THREE QUAVERS ON UNITARY ELEMENTS IN C^{*}-ALGEBRAS

Gert K. Pedersen
Henry Dye in memoriam

Abstract

Unitary polar decomposition of elements in C^{*}-algebras is discussed in relation to the theory of unitary rank; and characterizations of algebras admitting weak or unitary polar decomposition of every element are given.

Introduction. Let A be a unital C^{*}-algebra, and denote by $\mathrm{GL}(A)$ and $\mathscr{U}(A)$ the groups of invertible and unitary elements in A, respectively. The set

$$
\mathscr{P}(A)=\mathscr{U}(A) A_{+}
$$

consists of those elements that admit a unitary polar decomposition in A. The formulae $x=\left(x|x|^{-1}\right)|x|$ and $x=u|x|=\lim u\left(|x|+n^{-1}\right)$ show that $\mathrm{GL}(A) \subseteq \mathscr{P}(A)$ and that $\mathrm{GL}(A)$ is dense in $\mathscr{P}(A)$. Moreover, it was shown in [12] and [16] that each element in A has a canonical approximant in $\mathscr{P}(A)=$.

We know from Mazur's theorem that $\mathrm{GL}(A)=A \backslash\{0\}$ only if $A=\mathbf{C}$. The corresponding question, when $\mathscr{P}(A)=A$, is more subtle, and will be addressed in the third of these short notes. In the first two we shall study certain phenomena in the unit ball A^{1} of A. In particular we shall be concerned with the set

$$
\mathscr{P}(A)^{1}=\mathscr{U}(A) A_{+}^{1} .
$$

(As usual we write S^{1} for $S \cap A^{1}$, for any subset S of A.) It is quite easy to see that

$$
\mathrm{GL}(A)^{1} \subseteq \mathscr{P}(A)^{1} \subseteq \frac{1}{2}(\mathscr{U}(A)+\mathscr{U}(A)),
$$

and that these sets are dense in one another. By [16, Proposition 3.16] their common closure $\left(\mathscr{P}(A)^{1}\right)^{=}$consists of those elements x in A such that for every $\varepsilon>0$ there are unitary elements u_{1}, u_{2} and u_{3} with $x=\frac{1}{2}(1-\varepsilon) u_{1}+\frac{1}{2}(1-\varepsilon) u_{2}+\varepsilon u_{3}$.

1. Unitary rank revisited. Based on the Russo-Dye theorem [17], the theory of unitary rank is the discussion of the least number of unitaries
needed to express an element in A^{1} as an element in $\operatorname{conv}(\mathscr{U}(A))$, cf. [7], [8], [16]. The point of departure is L. T. Gardner's observation, [2], that

$$
\begin{equation*}
\left(A^{1}\right)^{0}+\mathscr{U}(A) \subseteq \mathscr{U}(A)+\mathscr{U}(A) \tag{*}
\end{equation*}
$$

Replacing the open unit ball $\left(A^{1}\right)^{0}$ with A^{1}, above, is usually not possible (unless A is a von Neumann algebra, see [8, Lemma 2.1]). Recently U. Haagerup [5] found that

$$
\begin{equation*}
A^{1}+2 \mathscr{P}(A)^{1} \subseteq \mathscr{U}(A)+2 \mathscr{P}(A)^{1} \tag{**}
\end{equation*}
$$

and used this to verify the conjecture, $[8,3.5]$, that the unitary rank of an element x in A with $\|x\| \leq 1-2 / n$ cannot exceed n. We shall now show how the result (**) may replace (*), to give a slightly stronger theory.

Proposition 1.1. For each x in A, let $\alpha=\operatorname{dist}(x, \mathrm{GL}(A))$. Then

$$
\operatorname{dist}\left(x, \mathscr{P}(A)^{1}\right)=\max \{\alpha,\|x\|-1\} .
$$

Moreover, if $x=v|x|$ is the polar decomposition of x in $A^{\prime \prime}$, and $f_{0}(t)=1 \wedge(t-\alpha)_{+}$, then $x_{0}=v f_{0}(|x|) \in\left(\mathscr{P}(A)^{1}\right)^{=}$, with $\left\|x-x_{0}\right\|=$ $\operatorname{dist}\left(x, \mathscr{P}(A)^{1}\right)$.

Proof. Put $\beta=\operatorname{dist}\left(x, \mathscr{P}(A)^{1}\right)$. Since $\mathrm{GL}(A)^{1} \subseteq \mathrm{GL}(A)$ it is clear that $\beta \geq \alpha$. Since moreover $\operatorname{GL}(A)^{1} \subseteq A^{1}$, it is also clear that $\beta \geq$ $\|x\|-1$. To show the inequality $\beta \leq \max \{\alpha,\|x\|-1\}$ take $\varepsilon>0$ and define $f_{\varepsilon}(t)=1 \wedge(t-(\alpha+\varepsilon))_{+}$. By [12, Theorem 5] there is a u_{ε} in $\mathscr{U}(A)$ such that

$$
v f_{\varepsilon}(|x|)=u_{\varepsilon} f_{\varepsilon}(|x|)
$$

and clearly this element belongs to $\mathscr{P}(A)^{1}$. It follows that $x_{0}=$ $v f_{0}(|x|) \in\left(\mathscr{P}(A)^{1}\right)^{=}$. Finally,

$$
\begin{aligned}
\left\|x-x_{0}\right\| & =\left\|v|x|-v f_{0}(|x|)\right\|=\left\||x|-f_{0}(|x|)\right\| \\
& =\max \left\{t-f_{0}(t) \mid 0 \leq t \leq\|x\|\right\}=\max \{\alpha,\|x\|-1\} .
\end{aligned}
$$

Theorem 1.2. Given x in A^{1}, assume that

$$
\|\beta x-2 p\| \leq \beta-2
$$

for some p in $\mathscr{P}(A)^{1}$ and some $\beta \geq 2$. Then with n the natural number such that $n-1<\beta \leq n$, there are unitaries u_{1}, \ldots, u_{n} in $\mathscr{U}(A)$, such that

$$
x=\beta^{-1}\left(u_{1}+\cdots+u_{n-1}\right)+\beta^{-1}(\beta+1-n) u_{n} .
$$

Proof. The case $\beta=2$ easily reduces to the classical Murray-von Neumann result that $x=\frac{1}{2}\left(u+u^{*}\right)$ for every x in $A_{s a}^{1}$. If $\beta>2$, put $y=(\beta-2)^{-1}(\beta x-2 p)$. Then $\|y\| \leq 1$ and $\beta x=(\beta-2) y+2 p$. By repeated application of Haagerup's result $(* *)$ we obtain unitaries u_{k} in $\mathscr{U}(A)$ and elements p_{k} in $\mathscr{P}(A)^{1}$ for $1 \leq k \leq n-3$, such that

$$
\begin{aligned}
\beta x & =u_{1}+2 p_{1}+(\beta-3) y=u_{1}+u_{2}+2 p_{2}+(\beta-4) y \\
& =\cdots=u_{1}+\cdots+u_{n-3}+2 p_{n-3}(\beta+1-n) y .
\end{aligned}
$$

Since $0 \leq \beta+1-n<1$ we can apply [8, Lemma 2.3] to obtain v_{n-3} and u_{n} in $\mathscr{U}(A)$ with

$$
u_{n-3}+(\beta+1-n) y=v_{n-3}+(\beta+1-n) u_{n} .
$$

Finally, by the classical case, $2 p_{n-3}=u_{n-2}+u_{n-1}$ for some unitaries in $\mathscr{U}(A)$, and thus (relabeling v_{n-3} as u_{n-3}) we have the desired expression

$$
\beta x=\left(u_{1}+\cdots+u_{n-3}\right)+\left(u_{n-2}+u_{n-1}\right)+(\beta+1-n) u_{n} .
$$

Remark 1.3. Note that we actually obtain a slightly stronger decomposition

$$
x=\beta^{-1}\left(u_{1}+\cdots+u_{n-3}\right)+\beta^{-1}(\beta+1-n) u_{n}+2 \beta^{-1} p_{0}
$$

for some p_{0} in $\mathscr{P}(A)^{1}$.
Proposition 1.4. The infimum of those β for which Theorem 1.2 can hold is $2(1-\alpha)^{-1}$, where $\alpha=\operatorname{dist}(x, \mathrm{GL}(A))$.

Proof. By Proposition 1.1 we have

$$
\begin{aligned}
\operatorname{dist}\left(\beta x, 2 \mathscr{P}(A)^{1}\right) & =2 \operatorname{dist}\left(\frac{1}{2} \beta x, \mathscr{P}(A)^{1}\right) \\
& =2 \max \left\{\frac{1}{2} \beta \alpha, \frac{1}{2} \beta\|x\|-1\right\}=\max \{\beta \alpha, \beta\|x\|-2\} .
\end{aligned}
$$

This maximum is $\leq \beta-2$ precisely when $\beta \alpha \leq \beta-2$, i.e. $\beta \geq$ $2(1-\alpha)^{-1}$.

Remark 1.5. Theorem 1.2 is closely patterned after [8, Proposition 3.1], with $\mathscr{P}(A)^{1}$ replacing $\mathscr{U}(A)$. The improvement is clear: even though $\|\beta x-u\| \leq \beta-1$ for some u in $\mathscr{U}(A)$ we cannot conclude that $\beta x=u_{1}+\cdots+u_{n-1}+(\beta+1-n) u_{n}$, simply because Gardner's result does not hold for the closed, but only for the open unit ball. Note also from Remark 1.3 that the result is best possible, because

$$
\left\|\beta x-2 p_{0}\right\|=\left\|u_{1}+\cdots+u_{n-3}+(\beta+1-n) u_{n}\right\| \leq \beta-2 .
$$

2. Uniqueness of unitary means. Any non-zero complex number in the unit disk is the midpoint of a unique pair of unitary numbers. We show that the same fact is valid to a large extent, when \mathbf{C} is replaced by an arbitrary unital C^{*}-algebra. This principle lies behind the arguments in [7, Remark 19] and [13]. Corollary 2.4 was obtained by R. V. Kadison and the author simultaneously (it rained a lot in Warwick this summer), and Proposition 2.7 was pointed out to me by M. Rørdam.

Lemma 2.1. If $x \in A$ and $x=\alpha u+\beta v$ for some unitaries u and v in $\mathscr{U}(A)$ and $0<\alpha, \beta<1, \alpha+\beta=1$, then with $\gamma=\alpha^{1 / 2} \beta^{-1 / 2}$ we have $u=x+i \gamma^{-1} y, v=x-i \gamma y$, where $y \in A$ satisfying
(i) $x^{*} x+y^{*} y=1, x x^{*}+y y^{*}=1$;
(ii) $i\left(x^{*} y-y^{*} x\right)=\left(\gamma-\gamma^{-1}\right) y^{*} y,-i\left(x y^{*}-y x^{*}\right)=\left(\gamma-\gamma^{-1}\right) y y^{*}$. Conversely, if y satisfies (i) and (ii), then with $u=x+i \gamma^{-1} y$ and $v=x-i \gamma y$ we have unitaries such that $x=\alpha u+\beta v$.

Proof. The four equations expressing the unitarity of u and v are

$$
\begin{aligned}
& x^{*} x+\gamma^{-2} y^{*} y+i \gamma^{-1}\left(x^{*} y-y^{*} x\right)=1 \\
& x x^{*}+\gamma^{-2} y y^{*}-i \gamma^{-1}\left(x y^{*}-y x^{*}\right)=1, \\
& x^{*} x+\gamma^{2} y^{*} y-i \gamma\left(x^{*} y-y^{*} x\right)=1 \\
& x x^{*}+\gamma^{2} y y^{*}+i \gamma\left(x y^{*}-y x^{*}\right)=1
\end{aligned}
$$

These are easily seen to be equivalent with the four equations contained in (i) and (ii).

Proposition 2.2 (cf. [7, Remark 7]). If $x=w|x|$ for some w in $\mathscr{U}(A)$ and $|\alpha-\beta| \leq x \leq 1$, then with

$$
\begin{aligned}
y=\frac{1}{2}(\alpha \beta)^{-1 / 2} w|x|^{-1}\left(1-|x|^{2}\right)^{1 / 2}\left[\left(|x|^{2}-\right.\right. & \left.(\alpha-\beta)^{2}\right)^{1 / 2} \\
& \left.-i(\alpha-\beta)\left(1-|x|^{2}\right)^{1 / 2}\right]
\end{aligned}
$$

we obtain unitaries u and v as in Lemmas 2.1 such that $x=\alpha u+\beta v$.

Proof. By straightforward computations we verify that y satisfies the conditions (i) and (ii) of Lemma 2.1 Note that when $\alpha=\beta=\frac{1}{2}$ we are back at the classical case $y=w\left(1-|x|^{2}\right)^{1 / 2}$.

Theorem 2.3. If $x=\alpha u+\beta v$ for some x in $\operatorname{GL}(A)$, where u, v are in $\mathscr{U}(A)$ and $0<\alpha, \beta<1, \alpha+\beta=1$, then with y as in Lemma 2.1 we have

$$
y=\frac{1}{2}(\alpha \beta)^{-1 / 2} w|x|^{-1} z
$$

Here $w|x|=x$ is the unitary polar decomposition of x, and $z=h+i k$ is a normal element of A, commuting with $|x|$, such that

$$
|h|=\left(1-|x|^{2}\right)^{1 / 2}\left(|x|^{2}-(\alpha-\beta)^{2}\right)^{1 / 2}, \quad k=(\beta-\alpha)\left(1-|x|^{2}\right)
$$

Proof. We define

$$
z=2(\alpha \beta)^{1 / 2}|x| w^{*} y=2(\alpha \beta)^{1 / 2} x^{*} y
$$

(as we must), and compute, using (i), that

$$
\begin{aligned}
z^{*} z & =4 \alpha \beta y^{*} x x^{*} y=4 \alpha \beta y^{*}\left(1-y y^{*}\right) y \\
& =4 \alpha \beta y^{*} y\left(1-y^{*} y\right)=4 \alpha \beta\left(1-x^{*} x\right) x^{*} x \\
z z^{*} & =4 \alpha \beta x^{*} y y^{*} x=4 \alpha \beta x^{*}\left(1-x x^{*}\right) x \\
& =4 \alpha \beta x^{*} x\left(1-x^{*} x\right)
\end{aligned}
$$

Thus z is normal; and if $z=h+i k$, with h and k in $A_{s a}$, we have $h^{2}+k^{2}=z^{*} z=4 \alpha \beta|x|^{2}\left(1-|x|^{2}\right)$.

From condition (ii) in Lemma 2.1 we have

$$
\begin{aligned}
k & =\frac{1}{2} i\left(z-z^{*}\right)=(\alpha \beta)^{1 / 2} i\left(x^{*} y-y^{*} x\right) \\
& =(\alpha \beta)^{1 / 2}\left(\gamma-\gamma^{-1}\right) y^{*} y=(\alpha-\beta)\left(1-|x|^{2}\right)
\end{aligned}
$$

With $a=1-|x|^{2}$ we then solve the equation for h^{2} :

$$
\begin{aligned}
h^{2} & =|z|^{2}-k^{2}=4 \alpha \beta(1-a) a-(\alpha-\beta)^{2} a^{2} \\
& =4 \alpha \beta a-(\alpha+\beta)^{2} a^{2}=\left(1-|x|^{2}\right)\left(4 \alpha \beta-1+|x|^{2}\right) \\
& =\left(1-|x|^{2}\right)\left(|x|^{2}-(\alpha-\beta)^{2}\right) .
\end{aligned}
$$

To show, finally, that h, and therefore also z, commutes with $|x|$, we use the second part of (ii) to get

$$
\begin{aligned}
\left(\gamma-\gamma^{-1}\right)|x|^{2}\left(1-|x|^{2}\right) & =\left(\gamma-\gamma^{-1}\right) x^{*}\left(1-x x^{*}\right) x \\
& =\left(\gamma-\gamma^{-1}\right) x^{*} y y^{*} x=-i x^{*}\left(x y^{*}-y x^{*}\right) x \\
& =\frac{1}{2} i(\alpha \beta)^{-1 / 2}\left(z x^{*} x-x^{*} x z^{*}\right)
\end{aligned}
$$

Multiplying with $2(\alpha \beta)^{1 / 2}$ and inserting $z=h+i k$ gives

$$
2(\alpha-\beta)|x|^{2}\left(1-|x|^{2}\right)=i\left(h|x|^{2}-|x|^{2} h\right)-2 k|x|^{2}
$$

Since $-k|x|^{2}=(\alpha-\beta)|x|^{2}\left(1-|x|^{2}\right)$ it follows that $h|x|^{2}-|x|^{2} h=0$, as desired.

Corollary 2.4. If $x=\frac{1}{2}(u+v)$ and $x \in \operatorname{GL}(A)$, then $u=x+i y$, $v=x-i y$ and $y=w\left(1-|x|^{2}\right)^{1 / 2} s$. Here $x=w|x|$ is the polar decomposition, and s is a symmetry in $A^{\prime \prime}$ commuting with $|x|$ and multiplying $1-|x|^{2}$ into A.

Proof. By Theorem 2.3 we have $y=w|x|^{-1} h$, and we let e be the range projection of h_{+}in $A^{\prime \prime}$. Then $s=2 e-1$ is a symmetry commuting with $|x|$ and $s|h|=s\left(h_{+}+h_{-}\right)=h_{+} h_{-}=h$. Since $|h|=\left(1-|x|^{2}\right)^{1 / 2}|x|$ the result follows.

Corollary 2.5. If $x \in \operatorname{GL}(A)$ such that $|x|$ is multiplicity-free (i.e. generates a maximal commutative C^{*}-subalgebra of A) and has connected spectrum, then for each α, β there is at most one pair in $\mathscr{U}(A)$ such that $x=\alpha u+\beta v$.

Proof. Put $B=C^{*}(|x|, 1)$, so that $B \sim C(\operatorname{sp}(|x|))$. If $x=\alpha u+\beta v$, let y and $z=h+i k$ be as in Theorem 2.3. It suffices to show that h is uniquely determined, up to a change of sign; because then the pair u, v will be unique. But

$$
h \in B^{\prime} \cap A=B
$$

so that $h=f(|x|)$ for some real function f in $C(\operatorname{sp}(|x|))$. We see that $f(\lambda)^{2}=\left(1-\lambda^{2}\right)\left(\lambda^{2}-(\alpha-\beta)^{2}\right)$, whence

$$
f(\lambda)= \pm\left(1-\lambda^{2}\right)^{1 / 2}\left(\lambda^{2}-(\alpha-\beta)^{2}\right)^{1 / 2}, \quad \lambda \in \mathbf{s p}(|x|)
$$

Since the spectrum is connected, exactly one of the signs must hold for all λ.

Corollary 2.6. If $x \in \mathscr{P}(A)$ with $|\alpha-\beta|<|x|<1$, and if the commutant of $|x|$ in A contains no non-trivial projections, then $x=$ $\alpha u+\beta v$ for a unique pair of unitaries in $\mathscr{U}(A)$.

Proof. As in the previous corollary it suffices to show uniqueness (modulo sign) of h. As $|\alpha-\beta|<|x|<1$ we see that $|h| \in \operatorname{GL}(A)$ and thus $h=s|h|$ for some self-adjoint unitary $s\left(=h|h|^{-1}\right)$ in the relative commutant of $|x|$. As $s=2 p-1$ for some projection p, we see that $s=1$ or $s=-1$.

Proposition 2.7. An element x in A with $\|x\|<1$ belongs to $\frac{1}{2} \mathscr{U}(A)$ $+\frac{1}{2} \mathscr{U}(A)$ if and only if $x=w a$ for some w in $\mathscr{U}(A)$ and some a in $A_{s a}^{1}$.

Proof. Since $a=\frac{1}{2}\left(u+u^{*}\right)$ with $u=a+i\left(1-a^{2}\right)^{1 / 2}$, the sufficiency is clear. To prove necessity, assume that $x=\frac{1}{2}(u+v)$ and take y as in Lemma 2.1 (with $\alpha=\beta=\frac{1}{2}$). Since $\|x\|<1$ we see from (i) that both $y^{*} y$ and $y y^{*}$ are invertible, so that $y \in \operatorname{GL}(A)$ with $y=w|y|$ for some w in $\mathscr{U}(A)$. Put $a=w^{*} x$ and compute by (ii)

$$
|y| a=|y| w^{*} x=y^{*} x=x^{*} y=x^{*} w|y|=a^{*}|y|
$$

Thus $|y| a$ is self-adjoint. On the other hand,

$$
\begin{aligned}
|y| a & =y^{*} x=w^{*}\left|y^{*}\right| x=w^{*}\left(1-x x^{*}\right)^{1 / 2} x \\
& =w^{*} x\left(1-x^{*} x\right)^{1 / 2}=a|y|
\end{aligned}
$$

by (i), so that a and $|y|$ commute. Therefore

$$
a=|y|^{-1}|y| a \in A_{s a}
$$

3. Unitary polar decomposition. We say that an element x in A admits a weak polar decomposition if $x=v|x|$ for some v in A with $\|v\| \leq 1$. Note that v is not assumed to be a partial isometry and, in particular, no uniqueness properties of the decomposition are expected. If a decomposition exists for every element we say that A has weak polar decomposition. Similarly we say that A has unitary polar decomposition if for every x in A there is a u in $\mathscr{U}(A)$ such that $x=u|x|$, i.e. $A=\mathscr{P}(A)$.

Recall from [11] that a unital C^{*}-algebra A is a SAW*-algebra if for each pair x, y of orthogonal elements in A_{+}there is an element e in $A_{s a}$ (which can then be assumed to satisfy $0 \leq e \leq 1$), such that $x e=0$ and $(1-e) y=0$. We now say that A is an n-SAW*-algebra if $\mathbf{M}_{n}(A)$ is a SAW*-algebra. Clearly then $\mathbf{M}_{m}(A)$ is also a SAW*-algebra for each $m \leq n$. If the situation is stable, i.e. A is an n-SAW ${ }^{*}$-algebra for every n, we shall refer to A as a SSAW*-algebra.

One of the main difficulties with SAW*-algebras is that the definition, like the corresponding AW^{*}-condition, only involves the commutative subalgebras of A. Therefore there is no compelling reason to believe that the SAW*-condition implies n-SAW* for $n>1$. On the other hand, R. R. Smith and D. P. Williams show in [20, Theorem 3.4] that if A is a commutative SAW*-algebra (which means that $A=C(X)$ for some sub-Stonean space), then A is also SSAW*. The same happens when we investigate the natural source of SAW*-algebras: the
corona algebras. These have the form $A=C(B)$, where B is a nonunital, but σ-unital C^{*}-algebra, and $C(B)=M(B) / B$. Clearly

$$
\mathbf{M}_{n}(C(B))=M\left(\mathbf{M}_{n}(B)\right) / \mathbf{M}_{n}(B)=C\left(\mathbf{M}_{n}(B)\right),
$$

so that all corona C^{*}-algebras are SSAW*
Proposition 3.1. $A C^{*}$-algebra A is a $S A W^{*}$-algebra if and only if every self-adjoint element x admits a weak polar decomposition $x=$ $v|x|$ with $v=v^{*}$.

Proof. If A is a SAW*-algebra and $x \in A_{s a}$, consider the decomposition $x=x_{+}-x_{-}$. Since $x_{+} x_{-}=0$, there is an element e in A, $0 \leq e \leq 1$, such that $e x_{-}=0$ and $(1-e) x_{+}=0$. Put $v=2 e-1$ and note that $v=v^{*}$ and $-1 \leq v \leq 1$. Moreover,

$$
v|x|=(2 e-1)\left(x_{+}+x_{-}\right)=x_{+}-x_{-}=x .
$$

Conversely, if A has weak polar decomposition in $A_{s a}$, consider an orthogonal pair x, y in A_{+}. By assumption

$$
x-y=v|x-y|=v(x+y)
$$

for some v in $A_{s a}$ with $\|v\| \leq 1$. Let $e=\frac{1}{2}(1+v)$, so that $1-e=$ $\frac{1}{2}(1-v)$, and use the facts $(1-v) x=(1+v) y=0$ to verify that $(1-e) x=e y=0$.

Proposition 3.2. If A is a 2-SAW*-algebra, it has weak polar decomposition.

Proof. We apply Proposition 3.1 to the self-adjoint element $\left(\begin{array}{cc}0 & x^{*} \\ x & 0\end{array}\right)$ in $\mathbf{M}_{2}(A)$, to obtain a self-adjoint matrix $w=\left(\begin{array}{ll}y & v^{*} \\ v & z\end{array}\right)$, satisfying the decomposition equation

$$
\begin{aligned}
\left(\begin{array}{cc}
0 & x^{*} \\
x & 0
\end{array}\right) & =\left(\begin{array}{cc}
y & v^{*} \\
v & z
\end{array}\right)\left|\left(\begin{array}{cc}
0 & x^{*} \\
x & 0
\end{array}\right)\right| \\
& =\left(\begin{array}{cc}
y & v^{*} \\
v & z
\end{array}\right)\left(\begin{array}{cc}
|x| & 0 \\
0 & \left|x^{*}\right|
\end{array}\right) .
\end{aligned}
$$

Direct computation shows that $x=v|x|$, and clearly $\|v\| \leq 1$ since $\|w\| \leq 1$.

Proposition 3.3. If A is a 4 -SAW*-algebra, there is for each pair x, y in A such that $x^{*} x \leq y^{*} y$ an element w in A, with $\|w\| \leq 1$, such that $x=w y$.

Proof. Consider the elements

$$
a=\left(\begin{array}{cc}
\left(|y|^{2}-|x|^{2}\right)^{1 / 2} & 0 \\
x & 0
\end{array}\right), \quad b=\left(\begin{array}{cc}
|y| & 0 \\
0 & 0
\end{array}\right)
$$

in $\mathbf{M}_{2}(A)$, and note that $a^{*} a=b^{2}$, i.e. $|a|=b$. Since $\mathbf{M}_{2}(A)$ is a 2-SAW*-algebra there is by Proposition 3.2 a matrix $c=\left(c_{i j}\right)$ in $\mathbf{M}_{2}(A)$, with $\|c\| \leq 1$, such that $a=c b$. Multiplying the matrices we get

$$
x=a_{21}=c_{21}|y| .
$$

Since by the previous result, $y=u|y|$ for some u in A with $\|u\| \leq 1$, we have $|y|=u^{*} u|y|=u^{*} y$; and thus with $w=c_{21} u^{*}$ we get the desired result.

Proposition 3.4. If an element x in a C^{*}-algebra A admits a weak polar decomposition $x=v|x|$, such that

$$
\operatorname{dist}(v, \mathrm{GL}(A))<1
$$

then x has a unitary polar decomposition.
Proof. Put $\alpha=\operatorname{dist}(v, \mathrm{GL}(A))$. By [12, Corollary 8] we see that if $f \in C(\mathbf{R})$, such that $f(t)=0$ for all $t \leq \alpha+\varepsilon$ for some $\varepsilon>0$, then

$$
v f(|v|)=u|v| f(|v|)
$$

for some u in $\mathscr{U}(A)$. As $\alpha<1$ we may choose f such that $f(1)=1$. Since $v^{*} v|x|=|x|$, we have $(1-|v|)|x|=0$, so that $(1-f(|v|))|x|=0$. Consequently

$$
u|x|=u|v| f(|v|)|x|=v f(|v|)|x|=v|x|=x .
$$

Theorem 3.5. If a C^{*}-algebra A has unitary polar decomposition, then $\mathrm{GL}(A)$ is dense in A which is a SAW*-algebra. Conversely, if A is a 2-SA W^{*}-algebra with $\mathrm{GL}(A)$ dense, then A has unitary polar decomposition.

Proof. The first half of the theorem follows from Proposition 3.1 plus the fact that each element $u|x|$ in $\mathscr{P}(A)$ is the limit of $u(|x|+\varepsilon)$ in $\mathrm{GL}(A)$ as $\varepsilon \rightarrow 0$. The second half follows by combining Propositions 3.2 and 3.4.

Corollary 3.6. A corona C^{*}-algebra has unitary polar decomposition if and only if the invertible elements are dense.

Proof. As noted in the beginning of this section, corona algebras are SSAW*-algebras, so Theorem 3.5 takes on this simple form.

Remark 3.7. In [1], [6] and [14] M. J. Canfell, D. Handelman and A. G. Robertson prove (independently) that a compact Hausdorff space X is sub-Stonean (our terminology [3], they talk about F-spaces) with $\operatorname{dim} X \leq 1$ if and only if $C(X)$ has unitary polar decomposition. Since $\operatorname{dim} X \leq 1$ is equivalent with $\operatorname{GL}(C(X))$ being dense in $C(X)$, the previous theorem represents a generalization to non-commutative C^{*}-algebras of their result.

Robertson also shows that the conditions above are equivalent with the equality

$$
\frac{1}{2}(\mathscr{U}(C(X))+\mathscr{U}(C(X)))=C(X)^{1} .
$$

Presumably this also generalizes. At least Proposition 2.7 shows that if

$$
\frac{1}{2}(\mathscr{U}(A)+\mathscr{U}(A))=A^{1}
$$

for some C^{*}-algebra A, then each element x in A has the form $u a$ with u in $\mathscr{U}(A)$ and $a=a^{*}$. The problem is, of course, that a is not assumed to commute with $|x|$, so that we do not immediately obtain unitary polar decomposition.

References

[1] M. J. Canfell, Some characteristics of n-dimensional F-spaces, Trans. Amer. Math. Soc., 159 (1971), 329-334.
[2] L. T. Gardner, An elementary proof of the Russo-Dye theorem, Proc. Amer. Math. Soc., 90 (1984), 181.
[3] K. Grove and G. K. Pedersen, Sub-Stonean spaces and corona sets, J. Funct. Anal., 56 (1984), 124-143.
[4] __, Diagonalizing matrices over $C(X)$, J. Funct. Anal., 59 (1984), 65-89.
[5] U. Haagerup, On convex combinations of unitary operators in C^{*}-algebras, preprint.
[6] D. Handelman, Stable range in AW -algebras, Proc. Amer. Math. Soc., 76 (1979), 241-249.
[7] R. V. Kadison and G. K. Pedersen, Means and convex combinations of unitary operators, Math. Scand., 57 (1985), 249-266.
[8] C. L. Olsen and G. K. Pedersen, Convex combinations of unitary operators in von Neumann algebras, J. Funct. Anal., 66 (1986), 365-380.
[9] _, Corona C^{*}-algebras and their applications to lifting problems, Math. Scand., (to appear).
[10] G. K. Pedersen, C*-algebras and their Automorphism Groups, LMS Monographs No 14, Academic Press, London/New-York, 1979.
[11] , SAW*-algebras and corona C^{*}-algebras, contributions to noncommutative topology, J. Operator Theory, 15 (1986), 15-32.
[12] , Unitary extensions and polar decompositions in a C*-algebra, J. Operator Theory, 17 (1987), 357-364.
[13] I. F. Putnam and M. Rørdam, The maximum unitary rank of some C^{*}-algebras, Math. Scand., (to appear).
[14] A. G. Robertson, Averages of extreme points in complex function spaces, J. London Math. Soc., (2) 19 (1979), 345-347.
[15] , Stable range in C*-algebras, Proc. Camb. Phil. Soc., 87 (1980), 413418..
[16] M. Rørdam, Advances in the theory of unitary rank and regular approximation, Annals of Math., 128 (1988), 153-172.
[17] B. Russo and H. A. Dye, A note on unitary operators in C^{*}-algebras, Duke Math. J., 33 (1966), 413-416.
[18] G. L. Seever, Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267280.
[19] R. R. Smith and D. P. Williams, The decomposition property for C^{*}-algebras, J. Operator Theory, 16 (1986), 51-74.
$[20] \quad$, Separable injectivity for C^{*}-algebras, preprint.
Received February 17, 1988.
Københavns Universitets Matematiske Institut
Universitetsparken 5
2100 Københayn \varnothing Denmark

