of $M^n \times E$.

(a) If $\dim(X \cap (M^n \times v)) \le n-1$ for every $v \in E$, then X contains no nonempty open subset of $M^n \times E$.

(b) If $\dim(X \cap (M^n \times v)) \leq n - 2$ for every $v \in E$, then for every nonempty connected open subset V of $M^n \times E$, V - X is nonempty and connected.

(c) Let $\pi_1: M^n \times E \to M^n$ and $\pi_2: M^n \times E \to E$ be projections. If $\dim \pi_1(X) \leq n-1$ and $\pi_2(X)$ contains no nonempty open subset of E,

then for every nonempty connected open subset V of $M^n \times E$, V - X is nonempty and connected.

Proof. Conclusion (a) is immediate from (1.1)(a). Let S_1 , S_2 and S_3 be the following statements:

- $(S_1) \dim(X \cap (M^n \times v)) \le n 2$ for every $v \in E$.
- (S₂) If B and D are nonempty connected open subsets of M^n and E, respectively, then $(B \times D) X$ is connected and nonempty.
- (S₃) If V is a nonempty connected open subset of $M^n \times E$, then V X is connected and nonempty.

We first prove that S_1 implies S_2 . Let U be a component of $(B \times D) - X$, so U is open in $B \times D$. By $(1.1)(b) (B \times v) - X$ is connected for every $v \in D$, so if $(B \times v) - X$ meets U, then $(B \times v) - X \subset U$. The set S(U) of $v \in D$ such that $(B \times v) - X \subset U$ is nonempty, open, and closed (since S(U') is open for the other components U' of $(B \times D) - X$). Since D is connected, S(U) = D, i.e., $U = (B \times D) - X$ so that $(B \times D) - X$ is connected.

Next we prove that S_2 implies S_3 . Let V be any connected open subset of $M^n \times E$, let W be a component of V - X, and suppose $W \neq V - X$; since $V \cap \overline{W} \subset W \cup X$, $V \cap \overline{W} \neq V$. Let $y \in V \cap bdy \overline{W}$. There are connected open subsets B and D of M^n and E, respectively, such that $y \in B \times D \subset V$, and thus $(B \times D) \cap W \neq \emptyset$. Since $(B \times D) - X$ is connected open in V - X, $(B \times D) - X \subset W$, so $B \times D \subset V \cap \overline{W}$. As a result, $y \in V \cap int(\overline{W})$, contradicting its choice. Thus V - X is connected, as desired.

Conclusion (b) results from the two previous paragraphs.

We next prove that the hypotheses of (c) imply S_2 . By [HW, p. 41, Theorem IV 1] there exists $\bar{x} \in B - \pi_1(X)$, and thus

$$\bigcup \{x \times D \colon x \in B - \pi_1(X)\} \cup \bigcup \{B \times v \colon v \in D - \pi_2(X)\},\$$

call it Y, is a connected subset of $(B \times D) - X$. Let U be the component of $(B \times D) - X$ containing Y, and let $(x, v) \in (B \times D) - X$. There are connected open B' and D' in B and D, respectively, such that $(x, v) \in B' \times D' \subset (B \times D) - X$, and since $(B' \times D') \cap Y \neq \emptyset$, $(x, v) \in U$. Now (x, v) is arbitrary, so $(B \times D) - X$ is connected.

Since S_2 implies S_3 , conclusion (c) follows from the previous paragraph.

1.3. REMARK. Lemma 1.2 can be generalized with the same proofs. Replace M^n by any connected, locally connected topological space M, replace "dim $(X \cap (M^n \times v)) \leq n-1$ [resp., dim $\pi_1(X) \leq n-1$]" by (i) " $X \cap (M \times v)$ contains no nonempty open subset of $M \times v$ [resp., M]", and replace "dim $(X \cap (M^n \times v)) \leq n-2$ " by (i) and (ii) "for every connected open subset V' of $M \times v$, V' - X is connected".

1.4. DEFINITIONS [Mi, p. 288]. Let Y be a locally arcwise connected metric space. A subset S of Y does not disconnect locally if for every $x \in S$ there exists a fundamental system \mathscr{B} of open spheres with center at x, arcwise connected, and such that, for every $B \in \mathscr{B}, B - S$ is still arcwise connected. A subset S of Y is said to be supermeager if S is meager (i.e., of first category) and does not disconnect locally.

1.5. LEMMA. Let Y be a Banach manifold, and let $S \subset Y$ be a countable union of closed subsets of Y. Then S is supermeager if and only if, for every nonempty connected open subset $V \subset Y$, V - S is nonempty and arcwise connected.

Thus, if E in (1.2) is a Banach manifold, then the conclusion in (1.2)(b) and (c) may be restated: X is supermeager. Lemma 1.5 is true for any locally arcwise connected metric space Y, if $int_Y S = \emptyset$.

Proof. Assume S is supermeager and write $S = \bigcup_{j=1}^{\infty} S_j$, where each S_j is closed and (1) we may suppose that $S_1 = \emptyset$.

We first prove that (2) each S_j is supermeager. Let $x \in S_j$, let \mathscr{B} be given by (1.4) for S and x, let $B \in \mathscr{B}$, and let $x_1, x_2 \in B - S_j$. Choose arcwise connected open subsets $U_i \subset B - S_j$ with $x_i \in U_i$, and use the Baire Theorem to choose $z_i \in U_i - S$ (i = 1, 2). There is an arc in B - S joining z_1 and z_2 , and thus a path in $B - S_j$ joining x_1 and x_2 ; (2) results.

Let $V \subset Y$ be any nonempty connected open subset, and let $y_0, y_1 \in V-S$; we prove that there is a path $\gamma \subset V-S$ joining y_0 to y_1 , and thus obtain the desired conclusion. The proof is given in [Mi, Proposition 1, beginning at the top of p. 289], except that B is replaced by V, we use (1), and $2b_1 = \min\{1, d(\Phi_1([0; 1]), S_1)\} = 1$. [The word "radius" is omitted in "whose radius is $r \leq \min\{b_1, 1/4\}$ ".]

1.6. LEMMA. Let X and Y be C^2 separable manifolds over (real) Banach spaces, and let $A: X \to Y$ be a C^2 Fredholm map of index 0. Let S^*A be the set of $u \in X$ such that either

(a) dim ker DA(u) > 1, or

(b) u is a precusp point (0.1).

Then, for every nonempty connected open set $V \subset Y$, $V - A(S^*A)$ is nonempty and arcwise connected.

The conclusion is equivalent (1.5) to: $A(S^*A)$ is supermeaser in Y. (See the following proof.)

Proof. Let *RA* and *CA* be the set of $u \in X$ satisfying hypotheses (a) and (b), respectively. For each $u \in CA$ there is [**BCT-1**, p. 9, (3.3)] an open neighborhood W of u and a C^2 diffeomorphism β^{-1} of W onto an open set in $E_1 = \mathbf{R} \times E \times \mathbf{R}$ such that $\beta^{-1}(u) = (0, 0, 0)$, E is a Banach space,

$$A\beta\colon\beta^{-1}(W)\to E_2=\mathbf{R}\times E\times\mathbf{R},\quad (t,v,\lambda)\to(h(t,v,\lambda),v,\lambda)$$

with

$$(\partial h/\partial t)(0,0,0) = 0, \quad (\partial^2 h/\partial t^2)(0,0,0) = 0, \text{ and}$$

 $(\partial^2 h/\partial t \,\partial \lambda)(0,0,0) \neq 0.$

There is [Sm, pp. 862-863, (1.6)] an open neighborhood V of (0, 0, 0) such that $\overline{V} \subset W$ and $A|\overline{V}: \overline{V} \to Y$ is proper and thus closed. By the Implicit Function Theorem [Z, p. 150, 4.B] there are an open neighborhood P of (0,0) in $\mathbb{R} \times E$, an open interval I about 0 in \mathbb{R} , and a C^1 map $\lambda: \overline{P} \to \mathbb{R}$ such that

(1)
$$S(A\beta) \cap (\bar{P} \times \bar{I}) = \operatorname{graph} \lambda \subset \bar{P} \times \bar{I} \subset V.$$

Define $\mu: \bar{P} \to \bar{P} \times \mathbf{R}$ by $\mu(t, v) = (h(t, v, \lambda(t, v)), v, \lambda(t, v))$; since $\partial h/\partial t \equiv 0$ on graph λ and $\partial^2 h/\partial t^2 = 0$ if and only if $\partial \lambda/\partial t = 0$, (2) $C(A\beta) \cap (\bar{P} \times I)$ is the set T of $(t, v, \lambda(t, v))$ for which $\partial \lambda/\partial t = 0$. For each fixed v, define $\mu_v(t) = (h(t, v, \lambda(t, v)), \lambda(t, v))$. According to [C, p. 1037, Proposition 4] (3) if $f: M^n \to N^p$ is a $C^{\max(n-k,1)}$ map and $R_k(f)$ is the set of points $x \in M^n$ at which Df(x) has rank at most k, then $\dim(f(R_k(f))) \leq k$. It follows that (4) $\mu(T \cap (\mathbf{R} \times v))$ has dimension at most 0. Alternatively, define $\pi_i: \mathbf{R}^2 \to \mathbf{R}$ (i = 1, 2) by $\pi_1(x, y) = x$ and $\pi_2(x, y) = y$. From Sard's Theorem [Sa, p. 883] $\pi_i(\mu(T \cap (\mathbf{R} \times v)))$ has dimension 0 (i = 1, 2), and (4) results from (1.2)(c) and (1.1)(b). That $A\beta(T)$ is supermeager follows from (4) and (1.2)(b). Now $\beta C(A\beta) = W \cap CA$ [BCT-1, p. 9, (3.2)], and it follows from (1) and (2) that (5) for each $u \in A$, there is an open neighborhood Q of u in X such that $A(\bar{Q} \cap CA)$ is a closed supermeager set in Y.

According to [Mi, p. 291, Theorem A] (or [CT-1, Theorem 1] and (1.5)) A(RA) is supermeaser in Y; since A is locally proper [Sm, pp.

862-863, (1.6)], for each $u \in RA$, there is an open neighborhood Q of u in X such that $A(\bar{Q} \cap RA)$ is a closed supermeager set in Y. Since X is separable, there is a countable collection of open sets Q_i of X such that $RA \cup CA \subset \bigcup_i Q_i$ and $A(\bar{Q}_i \cap (RA \cup CA))$ is a closed supermeager subset of Y. The conclusion follows from [Mi, p. 288, Proposition 1]: if Y is a Banach space and S is the countable union of closed supermeager subsets of Y, then S is supermeager.

1.7. HYPOTHESES. In (1.8) assume the following hypotheses on $f: \mathbf{R} \to \mathbf{R}$: (1) f is C^2 , (2) f(0) = 0 = f'(0), and (3) for every $s \neq 0$ in \mathbf{R} , (a) $f'(s) \ge 0$ and (b) $f''(s) \ne 0$. It follows from the Mean Value Theorem that (4) f''(0) = 0 and (5) for every $s \ne 0$ in \mathbf{R} , (a) f'(s) > 0 and (b) sf''(s) > 0.

Let Ω be a bounded domain in \mathbb{R}^n $(n \leq 4)$, let $H = W_0^{1,2}(\Omega)$, and formally define $A_{\lambda}: H \to H$ by

$$\langle A_{\lambda}(u), \phi \rangle_{H} = \int_{\Omega} [\nabla u \nabla \phi - \lambda u \phi + f(u) \phi]$$

for every $\phi \in C_0^{\infty}(\Omega)$, and $A: H \times \mathbb{R} \to H \times \mathbb{R}$ by $A(u, \lambda) = (A_{\lambda}(u), \lambda)$. Assume sufficient hypotheses of f and n so that A_{λ} is C^2 (e.g., f is C^3 and $f^{(3)} \in L^{\infty}(\Omega)$).

An example is $f(s) = s^3$.

1.8. THEOREM. Let A_{λ} be as given in (1.7), and let CA_{λ} be the set of singular points not fold points (0.1). Then, for every nonempty connected open $V \subset H$, $V - A_{\lambda}(CA_{\lambda})$ is nonempty and (arcwise) connected. An analogous result holds for A and $H \times \mathbf{R}$.

Thus $A_{\lambda}(CA_{\lambda})$ is supermeager in H ((1.5) and [Sm; pp. 862-863, (1.6)]). The theorem states roughly: most solutions g of $A_{\lambda}(u) = g$ come from only regular points u [Sm], and of the remainder most come from only fold points. For $\lambda < \lambda_1$, A_{λ} is a diffeomorphism [BCT-2, (2.3)], and 0 is the only singular point of A_{λ_1} [BCT-2, (2.7)i)].

Proof. Since A_{λ} is C^1 Fredholm of index 0 [**BCT-2**, (2.5)], $A_{\lambda}(SA_{\lambda})$ is meager in H by the Smale-Sard Theorem [**Sm**, p. 862, (1.3)]. That $A_{\lambda}(CA_{\lambda})$ is supermeager in H will follow from (1.6), once we prove: (1) If $u \in SA_{\lambda}$, $(u, \lambda) \neq (0, \lambda_i)$ (i = 1, 2, ...), and dim(ker $DA_{\lambda}(u)$) = 1 with generator e, then there exists $\omega \in H$ such that

$$0 \neq \langle D^2 A_{\lambda}(u)(e, \omega), e \rangle_H = \int_{\Omega} f''(u) e^2 \omega.$$

Suppose that (1) fails for $\omega = u$. By (1.7) sf''(s) > 0 for $s \neq 0$, so that (2) ue = 0 a.e. By (1.7) f'(0) = 0 and thus $\int_{\Omega} f'(u)e\psi = 0$ for every $\psi \in H$; since $\langle DA_{\lambda}(u) \cdot e, \psi \rangle_{H} = 0$, $\lambda = \lambda_{i}$ and $e = \phi_{i}$, the *i*th eigenvalue and eigenvector of $-\Delta$ with null boundary conditions on Ω (i = 1, 2, ...). Since ϕ_{i} is real analytic [**BJS**, p. 136 and pp. 207-210], $\phi_{i}(x) \neq 0$ a.e., so that u(x) = 0 a.e. Thus (1) is satisfied, and the conclusion for A_{λ} results.

For A note that (1) becomes

(1')
$$\langle D^2 A(u,\lambda)((e,0),(0,1)),(e,a)\rangle_{H\times \mathbf{R}} \neq 0,$$

where (e,a) is orthogonal to the codimension 1 subspace Range $DA(u,\lambda)$ and $a = \langle u, Le \rangle_H = \int_{\Omega} ue$ [BCT-2, proof of (3.5)]; (1') is $-\langle Le, e \rangle = -1 \neq 0$.

1.9. REMARK. In case $f(u) = u^3$, A and A_{λ} are proper [BCT-2, (2.8)] so that $\Gamma_{\lambda} = A_{\lambda}(CA_{\lambda})$ is a closed subset of H satisfying the conditions stated in the introduction. More generally, sufficient conditions for f(u) in (1.7) to be proper are given in [BCT-2, (2.9)].

1.10. REMARK. In [Mi] the author discusses smooth Fredholm maps of index 0, and calls a singular value $y \in A(SA)$ an ordinary value if every $u \in A^{-1}(y)$ is either a fold point or a regular point (0.1). In the introduction [Mi, p. 288] she states (1) "Finally we ha[v]e that for a smooth proper Fredholm map of index 0, the critical values y are ordinary value[s] (i.e., y is image of a finite number of singular point[s] in each of which the operator behaves locally making a fold) ex[c]ept [for] a supermeager set". Statement (1) is false in the generality claimed: define $A: \mathbf{R} \to \mathbf{R}$ by $A(t) = t^3$.

One may put together [Mi, Proposition 1, p. 288; Theorem A, p. 291; and Theorem D, p. 296] to obtain (1) under an additional hypothesis: this result is Lemma 1.6 (see (1.5)), except that she assumes C^4 , rather than our C^2 hypothesis in (1.6).

2. The structure of A at $(0, \lambda_2)$. The main result of §2 is (2.4), which gives the structure of $A|A^{-1}(V): A^{-1}(V) \to V$, where A is the map of the introduction, V is an open neighborhood of $(0, \lambda)$, and $\lambda < \lambda_2 + \varepsilon$ for some $\varepsilon > 0$. Theorem 2.4, as well as the other results of §2, applies to a more general map (2.1), used in [BCT-2] and [CT-2], so that map is now defined.

2.1. DEFINITION [BCT-2, (1.2)]. The abstract map A. Consider any Hilbert space H over the real numbers and a map $A_{\lambda}: H \to H$ defined

by

$$A_{\lambda}(u) = u - \lambda L u + N(u),$$

where L and N have the following properties:

(1) L is a compact, self-adjoint, positive linear operator $(\langle Lu, u \rangle_H \ge 0 \text{ and } = 0 \text{ only if } u = 0)$. It follows [**D**, pp. 349-350] that H is separable and the eigenvalues λ_m (m = 1, 2, ...) of $u = \lambda Lu$ are positive, $\lambda_m \le \lambda_{m+1}$, and (if H is infinite dimensional) $\lambda_m \to \infty$ as $m \to \infty$. Let $\{u_m\}$ be an orthonormal basis of H of eigenvectors.

(2) The first eigenvalue λ_1 is simple.

(3) (a) The map N is C^k $(k = 1, 2, ..., \text{ or } \infty \text{ or } \omega)$ such that DN(u) is nonnegative self-adjoint $(\langle DN(u) \cdot v, v \rangle_H \ge 0 \text{ for every } v \in H)$.

(b) If $\langle DN(u) \cdot u_m, u_m \rangle_H = 0$ for some $m \ (m = 1, 2, ...)$, then u = 0. [Statement (b₁) is: $\langle DN(u) \cdot u_1, u_1 \rangle_H = 0$ implies u = 0.]

(c) $k \ge 2$ and $D^j N(0) = 0$ for j = 0, 1, 2. [Statement c_j) for j = 0, 1, 2 is: N is C^j and $D^j N(0) = 0$.]

(d) $k \ge 3$ and $\langle D^3 N(u)(v, v, v), v \rangle_H > 0$ for $0 \ne v \in H$.

(e) $D^4N(u) \equiv 0$. From Taylor's Theorem [Z, p. 148, Theorem 4.A] it follows that N is real analytic, and assuming (3)(c), (3!) $N(u) = D^3N(0)(u, u, u)$, so that $2DN(u) \cdot v = D^3N(0)(u, u, v)$.

We refer to a map A_{λ} satisfying (1) and (3)(a) above, and to A defined by $A(u, \lambda) = (A_{\lambda}(u), \lambda)$, as abstract A_{λ} and A. If a result requires an additional hypothesis from the list above, that fact is explicitly indicated.

2.2. EXAMPLE [BCT-2, (1.3)]. The standard map A. Our main example of abstract A is the map A of the first paragraph of this paper; it satisfies all the properties of (2.1) and we call it standard A. Here H is the Sobolev space $W_0^{1,2}(\Omega)$ [B-1, p. 28], where Ω is a bounded connected open subset of \mathbb{R}^n with $n \leq 4$, and the operators L and N are defined by

$$\langle Lu, \varphi \rangle_H = \int_{\Omega} u \varphi \text{ and } \langle N(u), \varphi \rangle_H = \int_{\Omega} u^3 \varphi$$

for all $\varphi \in C_0^{\infty}(\Omega)$, the space of C^{∞} real valued functions with compact support in Ω . Standard A is proper for $n \leq 3$ [BCT-2, (2.8)]. For more information about standard A, see [BCT-2, (1.3)], and for a generalization with certain functions f(u) in place of u^3 , see [BCT-2, (1.4)].

Other examples of (2.1) are given in [BCT-2, (1.7) and (1.8)]. The von Kármán equations for the buckling of a thin planar elastic plate

yield an operator A satisfying most of the properties of (2.1) (see [BCT-2, §4, especially (4.6)]).

If $\lambda_j(u)$ (j = 1, 2, ...) is the *j*th eigenvalue of $v - \lambda Lv + DN(u) \cdot v = 0$, then SA(0.1) is the union of the graphs of $\lambda_j: H \to \mathbb{R}$ [CT-2, (1.5)]. We first consider the action of the group $\mathbb{Z}/2\mathbb{Z}$ on $H(A_{\lambda}(-u) = -A_{\lambda}(u))$, and now observe that graph λ_j (j = 1, 2, ...), the singular set SA, the set of fold points, and the set of cusp points are all invariant under this action.

2.3. REMARK. Consider abstract A_{λ} with (2.1) (3)(c) and (e), $u \in H$ and $\lambda \in \mathbf{R}$. Then:

(i) The eigenvalues $\lambda_j(-u) = \lambda_j(u)$ and their eigenspaces are the same (j = 1, 2, ...).

(ii) If u is a singular point [resp., fold point, cusp point] (0.1), then so is -u and ker $DA_{\lambda}(u) = \ker DA_{\lambda}(-u)$.

(a) For a fold point u, $\langle D^2 A_\lambda(u)(e, e), e \rangle_H$ ($\int_{\Omega} u e^3$ in the standard case (2.2)) reverses sign if u is replaced by -u.

(b) For a cusp point u,

$$\langle D^3 A_{\lambda}(u)(e,e,e), e \rangle_H - 3 \langle D^2 A_{\lambda}(u)(e,y), e \rangle_H$$

which for standard A_{λ} is

$$\int_{\Omega} e^4 - 3 \int_{\Omega} u e^2 y$$

(see the proof of [BCT-2, (3.6)]), preserves sign if u is replaced by -u, where

$$y \in [DA_{\lambda}(u)]^{-1}(D^2A_{\lambda}(u)(e,e))$$

and y(-u) = y(u) (modulo ker $DA_{\lambda}(u)$).

(iii) If A_{λ} is proper and every component of $A_{\lambda}^{-1}(0)$ is a point, then $A_{\lambda}^{-1}(0)$ has an odd number m (m = 1, 3, 5, ...) of points (solutions).

A degree argument does not yield (iii), since 0 may be in $A_{\lambda}(SA_{\lambda})$. If we assume (2.1) (2) (3) (b₁) (c) and (d), by [**BCT-2**, (3.8)] there is an open neighborhood V of $(0, \lambda_1)$ in $H \times \mathbf{R}$ such that $A|A^{-1}(V)$: $A^{-1}(V) \to V$ is C^{∞} equivalent to $w \times id$ given by $(w \times id)(t, \lambda, v) =$ $(t^3 - \lambda t, \lambda, v)$; thus, if u is any fold point of A_{λ} and $A_{\lambda}(u) = g$ where $(g, \lambda) \in V$, then $A_{\lambda}^{-1}(g)$ has precisely two points. As a result, 0 in (iii) cannot be replaced by arbitrary $g \in A_{\lambda}(SA_{\lambda})$. From (2.2), for $n \leq 3$ standard A satisfies the hypotheses of (2.3). *Proof.* By (2.1) (3)(c) and (e) $DA_{\lambda}(u) = I - \lambda L + DN(u)$, $3!N(u) = D^{3}N(0)(u, u, u)$, $2DN(u) \cdot v = D^{3}N(0)(u, u, v)$, $D^{2}N(u)(v, w) = D^{3}N(0)(u, v, w)$, $D^{3}N(u)(v, w, x) = D^{3}N(0)(v, w, x)$, and $D^{j}N(u) \equiv 0$ for $j \ge 4$; thus $D^{j}N(-u) = (-1)^{j+1}D^{j}(u)$ (j = 0, 1, ...). Conclusion (ii) is immediate, and since $\lambda_{j}(u)$ is the *j*th eigenvalue (j = 1, 2, ...) of $v - \lambda Lv + DN(u) \cdot v = 0$ [**CT-2**, (1.1)], conclusion (i) results.

For (iii), from the properness of A_{λ} , $A_{\lambda}^{-1}(0)$ is a compact 0-dimensional set; since A_{λ} is real analytic, $A_{\lambda}^{-1}(0)$ is finite. Now $A_{\lambda}(0) = 0$, and if $u \neq 0$ and $A_{\lambda}(u) = 0$, then $A_{\lambda}(-u) = 0$, yielding conclusion (iii). Conclusion (iii) is related to Borsuk's Theorem [**D**, p. 21, Theorem 4.1].

2.4. THEOREM. Consider a C^k $(k = 3 \text{ [resp., <math>\infty$]}) proper map abstract A satisfying in addition (2.1) (2) (3)(b)(c)(d) and (e), e.g. standard A with $n \leq 3$ [BCT-2, (1.3) and (2.8)]; the symbol \approx below means homeomorphism [resp., C^{∞} diffeomorphism]. Let $\lambda < \lambda_2 + \varepsilon$ for $\varepsilon > 0$ sufficiently small, and if $\lambda_2 \leq \lambda < \lambda_2 + \varepsilon$, assume that λ_2 is a simple eigenvalue of $v = \lambda L v$, e.g. of $-\Delta$. Then there is a connected open neighborhood V of $(0, \lambda)$ in $H \times \mathbf{R}$ such that $A^{-1}(V)$ has 2m + 1 components U_i with $A(U_i) = V$ $(i = 0, \pm 1, ..., \pm m)$ and $(0, \lambda) \in U_0$.

(a) For $\lambda < \lambda_1$, m = 0; for $\lambda_1 < \lambda < \lambda_2$, m = 1; for $\lambda_2 < \lambda < \lambda_2 + \varepsilon$, m = 2; and A: $U_i \approx V$ $(i = 0, \pm 1, ..., \pm m)$.

(b) For $\lambda = \lambda_1$, m = 0 and there are φ and ψ such that the diagram

$$U_0 \xrightarrow{\approx} \mathbf{R}^2 \times E$$

$$A \downarrow \qquad \qquad \downarrow w \times \mathrm{id}$$

$$V \xrightarrow{\approx} \Psi \mathbf{R}^2 \times E$$

commutes, where $\varphi(0, \lambda_1) = (0, 0, 0) = \psi(0, \lambda_1)$, *E* is closed subspace of *H* and $w(t, \lambda) = (t^3 - \lambda t, \lambda)$ (cf. [BCT-2, figure 1] and [GG, p. 147]).

(c) If $\lambda = \lambda_2$, then m = 1, $A: U_1 \approx V$ $(i = \pm 1)$, and $A|U_0: U_0 \rightarrow V$ is $\psi(w \times id)\varphi$ as in (b).

Proof. Conclusion (a) for $\lambda < \lambda_1$ is [**BCT-2**, (2.3)] and (b) is [**BCT-2**, (3.8) (and (3.9))].

The singular set image $(w \times id)S(w \times id)$ separates $\mathbb{R}^2 \times E$ into two components C_1 and C_3 such that if $p \in C_i$, then $(w \times id)^{-1}(p)$ has *i* points (i = 1, 3); and $S(w \times id)$ separates $\mathbb{R}^2 \times E$ into two components B_1 and B_3 , where $w \times id$: $B_3 \approx C_3$. Because of the equivalence in (b), $A|U_0: U_0 \to V$ has the same property, giving components B'_1, B'_3, C'_1, C'_3 with $A: B'_3 \approx C'_3$. Since λ_1 is simple (2.1), if $(g, \lambda) \in V$ (and V is sufficiently small) then $\lambda < \lambda_2$; thus $S(A|U_0)$ is part of the graph of $\lambda_1: H \to \mathbb{R}$ [CT-2, (1.5) and (2.2)]. Now (u, λ) is in one component or the other of $U_0 - S(A|U_0)$ depending on whether $\lambda < \lambda_1(u)$ or $\lambda > \lambda_1(u)$. If $T = \{(u, \lambda): \lambda < \lambda_1\}$, then $A|T: T \approx T$ [BCT-2, (2.3)]. Thus B'_3 must be $\{(u, \lambda): \lambda > \lambda_1(u)\}, (0, \lambda) \in B'_3$ for $\lambda_1 < \lambda < \lambda_1 + \delta$ for some $\delta > 0$, and (1) $(A|U_0)^{-1}(0, \lambda) = A^{-1}(0, \lambda)$ had three points for such λ .

By [CT-2, (3.1) (ii)], (2) if $\lambda_1 < \lambda \le \lambda_2$, then $(0, \lambda) \notin A(SA)$ except that $A(0, \lambda_2) = (0, \lambda_2) \in A(SA)$ [BCT-2, (2.6)]. Since A is proper, the image $A(\operatorname{graph} \lambda_1)$ is closed in $H \times \mathbb{R}$ and $(0, \lambda_2) \notin A(\operatorname{graph} \lambda_1)$. Thus (3) there is an $\varepsilon > 0$ sufficiently small that $(0, \lambda) \notin A(\operatorname{graph} \lambda_1)$ for $\lambda_2 < \lambda < \lambda_2 + \varepsilon$. (4) If, in addition λ_2 is simple, then $(0, \lambda) \notin A(SA)$ by [CT-2, (3.1)(i)].

For $\Gamma = \{(0, \lambda): \lambda_1 < \lambda < \lambda_2\}, A^{-1}(\Gamma) \to \Gamma$ is a proper local homeomorphism by (2), and thus is a finite-to-one covering map [**P**, p. 128]. Since Γ is simply connected, A maps each component of $A^{-1}(\Gamma)$ homeomorphically onto Γ [**Ma**, p. 159, Theorem 6, or p. 160, Exercise 6.1], and (by (1)) (5) $A^{-1}(0, \lambda)$ has three points for each λ with $\lambda_1 < \lambda < \lambda_2$. Conclusion (a) for $\lambda_1 < \lambda < \lambda_2$ results from [**BCT-2**, (3.7)].

Conclusion (c) for *some* number of components results from [**BCT-**2, (3.6) and (3.7)] and m = 1 follows from (5) and (2).

Let $\Lambda = \{(0, \lambda): \lambda_2 < \lambda < \lambda_2 + \varepsilon\}$ where ε is given in (3) and (4). As for Γ above, by (4) each component of $A^{-1}(\Lambda)$ is mapped homeomorphically on Λ . By (c) and the argument of the second paragraph applied to $A|U_0: U_0 \to V$ about $(0, \lambda_2)$, there are three components of $A^{-1}(\Lambda)$ inside U_0 for ε sufficiently small; and since by (c) $A: U_1 \approx V$ and $A: U_{-1} \approx V$, there are five components altogether. Conclusion (a) for $\lambda_2 < \lambda < \lambda_2 + \varepsilon$ results from [**BCT-2**, (3.7)].

That $A_{\lambda}(u) = 0$ has exactly five solutions u for λ_2 simple and $\lambda_2 < \lambda < \lambda_2 + \varepsilon$ with ε sufficiently small was noted in [AM, p. 642, Theorem 3.4]. That it has three solutions for $\lambda_1 < \lambda < \lambda_2$ was noted in [B-2], in each case for a class of maps A including standard A.

2.5. REMARK. For standard A (2.2) and each A_{λ} with $n \leq 3$, degree $A = \text{degree } A_{\lambda} = 1$ and for U_i given by (2.4) (c) (at λ_2), degree $A|U_i = 1$ for i = -1, 1, and degree $A|U_0 = -1$.

Proof. For $(u, \lambda) \in (H \times \mathbb{R}) - SA$ and U a bounded open neighbourhood of (u, λ) such that A maps U diffeomorphically onto its

image, let the local degree of A at (u, λ) , deg $A|U = \text{deg}(A, U, A(u, \lambda))$ [**D**, p. 56]. From [**D**, p. 56, (D3)] it is constant on each component of $(H \times \mathbf{R}) - SA$. By [**D**, p. 64, Theorem 8.10] for $(u, \lambda) = (0, \lambda) = A(u, \lambda)$ it is +1 if $0 < \lambda < \lambda_1$ and -1 if $\lambda_1 < \lambda < \lambda_2$. From the argument of (2.4), especially the second paragraph, the U_1 and U_{-1} of (2.4)(c) are in the same component as $(0, \lambda)$ for $0 < \lambda < \lambda_1$, and U_0 is in the same component as $(0, \lambda)$ for $\lambda_1 < \lambda < \lambda_2$, and the local conclusions result.

Now degree A means deg(A, $H \times \mathbf{R}$, y) [**D**, p. 56 and p. 87] for any $y \in H \times \mathbf{R}$; we may take $y = (0, \lambda)$ for $0 < \lambda < \lambda_1$, so degree A = 1. (Since $\sum_{i=0}^{2} \text{degree } A | U_i = 1$, this conclusion is confirmed [**D**, p. 56, (D2)].)

References

- [AM] A. Ambrosetti and G. Mancini, Sharp nonuniqueness results for some nonlinear problems, Nonlinear Anal., (1979), 635-645.
- [B-1] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, New York, 1977.
- [B-2] _____, Nonlinear problems with exactly three solutions, Indiana Univ. Math. J., 28 (1979), 689-698.
- [BC] M. S. Berger and P. T. Church, Complete integrability and perturbation of a nonlinear Dirichlet problem. I, Indiana Univ. Math. J., 28 (1979), 935–952. Erratum, ibid., 30 (1981), 799.
- [BCT-1] _____, Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. I, Indiana Univ. Math. J., 34 (1985), 1-19.
- [BCT-2] _____, Folds and cusps in Banach spaces, with applications to nonlinear partial differential equations. II, Trans. Amer. Math. Soc., 307 (1988), 225-244.
- [BJS] L. Bers, F. John, and M. Schecter, *Partial Differential Equations*, John Wiley and Sons, New York, 1964.
- [B] A. Borel, *Seminar on Transformation Groups*, Annals of Mathematical Studies, Number 46, Princeton Univ. Press, Princeton, NJ, 1960.
- [C] P. T. Church, On points of Jacobian Rank k. II, Proc. Amer. Math. Soc., 16 (1965), 1035–1038.
- [CDT] P. T. Church, E. N. Dancer, and J. G. Timourian, preprint.
- [CT-1] P. T. Church and J. G. Timourian, *Critical values of Fredholm maps*, Proc. Amer. Math. Soc., (to appear).
- [CT-2] ____, The singular set of a nonlinear elliptic operator, Michigan Math. J., (to appear).
- [D] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
- [GG] M. Golubitsky and V. Guillemin, *Stable Mappings and their Singularities*, Springer-Verlag, New York, 1973.
- [HW] W. Hurewitz and H. Wallman, *Dimension Theory*, Princeton Univ. Press, Princeton, NJ, 1948.
- [Ma] W. S. Massey, Algebraic Topology: An Introduction, Springer-Verlag, New York, 1967 (fourth corrected printing, 1977).

70	P. T. CHURCH AND J. G. TIMOURIAN
[Mi]	A. M. Micheletti, About differentiable mappings with singularities between Banach spaces, Analisi Funzionale e Applicazioni, Boll. Un. Mat. Ital. Supp., 1 (1980), 287-301.
[P]	R. Palais, Natural operations on differential forms, Trans. Amer. Math. Soc., 92 (1959), 125-141.
[Sa]	A. Sard, <i>The measure of the critical values of differentiable maps</i> , Bull. Amer. Math. Soc., 48 (1942), 883–890.
[Sm]	S. Smale, An infinite dimensional version of Sard's Theorem, Amer. J. Math., 87 (1965), 861–867.
[Z]	E. Zeidler, Nonlinear Functional Analysis I. Fixed-Point Theorems, Springer- Verlag, New York, 1986.
	August 19, 1987 and in revised form March 1, 1988. Both authors partially d by NSERC Contract A7357.

Syracuse University Syracuse, NY 13244-1150

AND

University of Alberta Edmonton, Alberta, Canada T6G 2G1