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THE C*-ALGEBRAS ASSOCIATED WITH MINIMAL
HOMEOMORPHISMS OF THE CANTOR SET

IAN F. PUTNAM

We investigate the structure of the C*-algebras associated with
minimal homeomorphisms of the Cantor set via the crossed product
construction. These C*-algebras exhibit many of the same properties
as approximately finite dimensional (or AF) C*-algebras. Specifi-
cally, each non-empty closed subset of the Cantor set is shown to
give rise, in a natural way, to an AF-subalgebra of the crossed prod-
uct and we analyze these subalgebras. Results of Versik show that
the crossed product may be embedded into an AF-algebra. We show
that this embedding induces an order isomorphism at the level of Ko-
groups. We examine examples arising from the theory of interval
exchange transformations.

1. Preliminaries. We begin with an introduction to some terminol-
ogy and notation, and a description of the results.

Throughout, we will let X denote the Cantor set. That is, X is a
totally disconnected compact metrizable space with no isolated points.
Generally, for any compact Hausdorff space, Z, we let C(Z) denote
the C*-algebra of continuous complex-valued functions on Z.

We say a subset E oΐ X is clopen if it is both open and closed. We let
XE denote the characteristic function of E, which will be continuous if
E is clopen. A partition, ^ , o f l w e define to be a finite collection of
pairwise disjoint clopen sets whose union is all of X. If & is a partition
of X, we let &{&>) = span{#ir|£' e &>}. <%{&) may be viewed as those
functions in C(X) which are constant on each element of &. The fact
that X is totally disconnected implies that any function in C(X) may
be approximated by one in some &(&>). Given two partitions 3°\ and
&>2, of X, we say &2 is finer than &\ and write ^ > &\ > if each element
of <̂ 2 is contained in a single element of ^ . This is clearly equivalent
to the condition that ^{^\) C Ή^&i). Given two partitions &\ and
3*2, we define the partition 3°x V&>2 to be {E n F\E e &>\, F e &>2}-

We let φ be a homeomorphism of X which we shall always assume
to be minimal. That is, there are no closed ^-invariant sets except for
the empty set and X itself. This is equivalent to the condition that, for
any point x in X, the set {φn(x)\n> 0} is dense in X. We shall refer to
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{φn(x)\n e Z} as the orbit of x under φ. The sets {φn(x)\n < 0} and
{φn{x)\n > 0} will be called half-orbits. Given two homeomorphisms,
φ and ψ, of X, we say that they are (topologically) conjugate and write
φ ~ ψ if there is a homeomorphism h of X such that φ = hoψoh~ι.

We also regard φ as a *-automorphism of C(X) by defining #?(/) =
/ o φ~ι, for all / in C(X). This generates an action of the group of
integers on C(X) and we shall consider the crossed product C*-algebra
C(X) xφZ. This is described completely in Chapter 7 of Pedersen [7].
For our purposes, we regard it as the C*-algebra generated by C(X)
and a unitary operator, which we will always denote by w, such that
ufu* = φ(f)9 for all / in C(X). By 5.15 of Zeller-Meyer [18], the
minimality of φ implies that this C*-algebra is simple.

One of our main tools will be AΓ-theory. The standard references are
Blackadar [2] and Effros [6]. We will especially make use of the order
structure on KQ. Since most of our algebras will be unital and most
*-homomorphisms will preserve units, we will use the terms "ordered
group" and "order isomorphism" to actually mean "ordered group with
order unit" (namely the class of the identity element) and "order iso-
morphism which preserves order units", respectively.

We note that we may identify K0(C(X)) with C(X, Z), the continu-
ous functions on X taking integer values. Under this correspondence,
Ko(C(X)y is identified with the functions taking non-negative val-
ues. Also, we note that K{(C(X)) = 0. The ^-theory of C(X) xφ Z
may be computed with the aid of the Pimsner-Voiculescu six-term ex-
act sequence (see Pimsner and Voiculescu [10] or Blackadar [2]). We
summarize the results in the following theorem.

THEOREM 1.1. With X and φ as above, we have
(i) KX{C{X) xφZ)c^Z and is generated by [«].

(ii) K0(C(X) xφ Z) ~ C(X, Z)/Im(id - φ*)f where id - φ* is consid-
ered as an endomorphism ofC(X, Z). More precisely, the inclusion of
C(X) into C(X) xφ Z is a surjection at the level ofK0 whose kernel is
Im(id - φ*).

We also mention here that the "non-stable AΓ-theory" (see Rieffel [14])
of C(X) xφ Z has been computed by the author [11].

A C*-algebra is called AF (or approximately finite dimensional) if
it is the closure of the union of an increasing sequence of finite di-
mensional C*-subalgebras (see Blackadar or Effros). The ^-theory of
AF-algebras plays a major role in the theory. Elliott's theorem states
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that two unital AF-algebras are *-isomorphic if and only if their KQ-
groups are order isomorphic (see Blackadar [2]).

Here, we show that there is a close relation between AF-algebras and
our C*-algebras C(X) xφ Z. In §3, we show that for each non-empty
closed subset Y c X, the C*-subalgebra of C(X) xφ Z generated by
C(X) and uCo(X - Y) is an AF-algebra. We denote this subalgebra
by Ay. We give a (partial) description of the ΛVtheory of such a C *
subalgebra in §4. In particular, if the closed set Y is a single point, the
inclusion induces an order isomorphism between the Λ^o-group of Aγ

and that of C(X) xφZ. The analysis of Stratila and Voiculescu [15] of
"diagonal" subalgebras in an AF-algebra lends itself very well to our
situation. We examine this in §5. The results allow us to compute the
ideal structure of Ay, in particular. In §6, we show that C(X) xφ Z
may be embedded into an AF-algebra so that the map induced at the
level of KQ is an order isomorphism. This embedding has already
been obtained by Versik [16], but since the results of [16] are entirely
in measure theoretic terms rather than topological terms and since
Versik does not compute the map of ΛVgroups, we include a proof of
this here.

We provide some general examples in §2, and in §7, we conclude
with some specific examples of interest, mention some consequences
of our results and state some open problems.

2. Examples. Here we present two classes of examples of minimal
homeomorphisms of the Cantor set. The first class consists of what
are commonly called "odometers" (for reasons which will be obvi-
ous). The C*-algebras arising as the crossed products are the Bunce-
Deddens C*-algebras which have also appeared in many other guises
(see 10.11.4 of Blackadar [2]).

Many of our results here are already known. Indeed, our AF-
subalgebras Aγ9 in the case that the closed set Y is a single point,
are actually UHF-algebras (see 6.4 of Pedersen [7]) and the contain-
ment of AY in C(X) xφ Z appears in the original work of Bunce and
Deddens [3]. The embedding of Theorem 6.7 in this case was also
obtained independently by K. Schmidt and C. Skau.

The second class of examples are obtained from interval exchange
transformations. Interval exchange transformations are usually re-
garded as automorphisms of the Lebesgue space (L2(0, l),&,λ), where
SB denotes the σ-algebra of Borel subsets of (0,1) and λ denotes
Lebesgue measure. They are bijections of [0,1) which are "piece-
wise translations". (We will restrict our attention to "minimal" ones.)
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It is not difficult to view these as minimal homeomorphisms of Can-
tor sets, as we shall show. We will also compute the ^-theory of the
crossed product C*-algebras in this situation. In §7, we will consider
some specific examples.

Odometers. Let {fl/}^ be a sequence of integers, each greater than
or equal to 2. Let X = X/{0,1,...,«/- 1}. The homeomorphism φ
is addition of (1,0,0,0,...) with carry over to the right. In fact, X
can be given the structure of a compact abelian group so that φ is just
addition of (1,0,...). With this point of view, the results of Riedel
[13] are applicable. From [13], we have

K0(C(X) xφ Z) ~ {k/(n{n2 nm)\k e Z, m e Z+}

with order structure that inherited from R.
Let φ and ψ be the odometers associated with the sequences {«/}

and { m j respectively. Then φ and ψ are topologically conjugate if
and only if the supernatural numbers (see 6.4.8 of Pedersen [7]) Π/ ni
and Πι mi a r e equal; that is, if n is an integer which divides fli«2 fyb
for some k, then for some /, n divides m\πt2 m/, and vice versa.
This, in turn, is true if and only if there is an order isomorphism
between the AΌ-groups of the associated crossed product C*-algebras.

Interval exchange transformations. For a more complete discussion
of interval exchange transformations, we refer the reader to Chapter
5 of Cornfield, Fomin and Sinai [4]. For the most part, we will adopt
the notation of [4]. Let M = [0,1) with Lebesgue measure λ. For two
intervals E and F in M, we write E < F if each element of E is less
than each element of F.

Choose 0 = JCO < JCI < *2 < < *r-\ < χr = 1> and let Δ, =
[jC|_i, Xi), for each i = 1,..., r. Let π e Sr, the permutation group
of {1, . . . , r}. From this data, we define T:M -> M by Tx = x + α, ,
for x G Δ/, where the α/ are uniquely determined so that T(Aπ^)) <
Γ(Δπ ( 2 )) < < T(Aπ(r)) and so that T is bijective.

We will assume that the transformation T is minimal in the sense
that the orbit under T of any point in M is dense in M.

We wish to construct a Cantor set X and a minimal homeomor-
phism φ of X so that Af is a dense subset of X and T = ?>|M. Let
J2*°°(Γ) = {ΓΛ(x/)|0 < i < r and n e Z}. Our hypothesis of minimal-
ity of #> implies that J2?°°(T) is dense in Λf. To obtain X from Af, each
point y in ^°°(Γ) is replaced by two points y~ and y + and we also
include the point 1. The space X inherits an order structure from M
an obvious way (i.e. if y\ < y2 are in ^°°(Γ), then yf < yf) and we



C*-ALGEBRAS AND ACTIONS ON THE CANTOR SET 333

set y~ < y+ for all y in &°°(T). The order topology on X obtained
makes X a Cantor set. (What we have done amounts to inserting
"Cantor gaps" at the points oΐ&°°{T).) We then define φ:X -> X in
an obvious way so that φ is a homeomorphism of X and φ = T on
M-J?°°(T) c X. As an alternative we could define X as the spectrum
of the C*-algebra generated by all L°° functions (acting on L2(0,1))
which are continuous except for jump discontinuities at finitely many
points, all of which are in βS

ί?oo(Γ). We will also view the elements of
C(X, Z) as functions on M in a similar fashion. We remark that such
functions have at most finitely many jump discontinuities.

We note that C(X) xφ Z may be viewed as the C*-algebra of op-
erators on L2(0,1) generated by χ^x,..., # Δ and the unitary operator
uξ = ξoT-1 forξeL2(0,l).

The AΓ-theory of these C*-algebras may be computed easily with the
aid of the Pimsner-Voiculescu exact sequence. We do not state any
results here about the order on KQ, but in §7 we will deal with some
explicit examples completely.

THEOREM 2.1. Let r, XQ, X\ ,... ,xr and π as above be such that the
interval exchange transformation T is minimal and is such that the
orbits under T of the points X\,..., xr-\ are pairwise disjoint Let φ
be as above. The map γ: ΊI -+ K0(C(X) xφ Z) defined by

j

is an isomorphism ofabelian groups.

The proof of the theorem follows easily from the following two
lemmas and the Pimsner-Voiculescu exact sequence.

LEMMA 2.2. With the same hypotheses as in 2.1, define γ:Zr ->
C(X,Z)by

Then Im γ Π Im(id - φ*) = 0.

Proof. Suppose that h = Yjkjχ^. = f - f o φ~ι, for some / in
C(X,Z). Our hypothesis implies that each point of £?°°(T) has a
unique representation as Γm(jc/). If / is continuous at each point of
o^°°(Γ) then it is constant and so h = 0, as desired. Suppose this
is not the case. Then the set of discontinuities of / is finite and we
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choose Tm(Xi) where / has a discontinuity and so that m is minimum
among such points. Then / must be continuous at Tm~ι(Xi). So
h = f - f oφ~ι has a discontinuity at Tm(Xi). From this we see that
m = 0. We conclude that if / has a discontinuity at Tn(Xj)y then
n > 0. A similar argument (reversing the roles of / and / o φ~x)
shows that if/ is discontinuous at Tn(Xj), then n < — 1. We conclude
that / has no discontinuities, so that / is constant and h = 0 as de-
sired, α

LEMMA 2.3. Let m,n e Z am/ 1 < /,y < r be such that E =

[Tm(xi.ι)> Tn(Xj-{)) is non-emtpy. Then [χE] e Imy.

Proof. It suffices to consider E = [0, Γn(jc;)), with n > 0. We
proceed by induction on n (and for all i). The result is clear for n = 0.
Assume it is true for n and for all /, let us consider E = [0, Γw + 1(x 7)).
Choose A: such that Tn+x(Xj) e T(Ak), so E = [0, T J C ^ ] U [Txk_x,
Tn+ι{Xj)). Now we have

where the sum is over / such that σ(l) < σ(k). Also,

[X[Txk.uτ^X})\ = [uχ[Xk_Xtτ»Xj)U*] = IXix^.T'Xj)]

by induction hypothesis. Thus [/^] € Im γ. Π

3. AF-subalgebras of C(X) xφ Z. The principal aim of the section
is to show that each non-empty closed subset, F, in X in a natural way
gives rise to an AF C*-subalgebra, AΎ, of C(X) xφ Z. Specifically, AY

is the C*-algebra generated by C(X) and M C 0 ( X - Y). Here, we use
CQ(X- Y) to denote the ideal in C(X) of all functions which vanish on
Y. The first step is to show that a partition, ̂ , of X and a non-empty
clopen subset, Y, of X gives rise to a finite-dimensional C*-subalgebra
in the following way.

LEMMA 3.1. Let & be a partition of X and let Y be a non-empty
clopen subset of X. Then the C*-subalgebra ofC(X) xφ Z generated

and uχX-Y is finite dimensional

REMARK. The basic idea of the proof is the approximation tech-
nique developed by Versik in [17].

Proof. We begin by defining λ: Y —• Z by

= inf{n>l\φn(y)eY}, y e Y
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Notice that since φ is minimal and Y is open, there is, for each point
y, a positive integer n such that φn(y) G Y, so λ is well-defined.

It is straightforward to verify that λ is upper (lower) semi-continu-
ous because Y is open (closed), and so λ is continuous. Then because Y
is compact, λ(Y) is finite. Let us suppose that λ(Y) = {J\, Jι>..., /#},
with J\<-<JK.

For k = 1,2,..., K and j = 1,2,...,/^, define the clopen set y(fc, 7)
= φJ(λ~ι(Jk)). Then it follows at once from the definitions that the
following properties hold:

(2) φ(Y(kJ)) = 7(^,7 + 1), for I < j < Jk;

(Note however that φ(Y(k,Jk)) is «<tf y(fc, 1).) This implies that the
union of all Y{k,j) is invariant under φ. It is also clearly closed and
so, by minimality, must be all of X.

We shall refer to {Y(k, j)\j = 1,..., Jk} as a tower of height Jk.

Now we argue that we can make the partition we have constructed
above finer than the given one ̂ , without changing its essential struc-
ture (namely, properties 1-3 above). Suppose Z e^ and suppose Z
meets some Y(k, j) but does not contain it. Divide Y(k, j) into two
clopen sets Y(kJ)nZ and Y(k,j)n(X-Z). Unfortunately, this "dis-
rupts" the entire kth tower, so we form Y(k, /)' = φi~j{Y(kfj) n Z)
and Y{k, i)" = φ^^YiK j) n (X - Z)), for each i = 1,..., Jk. Thus
the kxh tower breaks into two separate towers (both of height Jk) with
Y(k,j)' C Z and Y{k,j)" disjoint from Z. We repeat this for all Z
in &> and all (k,j) (which will be a finite process). We then obtain a
new K and new clopen sets Y(k, j) (neither will be given a new nota-
tion) which satisfy conditions 1-3 above and such that the partition
&' = {Y(kJ)\k = 1,..., K, j = 1,... ,Jk} is finer than &.

We are now prepared to define a finite dimensional C*-subalgebra
of C(X) xφ Z. In fact, it will be *-isomorρhic to

a n d i , j = l,...,Jk. L e t
To do this, it suffices to define matrix units e\j for all k = 1,..., K

= K1' JXγ(kj) =
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It is routine to check that for fixed k, {e^p} forms a complete system
of matrix units for Mjk, that the projections

J = l

are pairwise orthogonal and sum to the identity. We also note that
s ρ a n ( 4 Λ ) \ k =\,...,K, i=l,...,Jk} = W{&>') D Ψ{&>) a n d that

k=\ i=2

The C*-algebra generated by ^ ( ^ ) and uχX-Y is contained in the
finite-dimensional algebra we have just described and therefore must
itself be finite-dimensional. D

We will denote the C*-algebra generated by g 7 ^ ) and uχX-Y by

LEMMA 3.2. Let Y\ and Y2 be two non-empty clopen subsets of X
and let &x and 0^ be two partitions of X. If &\ < &>2, XYX

and Yx D Y2, then A(Ylf^x) c A(Y2,<?2).

Proof Clearly &(&>{) C Ψi&i) and, since Y2cYu

THEOREM 3.3. Let Y be a non-empty closed subset ofX. Then Aγf

the O'-subalgebra ofC(X) xφ Z generated by C(X) and uC0(X - Y),
is an AF-algebra.

Proof We begin by selecting an increasing sequence of partitions of
X, &\ < 3°i < - - , whose union generates the topology of X. We also
choose a decreasing sequence of clopen subsets of X, Y\ D Y2 D ,
whose intersection is Y. We will inductively define partitions, ^ ,
and finite dimensional subalgebras, An = A(Ynf3

ΰl

n), for each positive
integer n. Let &[ = &\ and A\ — A{Y\, &\). Now assume that we have
defined^ and An=A(Yn,0>β. W e l e t ^ + 1 = ^ V ^ Λ + i V { y Λ J -
Yn}. Then we have ^ + 1 > ^ w + i , ^ + 1 > ^ and χx.Yn e

We claim that the An

9s form a nested sequence of finite dimensional
subalgebras of Aγ whose union is dense in Aγ. First of all, &(&„) C
C(X) and wχ^-yπ € wC0(̂ Γ - Γ), since 7 c Γn, so Λ c Aγ. From
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the properties of <^ + 1 as described in the last paragraph and Lemma
3.2, we see that An c An+\, for all n. Since the union of the «̂ Vs
generates the topology of X and ^(β^n) C ̂ ( ^ ) C An, we know that
C(X) c (Uw ̂ «)~ As Y is the intersection of the YVs, it is clear that
uC0(X-Y)c(\JnAn)-. π

4. The Λ>theory of the AF-subalgebras Our objective in this sec-
tion is to compute the ΛΓo-groups of the AF-subalgebra Aγ which we
constructed in the last section, since this group, with its complete or-
der structure, determines the isomorphism class of Aγ. We fix an
inductive sequence An = A(Yn,^n) for AY as constructed in the last
section. Our result is the following theorem.

THEOREM 4.1. Let Y be a non-empty closed subset ofX. Let i denote
the inclusion map ofAY in C(X) xφ Z. Then there is an exact sequence

0 -> Z -2> C(Y, Z) Λ K0(Aγ) h K0(C(X) x^ Z) -»0

where a is the map taking n e Z to the constant function n and β is
described in the proof.

Moreover, for every a e KQ(C(X) xφ Z) + , there is b e Ko(Aγ)+ such
that U(b) = a.

In particular, ifY is a single point, U is an isomorphism of ordered
groups.

REMARKS. Before beginning the proof, we point out the following.
First, this description of K0(AY) is not complete, especially that of
Ko(AY)+. In fact, it is interesting to note that, up to splitting of the
above sequence (which is irrelevant in the case KQ(C(X) xφ Z) is free
abelian), the relation between K0(AY) and K0(C(X) xφ Z), as abelian
groups, depends only on the topology of Y and not on the dynamics
of φ. This is not the case for the order structure of Ko(Aγ) as we shall
see in the next section. (As a simple example, consider the case when
Y is two points. Then the group structure of K0(AY) does not depend
on whether the points lie in the same ^-orbit, while we shall see later
that the order structure certainly does.)

Also, since Y is a closed subset of a totally disconnected space, it
is itself disconnected and so C(Y, Z) ^ KQ(C{Y))> as ordered abelian
groups.

Finally, we notice that the result is really in terms of comparing
Ko(Aγ) with KQ(C(X) xφ Z) via /*. We are assuming that the latter
can be computed by the Pimsner-Voiculescu sequence.
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We will need the following lemma in the proof of 4.1.

LEMMA 4.2. Let p be a projection in C(X) Π An and suppose that
p = 0on Yn. Then φ(p) e C(X) n An and [φ(p)] = [p] in K0(An).

Proof. Let v = uχχ-γnp. Then υ e An and since p = 0 on
Yn>Xx-YnP = P, v*v = P and υv* = upu* = φ(p). D

Proof of 4.1. We begin by showing the final part of the theorem; that
is, for every a in K0(C(X) xφ Z)+ there is b in K0(Aγ)+ such that
it(b) = a. From this it also follows that /* is surjective. Consider the
following commutative diagram:

C{X)

Aγ —> C(X) xφ Z

From Corollary 2.4 of [11], there is c in K0(C{X))+ such that (i2)*(c)
= a. Letting b = (i\)*(c) gives the conclusion.

We now construct the map β: C(Y, Z) -> KO(AY). Let / € C(Y, Z).
Choose g <= C(X, Z) such that g\Y = f. Define

β(f) = (h)*(g-φ*(g))-

To see that β is well-defined, suppose that g and g' are in C(X, Z)
and g\Y = g'\Y = / . Then we may choose n sufficiently large so that
g, g' e C(X) Π An and so that g\Yn = g'\Yn. We can write g - g1

as a linear combination of characteristic functions in C(X) n An each
of which is zero on Yn. So by Lemma 4.2, [g - g'] = [φ(g - g')]
in K0(An), which implies that (/i)*(g - ί?*(g)) = (ίi)*(g' - ί»(g')) i n

K0(Aγ).
The exactness of the sequence at Z is clear and we have already

shown exactness at KQ(C(X) xφ Z). Let us consider exactness C(Y, Z).
It is easy to check that Im(α) c ker(/?). On the other hand, suppose
that / G ker(jS). We wish to show that / is constant. Let g e C(X, Z)
be such that g\Y = f. We may choose n sufficiently large so that g
and φ(g) are in An Π C(X) and so that [g] = [φ(g)] in Ko(An). From
Lemma 4.2, we may replace g by gχγn without changing this and so
we may assume that g = 0 on X- Yn. Let K,J\,...,Jκ and Y(k, j) be
as in §3 for the finite dimensional algebra An. So An ~ Mjι Θ -®MJκ

and Ko(An) is isomorphic (via the trace on each matrix summand) to
0 £ Z. The hypothesis that [g] = [φ{g)] and our reduction to the case
that g = 0 on X - Yn then imply that g{Y{k, Jk)) = g o φ-\Y(k, 1)),
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for all k. Pick an integer m in g{Yn) and define Z = \J Y(k, j), where
the union is taken over all (k, j) such that g(Y(k, Jk)) = m. From the
condition that g(Y(k,Jk)) = g o φ~ι(Y(k, 1)) it follows that the set
Z is invariant under φ. Clearly Z is closed, so the minimality of φ
implies that Z = X. So g(Y(k, Jk)) = m for all k, so / = g\Y = m.

For exactness at ΛΓo(̂ 4y), the inclusion Im(/?) c ker(/*) follows
from the fact that ker((/2)*) = Im(id - φ*) obtained in the Pimsner-
Voiculescu exact sequence and our definition of β. As for the reverse
inclusion, suppose that a e ker(/*). We may find g e C(X,Z) such
that (i\)*(g) = a. Then (i2)*(g) = i*(a) = 0, which implies that there
is h in C(X,Z) such that g = h - φ*(h), again using the fact that
ker((/2)*) = Im(id- φ*). Then let / = h\Y e C(Y, Z). It is immediate
that /?(/) = a as desired. α

5. Further analysis of the AF-subalgebras. In this section we apply
the analysis of Stratila and Voiculescu [15] to our AF-subalgebras Ay.
The idea (roughly speaking) is to consider a maximal abelian subal-
gebra (masa) of the AF-algebra and look at the group of unitaries in
the AF-algebra which normalize the given subalgebra. In our case the
masa we will use is C(X) and the unitaries which normalize it may
be written explicitly in terms of u (see Lemma 5.1). This analysis will
provide us with description of the ideal structure of Ay and also give
information regarding the correspondence between invariant measures
on X, traces on the C* -algebras and states on their KQ-groups.

We begin with some definitions and notation. For a unital C*-
algebra B, let U(B) denote the unitary group of B and for a C*-
subalgebra C c B, let JV(C,B) denote the normalizer of C in U(B);
i.e.

Jf{C,B) = {ve U(B)\vCυ* = C}.

We use ̂ (C, B) to denote the centralizer of C in B\ i.e.

&(C, B) = {ve jr{C9 B)\vc = cv for all c e C}.

We note that if C is a masa in B, then &(C, B) = U(C).
The group Jf{C(X), C(X) xφ Z) acts on C(X) as *-automorphisms.

Each w in^Γ(C(X), C(X) xφ Z) induces the automorphism Sidw(f) =
wfw\ for all / e C(X). Therefore, jr(C(X), C(X) xφ Z) acts on X
as homeomorphisms. By definition, W(C(X), C(X) xφ Z) = U(C(X))
acts trivially and so we obtain an action of the quotient group
jr{C(X)9 C(X) xφ Z)/U(C(X)) on X. We let Γ denote this quotient
group.
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Since Ay is a unital subalgebra of C(X) xφ Z, we see that
yT(C(X),Aγ) is a subgroup of JS(C(X), C(X)xφ Z). We let Γ y denote
the quotient group JT{C{X), AY)/U(C(X)), and note that Γy c Γ.

Let φ denote the dual action of the circle group T on C(X) xφ Z
(see 7.8.3 of Pedersen [7]). We obtain a conditional expectation
E: C(X) xφZ-^ C(X) defined by

E(a) = ί φz(a) dz, a e C(X) xφ Z,

where dz denotes normalized Haar measure on T. Also define, for
each integer n, En:C(X) xφ Z -> C{X) by En(a) = E(au~n). Note
that if / e C(X) then φz{f) = / for all z e T and E(f) = / . Also
φz{u) = zu, for all z eΎ. This implies that, for any non-empty closed
subset Y c X,Aγ is invariant under φ.

LEMMA 5.1. Ifυ esr(C(X),C(X) xφ Z), then

neZ

where f e U(C(X)), each pn is a projection in C(X) with only finitely
many pn different from 0, pnpm = Ofor nψm, and

n n

Moreover this decomposition is unique.

Proof. Let pn = \En(υ)\, for each n e Z. Let Xn C X denote the
support of pn € C(ΛQ. Choose x e X arbitrarily and consider the
irreducible representation πx of C(X) x ^ Z o n the Hubert space /2(Z)
defined as follows. For each integer i, let & denote the element of
/2(Z) having value 1 at / and 0 elsewhere. So {ξi}iez is the usual basis
for /2(Z). Then for i e Z and / e C(X), πx(f)ξi = /(φ^x))^, and
πx(u)ξi = ξi+χ. (See 7.7.1 of Pedersen [7].)

For each z e T, define the unitary operator uz on /2(Z) by uzξi =
z%. Then

πx(φz(a)) = uzπx{ά)uz, zeΊ, ae C(X) xφ Z.

Since π^(ϊ ) normalizes ^(C(X)), it also normalizes πx{C{X))n which
is equal to /°°(Z) (acting as multiplication operators on /2(Z)). This
implies that there is a unitary diagonal operator λ = (A/)g-00 G /°°(Z)?

and a permutation σ of Z such that
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Then, for n, i € Z, we have

i= ί πx(φz(vu-n))ξidz
Jτ

= / uzπx{v)πx(u-n)u*zξidz

λt-nξi if σ(i -n) = i,

0 if σ(i -ri)Φ i.

From this we conclude that

, n U ί & ifσ(i-») = /,
I χ ( A ) δ Ί θ if σ(i-»)*/.

From this we see that pnpm = 0, for n Φ m and that pn is a projection
and so its support, Xn, is clopen, for all n. We also see that there
is an n such that pn(x) = {κχ(Pn)ζo>ζo) = l Since x was arbitrary,
the union of all Xn is all of X. By compactness (and the fact that
the Xn are pairwise disjoint), we see that all but finitely many Xn are
empty. We now have that all but finitely many pn are zero, that they
are mutually orthogonal and that their sum is 1. It follows easily from
the fact v*v = 1 that the sum of φ~n{pn) is 1. Finally, let ̂ o be the
sum of pnu

n. Then VQ is a unitary in C(X) xφ Z and vv^ is a unitary
in C(X) xφ Z whose image under πx is λ e πx(C(X))". Since C(X)
is maximal abelian, we conclude that λ = πx(f) for some unitary
/ e C(ΛΓ). D

We now wish to describe Γ and its action on X in a more convenient
form.

Endow C(X, Z) with the following associative product

for η, v G C(X, Z) and .x € X. Then C(X Z) becomes a semigroup
with identity (η = 0). We let (7 denote the group of invertible elements
C(X, Z). We may define an action of G on X by

for η G G and x G X. We note that each element of G can be written in
the form Σ mpm, where each pm is a projection in C(X) with pm = 0
for all but finitely many m, /?mpw = 0 for n φ m and with the sum
of the pm's equal to 1. This representation of the elements of G is
unique.



342 IAN F. PUTNAM

THEOREM 5.2. The map sending

w =f^pmum esK{C{X), C(X) xφ Z)

(as in Lemma 5.1) to ηw = Σ mpm e C(X, Z), induces an isomorphism
between the groups Γ and G. Moreover, we have

(wfw*)(x) = f(ηw-x)

for all f e C(X) and xeX.

The proof is completely routine and so we omit it. From now on,
we will identify the groups G and Γ (with their actions on X) and
work either with unitaries w = ΣPmUm or the functions ΣmPm
interchangeably.

We note that the short exact sequence of groups

1 - U(C(X)) -+ Jf(C(X), C(X) xφ Z) -> Γ -> 1

has a splitting, namely η = Σ mPm —• w = Σ PmUm.

COROLLARY 5.3. For each x in X, the T-orbit of x coincides with
the φ-orbit ofx\ i.e.

The proof is trivial at this point, so we omit it.

We now turn our attention to Aγ9 where Y is a fixed closed non-
empty subset of X.

We fix an increasing sequence of finite dimensional subalgebras
An = A(Yny3

ΰ

n) c Ay as in §3. For each positive integer «, define

) = inf{m>O\φm(x)eYn},

λ~(x) = sup{m < OI^^Cx) e Yn},

for x E X. Just as for the function λ of Lemma 3.1, λ+ and λ~ are
both well-defined and continuous. Now define λ+\ X —• Z u {+00} and
λ~:X -> Zu{-cx)} by λ+{x) = supnΛ+(jc) and>l"(;c) = inf«A~(x), for
all x e X. Notice that

λ+(x) = inf({m > 0|^m(x) eY}U {+00}),

λ-(jc) = sup({m < 0\φm-ι(x) eY}U {-00})

since Γ is the intersection of the IVs. In particular, λ+ and λ~ are
independent of the choice of inductive sequence. Note that Λ+ and
λ~ both depend on Γ, but as we will hold Y fixed we will omit this in
our notation.

We may completely describe Γγ in terms of Λ+ and λ~ as follows.
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THEOREM 5.4. Let η = Σ mpm be an element of Γ. Then η is in
Γγ if and only ifλ" <-η< λ+.

Proof. We begin by assuming that η € Γγ and show that
λ~ < -η < Λ+. For some n, the unitary w — ΣPmUm G An and
η e C{X) n An. We let Ky JΪ9..., Jκ, Y(k, j) and e%] all be as in

Lemma 3.1 for An. For each k = 1,..., K, there is a permutation σ^
of {1,... ,Jk] such that

N o w e f l ( j ) = XY(k,j)uJ~MJ)> s o V(Y(k, j)) = j-σk{j). From prop-
erties 1-3 of the sets Y{k,j) (in 3.1), we see that

λ+

n(Y(k,j)) = Jk-j and λ-{Y{k,j)) = \-j.

Then since 1 < σ̂ (7*) < /^, we have λ~ < — η < λ+ and the conclusion
follows.

As for the converse, let us now suppose that λ~ < -η < λ+. A
standard argument using the continuity of λ^ and η and the compact-
ness of X shows that for sufficiently large n, λ~ < -η < λ+. Also
choose n large enough so that η e C(X) n An. Fix an integer m and
let E c X be the (clopen) support of p~m\ so —η(E) = m. We wish
to see that p-mu~m e An. In the case m = 0, this is immediate since
ηeC(X)ΠAn.

Let us consider the case m > 0. The hypothesis that —η < λ+
implies that E does not meet Yn u φ~ι(Yn) U U ̂ ~W + I(y«) so that

P-mU - XEU = XEXX-Yn p-m+i

Similarly if m < 0, we have λ~ <-η implying that

We conclude that ΣP-mU~m e An c Aγ9 and so η e Γγ, as de-
sired. D

REMARK. Let us pause for a moment and give a heuristic description
of the dynamics of Γγ acting on X. If we think of u as an operator
which moves the points of X as φ does, then UCQ{X - Y) C Aγ is a
collection of operators which will move all the points of X - Y as φ
does. This rough idea is correct and stated precisely in the following
fashion.
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COROLLARY 5.5. Let x be a point of X. Then the orbit of x under
Tγ is

ΓY x = {φi{χ)\j e Z, λ-(x) <j< λ+(x)}.

Proof. The containment of Γy x in the set above is immediate from
Theorem 5.4.

We suppose that j e Z and λ~{x) < j < λ+(x). We wish to exhibit
a unitary w in AY which, as an element of Γy, carries x to φj{x).
First, let us consider the case j > 0. By definition, there is a positive
integer n such that AJ(JT) > j . Let 3* be the partition of X so that
&(&>) = AnΠ C(X). Let E be the unique element of & containing x.
Since λ+ € &{&>), λ+(E) = λ+(x) > j . As in the proof of Theorem 5.4,
this implies that F = φ~j(E) is in & and that w = XEU~J + XFUJ +
(1 - XE - XF) is a unitary in An c Ay. This unitary corresponds to
Ά = -JXE + JXF in Γy, and η x = ^"^ ( x )(x) = ̂ 7 (x), as desired.

The case j < 0 is similar. D

COROLLARY 5.6. Let Y be a non-empty closed subset ofX. The C*-
algebra Ay is simple if and only ifYΠ φj(Y) is empty for all j Φ 0;
that is, Y meets each φ-orbit at most once.

Proof Let us first suppose that there is a point x in Y Π φJ(Y), for
some j Φ 0. Without loss of generality, we may assume that j < 0.
Then one may easily compute that λ+(x) < 0 and λ~(x) > 1 - j .
Then Γy x is finite, by Theorem 5.5, and therefore closed. By 1.2.4
of Stratila-Voiculescu, there is a bijective correspondence between the
closed Γy-invariant subsets of X and ideals in AY, and so AY is not
simple.

As for the converse, let x be any point of X. The condition that Y
meet each 0>-orbit at most once guarantees that either X+(x) = +oo or
λ~(x) = -oo. Therefore, Γy x contains an entire ^-half-orbit and is
therefore dense in X by our minimality hypothesis on φ. From this
we conclude that there are no non-trivial closed Γy-invariant subsets
of X, so again by 1.2.4 of [15], AY is simple. D

REMARK. Corollary 5.5 and 1.2.4 of Stratila-Voiculescu together will
yield a complete description of the ideal structure of AY in specific
cases. For example, if y is some fixed point in X, j is some positive
integer and we let Y = {y, φj(y)}, then there is a unique non-trivial
ideal J in AY and the quotient AY/<y is *-isomorphic to Mj.
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By a probability measure on X, we mean a normalized, finite, pos-
itive, regular Borel measure on X. A state on an ordered group G,
with order unit g, is a group homomorphism p: G —> R such that
p(G+) c [0, oc) and p(g) = 1.

COROLLARY 5.7. Lei Y be a non-empty closed subset ofX such that
Y n φj(Y) is empty for all j Φ 0. Then there is a bijective correspon-
dence between each of the following:

(i) φ-invariant probability measures on X,
(ii) tracial states on C(X) xφ Z,

(iii) states on K0(C(X) xφ Z),
(iv) Γγ-invariant probability measures on X,
(v) tracial states on Aγt

(vi) states on KO(AY).

Proof. The correspondence between (i) and (ii) is given by 9.6 of
Zeller-Meyer [18]. In a similar fashion, 1.3.2 of Stratila and Voiculescu
shows the correspondence between (iv) and (v). Since Y meets each
φΌtbit at most once, Aγ is simple and in this case the correspondence
between (v) and (vi) was shown by Blackadar (see p. 58 of [2]).

We sketch a proof of the correspondence between (i) and (iii). If
p is a state on KQ(C(X) xφ Z), then p o (z2)* is a state on C(X,Z)
which arises from a probability measure on X. Since p o (/2)* kills
Im(id - φ*), this measure is invariant on the clopen subsets of X and
therefore on all Borel subsets as well.

We now examine the correspondence between (i) and (iv). It is
clear from the results above that each ^-invariant measure is also Γ-
invariant. To prove the result, it suffices to show that each Γ-invariant
measure, μ, is also ^-invariant.

To begin, we wish to show that μ(φJ(Y)) = 0, for all j . Fix j > 1.
It is easy to compute λ+\φJ(Y) = +oo. Therefore, by Corollary 5.5
and a simple argument using the compactness of Y, for each i > j
there is an element of Γy which carries φj(Y) to φι(Y). We conclude
that the sets φι(Y) are pairwise disjoint (by hypothesis) and all have
the same //-measure (by the Γy-invariance of μ). Since μ is finite,
μ(φJ(Y)) = 0. The case j < 0 is similar.

Now we let Z be an arbitrary Borel subset of X and we wish to
show that μ(Z) = μ(φ(Z)). Let ε be positive. Since μ is regular, we
may find a clopen set Y' containing Y with μ(Yf) < ε and such that
μ(φ(Y')) < ε. Our results imply that there is an element η of Γy such



346 IAN F. PUTNAM

that η (Z - Y') = φ(Z - Y'). So we have

\μ(Z) - /ι(^(Z))| < |/ι(Z - TO - μ(φ(Z - 7')

Since ε was arbitrary, the conclusion follows. D

REMARK. We may now conclude the remark after Theorem 4.4 by
pointing out the following example. Suppose that Y is two points. We
see from Corollary 5.5 that AY is simple if and only if these points lie
in distinct orbits. The isomorphism class of Aγ> and also the order
structure on its K0-group, depend on more than Y as a topological
space.

6. Embedding C(X) xφ Z into an AF-algebra. The technique of ap-
proximation which we have used was first developed by Versik in [16]
and [17] to obtain embeddings of certain algebras into AF-algebras. In
particular, the results of [16] imply that our C*-algebras, C{X) xφ Z,
may be embedded into AF-algebras. Moreover, although this is not
mentioned in [16], the embedding induces an order isomorphism at
the level of KQ. (This is an improvement on the result of Pimsner
[8] which also shows that C(X) xφ Z may be embedded into an AF-
algebra. Pimsner treats a much more general situation and his tech-
nique, in our case, will produce an AF-algebra which is much too
large.)

We will construct the embedding of [16] here. Our technique is
basically the same as Versik's, but we will show that the embedding
induces an order at the level of K$.

Fix a point y in X. Choose a decreasing sequence of clopen sets
{Yn}nez whose intersection is {y}. Also choose an increasing sequence
of partitions {^n}nez whose union generates the topology on X.

For each integer n > 0, we construct a finite dimensional C*-algebra
An. We begin with Ao = C and, assuming we have a clopen set Z π ,
a partition ^ and An = A(Zn,&>'n), we define An+X as follows. Let
&>% be the partition of X so that Φi&H) = C(X) n An. Choose Z π + 1

a clopen subset of X containing {y} such that Z r t + i c Yn+\ and, for
7 = 0 , 1 , . . . , 2Π + 1, the sets φJ(Zn+\) are pairwise disjoint and each is
contained in a single element of &%. Then let ^ J + 1 = &>% V ̂ Λ + 1 V
{ZnfX - Zn} and let An+Ϊ = A(Zn+Ϊ90*n+ι).

From Lemma 3.2, An c An+χ for all n and \JAn is dense in A{yy.

Fix n for the moment and let {e\j]\l < k < K, 1 < j < Jk} be the
system of matrix units for An as in 3.2. (Of course, these parameters
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all depend on n, but we will suppress this in the notation.) Define the
unitary vn G An by

i = 2

The basic properties of vn are summarized in the following lemma.
The proof is straightforward so we omit it.

LEMMA 6.1. The unitary operator vn G An satisfies

(i) vnXx-zn = uχX-Zn,
(ii) vnχZnv* = uχzu* = χφ(Zn),

(iii) (/*/ G C(X) Π ̂  am/ / is constant on Zn, then vnfv* — φ(f).

As a consequence we also obtain the following.

LEMMA 6.2. /// e C(X)nAn, then vn+{fv*+l = φ(f).

Proof. First, An c An+\ so that / G C(X) Π ^ Λ + i . Recall from our
construction of the sets Zn that Zn+\ is contained in a single element
of ^J ; , where ^ ( ^ ) = C(ΛΓ) Π ^tπ. This implies that every function
in C(X) Π An is constant on Zn+\. The result follows from part (iii)
of Lemma 6.1. D

We now define a unitary wn G An+\, for each integer n > 1. Con-
sider v n + i ^ G Λrt+i. Using the fact that Zn c Z r t +Ί and repeated use
of (i) and (ii) of 6.1, we obtain

X X - φ ( Z n ) v n + \ K = v n V

Since An+Ϊ is a finite dimensional C*-algebra, we may apply a simple
spectral argument to show that there is a unitary z G An+ι such that

z2" =

zXλ-φ(Zn) = XX-φ{Zn)
z = Z

Z and

Define
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Since the sets φj(zn) are pairwise disjoint for j = 1,..., 2n, we have

Let Y = X - (p(ZΛ) U U p2"(ZΛ)). We also have

XγW« = Wnχγ = *y.

LEMMA 6.3. \\wnvn+ιw* -vn\\ < πl~n.

Proof. We shall actually show that \\vnwnv*+ι —wn\\ < π2~n, from
which the conclusion follows. The proof makes repeated use of Lem-
ma 6.1 (i) and (ii).

Each χφj(zn) commutes with vnwnv*+ι - wn, for j = 1,..., 2", and
so does Xy. Therefore, it suffices for us to show that

||(t;Λtι;Λt; + 1 -wn)χE\\ < πl~n,

for E = φj(Zn) and for E =Y. First of all, for j = 1, we have

\\(υnwnv;+ι -wn)χ9{Zn)\\ = \\VnWnXznv*n+i-1Λ

Secondly, for each j = 2,. . . , 2", let Z = φJ(Zn) and ̂  = φJ-ι(Zn),

VnWnV*n+χχZ = VnWnXA'U* = VnχA,U
j~2 Z2

and

so then we have

Finally, we have

\\(vnwnυ*+ι -wn)χγ\\ = \\υnwnχφ-nγ)U* - χγ\\

This completes the proof. •

LEMMA 6.4. For all n>2,wn commutes with C(X) Π An-\.

Proof. We observe that since wn commutes with XφJ(zn)> fc>Γ J =
0,..., 2", and because χywn = χγ9 we may write

7=0

where Y is as before.
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It is clear that χγ commutes with all of C{X). Since Zn was chosen
so that each set φi{Zn) is contained in a single element of ^ " . p each
Xφj(zn)WnXφj(zn) commutes with C(X) Π An. D

For each positive integer n, we define an:A{yy -> A{yy by an =

LEMMA 6.5. (i) For all f G C(X), limΛ an(f) exists.
(ii) limπα r t_i(ί;w) exists.

Proof. For both parts we will show that the sequences in question
are Cauchy.

(i) Let ε > 0 be arbitrary. There is a positive integer m and a
function g in C(X) Π Am such that \\f - g\\ < ε. Then for all n >
m+ \ywn commutes with g, by Lemma 6.4. So, for all l,k > m, we
have ak(g) = ai(g) and

< \\«k(f) - «k(g)\\ + \\αk(g) - α

< ε + 0 + ε = 2ε.

This completes the proof of part (i).

(ii) Follows immediately from the following inequality

\\αn-ι(υn) -αn(υn+ι)\\ = \\vn-wnυn+ιw*\\ < π2~n,

by Lemma 6.3. α

For all / € C(X), we define α(/) = l im Λ α Λ (/) e A{yy and we
define the unitary v = limΛ αn-\{vn) G 4̂{̂ >.

LEMMA 6.6. For all f e C(X), υa(f)υ* = a(φ(f)).

Proof. It suffices to show that, for any integer m and any / G C(X)Π
Am, the result is true.

va(f)v* = \i

By Lemma 6.2, if n > m + 1, then υnfv* = ^(/) and so the limit is
just a(φ(f)) as desired. D
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THEOREM 6.7 (Versik). Let y be any point of X. There is a unital
embedding

ά:C(X) xφ Z—• A{yy,

such that ά*: K0(C(X) xφ Z) -> K0(A{yy) is an isomorphism of ordered
groups.

Proof The embedding is defined by ά(f) = a(f) for all / e C(X)
and ά(u) = v. This map is injective because C(X) xφ Z is simple.

We now wish to show that ά* is an order isomorphism. Recall our
earlier commutative diagram

C(X)

A{y} —+ C(X) Xφ Z

We add to this
C(X)

A{y} -7"

We note that each α n : C(X) —> A{yy is unitarily equivalent to i\ and
so (<*«)* = (/i)*. Then, since α = l imα n and because of the homo-
topy invariance of ^-theory, we have that α* = (z'i)*. We obtain the
following commutative diagram.

K0(C(X))

(»ι). / Id':). \α.=(/i).

, z)
{a)*

Since /* is an order isomorphism (Theorem 4.1) and since

as noted in §4, routine arguments then show that (ά)* = (Z*)"1 is an
order isomoφhism. D

REMARK. Unlike our embeddings A{yy into C(X) xφ Z, the image
of C(X) under a is not a Cartan subalgebra or "standard diagonal"
(as in Stratila-Voiculescu). In fact this situation cannot be improved
upon. A result of Archbold and Kumjian [1] states that if C is a
Cartan subalgebra of an AF-algebra A, and B is any C*-algebra such
that C c B c A, then B is AF. In our situation, C(X) xφ Z is certainly
not AF.
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7. Further examples and concluding remarks. We conclude by pre-
senting some open problems, some related results and some specific
examples as illustrations.

Our examples all arise from interval exchanges as in §2, and we use
the same terminology and notation as there.

EXAMPLE 1. Let θ be an irrational number between 0 and 1. Let
ψx be the homeomorphism induced from the following data: r = 2,
x0 = O,JCI = 1 - Θ,X2 = 1 and π = (1 2) € S^ This example is
closely linked with irrational rotation, Rθ, on the circle Sι. (In fact,
as measure preserving transformations, they are the same.) It is also
easy to see that there is a continuous surjection q:X —• Sι such that
qo φ = Rθ o q. This implies that there is an embedding of Aθ, the
irrational rotation C*-algebra (see Rieίfel [9]), into C(X)xφ Z. Indeed,
this crossed product C*-algebra was constructed by Cuntz in 2.5 of
[5] for the purpose of containing Aθ. We remark that if one follows
this embedding by that of Theorem 6.7, one obtains the Pimsner-
Voiculescu embedding of Aθ into an AF-algebra [9]. In this case,
ψ\ is the restriction of a Denjoy homeomorphism of the circle (φ,
with parameters p{φ) = θ and Q{φ) = {R%(0)\n G Z}) to its unique
minimal Cantor set. (See Putnam, Schmidt and Skau [12] for details
and notation.)

EXAMPLE 2. Let θ and γ be irrational numbers with 0 <γ < 1-0 <
1, and such that {1, θ, γ} is linearly independent over the rational num-
bers. Let ψ2 be the homeomorphism of X induced by the following
data: r = 3,x0 = 0,X\ = y,xi = 1 - θ,x3 = 1 and π = (1 2 3) e S3.
Notice that we obtain the same transformation of [0,1) as in Example
1, but we have built a "different" Cantor set. The homeomorphism
ψi is also the restriction of a Denjoy homeomorphism of the circle
(φ, with parameters ρ{φ) = θ and Q(φ) = {R%(0),R%{γ)\n e Z}) to
its unique minimal Cantor set. The condition of linear independence
over the rationals implies that the hypotheses of Theorem 2.1 are sat-
isfied (less will do).

EXAMPLE 3. Let θ,γ,r,x0,X\,X2,Xi be as in Example 2. Let π =
(1 3) e S3. Let (pi be the homeomorphism obtained from this data.
Again this satisfies the conditions of 2.1.

It is clear from the definition of crossed product C*-algebra that
if φ and ψ are conjugate, or if φ and ψ~x are conjugate, then
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C(X) Xφ Z and C(X) xψ Z are *-isomorphic. It has been conjec-
tured by K. Schmidt, C. Skau and myself that, for minimal homeo-
morphisms of the Cantor set, the converse is also true.

The homeomorphisms φ2 and φ?> as described above are not conju-
gate. However, from Theorem 2.1 (and a simple argument regarding
the positive cone) we have that

K0(C(X) xφ2 Z) ~ Z + 0Z + yZ ~ K0(C(X) xφ, Z)

where the isomorphisms are order isomorphisms, and the order struc-
ture on Z + ΘZ + γZ is that inherited from R. I do not know whether
the C*-algebras themselves are *-isomorρhic.

Let us consider Example 2 for a moment. As in 1, there is a surjec-
tion q: X -• Sι such that q o φ2 = Rθ o q, while it can be shown that
there is no q' such that q' o φ2 = Rγ o qf. For this reason, Schmidt,
Skau and I conjectured that while there was an embedding of A$ into
C(X) Xφ2 Z, there was no embedding of Aγ. However, if we let A
and B be the AF-algebras whose ΛTo-groups are Z + ΘZ + γZ and
Z + γZ, respectively, (as ordered groups) then Aγ may be embedded
into B (Pimsner-Voiculescu), B may be embedded into A and A is
*-isomorphic to a C*-subalgebra of C(X) xψ2 Z (by Theorem 4.1).
Thus there is indeed an embedding of Aγ into C{X) xψ2 Z. However,
since this map goes through AF-algebras, it induces the zero map at
the level of K\. The following question seems reasonable:

If there is an embedding p: Aa —> C(X) xψ2 Z such that p*: K\ (Aa) —>
K\(C(X) xψ2 Z) is surjective, then a = θ or 1 - θ.

We also note that by similar arguments to those above there are
plenty of *-homomorphisms between C(X) xφi Z and C{X) xφ3 Z
which will all induce the zero map at the level of K\ but be order
isomorphisms on KQ.
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