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CHARACTERIZATION OF CROSSED PRODUCT
(PROPERLY INFINITE CASE)

HlDEKI KOSAKI

Dedicated to the memory of Professor Henry Abel Dye

We characterize a crossed product of a properly infinite factor by
an outer action of a finite group.

0. Introduction. We will obtain a properly infinite version of charac-
terization of crossed product algebras as a generalization of the recent
result (explained below) in the II i -factor set-up.

In [6] Ocneanu announced classification of subfactors in the hyperfi-
nite Πj-factor. His work is built upon Jones' index theory [2] and deep
analysis in the Pimsner-Popa paper [7], and this classification is based
on a newly-introduced invariant called a paragroup. His announce-
ment contains the following intrinsic characterization of crossed prod-
ucts: Let M be a Hi-factor with a subfactor N, [M N] < oo. If
M Π N' = Cl, Mi n N' is abelian, and the depth of M D N is 2, then
there exist a finite group G and an outer action α o f G o n i V such that
M = N xa G. Here, M\ is the basic extension of M D N, and the
definition of a depth can be found in [6].

A proof of this beautiful characterization has not been written yet
(although the result as well as its proof are implicit in [7]). The pur-
pose of the present paper is to provide a complete proof of a prop-
erly infinite version of this characterization. Therefore, the notion
of index explained in [4] has to be used here, and Ocneanu's condi-
tions are replaced by the following (equivalent) conditions: M n N'
= Cl, M\CιN' is abelian, and ά\mQ(MχΠN') = IndexE. (In particular,
Index E is an integer.) Here, E is a unique normal conditional expec-
tation from M onto N.

Our standard references on operator algebras are [8] and [9], and
basic facts on index theory can be found in [2], [4], and [7]. Some
auxiliary results will be proved in appendices.
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1. Notations and main theorem. Throughout let M be a factor with
a subfactor N, and let £ be a normal conditional expectation from M
onto N satisfying Index E < oo.

Let H be the standard L2-sρace of M so that M and N are act-
ing on H. Once a natural cone is fixed in //, one can perform the
basic construction. As usual by M\ we denote the basic extension of
M D N, that is, Mλ = JN'J = M V {e}", where / is the modular
conjugation on H and e is the projection arising from E. Let EM
be the normal conditional expectation from M\ onto M constructed
from E~K (EM = (Index f ) " 1 x JE~ι(J / )/) (see Appendix I for
details).

LEMMA 1. IfM\ΠNf is abelian, then ά\vciC(Mχ n N') < Index £\

Proof. Let {p/}/=i,2f...,m ^ e t ^ e πiinimal projections in MιΓ)Nf. Re-
call that

Index(£Ό EM) = (Index E) (Index E^) = (Index£)2.

Considering local indices ([4], 4), we estimate

m
(Index£)2 > ^E o EM{pi)-1 lndex{E oEM)Pι

m

ι = l

Notice that EoEM{piY$ are positive scalars summing up to 1. There-
fore, the minimum of the above sum of the inverses is m x (1/ra)"1 =
m2 (and the minimum is attained only when all of E o EM(Pi) are
exactly 1/m). Q

THEOREM 2. Assume that M is properly infinite and Index E = n G
N+. IfλfnN' = Cl, Mi ΠN' is abelian, and dim c(M! nN') = n, then
there exist a finite group G [of order ή) and an outer action a ofGon
N such that M is the crossed product N xaG. (Furthermore, E is the
canonical conditional expectation from N y\aG onto N.)

When M = N y\a G from the beginning, it is easy to check that all
of the above conditions are indeed satisfied. It is an amusing exercise
so that we leave it to the reader. We just remark that (i) E in this case
is the canonical expectation from N xiα G onto JV, (ii) this exercise
requires the characterization of an outer action obtained in [3].
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2. Proof of Theorem. We still keep the assumptions at the begin-
ning of §1. From now on, we will also assume that M n Nr = Cl,
Index E = n e N+, and M\ n iV7 is abelian. (Hence, by Lemma 1,

niV') < n.)

LEMMA 3. Assume that dimc(Mi n N') = n, and let {pi}i=\χ...3n
the minimal projections in M\ n Nr. Then we have EM(PΪ) =

/. In particular, we get {p{, p2, ., pn} = {P £ (Mx n

Proof. Under the present assumptions, the inequalities in the proof
of Lemma 1 read:

n

Π2>

ι=l

i=\

=n2.

We thus conclude that E o EM(Pi) = 1/Λ (and Index(£ o £j/)P f = 1).
Since MnN' = Cl, EM{Pi) is already a scalar and we get

D

We next investigate a "Weyl group" as in [7]. The minimal projec-
tions {pi}i= i,2,...,/! will be fixed from now on. We may and do assume
that p\ = e. For each /?/, we choose a partial isometry v, e Afi satis-
fying f iV* = Pi and v*Vj = e. (It is always possible if M is of type III.
It is also possible if M is of type either IIχ or ΠQQ. In fact, in these
cases, E comes from the unique trace and Lemma 3 guarantees that
Pi and e have the same trace value. See Appendix II.) By Lemma 3.3,
[4]? Ui = nEM(Vie) € M satisfies Vi = Vie = Uie. We thus get

(1) (pi = Uieu*,

(2) \e = eu*Uie = E(u*Ui)ef that is, E(u*Ui)

Applying EM to (1), from Lemma 3 we get

\/n = EM{pi) = EM(Uieu*) = UiEM(e)u* (since ut e M)

Hence ut is a coisometry. Then (2) means that the operator 1 - u*Ui >
0 satisfies E(l - u*Uj) = 0. The expectation E being faithful, we have
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1 - u*Ui = 0, and consequently w, is a unitary in M. Since v*Vj = 0
(/ φ j)9 we compute

0 = eu*Ujβ = E(u*Uj)e, that is, E(u*Uj) = 0.

Let Jf(N) be the set of all unitaries u in M satisfying uNu* = N.
Notice that the n unitaries U\, U2,... ,un belong to yy(N). In fact, for
each y e iV, we compute

because of /?/ E M\ n Λ^;. But this means that u*yui e M commutes
with e, that is, u]yui e N. Obviously Jf(N) forms a group (under
the ordinary operator multiplication) and the unitary group %f(N) is
a normal subgroup in yy{N).

DEFINITION 4. The quotient group Jr(N)/^(N) is denoted by G
(the Weyl group of M D N).

For each u e JV(N), ueu* is a projection in M\ n W. In fact, for
each y e N, we compute

w^w*j = ue(u*yu)u* = u(u*yu)eu* (since w*>̂w e JV)

= yueu*.

We also notice that

EM(ueu*) = uEM(e)u* = (l/n)uu* = 1/rc.

Therefore, wew* has to be one of pfs (see Lemma 3).

LEMMA 5 (Proposition 1.7, [7]). The Weyl group G is a finite group
of order n. More precisely, u e JV{N) —• wew* E {p e (M\ n N')pτφ
EM(P) = 1/w} induces the bijection:

[u]eG-+ ueu* e{pe {Mx n N')pτoi;EM(p) = l//ι}.

Proof. Since ^ commutes with an arbitrary element in TV, the second
map is certainly well-defined. To show the injectivity, let us assume
ueu* = ύeύ* (u,u e Jf(N)). Then the unitary u*u e M commutes
with e, that is, u*u e N and [w] = [w]. The surjectivity follows from
Pi = Uieu*. D

We have shown that the Weyl group G (a finite group of order ή) is
parametrized by:

{p e (Mi n iv')proj; EM(P) = ι/n} = {P\,P2> -->
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Therefore, in what follows, we shall write

{p e {Mx n N')proi;EM(p) = l/n} = {pg}geG

(/?! = e, where 1 denotes the unit in G)

and
g = [ug] eG = jr(N)/&(N) (with ux = 1).

Notice that Ad ug (g Φ 1) is an outer automorphism of JV. In the
above argument, a choice of a partial isometry Vi (hence that of a
unitary ug) is highly non-unique. Can we choose n representative
unitaries ug, g e G, in such a way that ug's themselves form a group
(in yy(N))Ί This is a cohomological question. Indeed, since [ugγs
form a group, we obtain a 2-cocycle on G (whose values are in the
unitary group $P(N)). The group G being finite, it is known that a
2-cocycle is a coboundary. (This is due to Sutherland. See [8] for
example.) This means that by perturbing ug by a unitary in JV we can
assume that ug's form a group. Notice that this perturbation does not
destroy the property ugeu*g = pg (since e and p^ belong to M\ Π JV').
By setting ag = Adw^lw (with the perturbed ug's), we obtain an outer
action a on JV.

Proof of Theorem 2. For any x in Λf, we compute

xe = Ixe = ^ w^̂ w*xe = J ^ ugE{u*gx)e.
geG geG

Hence x = ΣgeQ
ugχg with % = £(w*.x) G JV. Also the "coefficients"

xg's are uniquely determined by x since E(u*hug) = 0, g ^ h, obvi-
ously remains valid after the above-mentioned perturbation. (This is
an "iV-module decomposition" of M obtained in [7].) Let N xα G be
the crossed product generated by the usual generators πa(x) (x e N)
and λg (g e G). It is easy to see that Σgeo

ugχg -+ ΈgeGλgπ^(χg)
gives rise to an isomorphism from M onto N κa G. Since E(u*gy) = 0
(g Φ I, y e N) and ^(Mjy) = y (y e N), a generic element x =
ΣgeG ugχg E M belongs to the subfactor JV if and only if xg = 0
for all g Φ 1. Thus the above-mentioned isomorphism from M onto
JVxαGsends JV onto πα(JV), that is, JV c M and πQ(JV) CNxaGare
conjugate. D

REMARK 6. By "dualizing" a situation, we can prove the following
characterization of fixed point subalgebras: Assume Index E = n e JV.
If M Π JV' = Cl, M2 Π M1 is abelian, and dim c (M 2 Π M ;) = rc, then



164 HIDEKI KOSAKI

there exists an outer action of a finite group G (of order n) on M such
that N = MG, the fixed point subalgebra. Here, M2 denotes the basic
extension of M\ DM. (See [6] for the IIi-factor case.)

This result can be proved based on the general theory on actions and
coactions of a group (and a "group dual"). However, we will briefly
describe a direct proof in what follows.

Our previous arguments guarantee existence of n unitaries {ug}geo
in M\ such that ugMu*g = M and w/s form a group (in %(M)))
of order n. Let J\ be the modular conjugation on L2(Mχ). Then
vg = J\ugJ\ normalizes Mi = J\M'J\ so that we get an action of
G on M2. This is an outer action and we have M2 D (M2)Q D M\.
Thanks to [1], the index of the (unique) expectation from M2 onto
(M2)G is n so that we conclude

(3) (M2)G = M{.

Since M and N are properly infinite, they have a common cyclic
and separating vector ζ in H = L2(M). Let JM, JN be the modu-
lar conjugation arising from (Af, ζ) and (N, ζ) respectively. Let γ =
Ad JNJM be Longo's canonical endomorphism from M to N, [5]. It
is easy to see that N Ξ> γ(M) D γ(N) are downward basic exten-
sions. Also notice that M\ = JMN'JM = JMJNNJNJM (acting on
H with a cyclic and separating vector ζ). The modular conjugation
J\ coming from (M\,H, ζ) is (JMJN)JN(JMJN)* = JMJNJM* SO that
M2 = J\M'J\ = JMJNMJNJM- (All the upward and downward ba-
sic extensions can be constructed by using the single Hilbert space
H.) Notice that y{M) n γ(N)f = γ(M n N') = y(Cl) = Cl. We also
compute

n γ(M)' = MΠ (JNJMMJMJNΪ = Mn {JNJMM'JMJN)

n M'}JMJN

n M')JMJN.

So the inclusion y(Af) D y(iV) satisfies the same assumptions as M D
N. Thus, by applying (3) to the inclusion γ(M) D γ(N), we obtain
the result.

APPENDIX I. Natural cone and basic construction.
As mentioned in the main body of the paper, a basic construction is

determined after a natural cone is fixed. Although this is a folklore for
specialists, this was not explicitly explained in [4]. Thus to minimize
confusion we will make this point clear in the appendix.
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Let E: M —> N be as the beginning of § 1 and let H be a Hubert
space on which M is acting standardly. We now fix a natural cone 7/+

(C H) and the associated modular conjugation /. The commutant Nf

is independent of the choice of H+ and / is solely determined by H+
so that obviously M\ = JN'J is determined by i/ + . Actually we have
more. Namely the involved projection e = e^ (M\ = (M,e)) is also
uniquely determined by H+ (although e was defined after choosing a
faithful normal state on N, [4]).

LEMMA A. Let φ\ (i = 1,2) be faithful normal states on N with

φio E = ωξι (ξj G H+). Define the projections e, (/ —\y2)by eixζi =

E(x)ζi (x E M). Then the two projections e, in Nf are identical.

Proof. For x e M and t G R, we compute

eιx(D(φ2 o £); W i o ̂ ) ) ^ ! = E(x)(D(φ2 o E);D(φ{ o

because of (Z>(02 ° E)\D{φλ o E))t = (Dφ2;Dφι)ί G iV. The two
valued functions

( f(t) = eιx(D(φ2oE);D(φιoE))tξ{f

I
extend to bounded continuous functions o n — l / 2 < I m z < 0 which
are analytic in the interior. The previous computation means f(t) =
g(t)9 t G R. Using the uniqueness of analytic continuation, we get
f[z) = g(z) and in particular (z = -i/2)

which means e\ — e2. D

Next we investigate the effect coming from a different natural cone
(possibly in a different Hubert space). So let us assume that M is also
acting standardly on a Hubert space K and that K+ (c K) is a natural
cone with the associated modular conjugation /. Let φ be a faithful
normal state on TV with φ o E{x) = (*£, f)j/ = (^CC)A: (ί € i / + ,
ζ G AΓ+). Consider the usual projections e and £ given by

exξ = E{x)ξ, exζ = E(x)ζ (x e M).

(e is acting on H while e is acting on K.) A linear map xζ G Mζ
(c AT) —• Λ£ G Λ/ξ (c jfiΓ) extends to a surjective isometry u from ΛΓ
onto i/. For each x e M w e compute

£ = uexζ = uE(x)ζ = £(*)&
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which means ueu* = e. It is also easy to see uxu* = x (x e M). Here,
the right (resp. left) side x is understood to be acting on K (resp. H).
Therefore, p = Ad(w): B(K) -> B(H) sends (M, e) onto (M, e) in such
a way that

f ρ(x) = x (xeM),

\ p{e) = e.

Consequently basic extensions coming from different natural cones
can be identified. We recall that / and / are also related via w. It
is well known (and can be proved easily) that uJu* = / . "Basic ex-
tensions of E" are "conjugate" via the above p. This follows from
the definition of EM (involving E~ι and a /-operator) and the above
comparison of two /-operators. But we can also argue in the fol-
lowing way. Namely, the "basic extension" EM is characterized as a
unique normal conditional expectation satisfying EM{6) = 1. There-
fore, EM: (M, e) -• M and {EM)~' (M, e)-+M are related by

(EMΓ(X) = EM(p(x)).

APPENDIX II. Type ΠQO case.
Let E: M —• Λ̂  be as before with Index E < oo. In this appendix we

will show that E comes from the unique trace on M if M n N' = Cl
and M (or equivalently N) is of type IIoo Let tr (resp. τ) be the
unique (up to a scalar) faithful semi-finite normal trace on M (resp.
N). A real catch here is to show the semi-finiteness of tr on N.

LEMMA B. Under the above assumptions, we have τ o E = λ tr for
some λ > 0. (Hence, tr is semi-finite on N and E comes from tr.)

Proof, Since τoE is semi-finite (on M)9 there exists a unique positive
self-adjoint operator h (the Radon-Nikodym derivative relative to tr)
affiliated with M such that τ o E = tr(Λ ). For each x e N and t e R,
we compute

hιtxh~~ιt = σfoE(x) (since h is the Radon-Nikodym derivative)

= σf(x) (since x is in N)

= x

This means that h commutes strongly with an arbitrary element in N.
The relative commutant M Π N1 being trivial, we must have h = λl
for some λ > 0 and τ o E = λtr. D
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