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RELATIVE DIMENSION, TOWERS OF PROJECTIONS
AND COMMUTING SQUARES OF SUBFACTORS
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Dedicated to the memory of Henry Dye

We study the set of projections of the type II i factor M which
expected on the subfactor N C M are scalar multiples of the identity.
The set of all these scalars, denoted Λ(M, N), is an invariant for the
inclusion N c M. We compute Λ(Λf, N) when [M : N]<4, when TV
is locally trivial and some parts of Λ(Λf, N) when [M : N] > 4. We
prove that projections expected on the same scalar in N are conjugate
by a unitary element in N. We apply all these to the commuting
square problem.

Introduction. In a type IIi factor a projection may have any di-
mension between 0 and 1. This corresponds to the fact that Hubert
modules H over a type II i factor M may have any positive number
as (relative) dimension dim^/ H [9].

There has been more and more evidence in the past ten years or so
that it is much more useful to regard a type II i factor M together with
its subalgebras N and more generally to consider pairs of arbitrary
algebras M, N. The corresponding appropriate notion of module is then
the one introduced by Connes in [2], the N - M Hubert bimodules
(or correspondences).

If N c M is a subfactor of the type II i factor M then V. Jones had
the idea to consider the number

dim AT H/ dimM H (= dim# H ά\vcίM> H)

as an invariant up the conjugacy by automorphisms of M for the
subfactor iV (this number is independent of H by [9]). Jones called
this number the index of TV in M denoting it [M : N]. One of his
remarkable results in [6] is that [M : N] can only take the values
{4cos2 π/(n + 2)\n > 0} u [4, oo].

The number [M : N] can also be interpreted in a more intrinsic way:
it is the dimension of the smallest nonzero projection in M which
expected on TV is a scalar multiple of the identity (by [6] and [12]).
This is somehow related to the fact that [M : N] can be viewed as

the minimal possible dimension dim^jv H ά= dim^r H dim^ H ([14])
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of an N - M Hubert bimodule which is the restriction of an M - M
bimodule.

The conditional expectation Eχ(e) of a projection e e M on the
subfactor N may be regarded as the dimension of the projection e
relative to the subfactor N. The interesting case is when Eχ(e) is a
scalar multiple of the identity. In this paper we begin the study of
the geometry of such projections. The set A(M, N) of nonzero scalars
appearing this way is of course an invariant for N c M. This invariant
is in fact closely related to the index [M : N]. Our results here deal
with the description of Λ(Af, N) and with the conjugacy problem by
unitary elements in N of the projections which have the same (scalar)
relative dimension over N.

To state our main result denote by Pn(x) the Jones' polynomials de-
fined recursively by P-\ = 1,PQ = 1, Pn+\(x) = Pn(x)-xPn-\(x), n >
0. By [6] these polynomials have the property that

P*((4cos2 π/(n + 2))"1) > 0, 0 < k < w• - 1,

and Pn((4cos2π/(n + 2))~ι) = 0. Moreover Pk(ε) > 0 for all k > 0
and e < 1/4.

THEOREM. Let N c M be a subfactor of finite index.

(i) If[M : N] = 4 cos2 π/(n + 2) for some n > 1 then Λ(Aff TV) =
{0} U {Pk-d[M : N]-*)/[M : N]Pk([M : N}~l)\0 <k<n-\}

(ii) If[M :N]>4andt< 1/2 is so that t(l-t) = [M : N]~ι then

A(M, N) n (0, ί) = {Pk-X{[M : NΓι)/[M : N]Pk([M : N]~ι)\k > 0}.

Moreover, if [M : N] < 4 (respectively [M : N] > 4) and f\, fι are
projections in M with Eχ(f\) = E^fi) = α l , where a e A(M,N)
(respectively a € Λ(Af, iV) n (0, ί)) ίΛen ίΛ^re ^xwr5 α unitary element
ueN such that ufu* = / 2 .

The proof of this theorem has two parts: existence of values in
A(M, N) and restrictions on the values in Λ(Af, N). To prove the re-
striction part we need to introduce a generalization of Jones' tower
of projections. This leads us to consider a new class of algebras, gen-
eralizing the classical Hecke algebras. We compute some necessary
conditions under which these algebras have symmetric nondegenerate
representations. These conditions impose restrictions on the existence
of generalized towers of projections, in particular on the values in
A(M, N).
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In the case [M : N] > 4 the information given by the above theorem
is incomplete, yet for a special class of subfactors we have a complete
characterization of Λ(Af, N). Namely Jones pointed out in [6] that
if for some projection f e M, 0 < t = τ(f) < 1/2, there is an
isomorphism θ : fMf —• (1 - f)M{\ - f) and if one denotes N =
{x Θ θ{x) I x e fMf}, then [M : N] = Γι + (1 - t)~ι > 4. We
call such a subfactor a locally trivial subfactor of M. Then we prove,
independently of the preceding theorem, that if N is a locally trivial
subfactor of M and a € A(M, N) with a < 1/2 then a < t and the
projection / e N1 n M is the unique one for which EN(f) = t\M.
Together with the above theorem this completes the computation of
Λ(Af, N) in this case.

A major interest in understanding the set Λ(A/, TV) comes from the
orthogonalization problem for subalgebras of M or, in Jones' termi-
nology, the problem of commuting squares of subalgebras, which is
as follows: Let N c M be a pair of finite von Neumann algebras.
The orthogonalization problem is to find subalgebras NQ C M for
which ENENQ = EN0EN. If this relation holds true then we say that
jVi = iVo D N, NQ, N, M form a commuting square of algebras. This
relation between two subalgebras NQ, N C M has been first considered
in [15]. It is important in connection with index problems for sub-
factors, a fact that has been extensively emphasized in [12]. It turns
out that if TV!, No, iV are as before then Λ(Af, N) D A(N0, Nx). Thus,
obstructions on Λ(Λf, N) give obstructions on iV0 As an illustration
of this observation we obtain by the preceding theorems a complete
solution to the orthogonalization problem for locally trivial subfactors.

1. The set Λ(M, iV) and the orthogonalization problem. Let M be
a finite von Neumann algebra with a normal, finite, faithful trace
τ , τ ( l ) = l . Denote by | |X | | 2 = T(X*X) 1/ 2, X e M, and by L2(M,τ) the
completion of M in this norm.

Let N c M be a von Neumann subalgebra of M always assumed to
have the same identity as M. Then the closure of N in L2(M, τ) can
be identified with L2(N, τ | TV). Let e^ be the orthogonal projection
of L2(M, τ) onto L2(N, η#) C L2(M, τ). Let EN be the restriction of
ex to M (when regarded as a vector subspace of L2(M, τ)). Then EN
takes values in N c L2(N, τ) c L2(My τ) and in fact Ejq is the unique
τ-preserving conditional expectation of M onto N.

1.1. DEFINITION. We denote A(M,N) = {a e R | there exists a
projection foeM such that EN(f0) = a l # } , the set of all possible
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dimensions of projections which expected on N are scalar multiples
of the identity.

1.2. EXAMPLE. If N = Cl then Λ(Af, N) is just the range of the
trace τ on the set of projections 9°{M) of M. In particular if M is a
type II! factor and N = C then Λ(AΓ, N) = [0,1].

Since a finite factor has a unique trace and any of its automorphisms
preserve the trace, we have:

1.3. PROPOSITION. IfM is a finite factor and N c M is a von Neu-
mann subalgebra then A(M, N) is an invariant for N up to conjugacy
by automorphisms ofM.

The first invariant to consider for a subfactor N c M is the relative
commutant N' Π M. This invariant is in fact related to Λ(Af, N):

1.4. PROPOSITION. IfN c M are factors then

A(M,N) Dτ(^(NfnM)).

Proof If e e 3d(N' Π M) then for any y e N we have

yEN(e) = EN{ye) = EN(ey) = EN(e)y

so that EN{e) eNΉN = C. Thus EN{e) = a\ = τ(e)l. D

Jones' index [M : N] of the subfactor N c M is also related to
A(M, N). Indeed, with the convention oo"1 = 0, we have by [12]:

1.5. PROPOSITION. [M : N]~ι = inf(Λ(M, N) \ {0}).

The computation of Λ(Λf, N) is closely related to an important
problem about subalgebras of M. Namely, we consider subalgebras
N,NQCM for which the conditional expectations Eχ,ENo commute.

1.6. DEFINITION. Let N\, No, N c M be von Neumann
subalgebras, where N\ = No Γ) N. If Eχ0EN — ENENo we say that
N\, NQ, N, M form a commuting square of algebras.

This relation between two algebras NQ, N was introduced in [15],
then in [12] it was shown to be related to index problems for subfac-
tors. More precisely it is shown there that to construct subfactors iV
of the hyperfinite factor R, with trivial relative commutant and given
finite index, it is sufficient to find certain commuting squares of finite
dimensional algebras. Moreover it is shown in [13] that to find ob-
structions for the values [R : N] it is sufficient to show that there are
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finite dimensional subalgebras Bk c R such that E^Eβk = EBkEN and
Bk I M. Other comments on commuting squares can be found in [5].

Commuting squares of algebras and the invariant Λ are related by
the following:

1.7. PROPOSITION. If M, TV, TV0, N\ is a commuting square of
algebras as in 1.6 then Λ(TV0, N\) C Λ(Λf, TV). If in addition all these
algebras are factors then [M : TV] > [TV0 : N\],

Proof Let e e^(TV0), ENι(e) = αl. Then αl = ENι(e) = ENENo(e)
= EN(e). Thus a e Λ(Af : TV). The second part follows now by 1.5. D

If TV C M are given, then the problem to find TV0 c M so that
EMQEN = EMENQ (= ENOΠN) will be called the orthogonalization (or
commuting square) problem. The preceding proposition shows on the
one hand that if N c M are given and we can find a commuting
square N\, NQ, N, M for which we can compute Λ(TV0, Λfi) then we
get information about Λ(Af, iV). On the other hand it shows that if
Λ(Af, ΛΓ) is known then we get restrictions on the existence of NQ.

In the case N c Af are Type IIi factors with finite index [M : TV],
there are some canonical subalgebras of M which form commuting
squares with TV. Namely Jones proved in [6] that the algebra M\ gen-
erated by M and e\ — e^ in &(L2(M, τ)) is a Type IIi factor with
the property M c M\, [Mj : M] = [Λf : TV], Iterating this construc-
tion, called the basic construction, one gets recursively an increasing
sequence of factors M_x = TV c M = Mo c Mx c M2 c with pro-
jections en e Mn so that [Mn : Λ/w_!] = [M : TV], enxen = EMn_2(x)en9

x e Mn-XiEMn_χen) = [Afπ : Mn-χ]-1, n > 1 ([6]). The sequence
{Mn}n>\ is called the Jones' tower of factors and {en}n>\ the Jones'
tower of projections associated with TV c M.

Moreover it is shown in [6] that there exists a subfactor M_2 c
M_! = TV c M = Mo and a projection e in Λf so that M arises
as the basic construction for M_2 C Af_i with ^ satisfying exe =
EM-2(

χ)e> x ^ ^ Furthermore, the subalgebra M_2 c Λf_i and the
projection e e M are unique up to conjugacy by a unitary element in
Λ/_i = TV by [12]. Iterating this construction, called the downward
basic construction, we get a decreasing sequence of factors M_3 c
M_2 C M_i = TV c MQ = M and projections e_3 e TI/.3, ^_2 €
TV/_2, β-i € Λ/_i, 0̂ = ^ € Af = MQ, such that

M_^] = [M : TV], EM^x{e^k) = [M_*+1 : M . ^ Γ 1 ,

e_kxe_k = £M_,_2(x)^_^, x G M_^_j, fc > 0.



186 SORINPOPA

The sequence {M_k}k>0 is usually called the tunnel of factors and
{e_k} the tunnel of projections associated with N c M.

Let B\ l

k > 1, and Ro = [jB°_k, * - i = U ^ l ί BY t 1 2 ! *_*> 5 I ^ a r e unique
up to conjugacy by a unitary element in N = M_χ. However the
inclusion of Ro c M is not unique! Yet by Jones' results the inclusion
i?_i c i?o only depends on the index [M : TV] and it is called Jones
pair of factors corresponding to the index [M : N], The next result is
implicit in [6] and appears explicitly in [12].

1.8. PROPOSITION. EχEBo = EBo EN = EB-\ and ER0EN =
k k — k

ENER0 = ER_r

2. Generalized Hecke algebras and restrictions on Λ(AΓ, N). The
considerations in this section are motivated by the following observa-
tion.

2.1. PROPOSITION. Let N c M be a pair of finite factors with finite
index and λ — [M : N]~ι. Let {Mk}k>x be the associated tower of fac-
tors with corresponding tower of projections {ek}k>\. Let a e Λ(Af, N)
and eo e M be a projection with £V(^o) = αl . Then eo,e\fe2,..- satisfy
the axioms:

a ifk = 0,
i f k > Q

(ii) eiβj^ejei, if \i - j\ > 2.

Proof Trivial by the definition.

2.2. DEFINITION. A sequence of self-adjoint projections {ek}k>o
acting on a Hubert space H is called a tower of projections if there are
some scalars {λk}k>0 such that

(i) The spectrum of ek+ιekek+ι on ek+\H is contained in {λk> 1}.
( i i ) βiβj = ejβi if \i-j\> 2.

(iii) A trace τ on the algebra generated by {ek}k>o is called a
Markov trace of the tower if τ(wιw2) = τ(wι)τ(w2) for any words
w{ in eo,e\,... , en and w2 in emt em+x,... ,ep, where m > n.

2.3. LEMMA. The relation (i) in 2.2 is equivalent to each of the
following'.

(i') ek+\*k*k+\ =CkΛek+ι +λk(ek+x -ekΛek+ι).
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(i") {λkek+ι-ek+ϊekek+ι)
2 = {λk-\){λkek+x-ek+xekek+x), in other

words λkek+\ - ek+xekek+x is a scalar multiple of a projection.

Proof Trivial by the definition.

As one can easily see the relations (i), (ii) in 2.2 generalize the
ones satisfied by the projections obtained from the generators in the
semisimple representations of Hecke algebras [7]. This suggests that
one should consider suitable more general algebras and study condi-
tions under which they have symmetric representations or equivalently
conditions under which there exist corresponding towers of projections
on Hubert space. This leads us to introduce

2.4. DEFINITION. Let qx,..., qn e C. We denote by
Hn+\{q\,qi,... ,qn) the complex algebra with identity and generators
ί i , f t M . ,gn satisfying the relations

(1) gl = (Qk-l)gk + Qk>n>k>l.

(2) ( f t + i & a + i + gk+\gk + Skgk+x + gk+\ +gk + I ) 2 :

(3) gigj = gjgi if | ί - 7*| > 2 .

We call this algebra the generalized Hecke algebra with generators
(g\f >gn) and scalars (qx,... , qn) (the order is of course important
as this algebra is not symmetric in g\f... ,gn\).

2.5. PROPOSITION. Suppose qk Φ - 1 , n > k > 1 and let λk =

tffc+i/(l+^)(l +gk+ι) ande'k = l+gk/l + qk. Then we have

(a) e'k = e£ and the relation 2.4, (2) is equivalent to

(20 (4+i44+i -44+i) 2 = (1 -h)(eUΛ4+ι
(b) Consider the relation

(2") Λ+i&Λ+i = gkgk+igk> n - 1 > k > 1.

Then (2") implies the relation (2) and if H'n+ι(qx,q2>... ,qn) is the
algebra defined by the generators gXf... ,gn satisfying (1), (2"), (3)
then it follows that qx = q2 = •• = qn- Moreover if q denotes this
common scalar then H'n+ι(q,..., q) coincides with the classical Hecke
algebra with n generators Hn+X(q).

Proof The first part follows by direct computation. The second

part by the identity glgk+xgk = gkgk+ιgkgk+x = gk+igkgl+v w h i c h
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follows by (2"). Indeed, this equality yields together with (1) and
(2") : qkgk+xgk = qk+\gk+\gk, thus qk = qk+x. D

This proposition shows that whenever Hn+\(q\9... ,qn) is repre-
sented on a Hubert space, the elements 1 + gkj\ + qk become pro-
jections. We call a representation on a Hubert space symmetric if
1 + gk/\ + qk go into self adjoint projections. 2.5 above shows that
if ek is the image of 1 + gk/l + qk under a symmetric representa-
tion then ek is a tower of projections as in 2.2 with scaίars λk =
Qk+\li\ + Qk)(\ + 8k+\)- τ h u s t 0 fincl conditions for which such rep-
resentations exist is equivalent to finding conditions for which gener-
alized towers of projections exist. To do this we need a notation:

2.6. DEFINITION. TO any numbers {λk}k>0 we associate recursively
the numbers P_i = 1, Po = 1, Pι(λ0) = 1 - λ0,

— λkPk-iίλo,... Λk-τ)> k > \ .

Note that \ΐ λ$ = λ\ = = λn-\ = λ then Pn(λo, ... , λπ_i) coincides
with the Jones' polynomial P«(A)

The next result is a generalization of WenzΓs formula in [18]:

2.7. THEOREM. Let {ek}k>0 be a tower of projections with cor-

responding scalars {λk}k>0 and let sk = 1 - eo V V ek, k > 0. If

Pk = Pk(λQ,... ,λk-\) Φ Ofor allk<n then

1°. sk = sk_x - T^ fy-iefcty-i, for all 0<k<n.

2°. (snen+χsn)
2 = "

Proof We prove this formula by induction over k. Suppose it is

true up to some k< n. Since ek+x commutes with βo,e\,... ,ek_χ, by

induction and 2.3 we get:

Pk-ι-y-sk_xek Λ

p

Now since s^-i = s^ and s^e^ = 0,s^e^ Λ ̂ +i) = 0 and we get
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Thus (Pk/Pjc+ι)skek+\sk is a projection, which implies that

is a projection under s^ as well. Moreover ek+\Sk+ιek+ι = 0 so that

4 + i ^ + i = ° s o t h a t sk+ι ^ 4 + r B u t clearly ty+i^+i = ty+i bY
definitions, so that Sk+\ < sk+ι as well. Thus Sk+\ = sk+ι = sk -

This result immediately implies certain restrictions on the possible
values of the scalars {λk}k>o for which such a tower exists.

2.8. COROLLARY. Let {λk}k>o correspond to a tower of projections

(i) IfPk = Pk(λo,... ,λk-\) > 0, k < n, and snen+{ φ 0 then
Pn+X = PΛ + 1(A0,... \λn) > 0. IfPn+ι = 0 then snen+{ = 0, or equiva-
lently, sn+\ = sn.

(ii) If there is a Markov trace τ on the tower of projections {ek}k>o
andifPk φθ, k<n, then

τ{sn) = τ{sn-ι)Pn+χ{λ0,... ,λn-\> τ{en))IPn.

In particular τ(sn-\) Φ 0 and Pn > 0 imply

,Λi,... ,λn-ι,τ(en)) > 0.

Moreover ifτ(ek) = λk, k < n} then τ(sn) = Pn+\-

Proof If snen+ϊ Φ 0 then by 2.7, 2° we get Pn+\/Pn > 0 so that
Prt > 0 implies Pw +i > 0. If Pn+X = 0 but Pk > 0, A: < «, then
(5Λew+i5Λ)2 = 0 so that snen+\ = 0 . If τ is a Markov trace on {ek}k>o
and PkφO, k<n, then

p

= τ(sn.ι)Pn+ι(λo,... ,λn-u τ(en))/Pn. Π

Let us now prove some properties of the Jones' polynomials Pn(λ).
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2.9. LEMMA.

1°. Pn(λ)2-Pn-l(λ)Pn+i(λ)=λ(Pn-.1(λ)2-Pn-2(λ)Pn(λ)); n> 1.
2°. Pn(λ)2-Pn_ι(λ)Pn+ι(λ)=λ"+ι, n>0.
3°. 7/0 < λ < 1/4 αma? 0 < t < 1/2 is so that t(l - t) = λ then

Pn(λ) > Ofor every n > 1 and the sequence

) k>0

is increasing with initial term λ = XP-\/PQ and limit point t.
4°.

Pn(ε) > 0 for ε < (4cos2 π/(n + 2))~ι and

Pn{ε)<0 for {Acos2 πI{n + 2))-χ < ε < {4cos2π/(n + I))"1.

Moreover ifλ = (4 cos2 π/(n + 2))"1 then the finite sequence

n>ic>0

increases from λ to 1 and the finite sequence

ί PkW 1

[pk^mί,n>k>0

decreases from 1 to 0.

Proof. We have
P (2\2 P Λ ( 2 \ P Λ2\

= Pn{λ){Pn.x{λ)-λPn.2{λ)) - Pn_x{λ){Pn{λ)-kPn-άλ))

= λ(Pn.X(λ)2 - Pn-lWPnW).

This proves 1°, then 2° follows applying 1° recursively n times until
we get

Pn{λ)2 - Pn.x{λ)Pn+x{λ) = λn(Pi - P-XPx(λ)) = λ*+ι.

The first parts of 3° and 4° are proved in [6], 4.2.5. Since

P (}\ P * ί2λ > ) w + l

ΊΰJj) ' " W = Pn+l(λ)Pn(λ)

the rest of the statement follows by 2°. D
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2.10. LEMMA. Ifλ0 = α, λ\ = A2 = = λn = A, then

where Pk(λ) denotes the Jones' polynomials, 0 <k < n.

Proof Since P'k+χ (α, A) = Pk(λ)-aPk_ι(λ) is a linear combination of
Jones' polynomials it follows that P9

k, 1 < k < n, satisfy the recursive
relation P'k+χ = P^-λP^y Moreover, since P[ = 1 - α = Λ(^o)» ^ =

1 - a - A = P2(λo,λ\) the statement follows by induction. D

2.11. THEOREM. Let {ek}k>0 be a tower of projections with scalars
{λk}k>0 and with a Markov trace τ. Suppose AQ = τ(^o) = a,λk =

τ{ek) = A/or A: > 1. ΓΛen A G [0,1/4] u {(4cos2π/(π + 2))~1 |n > 1}
and a satisfies the condition:

(a)//A = (4cos2 π/(n+2))~ι for some n > 1 then a = Pk(λ) / Pk_x{λ)
for some 0 <k < n.

(b)//A< l/4andifθ<t< 1/2 is so that t(l-t)=λ then a > \-t

implies a = PkW/Pk-ιW for some k > 0.

If A > 1/4 then there exists n > 1 so that

(4cos2 π/(/ι + 3))" 1 < A < (4cosπ/(n + 2))" 1.

If we assume A ^ (4cos2 π/(n + 2))~ι then it follows that Pn(λ) > 0.
Considering the tower of projections {en}n>\ with scalars A = λ\ =
A2 = , it follows by 2.8 that JPΛ+i(A) > 0. On the other hand, since
A > (4cos2 π/(n + 3))" 1 it follows that Pn+\(λ) < 0, a contradiction.

Both in case (a) and in case (b) (when a > 1 — ί) it follows that
for some k > 0 we have Pk+ι(λ)/Pk{λ) < a < Pk(λ)/Pk-i(λ). If
a φ Pk(λ)/Pk^(λ) then Pk+ι(a,λ,... ,A) = Pk(λ) - aPk_λ{λ) > 0 so
that by 2.8 we get Pk+2(a,λ,... ,A) > 0, thus Pk+χ(λ) - aPk(λ) > 0,
which means that a < Pk+\{λ)/Pk{λ), a contradiction. D

We end this section by reformulating some of the previous results
in terms of representations of generalized Hecke algebras. More on
these algebras, including computation of indices for associated pairs
of subfactors, when a Markov trace is around and in the most simple
situations (e.g. under the condition 2.1 (i), (ii)), will be discussed in
a forthcoming paper.

2.13. PROPOSITION. 1°. If Hn+\(q\,... 9qn) admits a symmetric
representation then λk = qk+ι/(l +qk)(l + ^+1) satisfy the conditions
0 < λk < 1. Moreover if the representation admits a Markov trace τ
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then τ(ek) <Pk(λx,... ,λk)/Pk_x{λx,... ,λk_x) for all k > I for which
Pi > 0, when 0<i<k.

2°. If Hoo(qo,q\,...) admits a symmetric representation π with a
Markov trace τ and if qk = q for all k > 1 then the scalars a =
q/(ί + qo)(l + q), λ = q/(l + q)2 satisfy the conditions

(a) λ e [0,1/4] U {4cos2 π/(n + 2) | n > 1}

(b) ifλ = 4 c o s 2 π/(n + 2) then a = Pk(λ)/Pk-{(λ) for some 0<k<
n .

(c) ifλ < 1/4 and ίft < 1/2 is such that ί(l - t) = λ then a > 1 - t
implies a = Pk(λ)/Pk-ι(λ) for some k>0.

Proof Follows by 2.4, 2.5, 2.11. D

3. Restrictions on Λ(M, N) for locally trivial subfactors. For a
special class of subfactors we obtain further restrictions on A(M, N).

3.1. DEFINITION. Let M be a type Hi factor, / e M a projection
of M with 0 < τ(/) < 1/2. Suppose there exists an isomorphism
θ : fMf -> (1 - /)M(1 - / ) . Denote N = {x Θ 0(JC) | x G /M/}. TV
is then called a locally trivial subfactor of M.

3.2. THEOREM. Suppose N c M is a locally trivial subfactor ofM
like in 3.1. TjΓα G Λ(Λf, N), α < 1/2, then a < τ(/). Moreover iff0 is
a projection with £V(/o) = τ ( / ) l ^ ^ w /o = /•

Let us first observe that if y e fMf then EN{y) = t(y®θ(y))
and if y e (1 - /)M(1 - /) then EN(y) = (1 - ί ) ^ " 1 ^ ) © y). w h ere
^ = τ(/). Suppose /o G M is so that EN(f0) = αl with α = τ(/0) >
t = τ(/). Then /i = /o Λ (1 - /) ^ 0 and /! < 1 - / so that τ(/0)l =
^ ( / o ) > EN(f{) = (1 -t){θ-\fx)®fx) which implies τ(/0) > 1 - ί >
1/2 > τ(/o). This shows that we must have τ(/o) = τ(/) = ί.

To prove that we necessarily have /o = / we need first some con-
siderations.

Let f' = f-foΛf f" = support ((1 - /)/ 0 (l - /)). Then

= τ(/o) - τ(/o Λ /) = τ(/) - τ(/o Λ /) =
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We now show that θ(f0 Λ /) = 1 - / - /". Indeed by the formula
of EN(y) we get:

t\ = EN(f0) = EN(ffof + (1

/) + ( 1 - 0 0 -
Thus 0(/o Λ /) is orthogonal to s((l - /)/ 0 ( l - /)) = /", so that

0(/o Λ /) < 1 - / — /". To show the other inequality observe that:

EN(fo)= t(ffof®θ(ffof))

and since 1 — / — / / ; is orthogonal to (1 - /)/o(l — /) we get

Thus θ(ffof)(l -f-f") = 1 - / - / " which implies that 1 - / - / " is
under the spectral projection of θ(ffof) corresponding to [1, oo). But
this spectral projection is equal to 0(/oΛ/). Thus θ(foΛf) > 1 —/—/".

We now show that / 0 Λ / = / . This will end the proof because
together with τ(/0) = τ(f) it implies / 0 = /

To do this note that

Λ

= τ(fl(/o Λ /)) = τ( 1 - / - /") = (1 - 0 - τ(//;)

Thus t - τ(/') = f — (ί/1 — 0*(/ ;) s o t h a t τ(/ ;) = 0 which means
that τ(f - /oΛ/) = 0, thus / 0 Λ/ = / D

As one can see, the proof of 3.2 is elementary and uses no results
of [6] or [12]. It will be used here to give a complete characterization
of Λ(Af, N) and of the orthogonalization problem for locally trivial
subfactors N c M (see §6 below). We mention in this section only
a straightforward consequence of the above theorem. This result was
proved in [12] by using all the technical machinery developed there.
It is important in order to understand the representations of Jones'
tower of projections given in [12].

3.3. COROLLARY. Let N c M be a locally trivial subf actor like
in 3.1 and {̂ _̂ }̂ >0 C M the tunnel of projections associated to this
pair of factors like in §1. Then the projection f (e N' Π M) belongs
to the von Neumann algebra RQ generated by {e^k)k>^ Moreover if



194 SORINPOPA

then R-J = fRof, R-ι(l - f) = (1 -/)i?o(l - / )
and i?_i = {x θ 0(jt) | x G /i?o/}

First we show that R'_x Π i?o ^ C. (This part of the proof
is taken from [12].) We have ERo(f) e R'_{ Π i?o Moreover by the
uniqueness of eo € M up to conjugacy by unitary elements in M we
have that e0 = (l-t)p+tq+(t(l-t))ι/2(v+v*), where/? </, <? < 1-/
are projections with

ήf = 1 — / - 0(p) and t;*^ = p, w* = q. Indeed we clearly have
EN(eo) = ί(l - ί).liv s o that by [12] ô (the first projection in the
tunnel) is of this form.

Let λ = ί(l - 0 We have /^ 0/ = (1 - O P S O that λ(l - t) =
τ(^o/) = r(ERo(eof))^ = τ(eoERo(f)) and if ERo(f) would be a scalar
multiple of the identity then τ(eoERo(f)) = Λi, a contradiction. Thus

Now since [i?0 : i?-i] = τ(eo)"1 = ^ - 1 = 1/ί + 1/1 - ί it follows
that if /o E /?'_! Π i?0 with 0 < τ(/0) < 1/2 then τ(/0) > τ(/). Indeed
because otherwise we would have by [6]:

a contradiction.
Now since τ(/o) > τ(/) and since

EN(f0) = ENERo(fo) = ER
it follows by 3.2 that /o = / . The rest of the statement is now
trivial. D

3.4. COROLLARY. Let {e-k}k>o be the Jones' projections with scalar
λ and let Ro = {e-k)l>0, R-\ = {e-k}'k>v Vλ < ι/4 then R-ι is a

locally trivial sub factor ofR$.

4. Values in A(M, N) and unitary conjugacy. By Jones' results in
[6], if N c M has finite index and λ = [M : N]~ι then λ e A(M, N).
We show now how we can generate a whole sequence of values in
Λ(Af, N) starting from λ. In what follows we use the notation Mβ for
the ^-amplification of M by β > 0 (for the definition see e.g. [12]).
As usual M\ D M is the factor obtained by the basic construction for
NcM.
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4.1. PROPOSITION. 1°. If a e Λ(AΓ, N) then I -ae Λ(Af, N).
2°. If a G A(M,N), a φ 0, 1, then λ/a e A(M?,Ma) and

Proof If /o G M is such that EN(f0) = oΛ then Ma = f0Mf0 c
o = Mjα and /i = ct~ιfoe\fo G Mf is a projection (βi G A/j is

the projection with τ(e\) = λ,e\xe\ = E^{x)e\fx G M). Indeed we
have (/o^i/o)2 = α/o^i/o It follows that the trace of fx in foMxfo
is A/a and J?A/«(/I) = A/αl. Taking 1 - α instead of α completes the
proof. D

4.2. COROLLARY. IfPk(x), k>-\, denote the Jones'polynomials,
as usual and if Pk{[M : N]~ι) > 0 for 1 < k < n then Pk-X([M :
N]~ι)/[M : N]Pk([M : N]~ι) eΛ(M,N)forO<k< n.

Proof We prove this by induction. Suppose we proved that

Pk-λ{[M :N]-ι)/[M:N]Pk([M:NΓι)eA(M,N) for k < m.

Let a = Pm-ι([M : N]~l)/[M : N]Pm([M : N]~ι) and β = (1 - α ) " 1 .
Let Λ̂ ^ c M* be the β amplification of N c M and let Nx c Λ̂ ^
be a subfactor so that M^ be the extension of Nβ by N\. Let also
ô £ Λf̂  be the projection implementing the conditional expectation

of NP onto N{. Since [7V̂  :NX] = [M^ : Nβ] = [M : N] it follows by
the induction hypothesis that a G A(N^, N\). Let f\ G iV^ be so that
Effχ(fλ) = α l . By 4.1 it follows that A/1 - a e A((M^)ι-a

f (NP)ι~a).
But (Ml*)1-* = Af, (iV^)1-^ = N. Since

- α = Pm([M : 7V]-ι)/[M : 7V]Pm+i([M : TV]"1),

the result follows. D

To solve the conjugacy problem for the values a = λPn-\(λ)/Pn(λ)
we need to prove another formula for the projections /o G M for
which £V(/o) = αl .

4.3 LEMMA. Lei λ = [M : iV]~1,{Af/,}rt>i,{ert}/I>i be the Jones'
tower of factors and respectively projections associated with N c M as
in §1. LetO<k be so that λPi-ι(λ)/Pi(λ) > 0 for all i < k and let
a = λPk_ι(λ)/Pk(λ). Let foeM beaprojection such that EN(f0) = αl
(cf 4.2). If we denote pt = (1 - e{) Λ Λ (1 - e, ), Poj = /o Λ (1 - ^i) Λ

• Λ (1 — e, ) ίΛe« we Λαve:

(i)fo = λ-kPk_ι(λ)EM(po>k).
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(ii) pj e N'nMk, j < k, pok e pkMkpk and we have ENpk(p0Jc) =
[pkMkpk:Npk]-χl.

Proof. Since 1 - / 0, ex, e2,... satisfy the axioms of a generalized
tower of projections with scalars 1 - λPk_ι(λ)/Pk(λ),λ,λ>... it fol-
lows by 2.7 that pOtk = pQ>k_x - {Pk+\WβPkW)Po,k-\ekPo,k-\- Thus
EMk.XPo,k) = λPk+ι(λ)/Pk(λ)pOtk_ι and (i) follows now by induc-
tion. In particular this shows that £V(/?0 ^) is a scalar multiple of
the identity. Since clearly pk e Nf Π Mk and pk > pok it follows
that EjsfPk(pok) is also a scalar multiple of the identity and in fact
that ENpk(pQtk) = EN(p0>k)pkτ(pk)-{ = τ(pQ>k)τ(pk)-ιl. By 2.10 we
have τ(pOtk) = Pk{λ) - (1 - a)Pk_x{λ). Thus we get τ(pOfk)/τ(pk) =
(Pk(λ)2 -Pk+ι(λ)Pk-{(λ))/Pk(λ)2. On the other hand we have by 4.2.5
in [6] the formula [pkMkpk : NPk] = [Mk : N]τ(pk)τ'(pk). Since
pk is generated by projections e, , 1 < / < k, and since τ' coincides
with τ on the algebra generated by such projections, it follows that
[pkMkpk : Npk] = λ~k-χPk{λ)2. Now (ii) follows by 2.9. D

4.4. COROLLARY. Let f\ffι £ M be projections with the property
that Eκ(fι) = E^ifi) = αl. Suppose a = λPk_ι(λ)/Pk(λ) for some
k > 0 for which Pi{λ) > 0, i < k. Then there exists a unitary element
w e N such that wfw* = fι.

Proof Let pi>k = f Λ (1 - ex) Λ Λ (1 - ek) e Mk, i = 1,2,
pk = (l-^i)Λ - Λ(1—^) E N'nMk as in 4.3. By the preceding lemma
we have ENPk(pik) = [pkMkpk : MPk]~ι 1. By 1.6 in [12] it follows that
there exists a unitary element WQ € Npk so that WQpγkw^ = p2fk. But
then WQ = wpk for a unitary element w in Λf. Thus wpx>kw* = p2>k

and applying the conditional expectation EM to both sides, we get by
4.3,( i) t ι ;/ 1 u;*=/ 2 . D

We will now point out some other properties of the projections
whose dimension relative to N are scalars of the form λPk_x (λ)/Pk(λ),
λ = [M:N]~ι.

4.5. PROPOSITION. If / 0 e M is so that EN(f0) = αljv with a =
λPk-\W/Pk(λ) for some k for which Pi(λ) > 0, 1 < i < ky then there
exists a subfactor Nx c N of index [N : Nλ] = λ-k~ιPk(λ)2 so that
foeN[nM.

Proof Using the notations in the proof of 4.3 we have that Npk c
pkMkpk has index λ~k~ιPk(λ) and pQk = / 0 Λ pk has the property
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that ENpk(pOfk) = [pkMkpk : Npk]~ι = λk+ι/Pk(λ)2. Thus there exists
a subfactor N\ c N so that pkMkpk and /?Olfc come from the basic
construction for the inclusion N\pk c Npk. It follows in particular
that if y{ e N{ then yιPkp0>k = AuJΊΛfc s i n c e Po,k < Pk and
[Pk> y\] = 0 it follows that [ p 0 Λ , y j = 0. Thus 0 = [EM(Po,k)> JΊl =

•
4.6. REMARK 1°. We mention that the numbers λPk_ι(λ)/Pk(λ)

coincide with the traces of the projections coming from the genera-
tors of the Hecke algebras when regarded in their symmetric semisim-
ple representations which have a Markov trace. More precisely let
Hn+\{q) be the Hecke algebra with n generators g\,... ,gn and let
eι: = 1 + gi/l + q. Suppose π is a representation of Hn+\{q) on a
Hubert space so that π(e/)* = n(βi) are self-adjoint projections. De-
note by λ = q/{\ + ^ ) 2 . It is shown in [7] that {£/}/>i then satisfy 2.2
(i), (ii) with λ\ —X1 — '- — λ. Moreover [7], [17] it follows that λ can
only take the values

λe(0, l/4]u{(4cos 2π/(n + 2))-1 \n>l}.

If in addition there is a Markov trace τ = τχk on {π(£/)}/>i (i.e.,
τ satisfies 2.2 (Hi)) then we must have one of the following: if λ =
(4cos2π/(n + 2))" 1, n > 1, then τfo ) = Ai\-iW//\W for some
0 < fc < n and all / > 1; if λ < 1/4 then τ(e/) = AP^^λj/PjtίA) for
some fc > 0 and all / > 1.

2°. It seems then legitimate to ask: is there a "generalized basic
construction" which associates the projection / 0 G M9 with EN(fo) =
λPk-\(λ)/Pk(λ), to the inclusion M c M in an as canonical as possible
way? Propositions 4.3 and 4.5 give a partially positive answer to this
question. More precisely, if we take the factors M_k_2 C M_k_x c
• •- c N = M_ i c Mo = M c M\ c C Mk and denote /?̂  =
(l-^i)Λ Λ(l-ek), pf

k = (1—e_fc)Λ Λ(l-^_i) then one can only see
that PkpkMkpkp

f

k comes from the basic construction for the inclusion
pkp

f

kM_k_χp'kpk c Pkp'kNp'kpk. If e is the projection implementing
the conditional expectation of pkpkNpkpk onto Pkp'kM_k_2pkpk then
we get

Thus, once the subfactors {M_z_2}^>/>o of the tunnel are fixed,
foPk is canonical.

3°. If N = R_ι c Ro = M is the Jones' pair of factors of in-
dex λ~ι then R-\pk c pkRkpk has the same index as does the pair
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of hyperfinite factors P_i c Po associated to the representation πλ

and trace τλk of the infinite Hecke algebra (cf [17]). Also we have
(R-iPkY Π PfrRkPk = C by an unpublished result of Skau. The ques-
tion then arises: does the inclusion R-\Pk c PkRkPk coincide with
P_i c PQΊ Wenzl computed the towers of higher relative commutants
for i?_ i pk c PkRPk and for his pair of factors in [17] and showed that
they don't coincide. Thus R-\Pk C Pk^Pk is *n fact n o t isomorphic
to the pair of factors P-\ c P$ in [17].

4.7. PROPOSITION. Let λ e {(4cos2π/(n + 2))""1
 |ΛI > 1} u [4,oo)

and let R-χ c i?o be Jones9 pair of factors of index λ~\ as in [6].
€\ 6Ί 6%

Let RQ C R\ c i?2 c be the associated tower of projections and
pk = (\-eι)Λ- /\(l-ek)e Rf_{ Π Rk as in 4.3. Then

If in addition λ = (4 cos2 π/(n + 2))" 1 then

λ-k-χPk{λ)2 = (sin2(k + 2)π/(n + 2))/ sin2 π/(n + 2)

and (R-ιPk)f ΓΊ pkRkPk = C. Moreover, if we put q/(l + q)2 = λ then
= ((1 - qk)/q(k-ι)/2(l - q))2.

Proof Trivial by 4.3, bythe formula Pk(λ)2-Pk+x(λ)Pk-ι(λ) = λk+ι

and by

= (sin(Λ: + 2)π/(n + 2))/2/ : + 1 c o s ^ 1 π/(n + 2) sin π/(n + 2)

(cf. [6]). The trivial relative commutant is a consequence of the above
mentioned unpublished result of Skau. The rest is simple computa-
tion. D

4.8. COROLLARY. If λ = (4cos2π/(n + 2))" 1 then the inclusion
R-ιPk c PkRkPk has the same index and relative commutant as the
pair of factors A c B of 42 in [17] associated with appropriate sym-
metric representations of Hecke algebras.

5. Computation of A(M,N).

5.1. THEOREM. Suppose [M : N] = 4 cos2 π/(n + 2) for some n >
1. Then A(M,N) = {Pk([M : N]-ι)/Pk_x([M : N]~ι)\n > k > 0}.
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Moreover iff\t2 £ M are projections such that EN(f\) = EN(f2) = a\χ
then there exists a unitary element u in N such that uf\u* = f2.

Proof, By 4.2 we have that Pk([M : N]~x) / Pk_x{[M : N]~ι) e
A(M, N) for each n > k > 0 and by 4.4 any two projections expected
on the same scalar on N are conjugate by a unitary element in M. By
2.8 these values are the only ones that may appear in A(M, N). The
conjugacy follows by 4.4. D

5.2. THEOREM. Suppose [M : N]>4 and letO <t < 1/2 be so that
t{\ -t) = [M:N]-χ. Then

A(Af, N) Π [0, ί]

= {0, /} U {Pk-λ{[M : N]~l)/[M : N]Pk([M : NΓι)\k > 0}

and

A(M,N)n[l-t,l]
= {1 - /} U {Pk([M : N]-lyPk_x([M : N]~ι)\k > 0}.

Moreover if a φt, \-t is in either of these sets and f 12 are projections
in M with EN(f\) = Ejsj{fi) = OL\N then there exists a unitary element
ue N so that uf\U* = f2.

Proof The existence of values a = Pk([M : N}~x)/Pk.x{[M : N]~ι)
follows by 4.2 and the unitary conjugacy by 4.4. The other values are
of the form l - α o r α = ί, 1 - 1 . That t is in Λ(Af, N) follows by 1.7,
1.8, 3.4. The obstructions follow by 2.8. D

5.3. THEOREM. Let N c M be locally trivial subfactor as in 3.1.
Then

Λ(M, N) = {0} U {Pk-{([M : N]~l)/[M : N]Pk([M : Nyl)\k > 0}

U { U - ί} U {Pk([M : NΓι)/Pk_{([M : N]~ι)\k > 0}.

Moreover, given any a in A(M,N) and f\ι2 G M projections with
Etf(fι) = E^{fι) = αl v there exists a unitary element u e N such
that ufiu* = f2.

Proof By 5.2 and 3.3 the statement follows. D

As one can see, the information about Λ(Af, N) that we obtained
here depends entirely on the index [M : N]. In the case [M : N] > 4
this information is incomplete, in the sense that we don't know what
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happens in the interval (t, 1 -1) . As in the case of the index problems,
it seems that the case N1 Π M = C is of most interest. Yet there
are a number of other problems that should be clarified and that we
mention here:

5.4. Problems. 5.4.1. If p e N is a projection, is it true that
A(pMp, pNp) = Λ(Af, JV)?

5.4.2. Is Λ(M, N) equal to A(MX, M)Ί Is this true if N' n M = C?
5.4.3. Is it true that if N'n M = C,[M : N] > 4 then Λ(M, JV) Π

(ί, 1 - 0 ^ 0 ? (Where ί(l - ί) = [Af : JV]"1-)
5.4.4. If [M : N] > 4 and /, / 0 € Af are projections with £ JV( / ) =

Eχ(fo) = ίljv does there exist u e N with w/w* = /o? Does there
always exist a tunnel of projections {e_^}^>0 c M associated with the
inclusion N c M so that / e R'_{ Π i?0?

5.4.5. If JV' Π M = C and / l f 2 are projections in M with EN(f{) =
EN^/I) = αl fo r some α G Λ(Af, iV), does it follow that f\, / 2 are con-
jugate by a unitary element in JV? (Of course in the cases uncovered
by 5.1, 5.2.)

5.4.6. Can Λ(Af, N) be uncountable? Is it always closed? Can it
contain an interval?

In connection with 5.4.1 we should mention here one of Jones' prob-
lems in [6]. He asked there whether M splits the hyperfinite II i factor
R, i.e., M ~ M ® R, then there exists a hyperfinite \\γ subfactor R
in N so that TV = R V (R' Π N) and M = R V (R' Π M). That JV
splits R, if M does, was proved in [12]. In the case M itself is the
hyperfinite II i factor R it follows by Connes' fundamental theorem
that N is also isomorphic to R. Then for a special but most inter-
esting class of subfactors N c R, called subfactors with finite depth,
Ocneanu announced in [11] results which in particular imply that the
inclusion N c R splits in this case the hyperfinite II i factor. In case
the inclusion N c M splits R the inclusions pNp c pMp is isomor-
phic to N c M for any projection p in N. There is of course a natural
invariant to consider for the inclusion N c M along these lines.

5.4.7. DEFINITION [14]. Let M be a type Hi factor, N c M a type Hi
subfactor (not necessarily with finite index). Let ^(M, N) = {β > 0 |
Nβ c M^ is isomorphic to N c M}. We call this set the fundamental
group of the inclusion N c M (it is clearly a multiplicative subgroup

It is easy to see that ^(M, N) is invariant up to conjugacy of N by
automorphisms of M and ^{My M) = SF{M) is just the fundamental
group of M. If JV c M splits i? then we have ^(M, N) = R^. In other
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situations however it seems very difficult to compute (as it is &~(M)\).
We mention two more problems related to this definition:

5.4.8. Find a type IIi subfactor TV C i?, of finite or infinite index,
so that 9*{R, TV) φ R;.

5.4.9. If M splits R and TV c M is a locally trivial subfactor, does
it follow that TV c M splits RΊ

To handle the values A(M, TV) n (ί, 1 - t) (in the case [M : N]~ι =
ί(l — ί) < 1/4) seems very difficult. We can however deduce from
5.1 that in case the inclusion TV c M is isomorphic to the inclusions
pNp c pMp obtained by reducing it with certain projections of M,
then from one given value in A(M, TV) we can get a whole sequence of
values in Λ(Af, TV), with t (or 1 - t) as limit point.

5.5. PROPOSITION. Let TV c M be type IIi factors with 4 <
[M : TV] < oo. Suppose a e Λ(M, TV), ί < a < 1/2 ivλere ί(l - t) =
[Λf : TV]"1 = A. Lei {α«},2>o be the sequence of elements defined recur-
sively by αo = a, an+\ = λ/l - an> n > 0. TfiΛe inclusion N c M splits
R (i.e., there exists R c TV with TV = i?V(i?'nTV), M = i?V(i?'nM))
ίΛe« {oi2n}w>o C Λ(M,TV),{α2w+i}n>o c Λ(Afi,Af) α/irf o;rt is a se-
quence decreasing to t. More generally ifλ/ 1—a—λis in the fundamen-
tal group SF(My TV) of the inclusion TV c M then {oί2n}n>o> C Λ(Af, TV).

Prat?/ By 5.1 if an e A(M,N) then α π + i G A(Af1

1"a-,Af1"a-),

e Λ(M2

(1"Qw)(1~aΛ+l), M[x'an){x'a^]). But by 1.5 in [12] we have
% D M\ isomorphic to M D TV The fact that an is decreasing

to t follows by induction and by the relation limαw +i =
λ/l- liman. D

6. Application to the orthogonalization problem.

6.1. THEOREM. Let TV be a subfactor of finite index of the type IIX fac-
tor M. Suppose N\ c TV0 are subfactors ofM which form a commuting
square with N,M, i.e., ENENo = ENoEN = ENr If
[M : TV] = 4cos2π/(n + 2) < 4, for some n > 1, then [TV0 : Nx] =
[M : N]Pk([M : N]-ι)/Pk_{([M : TV]"1) for some 0 < k < n. If

[M : TV] > 4 and t < 1/2 is such that [M : TV]"1 = /(I — /) then either

[No : Nι] = [M : TV]i^([M : N]-χ)/Pk_x([M : TV]"1) for some k>0

or[N0:Nι]<Γι.

Proof By 1.7 we have A(N0N{) c Λ(M,TV). Since [TV0 : A^J"1 G
Λ(TV0, Nι) the statement follows by 5.1 and 5.2. D
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There are of course other restrictions coming from the condition
A(NO,NX) C A(M,N) and from 5.1, 5.2, conditions that in fact
imply that in the case [M : N] is "small" one almost always have
[NQ : Nx] = [M : N]. We leave the detailed analysis of those situations
as an exercise to the reader. There is one case when the description
of commuting squares is complete:

6.2. THEOREM. Let M be a type l\x factor f e M a projection of
trace 0 < t < 1/2. Suppose there exists an isomorphism θ : fMF —•
(1 - f)M{\ - f) and let N denote the corresponding locally trivial
subfactor of M,N = {x Θ θ(x)\x e fMf). If No is a subfactor of M
which forms a commuting square with N c M , i.e. ENoEχ = ENoΠN,
and ifN0 </L N then f e(N0Π N)f n No, and NonN = {x® θ{x)\x e

/No/}-

Proof Let Nx = NonNWe have 1 < [iVo : Nx] < [M : N]. If
[No : Nι] > 4 and t0 < 1/2 is such that ίo(l - to) = [No : N{]~1 then
by 5.2 there is a projection / 0 G Λ̂o such that ENχ(fo) = *ol. Since
[No : N{]~1 > [M : N]~ι it follows that t0 > t By 3.2 it follows that
fo = f t o = t and [M : N] = [No : N{]. Thus f e No and since / e Nf

we have /GiVjn Λ ô. Moreover [No '• N{] = τ(f)~ι + τ(l - f)~ι and
Jones' formula [6] imposes Nxf = fNQf N{(1 - / ) = (1 -f)N0(l - / ) .
Since N{ c N we must then have ^ = {x Θ θ{x) \ x e fNof}.

Now if [N0:N{]<4 then 7V{ n No = C by [6]. Thus if / 0 G No is a
projection so that E^ifo) = [No : Nι]~ιl, then

and since EN<nNo(fo) = τ(/o)l, E^'nAίifo) will also be a scalar mul-
tiple of the identity. Since α = τ(/o) > 1/4 it follows by 5.1 that
a = Pk-X{[M : N]~ι)/[M : iV]/\([Λf : N]~ι) for some fc > 0. It turns
out that for projections /o in M which expected on the locally trivial
subfactor N are scalars we must have EN>nM{fo) = af + b{\-f), with
a Φ b, so that 2?wrw(/o) c a n n^ver be a scalar. This contradiction
will end the proof of the theorem. The actual computation of a and
b is contained in the next:

6.3. LEMMA. Let N c M be a locally trivial subfactor like in 6.2
and λ = [M : N ] - 1 = ί(l - t). If f0 G M is such that EN(f0) =
αl^v where a = λ/\_i(λ)/.Pfc(λ), ybr some /: > 0, then £wrw(/o) =
akf + bjζil - f) with ajς, b^ satisfying the recursive relations: a^ =

2 γ akt + bk{\ - ί) =
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The sequence {^}A:>O is increasing from (1 - t ) 2 to 1 and the sequence
{bk)k>o is decreasing from t2 to 0. Moreover ak > bk for all k>0.

Proof of 6.3. Let first /o = eo be the projection in M with £V(/o) =
[M : i V T 1 ^ = /(I - t)ίN = λlN By the first part of the proof
of 3.2 we have τ(eof) = (1 — t)τ(eo). On the other hand we have
τ(eof) = τ(EN,nM(eof)) = τ(^rw(e<>)/) = τ((<κ>/ + fto(l
αoτ(/) = αo* Thus aot = ί(l - ί)2 so that α0 = (1 - ί)2 a n d

Let further Λ/_2 c N = Λf_i be a subfactor of Λf so that M
be the extension of M_i = ΛΓ by Λ/_2 and so that [eo,Λ/_2] = 0.
By [12] M_2 is a locally trivial subfactor of A/_i = Λί Let /i e
Af-i be a projection so that EM.2{f\) = λPk_ι(λ)/Pk(λ). Then p 0 =

- /i)*o(l " /i) i s a Projection in (1 - /i)Λ/(l - /0
^ , ) ^ ) = AP|k(A)/Pfc+iW (by 4.1). Let / ' 6 M'_2nM_{

be the projection with τ(/') = t Since /^o/ = (1 - t)(l —f')f we then
have

J -2

But by induction we have

\rw(l

( 1 -

Thus
(i-02

But we also have τ\-fx{pvf) = a^t. It follows that

That α^ is increasing and b^ is decreasing follows now by induc-
tion and by 2.9. The limits a and b will then satisfy a = limα^ =
\im{Pk{λ)IPk+x(λ)(\ - ί )) 2 ( l -limδfc.!) = 1 - 6 and α/ + *(l - ί ) = ί.
But this implies a = 1, 6 = 0. Moreover, since αo > #o and since an

is increasing and fe« is decreasing, it follows that an > bn for all n.
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This shows in particular that £Vτw(/o) Φ τ(/o) 1 for any projection
which expected on N gives a scalar. This completes the proof of the
lemma and thus also of the theorem. D

6.4. REMARK. AS we mentioned in 4.6 the values AP^_i (A)/P (̂A)
of the traces of projections that expect on scalars coincide with the
values of the Markov traces on the projections coming from repre-
sentations of the generators of the Hecke algebras. There naturally
arises the question whether we can choose projections /o G Mo, f\ G
M\, fι G Mi,..., in the Jones' tower of factors associated to the inclu-
sion N c M, so that EMι_x{fi) = λPk_x{λ)/'Pk(λ) for all n > i > 0 and
so that {fi)n>i>o generate the semisimple Hecke algebra corresponding
to the parameter λ as in [17]. This is in fact impossible. Indeed if this
would be true we could get a contradiction by using Theorem 5.1. An-
other way to get the contradiction is by using [12] and one of WenzΓs
results in [17]: if At = Alg{l,/0,... ,/i_i}, Bt = Alg{l,/0,... ,/)},
where // are as before and satisfy the Hecke algebra axioms A//+i// —
λfi = fi+\fifi+\ -λfi+i, then EBEMι_{ = EMι_xEBι = EAi and by
[12] \imiλ(Bi,Ai) coincides with the inverse of the index of the cor-
responding pair of subfactors (associated with the corresponding rep-
resentations of Hecke algebras in [17]). By [17] this index is equal
to λ~k~xPk{λ)2 so it is strictly larger than λ~ι. But since A\ c B\ and
M[-\ c Mi form a commuting square, λ = λ{MifMi^\) < λ(BifAi)f

which is impossible if / is large enough.

7. A related dilation problem. Instead of a subfactor of finite index
N C M we may of course consider arbitrary von Neumann subalgebras
B c M and let Λ(Af, B) be defined like in 1.1 to be the invariant up
to conjugacy by automorphisms of M. There are at least two special
cases that seem of most interest, when B is a subfactor and when B
is a maximal abelian subalgebra of M.

7.1. PROPOSITION. If B is either a subfactor of infinite index and
trivial relative commutant of M or an abelian subalgebra ofM then
Λ(Af, B) = [0,1]. IfB is maximal abelian and the normalizer of B in
M generates a type II i von Neumann subalgebra ofM then Λ(Λf, B) =
[0,1].

Proof If B is abelian then let B c M be a maximal abelian von
Neumann subalgebra of M containing B. If a e Λ(Af, B) (or Λ(M, B))
then clearly a G A(M,B) (respectively A(M,B)). But arguing as in
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[16] it is easy to see that any rational number lies in Λ(M, B). If B c
M is so that B' n M = C and [M : B] = oc then a similar proof
as that of 2.3 in [12] shows that Λ(M, B) = [0,1]. If B is maximal
abelian and N = yy{B)" is a type Hi von Neumann subalgebra then
there exists BQ C B and R c N a hyperfinite subfactor generated
by unitaries normalizing Bo so that BQ is maximal abelian in R (see
e.g. [16]). But then by Connes-Feldman-Weiss theorem [3] we may
assume there exist unitary elements u e BQ, υ e R so that u generates
BQ, and vu = e2πιtuv for some irrational number t e [0,1]. Then
any projection in the von Neumann algebra generated by v projects
on Bo on a scalar. Since such projections may have any trace, this
shows that Λ(i?, 2?0) = [0,1]. But it is easy to see by construction that
EREB = BBo. Thus Λ(M, B) D A(R, B) D A(R, Bo) = [0,1]. D

There is also another interesting possible problem: we may consider
instead of the set A(M, B) the set of all possible relative dimensions
A(M,B) = {EB(e) I e projection in M} or the set AQ(M,B) = {/ :
[0,1] —• [0,1] I f(t) is the trace of the spectral projection of Eβ(e) cor-
responding to the interval [t, oo]}. It would be interesting to compute
these sets at least in the most simple examples (e.g. B semiregular).

It is not difficult to show that if B is maximal abelian then Λ(Λf, B)
coincides with the unit ball of the positive cone of B.

The problem of finding whether an element αe B, 0 < α < 1 is the
image by Eβ of a projection e e M can alternately be regarded as a
dilation problem. Indeed if α is given then there exists a unique unital
completely positive map φ : C2 —• B so that p((l,0)) = α, φ((0,1)) =
1 - α. To show that there exists a projection e e M so that EB(e) = α
is the same as to show that there is a *-morphism π : C2 —> M so
that the compression of π to L2{B, τ\B) coincides with φ (where B is
viewed in its representation on L2(B,τ)). Instead of C 2 we may of
course consider other algebras:

7.2. Problem. Study special classes of completely positive maps
φ : AQ —> B which can be dilated to M, i.e., for which there exists a
*-morphism π : Ao —• M so that φ = EBπ.

In the case N c M is a subfactor of finite index then the small
values in A, ΛQ can be completely characterized, in particular also the
dilation problem for AQ = C2. More precisely we have:

7.3. PROPOSITION. Suppose eo e M is so that E^(eo) = λl^ where
λ = [M : N]~ι > 0. Let N\ C N be so that M,e$ come from the
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basic construction for the inclusion N\ c N (i.e., N\ = N Π {eo}',
[N :N{] = [M : N]). Ife e M is a projection so that EN(e) <λlN then
there exist a projection f e N\ and a unitary element w e N SO that
e = weofw* and so that EN(e) = λwfw*. In particular, ife1, e" e M
are projections of the same trace and EN(er) < λl, EN(e") < λl then
ef, e" are conjugate by a unitary element in N.

Proof By hypothesis and 2.1 in [12] we have λe > eEN(e)e > λe.
But this implies that (1 - e)EN(e)e = 0, hence [EN(e),e] = 0. It
follows that if the spectrum of Eχ(e) would contain a value distinct
of 0 and λ then the projection / ' defined to be the spectral projection of

corresponding to (0, a] would satisfy [/', e] = 0, 0 Φ Eχ(f'e) =
< αl < Λl, a contradiction. Thus EN(e) = λf" for some

projection / " e N. Since / " > EN(e), f" > e. Since N is a factor, there
exists a unitary element WQE N so that / = w^fw^ e Nx = Nfn{eo}
Then in Mf we have the projections e§f and w^ewo, and E^e^f) =
ENf(

woewo) = λf = λ\Nf. By [12] there exists a unitary element
w\ e Nf so that w\wlewowx = eof. Thus / and w = wo(w\ + (l-f))
satisfy the requirements. D

Added in proof After this work had been completed we learned that
the inclusion A(M,N) c {a > 0 | 3 / e M such that EN(f) = αl},
which is part of the equation in Theorem 5.1, as obtained indepen-
dently by A. Ocneanu.
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