THREE QUAVERS ON UNITARY ELEMENTS IN C*-ALGEBRAS

GERT K. PEDERSEN

Henry Dye in memoriam

Unitary polar decomposition of elements in C^* -algebras is discussed in relation to the theory of unitary rank; and characterizations of algebras admitting weak or unitary polar decomposition of every element are given.

Introduction. Let A be a unital C^* -algebra, and denote by GL(A) and $\mathscr{U}(A)$ the groups of invertible and unitary elements in A, respectively. The set

$$\mathscr{P}(A) = \mathscr{U}(A)A_+$$

consists of those elements that admit a unitary polar decomposition in A. The formulae $x = (x|x|^{-1})|x|$ and $x = u|x| = \lim u(|x|+n^{-1})$ show that $GL(A) \subseteq \mathscr{P}(A)$ and that GL(A) is dense in $\mathscr{P}(A)$. Moreover, it was shown in [12] and [16] that each element in A has a canonical approximant in $\mathscr{P}(A)^=$.

We know from Mazur's theorem that $GL(A) = A \setminus \{0\}$ only if A = C. The corresponding question, when $\mathscr{P}(A) = A$, is more subtle, and will be addressed in the third of these short notes. In the first two we shall study certain phenomena in the unit ball A^1 of A. In particular we shall be concerned with the set

$$\mathscr{P}(A)^1 = \mathscr{U}(A)A^1_+.$$

(As usual we write S^1 for $S \cap A^1$, for any subset S of A.) It is quite easy to see that

$$\operatorname{GL}(A)^1 \subseteq \mathscr{P}(A)^1 \subseteq \frac{1}{2}(\mathscr{U}(A) + \mathscr{U}(A)),$$

and that these sets are dense in one another. By [16, Proposition 3.16] their common closure $(\mathscr{P}(A)^1)^=$ consists of those elements x in A such that for every $\varepsilon > 0$ there are unitary elements u_1 , u_2 and u_3 with $x = \frac{1}{2}(1-\varepsilon)u_1 + \frac{1}{2}(1-\varepsilon)u_2 + \varepsilon u_3$.

1. Unitary rank revisited. Based on the Russo-Dye theorem [17], the theory of unitary rank is the discussion of the least number of unitaries

needed to express an element in A^1 as an element in $conv(\mathcal{U}(A))$, cf. [7], [8], [16]. The point of departure is L. T. Gardner's observation, [2], that

(*)
$$(A^1)^0 + \mathscr{U}(A) \subseteq \mathscr{U}(A) + \mathscr{U}(A).$$

Replacing the open unit ball $(A^1)^0$ with A^1 , above, is usually not possible (unless A is a von Neumann algebra, see [8, Lemma 2.1]). Recently U. Haagerup [5] found that

$$(**) A1 + 2\mathscr{P}(A)1 \subseteq \mathscr{U}(A) + 2\mathscr{P}(A)1,$$

and used this to verify the conjecture, [8, 3.5], that the unitary rank of an element x in A with $||x|| \le 1 - 2/n$ cannot exceed n. We shall now show how the result (**) may replace (*), to give a slightly stronger theory.

PROPOSITION 1.1. For each x in A, let $\alpha = \text{dist}(x, \text{GL}(A))$. Then $\text{dist}(x, \mathscr{P}(A)^1) = \max\{\alpha, ||x|| - 1\}.$

Moreover, if x = v|x| is the polar decomposition of x in A'', and $f_0(t) = 1 \land (t - \alpha)_+$, then $x_0 = vf_0(|x|) \in (\mathscr{P}(A)^1)^=$, with $||x - x_0|| = \text{dist}(x, \mathscr{P}(A)^1)$.

Proof. Put $\beta = \operatorname{dist}(x, \mathscr{P}(A)^1)$. Since $\operatorname{GL}(A)^1 \subseteq \operatorname{GL}(A)$ it is clear that $\beta \geq \alpha$. Since moreover $\operatorname{GL}(A)^1 \subseteq A^1$, it is also clear that $\beta \geq ||x|| - 1$. To show the inequality $\beta \leq \max\{\alpha, ||x|| - 1\}$ take $\varepsilon > 0$ and define $f_{\varepsilon}(t) = 1 \wedge (t - (\alpha + \varepsilon))_+$. By [12, Theorem 5] there is a u_{ε} in $\mathscr{U}(A)$ such that

$$vf_{\varepsilon}(|x|) = u_{\varepsilon}f_{\varepsilon}(|x|),$$

and clearly this element belongs to $\mathscr{P}(A)^1$. It follows that $x_0 = vf_0(|x|) \in (\mathscr{P}(A)^1)^=$. Finally,

$$||x - x_0|| = ||v|x| - vf_0(|x|)|| = ||x| - f_0(|x|)||$$

= max{t - f_0(t)|0 ≤ t ≤ ||x||} = max{\alpha, ||x|| - 1}.

THEOREM 1.2. Given x in A^1 , assume that

$$\|\beta x - 2p\| \le \beta - 2$$

for some p in $\mathscr{P}(A)^1$ and some $\beta \ge 2$. Then with n the natural number such that $n - 1 < \beta \le n$, there are unitaries u_1, \ldots, u_n in $\mathscr{U}(A)$, such that

$$x = \beta^{-1}(u_1 + \cdots + u_{n-1}) + \beta^{-1}(\beta + 1 - n)u_n.$$

Proof. The case $\beta = 2$ easily reduces to the classical Murray-von Neumann result that $x = \frac{1}{2}(u + u^*)$ for every x in A_{sa}^1 . If $\beta > 2$, put $y = (\beta - 2)^{-1}(\beta x - 2p)$. Then $||y|| \le 1$ and $\beta x = (\beta - 2)y + 2p$. By repeated application of Haagerup's result (**) we obtain unitaries u_k in $\mathcal{U}(A)$ and elements p_k in $\mathcal{P}(A)^1$ for $1 \le k \le n-3$, such that

$$\beta x = u_1 + 2p_1 + (\beta - 3)y = u_1 + u_2 + 2p_2 + (\beta - 4)y$$

= \dots = u_1 + \dots + u_{n-3} + 2p_{n-3}(\beta + 1 - n)y.

Since $0 \le \beta + 1 - n < 1$ we can apply [8, Lemma 2.3] to obtain v_{n-3} and u_n in $\mathcal{U}(A)$ with

$$u_{n-3} + (\beta + 1 - n)y = v_{n-3} + (\beta + 1 - n)u_n.$$

Finally, by the classical case, $2p_{n-3} = u_{n-2} + u_{n-1}$ for some unitaries in $\mathcal{U}(A)$, and thus (relabeling v_{n-3} as u_{n-3}) we have the desired expression

$$\beta x = (u_1 + \dots + u_{n-3}) + (u_{n-2} + u_{n-1}) + (\beta + 1 - n)u_n$$

REMARK 1.3. Note that we actually obtain a slightly stronger decomposition

$$x = \beta^{-1}(u_1 + \dots + u_{n-3}) + \beta^{-1}(\beta + 1 - n)u_n + 2\beta^{-1}p_0$$

for some p_0 in $\mathscr{P}(A)^1$.

PROPOSITION 1.4. The infimum of those β for which Theorem 1.2 can hold is $2(1 - \alpha)^{-1}$, where $\alpha = \text{dist}(x, \text{GL}(A))$.

Proof. By Proposition 1.1 we have

$$dist(\beta x, 2\mathscr{P}(A)^{1}) = 2 \operatorname{dist}(\frac{1}{2}\beta x, \mathscr{P}(A)^{1})$$
$$= 2 \max\left\{\frac{1}{2}\beta\alpha, \frac{1}{2}\beta\|x\| - 1\right\} = \max\{\beta\alpha, \beta\|x\| - 2\}.$$

This maximum is $\leq \beta - 2$ precisely when $\beta \alpha \leq \beta - 2$, i.e. $\beta \geq 2(1-\alpha)^{-1}$.

REMARK 1.5. Theorem 1.2 is closely patterned after [8, Proposition 3.1], with $\mathscr{P}(A)^1$ replacing $\mathscr{U}(A)$. The improvement is clear: even though $\|\beta x - u\| \leq \beta - 1$ for some u in $\mathscr{U}(A)$ we cannot conclude that $\beta x = u_1 + \cdots + u_{n-1} + (\beta + 1 - n)u_n$, simply because Gardner's result does not hold for the closed, but only for the open unit ball. Note also from Remark 1.3 that the result is best possible, because

$$\|\beta x - 2p_0\| = \|u_1 + \dots + u_{n-3} + (\beta + 1 - n)u_n\| \le \beta - 2.$$

2. Uniqueness of unitary means. Any non-zero complex number in the unit disk is the midpoint of a unique pair of unitary numbers. We show that the same fact is valid to a large extent, when C is replaced by an arbitrary unital C^* -algebra. This principle lies behind the arguments in [7, Remark 19] and [13]. Corollary 2.4 was obtained by R. V. Kadison and the author simultaneously (it rained a lot in Warwick this summer), and Proposition 2.7 was pointed out to me by M. Rørdam.

LEMMA 2.1. If $x \in A$ and $x = \alpha u + \beta v$ for some unitaries u and vin $\mathcal{U}(A)$ and $0 < \alpha$, $\beta < 1$, $\alpha + \beta = 1$, then with $\gamma = \alpha^{1/2}\beta^{-1/2}$ we have $u = x + i\gamma^{-1}y$, $v = x - i\gamma y$, where $y \in A$ satisfying

(i) $x^*x + y^*y = 1$, $xx^* + yy^* = 1$;

(ii) $i(x^*y - y^*x) = (\gamma - \gamma^{-1})y^*y$, $-i(xy^* - yx^*) = (\gamma - \gamma^{-1})yy^*$. Conversely, if y satisfies (i) and (ii), then with $u = x + i\gamma^{-1}y$ and $v = x - i\gamma y$ we have unitaries such that $x = \alpha u + \beta v$.

Proof. The four equations expressing the unitarity of u and v are

$$\begin{aligned} x^*x + \gamma^{-2}y^*y + i\gamma^{-1}(x^*y - y^*x) &= 1, \\ xx^* + \gamma^{-2}yy^* - i\gamma^{-1}(xy^* - yx^*) &= 1, \\ x^*x + \gamma^2y^*y - i\gamma(x^*y - y^*x) &= 1, \\ xx^* + \gamma^2yy^* + i\gamma(xy^* - yx^*) &= 1. \end{aligned}$$

These are easily seen to be equivalent with the four equations contained in (i) and (ii).

PROPOSITION 2.2 (cf. [7, Remark 7]). If x = w|x| for some w in $\mathscr{U}(A)$ and $|\alpha - \beta| \le x \le 1$, then with

$$y = \frac{1}{2} (\alpha \beta)^{-1/2} w |x|^{-1} (1 - |x|^2)^{1/2} [(|x|^2 - (\alpha - \beta)^2)^{1/2} - i(\alpha - \beta)(1 - |x|^2)^{1/2}]$$

we obtain unitaries u and v as in Lemmas 2.1 such that $x = \alpha u + \beta v$.

Proof. By straightforward computations we verify that y satisfies the conditions (i) and (ii) of Lemma 2.1 Note that when $\alpha = \beta = \frac{1}{2}$ we are back at the classical case $y = w(1 - |x|^2)^{1/2}$.

THEOREM 2.3. If $x = \alpha u + \beta v$ for some x in GL(A), where u, v are in $\mathcal{U}(A)$ and $0 < \alpha$, $\beta < 1$, $\alpha + \beta = 1$, then with y as in Lemma 2.1 we have

$$y = \frac{1}{2} (\alpha \beta)^{-1/2} w |x|^{-1} z.$$

Here w|x| = x is the unitary polar decomposition of x, and z = h + ik is a normal element of A, commuting with |x|, such that

 $|h| = (1 - |x|^2)^{1/2} (|x|^2 - (\alpha - \beta)^2)^{1/2}, \qquad k = (\beta - \alpha)(1 - |x|^2).$

Proof. We define

$$z = 2(\alpha\beta)^{1/2} |x| w^* y = 2(\alpha\beta)^{1/2} x^* y$$

(as we must), and compute, using (i), that

$$z^*z = 4\alpha\beta y^*xx^*y = 4\alpha\beta y^*(1 - yy^*)y$$

= $4\alpha\beta y^*y(1 - y^*y) = 4\alpha\beta(1 - x^*x)x^*x$,
 $zz^* = 4\alpha\beta x^*yy^*x = 4\alpha\beta x^*(1 - xx^*)x$
= $4\alpha\beta x^*x(1 - x^*x)$.

Thus z is normal; and if z = h + ik, with h and k in A_{sa} , we have $h^2 + k^2 = z^* z = 4\alpha \beta |x|^2 (1 - |x|^2)$.

From condition (ii) in Lemma 2.1 we have

$$\begin{aligned} k &= \frac{1}{2}i(z-z^*) = (\alpha\beta)^{1/2}i(x^*y-y^*x) \\ &= (\alpha\beta)^{1/2}(\gamma-\gamma^{-1})y^*y = (\alpha-\beta)(1-|x|^2). \end{aligned}$$

With $a = 1 - |x|^2$ we then solve the equation for h^2 :

$$\begin{split} h^2 &= |z|^2 - k^2 = 4\alpha\beta(1-a)a - (\alpha-\beta)^2 a^2 \\ &= 4\alpha\beta a - (\alpha+\beta)^2 a^2 = (1-|x|^2)(4\alpha\beta-1+|x|^2) \\ &= (1-|x|^2)(|x|^2 - (\alpha-\beta)^2). \end{split}$$

To show, finally, that h, and therefore also z, commutes with |x|, we use the second part of (ii) to get

$$\begin{aligned} (\gamma - \gamma^{-1})|x|^2(1 - |x|^2) &= (\gamma - \gamma^{-1})x^*(1 - xx^*)x \\ &= (\gamma - \gamma^{-1})x^*yy^*x = -ix^*(xy^* - yx^*)x \\ &= \frac{1}{2}i(\alpha\beta)^{-1/2}(zx^*x - x^*xz^*). \end{aligned}$$

Multiplying with $2(\alpha\beta)^{1/2}$ and inserting z = h + ik gives

$$2(\alpha - \beta)|x|^2(1 - |x|^2) = i(h|x|^2 - |x|^2h) - 2k|x|^2.$$

GERT K. PEDERSEN

Since $-k|x|^2 = (\alpha - \beta)|x|^2(1 - |x|^2)$ it follows that $h|x|^2 - |x|^2h = 0$, as desired.

COROLLARY 2.4. If $x = \frac{1}{2}(u+v)$ and $x \in GL(A)$, then u = x + iy, v = x - iy and $y = w(1 - |x|^2)^{1/2}s$. Here x = w|x| is the polar decomposition, and s is a symmetry in A" commuting with |x| and multiplying $1 - |x|^2$ into A.

Proof. By Theorem 2.3 we have $y = w|x|^{-1}h$, and we let e be the range projection of h_+ in A''. Then s = 2e - 1 is a symmetry commuting with |x| and $s|h| = s(h_+ + h_-) = h_+ - h_- = h$. Since $|h| = (1 - |x|^2)^{1/2}|x|$ the result follows.

COROLLARY 2.5. If $x \in GL(A)$ such that |x| is multiplicity-free (i.e. generates a maximal commutative C*-subalgebra of A) and has connected spectrum, then for each α , β there is at most one pair in $\mathcal{U}(A)$ such that $x = \alpha u + \beta v$.

Proof. Put $B = C^*(|x|, 1)$, so that $B \sim C(\operatorname{sp}(|x|))$. If $x = \alpha u + \beta v$, let y and z = h + ik be as in Theorem 2.3. It suffices to show that h is uniquely determined, up to a change of sign; because then the pair u, v will be unique. But

$$h\in B'\cap A=B,$$

so that h = f(|x|) for some real function f in $C(\operatorname{sp}(|x|))$. We see that $f(\lambda)^2 = (1 - \lambda^2)(\lambda^2 - (\alpha - \beta)^2)$, whence

$$f(\lambda) = \pm (1-\lambda^2)^{1/2} (\lambda^2 - (\alpha - \beta)^2)^{1/2}, \qquad \lambda \in \operatorname{sp}(|x|).$$

Since the spectrum is connected, exactly one of the signs must hold for all λ .

COROLLARY 2.6. If $x \in \mathscr{P}(A)$ with $|\alpha - \beta| < |x| < 1$, and if the commutant of |x| in A contains no non-trivial projections, then $x = \alpha u + \beta v$ for a unique pair of unitaries in $\mathscr{U}(A)$.

Proof. As in the previous corollary it suffices to show uniqueness (modulo sign) of h. As $|\alpha - \beta| < |x| < 1$ we see that $|h| \in GL(A)$ and thus h = s|h| for some self-adjoint unitary $s (= h|h|^{-1})$ in the relative commutant of |x|. As s = 2p - 1 for some projection p, we see that s = 1 or s = -1.

PROPOSITION 2.7. An element x in A with ||x|| < 1 belongs to $\frac{1}{2}\mathcal{U}(A) + \frac{1}{2}\mathcal{U}(A)$ if and only if x = wa for some w in $\mathcal{U}(A)$ and some a in A_{sa}^1 .

Proof. Since $a = \frac{1}{2}(u+u^*)$ with $u = a + i(1-a^2)^{1/2}$, the sufficiency is clear. To prove necessity, assume that $x = \frac{1}{2}(u+v)$ and take y as in Lemma 2.1 (with $\alpha = \beta = \frac{1}{2}$). Since ||x|| < 1 we see from (i) that both y^*y and yy^* are invertible, so that $y \in GL(A)$ with y = w|y| for some w in $\mathcal{U}(A)$. Put $a = w^*x$ and compute by (ii)

$$|y|a = |y|w^*x = y^*x = x^*y = x^*w|y| = a^*|y|.$$

Thus |y|a is self-adjoint. On the other hand,

$$|y|a = y^*x = w^*|y^*|x = w^*(1 - xx^*)^{1/2}x$$

= w^*x(1 - x^*x)^{1/2} = a|y|,

by (i), so that a and |y| commute. Therefore

$$a=|y|^{-1}|y|a\in A_{sa}.$$

3. Unitary polar decomposition. We say that an element x in A admits a weak polar decomposition if x = v|x| for some v in A with $||v|| \le 1$. Note that v is not assumed to be a partial isometry and, in particular, no uniqueness properties of the decomposition are expected. If a decomposition exists for every element we say that A has weak polar decomposition. Similarly we say that A has unitary polar decomposition if for every x in A there is a u in $\mathcal{U}(A)$ such that x = u|x|, i.e. $A = \mathcal{P}(A)$.

Recall from [11] that a unital C^* -algebra A is a SAW*-algebra if for each pair x, y of orthogonal elements in A_+ there is an element e in A_{sa} (which can then be assumed to satisfy $0 \le e \le 1$), such that xe = 0and (1-e)y = 0. We now say that A is an n-SAW*-algebra if $\mathbf{M}_n(A)$ is a SAW*-algebra. Clearly then $\mathbf{M}_m(A)$ is also a SAW*-algebra for each $m \le n$. If the situation is stable, i.e. A is an n-SAW*-algebra for every n, we shall refer to A as a SSAW*-algebra.

One of the main difficulties with SAW*-algebras is that the definition, like the corresponding AW*-condition, only involves the commutative subalgebras of A. Therefore there is no compelling reason to believe that the SAW*-condition implies n-SAW* for n > 1. On the other hand, R. R. Smith and D. P. Williams show in [20, Theorem 3.4] that if A is a commutative SAW*-algebra (which means that A = C(X)for some sub-Stonean space), then A is also SSAW*. The same happens when we investigate the natural source of SAW*-algebras: the corona algebras. These have the form A = C(B), where B is a nonunital, but σ -unital C^{*}-algebra, and C(B) = M(B)/B. Clearly

$$\mathbf{M}_n(C(B)) = M(\mathbf{M}_n(B)) / \mathbf{M}_n(B) = C(\mathbf{M}_n(B)),$$

so that all corona C^* -algebras are SSAW*.

PROPOSITION 3.1. A C*-algebra A is a SAW*-algebra if and only if every self-adjoint element x admits a weak polar decomposition x = v|x| with $v = v^*$.

Proof. If A is a SAW*-algebra and $x \in A_{sa}$, consider the decomposition $x = x_+ - x_-$. Since $x_+x_- = 0$, there is an element e in A, $0 \le e \le 1$, such that $ex_- = 0$ and $(1 - e)x_+ = 0$. Put v = 2e - 1 and note that $v = v^*$ and $-1 \le v \le 1$. Moreover,

$$v|x| = (2e - 1)(x_{+} + x_{-}) = x_{+} - x_{-} = x.$$

Conversely, if A has weak polar decomposition in A_{sa} , consider an orthogonal pair x, y in A_+ . By assumption

$$|x - y| = v||x - y|| = v(x + y)$$

for some v in A_{sa} with $||v|| \leq 1$. Let $e = \frac{1}{2}(1+v)$, so that $1-e = \frac{1}{2}(1-v)$, and use the facts (1-v)x = (1+v)y = 0 to verify that (1-e)x = ey = 0.

PROPOSITION 3.2. If A is a 2-SAW*-algebra, it has weak polar decomposition.

Proof. We apply Proposition 3.1 to the self-adjoint element $\begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix}$ in $\mathbf{M}_2(A)$, to obtain a self-adjoint matrix $w = \begin{pmatrix} y & v^* \\ v & z \end{pmatrix}$, satisfying the decomposition equation

$$\begin{pmatrix} 0 & x^* \\ x & 0 \end{pmatrix} = \begin{pmatrix} y & v^* \\ v & z \end{pmatrix} \begin{vmatrix} 0 & x^* \\ x & 0 \end{vmatrix}$$
$$= \begin{pmatrix} y & v^* \\ v & z \end{pmatrix} \begin{pmatrix} |x| & 0 \\ 0 & |x^*| \end{pmatrix}$$

Direct computation shows that x = v|x|, and clearly $||v|| \le 1$ since $||w|| \le 1$.

PROPOSITION 3.3. If A is a 4-SAW*-algebra, there is for each pair x, y in A such that $x^*x \le y^*y$ an element w in A, with $||w|| \le 1$, such that x = wy.

Proof. Consider the elements

$$a = \begin{pmatrix} (|y|^2 - |x|^2)^{1/2} & 0\\ x & 0 \end{pmatrix}, \quad b = \begin{pmatrix} |y| & 0\\ 0 & 0 \end{pmatrix}$$

in $\mathbf{M}_2(A)$, and note that $a^*a = b^2$, i.e. |a| = b. Since $\mathbf{M}_2(A)$ is a 2-SAW*-algebra there is by Proposition 3.2 a matrix $c = (c_{ij})$ in $\mathbf{M}_2(A)$, with $||c|| \leq 1$, such that a = cb. Multiplying the matrices we get

$$x = a_{21} = c_{21}|y|.$$

Since by the previous result, y = u|y| for some u in A with $||u|| \le 1$, we have $|y| = u^*u|y| = u^*y$; and thus with $w = c_{21}u^*$ we get the desired result.

PROPOSITION 3.4. If an element x in a C*-algebra A admits a weak polar decomposition x = v|x|, such that

$$\operatorname{dist}(v,\operatorname{GL}(A)) < 1,$$

then x has a unitary polar decomposition.

Proof. Put $\alpha = \text{dist}(v, \text{GL}(A))$. By [12, Corollary 8] we see that if $f \in C(\mathbb{R})$, such that f(t) = 0 for all $t \leq \alpha + \varepsilon$ for some $\varepsilon > 0$, then

$$vf(|v|) = u|v|f(|v|)$$

for some u in $\mathcal{U}(A)$. As $\alpha < 1$ we may choose f such that f(1) = 1. Since $v^*v|x| = |x|$, we have (1 - |v|)|x| = 0, so that (1 - f(|v|))|x| = 0. Consequently

$$u|x| = u|v|f(|v|)|x| = vf(|v|)|x| = v|x| = x.$$

THEOREM 3.5. If a C*-algebra A has unitary polar decomposition, then GL(A) is dense in A which is a SAW*-algebra. Conversely, if A is a 2-SAW*-algebra with GL(A) dense, then A has unitary polar decomposition.

Proof. The first half of the theorem follows from Proposition 3.1 plus the fact that each element u|x| in $\mathscr{P}(A)$ is the limit of $u(|x|+\varepsilon)$ in GL(A) as $\varepsilon \to 0$. The second half follows by combining Propositions 3.2 and 3.4.

COROLLARY 3.6. A corona C^* -algebra has unitary polar decomposition if and only if the invertible elements are dense.

Proof. As noted in the beginning of this section, corona algebras are SSAW*-algebras, so Theorem 3.5 takes on this simple form.

REMARK 3.7. In [1], [6] and [14] M. J. Canfell, D. Handelman and A. G. Robertson prove (independently) that a compact Hausdorff space X is sub-Stonean (our terminology [3], they talk about F-spaces) with dim $X \leq 1$ if and only if C(X) has unitary polar decomposition. Since dim $X \leq 1$ is equivalent with GL(C(X)) being dense in C(X), the previous theorem represents a generalization to non-commutative C^* -algebras of their result.

Robertson also shows that the conditions above are equivalent with the equality

$$\frac{1}{2}(\mathscr{U}(C(X)) + \mathscr{U}(C(X))) = C(X)^1.$$

Presumably this also generalizes. At least Proposition 2.7 shows that if

$$\frac{1}{2}(\mathscr{U}(A) + \mathscr{U}(A)) = A^{1}$$

for some C*-algebra A, then each element x in A has the form ua with u in $\mathcal{U}(A)$ and $a = a^*$. The problem is, of course, that a is not assumed to commute with |x|, so that we do not immediately obtain unitary polar decomposition.

References

- M. J. Canfell, Some characteristics of n-dimensional F-spaces, Trans. Amer. Math. Soc., 159 (1971), 329-334.
- [2] L. T. Gardner, An elementary proof of the Russo-Dye theorem, Proc. Amer. Math. Soc., 90 (1984), 181.
- [3] K. Grove and G. K. Pedersen, Sub-Stonean spaces and corona sets, J. Funct. Anal., 56 (1984), 124-143.
- [4] _____, Diagonalizing matrices over C(X), J. Funct. Anal., 59 (1984), 65–89.
- [5] U. Haagerup, On convex combinations of unitary operators in C^{*}-algebras, preprint.
- [6] D. Handelman, Stable range in AW*-algebras, Proc. Amer. Math. Soc., 76 (1979), 241-249.
- [7] R. V. Kadison and G. K. Pedersen, *Means and convex combinations of unitary operators*, Math. Scand., 57 (1985), 249-266.
- [8] C. L. Olsen and G. K. Pedersen, Convex combinations of unitary operators in von Neumann algebras, J. Funct. Anal., 66 (1986), 365-380.
- [9] ____, Corona C^{*}-algebras and their applications to lifting problems, Math. Scand., (to appear).
- [10] G. K. Pedersen, C*-algebras and their Automorphism Groups, LMS Monographs No 14, Academic Press, London/New-York, 1979.
- [11] _____, SAW*-algebras and corona C*-algebras, contributions to noncommutative topology, J. Operator Theory, 15 (1986), 15–32.
- [12] _____, Unitary extensions and polar decompositions in a C*-algebra, J. Operator Theory, 17 (1987), 357-364.
- [13] I. F. Putnam and M. Rørdam, *The maximum unitary rank of some C*-algebras*, Math. Scand., (to appear).

- [14] A. G. Robertson, Averages of extreme points in complex function spaces, J. London Math. Soc., (2) 19 (1979), 345-347.
- [15] _____, Stable range in C*-algebras, Proc. Camb. Phil. Soc., 87 (1980), 413-418..
- [16] M. Rørdam, Advances in the theory of unitary rank and regular approximation, Annals of Math., **128** (1988), 153–172.
- [17] B. Russo and H. A. Dye, A note on unitary operators in C^{*}-algebras, Duke Math. J., 33 (1966), 413-416.
- [18] G. L. Seever, Measures on F-spaces, Trans. Amer. Math. Soc., 133 (1968), 267– 280.
- [19] R. R. Smith and D. P. Williams, *The decomposition property for C*-algebras*, J. Operator Theory, 16 (1986), 51-74.
- [20] _____, Separable injectivity for C*-algebras, preprint.

Received February 17, 1988.

Københavns Universitets Matematiske Institut Universitetsparken 5 2100 København Ø Denmark