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REGULARIZATION OF ACTIONS
OF GROUPS AND GROUPOIDS

ON MEASURED EQUIVALENCE RELATIONS

VALENTIN YA. GOLODETS AND SERGEY D. SINELSHCHIKOV

Dedicated to H. A. Dye

The paper deals with the regularization problem for locally com-
pact groups of non-strict automorphisms of measured equivalence re-
lations. It is shown that by means of inessential reorganization of
the equivalence relation and the group action one can make all the
automorphisms of the given action to be strict with respect to the
equivalence relation. A similar problem is solved for an action of a
measure groupoid which leaves invariant mod 0 a measured equiva-
lence relation.

1. The study of full groups introduced by H. A. Dye [5] as well
as a consideration of outer conjugacy of subgroups of the full group
normalizer (see the paper by A. Connes and W. Krieger [4] and the
subsequent works [1], [2], [3], [8]) forces one to deal with maps and
families of transformations that behave properly only almost every-
where. This as a rule does not cause any difficulties when the transfor-
mation groups in question are nonsingular and countable. One needs
only to discard a null set in order to make the action of such a group
regular. However, in the case of continuous transformation groups
this method of regularization is inappropriate in general.

The first step in studying the regularization of actions of continu-
ous groups was made by G. Mackey in [10], where the existence and
uniqueness of a point realization for an action of a locally compact
group G as automorphisms of a Boolean algebra were established. In
order to form the point realization of a Boolean G-space, the author
applies the properties of a universal G-space on which the G-action is
regular. This approach got its complete basis later in works of A. Ram-
say [12], [14]. Similar problems were considered by A. M. Vershik [15]
with another technique used.

The present paper contains a solution of the regularization problem
for groups of non-strict automorphisms of measured equivalence re-
lations based on results of [12], [14] (§2). It is shown that by means
of inessential reorganization of the equivalence relation and the group
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action one can make all the automorphisms of the group action to be
strict automorphisms of the equivalence relation. This allows us, in
particular, to formulate in the general case the notion of semidirect
product of a measure groupoid by a locally compact group of non-
strict automorphisms. A similar question arose in studying the outer
conjugacy for actions of continuous groups [8, §2], where its solution
was obtained for the case of discrete equivalence relations.

A similar problem is solved in §3 for action of a measure groupoid
which leaves invariant mod 0 a measured equivalence relation. An-
other approach to this kind of problem is described in the paper by
A. L. Fedorov [6].

2. All the necessary definitions concerning the measured equiva-
lence relations can be found in [11],

Let (X, μ) be a Lebesgue probability space on which a nonsingular
action of a locally compact separable (l.c.s.) group G by the automor-
phisms a(g), g e G, is given in such a way that the map (g,x) *->
a(g)x is Borel (x e X, g e G). Assume also that every automor-
phism a(g) leaves invariant mod 0 the measured equivalence relation
(R, [v]) on X, i.e. a(g) is a strict isomorphism of some inessential re-
ductions (i.r.) of R.

It follows from [7, Theorem 6.4] that R is generated mod 0 by an
action of a l.c.s. group H on X by the automorphisms β{h), h eH.

For every g e G consider the //-action βg on X by the automor-
phisms βg{h) = a(g)β(h)a(g)~ι. Denote also by Rβ(g) the associated
Borel equivalence relation on X\ in particular, Rβ(e) = R. Clearly,
every βg{h) is an (a.e.) inner automorphism of Rβ(e).

Recall that the family B(g), g € G, of subsets of X is called a Borel
field of sets if the set {(JC, g): x e B(g)} is Borel in X x G.

LEMMA 2.1. There exist a Borel field of equivalence relations R(g),
g e (?, on X and a Borel field ofconull sets B(g) c X such that R(g)
is strictly invariant with respect to the action βg, and Rβ(e)\B^ =

Proof. Since every transformation βg(h) is inner with respect to
Rβ{e), for all (g,h) eGx H the strictness domain

U* = {xeX:{βg(h)x,x)eRp(e)}

of the automorphism βg{h) is a Borel set of//-measure 1. This implies
that for every g e G the Borel set

Ag = {(A. x)eHxX: (βg(h)x, x) € Rβ(e)}
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is μπ x μ-conull, with μH being the Haar measure of H. Hence by
Fubini's theorem the Borel set

Ml = {heH: (βg(h)x,x)eRβ(e)}

is conull in H at every fixed g e G for a.a. x eX. Furthermore, since
the set

A = {(g, h,x)eGxHxX: {βg{h)x, x) e Rβ(e)}

is Borel, it follows from the Borel nature of the map

(g,x) ^ μH({h e H: (g,h,x) £ A})

[9, §35, Theorem 1] that B(g) = {x e X: μH(H\M£) = 0} form a
Borel field of conull sets.

Associate to every pair (x, y) e X x X and g e G the set

Lg(x, y) = {heH: (βg(h)x,βg{h)y) e Rβ(e)}.

This is a Borel field of sets because the set

K = {(g, h,x,y)eGxHxXxX: (βg(h)χ} βg{h)y) e Rβ(e)}

is clearly Borel. It is straightforward to check the following relations:

(i) Lg(x,x) = H;
(ii) Lg(x,y) = Lg(y,x);

(iii) Lg(xfz)DLg(x,y)nLg(y,z);
(iv) Lg(βg(h)x,βg(h)y) = Lg(x,y)h-K

Now for every g EG form the set of pairs

R(g) = {{x, y)eXxX: μH(H\Lg(x, y)) = 0}.

It follows from the Borel nature of K and [9, §35, Theorem 1] that
R{g) form a Borel field of sets.

The relations (i)-(iii) imply that every R(g) is an equivalence rela-
tion on X. (iv) ensures strict invariance of R(g) with respect to the
//-action βg.

Now let x,y e B(g). If (x, y) e Rβ{e), then Lg(x, y) D Mξ n Mξ,
and hence μH(H\Lg(x, y)) = 0. On the contrary, if (x, y) £ Rβ(e),
then H\Lg(x, y) D Af£ Π Af/. This means exactly that Rβ(e)\B(g) =

LEMMA 2.2. There is a Borel field of sets U(g) c X, g G G, such
that
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(b) U(g) is invariant with respect to a(g)n, n e Z;
(c) a(g)Rβ{e)\u{g) = Rβ(e)\u{g).

Proof. It follows from Lemma 2.1 that βg{h) is an inner automor-
phism of R{g) for all h G H; hence every

V* = {xeX:{βg(h)x,x)eR(g)}

is conull in X. Thus for every g G G the Borel set

V* = {(h,x) eHxX: (βg{h)x,x) e R(g)}

is conull in H x X. Now we apply as above Fubini's theorem in order
to deduce that for every g G G the set

E* = {heH:{βg{h)x,x)eR{g)}

is conull in H when x is in the conull subset

of X. Since the set

V = {{g,h,x)eGxHxX: (βg(h)x,x) eR(g)}

is Borel, 3f{g) form a Borel field of sets [9, §35, Theorem 1].
One can readily deduce from the strict invariance of R(g) with

respect to the //-action βg that every E$ is a subgroup in H, and so
El = H when x e 3f{g). This means, in particular, that Rβ(g)\^(g) c
R{g)\9(g)

Let
uf(g) = B(g) n B(g~ι) n3f(g) n&(g-1),

and then U(g) = Π/iez^^)"^^^)- ^ i s straightforward to check that
C/(g) form a Borel field of sets and satisfy the conditions (a)-(b) of
the lemma.

To prove that (c) also holds, let x, y e U(g) and (x,y) € Rβ(e),
that is, y = βe(h)x for some h € H. Then

α(£)y = a(g)βe(h)x = βg(h)a{g)x, i.e. (α(*)x, α(g)y) G /?^(^),

and therefore (α(^)x, α(^)y) G R(g) because a(g)x, a(g)y e 3f(g).
Note that one also has a(g)x, a(g)y e B(g), and hence (a(g)x, a(g)y)
e Rβ(e) (see Lemma 2.1).

Conversely, let x, y e U(g)9 but (x,y) φ Rβ(e) We claim that
(a(g)x,a(g)y) £ Rβ\e). In fact, if (a(g)x,a(g)y) G Rβ(e), then we
argue as in the preceding paragraph with g being replaced by g"1, and
get (x, y) G Rβ{e). This is a contradiction with our assumption.
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THEOREM 2.3. There exist a Borel equivalence relation Ra on X and
a conull Borel set B c X such that Ra is strictly invariant with respect
to the G-action a, and Ra\β = Rβ{e)\β-

Proof is essentially the same as that of Lemma 2.1. We shall sketch
only the main stages. The Borel field of strictness domains U(g) of
the G-action a automorphisms constructed above is used to form the
μG x μ-conull Borel set A = {(g, x) e G x X: x e U(g)} with μG being
the Haar measure of G. An application of Fubini's theorem permits
one to choose a conull Borel subset B of X consisting of those points
x for which Mx = {g e G: x E U(g)} is a conull subset of G. Now
form the family of sets

L{x, y) = {ge G: (a(g)x, a(g)y) e R}, (x, y) e X x X,

which possesses the following properties:

(i) L{x,x) = Gϊor?λ\xeX\
(ii) L(x, y) = L(y,x), x,yeX;

(iii) L(x, z) D L(x, y) Π L(y, z), x,y,z e X\
(iv) L(a(h)x,a(h)y) = L(x,y)h-1, x,yeX,heG.

Finally, form an equivalence relation

Ra = {(x,y)eXxX: μG(G\L(x,y)) = 0},

which satisfies all the necessary conditions.

3. We shall state here the main definitions concerning the actions
of groupoids on Lebesgue spaces (see also [6], [12], [13], [14]).

DEFINITION 3.1. An action of a groupoid 9 on the set X is a pair
(p, a) where p: X —• ^ ( 0 ) is a surjective map and a a map of the set
9 * X = {(g,x) e & x X: d(g) = p(x)} into X, with the following
conditions being satisfied: if (g, x) e & * X, and (h, g) e ̂ 2\ then

(i) p(a{g,x)) = r(g),
(ii) a(hg,x) = a(h,a(g,x)).

In the case when 9 is a Borel groupoid, and X a Borel space, the
action (/?, a) is said to be Borel if p and a are Borel maps.

In the sequel we shall delete the action symbol a and write merely
gx instead of a(g,x).

Let (^, [λ]) be a groupoid, and let the probability measure λ on <§
have the decomposition λ = J λudλ(u) with respect to d. Consider
also a Lebesgue probability space (X, μ) where μ has the decomposi-
tion μ = J μu dμ(u) with respect to the Borel surjection p: X
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DEFINITION 3.2. A pair (p, a) is called an action of a measure
groupoid (^, [λ]) on a Lebesgue space (X, μ) if

(i) the maps p and a are Borel;
(ii) the measures μ and λ are equivalent;

(iii) there is an i.r. g?\Uo of the groupoid & such that the pair

(^- ' ( t/o^hi/o^-W)) i s a n a c t i o n o f t h e groupoid &\Uo in

the sense of Definition 3.1 on the set p~ι(Uo)m,

(iv) the measures gβd{g) a n d f*r{g) a r e equivalent for Λ-a.e. g e ^ .

Let (R, [v]) be a measured equivalence relation on (X,μ). Suppose
that v admits the decomposition v = J vxdv{x) with vx being sup-
ported on the equivalence class of x and ϋ ~ μ. Consider also the
equivalence relation i? = {(x, y): p(x) = p(y)} on X.

DEFINITION 3.3. An equivalence relation (R, [v]) is said to be in-
variant with respect to the action (p, a) of the groupoid (^, [λ]) if

(i) R C r ;
(ii) given any g e ^ and X J G I such that p(x) — p{y) = d(g),

then the conditions (JC, y) G i? and (^x, gy) eR are equivalent.

DEFINITION 3.4. An equivalence relation (R, [v]) is said to be in-
variant mod 0 with respect to the action (p, a) of the groupoid (^, [λ])
if

(i) there is a conull Borel set A c X such that R\A c i?U;
(ii) for a.e. g e ^ there is a ^ (^)-conull Borel subset C/(^) c

p~x{d(g)) such that for X J G U{g) the conditions (x, y) e i?
and (gx, gj) G Λ are equivalent.

There is certainly some ambiguity in the choice of the family of
strictness domains U(g).

LEMMA 3.5. Let an action {p,a) of the groupoid (&,[λ]) on (X,μ)
which leaves invariant mod 0 the equivalence relation (R, [u]) be given,
then there exists a Borel field U(g) of strictness domains.

Proof. Replace if necessary 9 by its i.r. &\P(A)
 a n d X respectively

by its conull subspace A in order to get the inclusion R c % to be
satisfied strictly, not only mod 0.

Consider the measure ώ = / μd^ dλ(g) on & * X. The Borel auto-

morphism φ: &*X —• ^*X, φ(g, x) = (g~ι, gx) preserves the measure
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class of ώ, as one can easily see from Definition 3.2 (iv) and the sym-
metry of the measure class [λ]. Moreover, a routine verification shows
that φ o φ = id.

Impose on & * X the Borel equivalence relation

Ωo = {((g,x),(h,y)):g = h, (x,y)eR).

Then the measure ω = // vx dμ^g){x) dλ(g) on (& * X)2 is concen-
trated on ΩQ. (Here vx are the conditional measures in the decompo-
sition of v as described above.)

The map φ may be lifted to a Borel automorphism

φ: (&*X)2-*(2?*X)2,

Set Ω = ΩQ (Ί </>(Ωo); then Ω is a Borel equivalence relation contained
in ΩQ. Moreover, since for a.a. g G 9 φ(Ωo\u(g)) = Ωo|t/(g) (see
Definition 3.4), one has for these g f ux(Ω) dμ^^x) = 1, and hence
ω(Ω) = 1.

Thus, Ω is a conull subgroupoid of Ωo, and hence by [12, Lemma
5.2] contains an i.r. Ωo|κo of ΩQ onto some ώ-conull Borel subset Vo

of & * X. Let V = Vo Π Φ(VQ); then V not only possesses the same
properties as VQ, but is also invariant with respect to φ, and hence
the reduction ΩQ|K is invariant with respect to φ. Set V{g) = {x G

V(g) form a Borel field of sets and work as strictness domains for
elements of &.

We shall denote below a Borel field of strictness domains by U(g),
g e &, just as in Definition 3.4.

THEOREM 3.6. Let ψ, [λ]) be a measure groupoid which acts on a
probability Lebesgue space {X, μ) and leaves invariant mod 0 a mea-
sured equivalence relation (R, [v]) on X. Then there exists a Borel
equivalence relation R on X which

(a) coincides with R on some conull Borel set B c X\
(b) is invariant (strictly, and not only mod 0) with respect to the

action (of some i.r.) of(&, [λ]).

Proof. Consider the subset U = {(g,x) e &*X: x e U(g)} oϊ&*X.
By Lemma 3.5 one may assume that U is Borel, and ώ(U) = 1 since for
a.a. g e &, μd{g)(U(g)) = 1. Note that the measure ώ = f μ<i(g) dλ(g)
may be written in the form

dώ(u, g, x) = dμu(x) dλu(g)dλ(u).
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It is equivalent to the measure

dμu(x) dλu(g) dμ(u) = dλp{x)(g) dμ(x)

since λ ~ μ. Thus, if we set

Mx = {ge d-ι(p(x)) c&:x

then λp(X)(Mx) = 1 for all x in some conull Borel set B c X.
Associate with each pair (x, y) e % the set

L{x, y) = {gε d-\p(x)) c &\ (gx, gy) e R}.

L(x,y) form a Borel field of sets since the set

C = {{g, x,y)e¥xXxX: d(g) = p(x) = p(y), (gx, gy) e R}

is obviously Borel. Furthermore, L(x,y) possess the following evident
properties:

(i) L{x9x) = d~ι(p(x)) for all x e X\
(ii) L(x, y) = L(y, x) for all (x, y) e W\

(iii) L(x, z) D L(x, y) Π L(y, z) for all (x, y), (y, z) e %\
(iv) L(gx, gy) = L(x, y)g~λ for all (x, y)e&,ge d~\p(x)) c 9.
It follows from the decomposition of measures that the function

/ : % —• R, f(x, y) = λP(X)(L(x, y)) is Borel, and hence so is the set

Properties (i)—(iii) of L(x, y) mean that R is an equivalence re-
lation. Note that for the measure groupoid (if, [λ]) one can choose
an inessential reduction onto a Borel subset C/Q C &^ such that
S^-d(g) ~ ̂ r(g) for all g E &\u0 [12, Lemma 2.4]. Replace now % by its
i.r. &\u0 and respectively X by its conull subspace P~1(UQ). Then (iv)
implies strict invariance of R with respect to the action of (^, [λ]).

Let x,y e B, and (x, y) e %. If (x, y) e i?, then it is straightforward
to check that L(x, y) D MxΓ)Myy and hence λP(X)(L(x, y)) = 1. On the
contrary, if (x, y) φ R, then one has d~ι(p(x))\L(x, y) D Mx n My,
and so λP(X)(L(x9 y)) = 0. This means exactly that R\B = R\B, which
was to be proved.

The theorem we have just proved implies a result on point real-
ization of groupoid homomorphisms into the automorphism group of
measured equivalence relations.

Let a: & —• Aut(i?) be a homomorphism of a measure groupoid
(^, [λ]) into the automorphism group of a measured equivalence re-
lation (R,[v]) on the Lebesgue space (X,μ). Denote by 3&{X) the
Boolean algebra of sets on (X, μ) [10], [12]. The natural inclusion map
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Aut(i?) —• Aut^(X) permits one to associate with a a homomorphism
a: & -» Aut^(X). The homomorphism a: & —> Aut(i?) is said to be
Borel if for every b e 3S{X) the map 9 -» ^ ( X ) , £ ^ α(^)fc, is Borel.

DEFINITION 3.7. A homomorphism a: & -* Aut(i?) is said to have a
point realization if there exists an action (p,a) of the groupoid (^\ [A])
on the space <^(0) x X such that

(i) p(u,x) = u;
(ii) the action (p,a) leaves invariant some Borel equivalence rela-

tion R on ^ ( ° ) χ l which coincides mod 0 with the equivalence
relation

{((u, x), (υ, y)) e (^(°> xX)2:u = v, (x, y) e R};

(iii) for a.a. g e & the map α(#, •): d(g) x I - > r(^) x X represents
the class a(g) in Aut(i?).

THEOREM 3.8. Every Borel homomorphism a: & —> Aut(i?) o/α
measure groupoid (&, [λ]) into the automorphism group of a measured
equivalence relation (R, [v]) admits a point realization (see also [6]).

Proof. Apply the same argument as in the proofs of Theorem 3.3
and Lemma 3.2 of [12] and the construction of a universal ^-space
in order to get the Borel map g: & x X -+ X which has the property
g{h\h2,x) = g{h\, g(h2,x)) for {hxMi) €&^ and such that the auto-
morphism g(h, -) of (X, μ) represents the class a(h) in Aut(i?), A e f .

Consider the action {p, a) of 9 on gK°) x X with p:
being the projection, p{u,x) = u, and the map a: & *
3?(°) x X being given by a{hfd{h),x) = (r(h),g(h,x)). Clearly, the
action (p, a) leaves invariant mod 0 the equivalence relation

{((u,x),(v,.

Apply now Theorem 3.6 and obtain the desired statement.
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