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It is shown that the numerical index d.(a) of a semigroup o of
*-endomorphisms of B(H) obeys the logarithmic addition formula

d.(a® B) =di(a) +d.(B).

The proof makes essential use of the theory of continuous product
systems

1. Introduction. Let a = {a;: ¢ > 0} be a semigroup of normal
x-endomorphisms of B(H) such that a,(1) = 1 and (a;(A4)¢&, 1) is con-
tinuous in ¢ for fixed &, n € H and 4 € B(H). Following Powers [2]
we shall refer to such an « as an Ey-semigroup. It will be convenient to
rule out the degenerate case in which the a;’s are all automorphisms,
and hence we require that o;(B(H)) # B(H) for some (and therefore
every) positive . On the other hand, we will occasionally need to drop
the hypothesis that o;(1) = 1, and will refer to such an a simply as
a x-semigroup. We emphasize that it is essential for the techniques
below that all Hilbert spaces be separable.

In [1], a numerical invariant d.(a) was introduced for Ej-semi-
groups a which can be defined rather concretely as follows. Fix-
ing a, let %, denote the set of all strongly continuous semigroups
U = {U;: t > 0} of bounded operators on the Hilbert space H of
« satisfying Uy = 1 and

a,(A)U, = UtA, A EB(H), t> 0.

%, can be empty (cf. [3]). But if it is not, then for every pair of
elements U, V € %,, there is a unique complex number ¢(U, V) such

that
VU, =e*UN1, >0

The function c is self-adjoint (c(U, V) = ¢(V, U)) and is conditionally
positive definite in the sense that for every finite set of complex num-
bers A;,...,A, with 4; +---+ 4, = 0 and every set U;,..., U, € U,
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we have

n
(1.1) ZliZjC(U,‘,Uj)ZO.
ij=1
Using (1.1), one may construct a Hilbert space H(a) as follows.
Letting CoU, denote the complex vector space of all finitely nonzero
functions f: U, — C satisfying

Y fx)=0,

we define a sesquilinear form on CoU, by

(&)= f(x)g»)e(x. ).
X,y

(-, -) is positive semidefinite by (1.1), and its kernel

N ={f €CyU,: {f,f)=0}

is a linear subspace of CyU, - (-, ) induces an inner product on the
quotient CoU, /N, and the completion of the latter is a Hilbert space
H(a) which is necessarily separable (cf. [1], Proposition 5.2).

In case %, # O, d.(a) is defined as the dimension of H(a). Thus,
d.(a) belongs to {1, 2,...,00} where the symbol oo stands for the car-
dinal Ry. If %, # O, it will be arithmetically convenient to define
d.(a) = c, the cardinality of the continuum. The set {1,2,...,00,c}
of values of d, is an abelian semigroup under addition, where the
usual addition in {1, 2, ..., 00} is extended to the set obtained from it
by adjoining ¢ according to the rules

X+c=c+Xx=c, c+c=c,

x =1,2,...,00. It was shown in [1] that d.(a) is an invariant for
outer conjugacy of Ey-semigroups «, and that if o and g have the same
index in the sense of Powers and Robinson [4] then d.(a) = d.(B).
Moreover, if a is the CAR flow of rank »n then d.(a) = n ([1], Corollary
2 of Proposition 5.3).

If a (resp. B) is an Ey-semigroup acting on B(H) (resp. B(K)), then
there is a unique Eyp-semigroup a ® f acting on B(H ® K) such that

(a® B)i(A®B) = a,(4) ® B«(B),

for all A € B(H), B € B(K). It follows from the above remarks that
d, obeys the logarithmic additivity property

(1.2) di(a® B) = d.(a) + di(B)
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whenever a and f are outer conjugate to CAR flows. The purpose of
this paper is to establish (1.2) in general. Equivalently, if %,gp = &
then either %, = & or %3 = J; and if Z,gp # &, then both %, and %
are nonvoid and

(1.3) H(a® p)=H(a)® H(B).

The first of these two assertions is clear from the fact that if both %,
and % are nonvoid and we choose U € %, and V' € Z;, then the semi-
group (U® V), = U; ® V, belongs to #%,gp and hence #,g55 # . The
second assertion (including (1.3)) is a consequence of Theorem 4.4 be-
low. In particular, we show that every semigroup in %,gz decomposes
into a tensor product U ® V' where U € %, and V € %j.

We remark that while the above definition of %, (and therefore
H(a)) appears to differ from the definition of %, given in [1], it is actu-
ally the same. The proof of that amounts to showing that if {U;: t > 0}
is a weakly measurable family of bounded operators on H satisfying
U, U, = Us+t for S, t> 0 and

a(A)U, = U, A, AeB(H), t>0,

then {U;: ¢t > 0} is strongly continuous and U, tends strongly to 1 as
t — 0+. To see this, note that by ([1], Theorem 4.1) there is a real
constant a such that

UrU =e“l, >0,

and hence V, = e~!/2¢[J, is a measurable semigroup of isometries.
The assertion now follows from ([1], Proposition 2.5(ii)).

2. Multipliers of (0, 00). By a multiplier of (0, c0) we mean a Borel-
measurable function m: (0, 00) x (0, 00) — {|z| = 1} satisfying

(2.1) m(x,y+z)m(y,z) =m(x+y,z)m(x,y), x,y>0.

The purpose of this section is to establish that every multiplier m
of (0,00) is trivial in the sense that there is a measurable function
f:(0,00) — {|z| = 1} satisfying

(2.2) m(x,y) = %);;(Ly)) x,y>0.

While this is analogous to a well-known fact about multipliers of the
additive group R ([S], Theorem 10.38), we have been unable to find
the result we need in the literature.

We will deduce (2.2) from the following representation theorem. In
the proof, we use a familiar theorem which asserts that every weakly
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continuous one-parameter group y = {y;: t € R} of *-automorphisms
of B(H) is implemented by a strongly continuous one-parameter uni-
tary group U:

7(4) = U AU}, t€R, A B(H)

(for example, see [S5] p. 141). Of course, the proof of that makes
essential use of the fact that R has no nontrivial multipliers.

PROPOSITION 2.3. Let a = {a;: t > 0} be a x-semigroup acting on
B(H) such that each a, leaves the set of compact operators invariant.
Then there is a strongly continuous semigroup {V;: t > 0} of isometries
in B(H) such that

a(A) =V, AV,  t>0, A€ B(H).

Proof. For every t > 0, consider the linear space of operators
E,={T €eB(H): a;(A)T =TA, A€ B(H)}.

E; # {0} and is a Hilbert space relative to the inner product [-, -]
defined on it by

[STIL=T*S, S TecE,.

Moreover, for each s, ¢t > O there is a natural unitary operator which
maps E;.; onto Es; ® E; (for details, see §2 of [1]). So if d(¢) is the
dimension of E;, then d satisfies the functional equation

(2.4) d(s+1)=d(s)d(t), st>0.

The only solutions of (2.4) taking values in {1,2,...,00} are d = 1
and d = oo. Notice that the case d = oo cannot occur. For if E; is
infinite dimensional and we choose an orthonormal basis V;, V>,...
for E;, then by ([1], Proposition 2.1) the V,’s are isometries having
mutually orthogonal ranges which satisfy

o0
a(A) =) V,AV;, A€ B(H),
n=1

and this contradicts the hypothesis that o, should map compact oper-
ators to compact operators.

In particular, we must have d(1) = 1. This means that E; = C -V
where V' is an isometry which satisfies

ai(4) = VAV*, A€ B(H).
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Let U be a minimal unitary extension of V. This is to say that U is a
unitary operator on a Hilbert space H containing H which satisfies

(i) Ulg=V
(23) (i) Uyer O°H = H.
Let P € B(H) be the projection onto H. The map 4 € K(H) —
AP € K(H) is a x-monomorphism which identifies the compact oper-
ators on H with the corner

~

Ko = PK(H)P

of the compact operators on H. Thus we may think of {a,: ¢ > 0} as

a semigroup of *-endomorphisms of Ky C K(H) satisfying
lim [|a;(4) — A = 0
11—

for every 4 € Ky. Moreover, a;(4) = UAU* for 4 € K.

Notice that there is a natural way to extend {«;} to a semigroup {f;}
of *-endomorphisms of the C*-algebra K(H) of compact operators on
H. To see this, let

K,=U"Ky,U"", nel.

We have K, | C K,, and as n decrease§ to —oo the C*-algebras K,
increase to a dense x-subalgebra of K(H). For each n < 0 we can
define a semigroup {f;: t > 0} of x-endomorphisms of K, by

ﬂ[(A) = Unat(U_nAUn)U_n,

A€ Ky, t >0. {8} is clearly conjugate to {a;}. Moreover, the
restriction of f; to K is a; since for 4 € K we have

pi(A) = Uy (a_n(A)U™"
= Ul n(A)U™" = Ura_p(ay(A)U"
= U'U"(ay(A)U"U™" = a,(A).

Similarly, one checks that the defintion of 8, on K, _; agrees with the
definition of S, on the smaller algebra K, for every n < 0. Hence f; is
well-defined on the dense *-subalgebra KUK_jUK_,U--- of K(H).
So {f:: t > 0} extends uniquely to a semigroup of *-endomorphisms
of K(H) satisfying
(i) lim;o||B:(4) — 4| =0,
(2.6) (i) Bk, =or, and i
(iii) B(UBU~Y) = UB,(B)U!, BeK(H), t>0.
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We claim that §,(K(H)) = K(H). Indeed, fi(K(H)) is a C*-sub-
algebra of K(H) which is invariant under the automorphism B +—
U~!'BU and which contains

Bi1(Ko) = a1(Ko) = VKoV* = UKoU™! = K.

Hence f,(K(H)) contains K; UKqgUK_; U---, and the claim follows
since the latter is dense in K(H).

By the semigroup property we conclude that 8,(K(H)) = K(H) for
every t > 0 and this implies that every f; is a x-automorphism of
K(H). Extending B, to negative values of ¢ by §, = By:|» we obtain a
C*-dynamical system (K(H),R, ) which extends naturally to a W*-
dynamical system (B(H),R, ). By the preceding remarks there is a
strongly continuous one-parameter unitary group {W;: ¢t € R} acting
on H such that

B«(B)=wBW;', >0, BeB(H).

For t > 0, B; leaves the corner Ky = PK(H)P invariant and hence
w,pw;! < P. It follows that the subspace H = PH is invariant
under {W;: t > 0}, and we obtain the desired semigroup of isometries
{Vi: t > 0} by setting V; = W,|y. 0

COROLLARY. Let m: (0,00) x (0, 00) — {|z| = 1} be a Borel-measur-
able function satisfying the multiplier equation
m(x,y+z)m(y,z) =m(x+y, z)m(x,y), x,y,z>0.
Then there is a measurable function f: (0,00) — {|z| = 1} such that

m(x,y)=M x,y>0.

VACIVACON

Proof. For every t > 0, define an operator U, on L2(0, co) by
m(t,x —t)f(x—1), x>t
U =
f (%) {0, 0<x<t.

{U;: t > 0} is a measurable family of isometries which, because of the
multiplier equation for m, satisfies

UsU, = m(s, t)Usyy, s,t>0.

Therefore, a;(4) = U;AU; defines a semigroup {o;: ¢ > 0} of x-
endomorphisms of B(L?(0, o)) such that

(2.7) t €(0,00) = (s (A) S, 8)
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is measurable for fixed f, g € L2(0, 0) and 4 € B(L*(0, 0)). By ([1],
Proposition 2.5(i)) the functions (2.7) are continuous and o,(4) — A4
weakly as ¢t — 0+ for every bounded operator 4. So if we define
ag(A) = A for all 4, then {«,: ¢t > 0} satisfies the hypothesis of Propo-
sition 2.3.

Hence there is a strongly continuous semigroup {V;:t > 0} of
isometries on L2(0, 00) such that a,(4) = V; AV}, i.e.,

(2.8) U, AU} = V,AV}, A€ B(L*0,0)), t> 0.

Fix ¢ > 0. (2.8) implies that U;V; commutes with every bounded
operator and hence there is a scalar f(¢) such tht U/ V, = f(¢)1. f is
measurable because of the measurability of U and V. Taking 4 = 1
in (2.8) we obtain U, U} = V;V* and hence V; = U, U}V, = f(t)U, for
every t > 0. Thus, |f(¢)| = 1 and, for every s, t > 0 we have

S+ Usy = Vo = ViV = f(5)f (1) UsU,
= f(s)f(e)m(s, ) Usys.

The required formula follows by multiplying the latter equation on
the left by Uy, ;. O

3. Compact morphisms of product systems. We begin by recalling
the definition of a (continuous) product system. This is a measurable
family of separable infinite dimensional Hilbert spaces

(3.1 p: E— (0,00)
which is endowed with a measurable associative multiplication
X, yEEXE—xy€ekE

which acts like tensoring in the following sense. Letting E, = p~!(¢)
be the Hilbert space over ¢ € (0, c0), we require that

(i) Esy; =SpanEE;, s,t>0, and
(3.2) (ii) forall x,x' € E; and y,y' € E;, one has
(xy, x'y"y = (x, x" Wy, ¥').
In more detail, the symbol E in (3.1) denotes a standard Borel space,
p denotes a measurable surjection such that each fiber E, = p~1(¢) is
endowed with the structure of a complex Hilbert space, in such a way
that there is a separable infinite dimensional Hilbert space Hy and a
Borel isomorphism
0: E — (0,00) x Hy
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of E onto the indicated trivial family which commutes the diagram

E b, (0,00) x Hy

(3.3) P\ /b
(0, 00)

and is unitary on fiber spaces.
By a unit of E we mean a measurable section

tE(O,OO)HU[GEt

such that u,,, = wusu, for all s, ¢ > 0, and which is not the zero
section. #Zg will denote the set of units of E. Finally, a morphism of
product systems is a Borel map of product systems 6: E — F such
that 8(xy) = 6(x)6(y) for all x, y € E and such that the restriction
8, = 0|, of 0 to each fiber E; is a bounded linear operator from E;
to F, for every t > 0. A morphism 6 is called compact if each 6, is a
compact operator.

If one is given a pair of units ¥ € ¢ and v € #r, then one can
define a morphism 6: E — F as follows:

0(x) = (x, u;)v,, xekE, t>0.

6 is compact because each 6, is of rank at most one. The purpose of
this section is to establish the following result, which asserts that these
are the only compact morphisms. This will allow us to identify the
units of a tensor product £ ® F of product systems in Corollary 3.9.

THEOREM 3.4. Let E and F be product systems and let 0: E — F
be a compact morphism such that 6,, # 0 for some ty > 0. Then there
exist units u € %g, v € % such that

0:(x) = {x,u;)v;, x€E;, t>0.
Proof. We first consider the case in which F = E and each 6, is a

positive compact operator in B(E;), t > 0. We will show that there is
a unit ¢ in #g such that

0:(x) = (x, us)u,, xek, t>0.

Note first that ||6s.|| = [|6s]| - [|6:]| for every s, £ > 0. Indeed, (3.2)
implies that there is a unitary operator

Wi Es.i = EsQE;

which implements a unitary equivalence of the maps 6., € B(E;4;)
and 0; ® 6, € B(E; ® E;), from which the assertion is evident. The
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function ¢ € (0,00) — ||6;|| is clearly measurable and is nonzero at
tp > 0. It follows from a simple argument (see the proof of Theorem
4.1 of [1]) that there is a real constant a such that

16, =%, >0

So by replacing 6, with e~%0, if necessary, we can assume that ||6;|| =
1 for every positive ¢.

For each ¢ > 0 let ¢, be the projection of E; onto the nonzero finite
dimensional subspace

{E€E:0<,=¢3

Since the sequence 6,, 67, 63,... converges strongly to e, for every
positive ¢, it follows that ¢ — e, is a measurable family of operators.

We claim that each e, is one-dimensional. To see this, note that
for every s, t > 0 the unitary equivalence 6., = 6; ® 6, implies that
0!, = 0} ® 6 for every n > 1, and hence ¢,,; = &, ® ¢;. So the
dimension d(t) of e; satisfies the functional equation

dis+1t)=d(s)d(t), s1t>0.

The only solution of the latter, taking values in {1, 2, ...}, is the func-
tion d(t) = 1, t > 0, and the claim is proved.

We claim next that there is a measurable section ¢t € (0,00) — &, €
E, of unit vectors such that ¢,(&) = &, ¢t > 0. To prove this, we may
assume by (3.3) that E is the trivial family (0, c0) x Hp and that e,
is a one-dimensional projection in B(Hj) for every ¢t > 0. Choose an
orthonormal basis {;, {,,... for Hy. For each ¢t > 0, define n(¢) to
be the smallest positive integer k£ such that ¢,({;) # 0. The function
n: (0,00) — N is measurable, and therefore

ent)(Cn(r))
lenn (Cnae)Il”

defines a measurable section with the asserted properties.
We now show that &; has the form

& = f(Du,

where u is a unit of £ and f: (0,00) — C is a measurable function
satisfying | f(¢)| = 1 for every ¢t > 0. To prove this, we claim first that
&&, 1s proportional to &, for every s, t > 0. Indeed,

05+t(ését) = Bs(és)et(ét) = ésfz:

¢ = t>0,
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so that & is a unit vector in the range of es,;. The claim follows
from the fact that e, is one-dimensional.

Thus, there is a unique function m: (0, 00) X (0,00) — {|z| = 1}
such that

(3.6) &S = m(s, t)Es4s-

m is clearly measurable. Note that m must satisfy the multiplier equa-
tion

(3.6) m(r,s +t)m(s,t) = m(r +s,t)m(r,s), r,s,t>0.

Indeed, fixing r,s,¢ > 0 and using associativity of the multiplication
in E we have

m(r,s + t)m(s, 1)l = m(r, s + £)Er8sit = Crastrs

whereas

m(r + s, t)m(r, $)&EE = m(r + 5, 1) 58t = Erista,

and (3.6) follows.
By Proposition 2.3 there is a measurable function f: (0,00) —
{lz] = 1} such that ‘

m(s,t)=f(s+1)/f(s)f(2), s,t>0.

If we define u;, = f(t)&,, then ||u,|| = 1 for all £ > 0 and (3.5) implies
that « is a unit.

It follows that 6, can be decomposed as an orthogonal sum of op-
erators

(3.7) 0, = & + pt

where e, is the one-dimensional projection e;(x) = (x, ¥;)u; and where
{p:: t > 0} is a measurable family of positive compact operators sat-
isfying ||p|| < 1 and p,e; = e;p; =0, t > 0.

It remains to show that each p; is zero. Fix s, t > 0. We have seen
that 6;., is unitarily equivalent to 6; ® 6;, and hence e;,; + ps;; is
unitarily equivalent to the direct sum

(es®er) ®(es® pr) @ (ps ®er) ® (ps ® pr).

Because u;.; = usu;, e;,, is identified with e; ® e; in the above unitary
equivalence, and hence ps., is unitarily equivalent to the direct sum

(es® p1) ® (ps ® ;) ® (ps ® pr).
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Taking s = ¢ and noting that || p;|| < 1 for all £ > 0, we conclude that
if py; # 0, then necessarily p, # 0 and ||py|| = || p:||- Moreover, if d(s)
is the dimension of the eigenspace

{E € Es: ps(&) = ||pslIE},

then we may also conclude that d(2¢) = 2d(¢) whenever p,, # 0.
Now suppose there is a #g > 0 such that p;, # 0. The preceding
paragraph implies that

d(to) = 2d(to/2) = 4d(1o/4) = - -- = 2"d(to/2")

for every n > 1. Since d(#y/2") is a positive integer we conclude that
2" divides d(¢;) for every n > 1, which is absurd.

This completes the proof in the case where F = FE and each 6, is a
positive operator. Now suppose more generally that 8: E — F is an
arbitrary morphism such that 6,: E; — F; is compact for every ¢ > 0.
The adjoint 6* = {6;: t > 0} defines a measurable family of compact
operators from F to E. We claim that 6* is a morphism, i.e.,

(3.8) 05(xy) =05(x)0;(y), x€Fs, yeF,
for every s, t > 0. To see this, fix s and ¢ and choose x € F;, y € F;,
x' € Eg, y' € E;. We have
(0511(x), X'Y') = (xp, Os11(x"y"))
= (xy, 05(x")0: (")) = {x, 0s(x") (¥, 6:(»"))
= (05 (), X' )07 (»), ¥') = (05 (x)6; (), x"').
(3.8) follows because EE; spans E.;.

Therefore w; = 6;6,, t > 0, defines a morphism of E consisting of
positive compact operators, not all of which are zero. By the above
argument, there is a unit u € %y satisfying ||#;|| = 1 and a real number
a such that

W (x) = e (x, us)uy, x€eE, t>0.

It follows that the initial space of 6, is the one-dimensional space
spanned by u;, t > 0. Put v; = 6,(4;). v is a unit of F because u is a
unit of £ and 6 is a morphism. It follows that for every x € E; we
have

0:(x) = 0,({x, us)u;) = (x, us)vy,
as required. O

Now let E, F be two product systems and let
EQF ={E,®F;:t>0}
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be the tensor product of product systems (cf. [1], §3). The multiplica-
tion in E ® F is defined uniquely by requiring

(x®y)(u®v) = (xu)® (yv),

forxeE,, yeFs,,ucE,veF, s, t>0. Ifue % and v € % are
units then one can define a unit u® v of EQ F by (u®v); = u; ® vy,
t>0.

COROLLARY 3.9. Let E and F be product systems. Then every unit
of E® F decomposes as a tensor product u ® v where u and v are units
of E and F respectively.

Proof. Let F be the conjugate of the product system F, ie., F
consists of the same family of Hilbert spaces p: F — (0, 00) except
that scalar multiplication in the fibers of F is conjugated: thus for
A€ C and x € F;, - x means Ax rather than Ax. The multiplications
in F and F are the same. The identity map of F can be considered a
Borel isomorphism of F on F' which we denote by x — Xx. This map
preserves multiplication and is anti-unitary on the fiber spaces. The
inner product in F, is given by (X, y) = (y, x), X, ¥y € F;.

Now let w be a unit of E® F. For each ¢ > 0, the bounded bilinear
map

X, yEE xF — (x®y, w)

can be viewed as a sesquilinear map on E; x F;. Thus there is a unique
bounded linear operator 6,: E; — F, such that

(310) (01(X),J7>=<x®y,w;), ert, yeFt.

Notice that 8: E — F is a morphism. Indeed 0 is clearly a measurable
family of bounded linear operators and it is multiplicative because if
x € E;, x' € E; then for every vector in F,, of the form yy’ with
y € Fs and y’' € F; we have

<0s+t(xx,)’W) = (xx' @ yy', Wss)
={(x®y)(x'® "), wsw;)
= (x®@ y, ws)(x' ® y', wy) = (Bs(x), P}(0:(x'), y")
= (05(x)0:(x"), py") = (65(x)0:(x"), yy').

The assertion follows because F,; is spanned by FF;.
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We claim that each 6, is a Hilbert-Schmidt operator. Indeed, if &,
. (resp. n1, M2, ...) is an orthonormal basis for E; (resp. F;) then

leet(ém 12 = Z| 0:(Em). fin)I
= ZI Em ® N, we)[? = [Jwg]|? < o0,

because {&,, ® 7, m,n > 1} is an orthonormal basis for E; @ F;.

Thus, 6 is a compact morphism. By Theorem 3.4 and the fact that
every unit v of F has the form v, = w, for some unit of w of F, we
conclude that there are units u € Z¢ and v € Zr such that

0:(x) = (x, u;)vy, xekE, t>0.
Substitution of the latter in (3.10) gives
(X, unv;,p)=(x®@y,w), Xx€E, y€eF.

The left side can be written

(X, ue) (U7, P) = (X, u)(y, v1) = (X ® Y, Uy ® vy).
It follows that w, = u, ® v,, as asserted. ]

REMARK. Referring back to the context of the introduction, let
{a;:t > 0} and {B;: t > 0} be Ej-semigroups acting on B(H) and
B(K) respectively, and let {W;: t > 0} be a semigroup of isometries
in B(H ® K) such that

(a®B) (AW, =W 4, A€BH®K), t>0.

Then there are semigroups of isometries U in %, and V' in % such
that W, = U, ® V; for every ¢t > 0. This follows from Corollary 3.9
together with the basic results on the relation between an Ey-semigroup
y = {y;: t > 0} and its associated product system ([1], §2).

4. Dimension and index. We now apply the results of §3 to prove an
addition theorem for the dimension of product systems and the index
of Ey-semigroups.

Let E be a product system and let Zz be its set of units. Theorem
4.1 of [1] asserts that for every pair of units u, v € g there is a
complex number c(u, v) such that

(U, v;) = e®?) >0,

c: % x Zg — C is called the covariance function of E and it is self-
adjoint and conditionally positive definite. As in the introduction, one
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can use ¢ to construct a (necessarily separable) Hilbert space Hg. The
dimension of E is defined as follows
(4.1) dimE={ dimHg, if %5 #0,

c, if U = %,
Notice that (4.1) differs slightly from the definition given in §5 of [1];
in the former we define dim E to be 0 in the exceptional case where
#r = . The present definition leads to somewhat more attractive
algebraic formulas.

Before presenting the main results we prove a simple lemma about
abstract covariance functions which will facilitate the computation of
dim E. By an (abstract) covariance function we mean a pair (X, c¢)
consisting of a nonvoid set X and a function ¢: X x X — C satisfying

(4.2) (i) c(x,y)=c(y,x), and

(11) Eﬁj:l A[ijC(X,‘,xJ‘) >0
for all 4y,...,4, € C satisfying A; +---+ 4, = 0, all x;,...,x, €
X,and alln = 1,2,.... Starting with the vector space CoX of all

finitely nonzero functions f: X — C satisfying ), f(x) = 0, we can
construct a Hilbert space H(X, c) by the same method sketched in the
introduction (for more detail, in §5 of [1]).

We define the direct sum of two covariance functions (X, a) and
(Y,b) to be the covariance function (X x Y,c¢) where c¢: (X x Y) x
(X x Y) — C is defined by

c((x, »), (x", ¥") = a(x, x") + b(y, ¥').

LEMMA 4.3. Let (X, a), (Y, b) be covariance functions.
(i) If there exists a surjective function 0: X — Y such that b(6x, 0y)
=a(x,y) forall x, y € X, then

dim H(X, a) = dim H(Y, b).
(i) If (X x Y, c) is the direct sum of (X, a) and (Y, b), then
dimH(X x Y,¢) =dim H(X, a) + dim H(Y, b).
Proof. To prove (i), we will construct a unitary operator from

H(X,a) to H(Y,b). Define sesquilinear forms (-, -) and (-, )’ on CoX
and CpY respectively by

= 3 fgdatx. ).

x,yeX

= > h(wk(v)b(u,v).

u,veY
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Both are positive semidefinite, and

N={f€CX:(f f)=0}
N'={geCyY: (g g) =0}
are subspaces of CoX and CyY respectively such that (-,-) and (-, )’
induce inner products on CoX/N and CoY/N'. H(X,a) and H(Y,b)
are the respective completions of these inner product spaces.
We can define a linear transformation Wy: CoX — CyY by

Wolf) =) f(X)Bpx,
xeX

0y denoting the function with value 1 at y € Y and O elsewhere.
Noting that

YW NHy) =), (Z f(x)) =Y f(x)=0,

we see that W, does not indeed map CyX into CyY. We claim that
Wy is surjective. Indeed, if g is any nonzero element of CyY and
{y1,--.,yn} is the set of points where g # 0, then we may find
X1,...,Xn in X such that Ox; = y;, 1 <i < n. Putting

n
f=Y8i)bx,
i=1
we have f € CoX and Wy(f) = g.

Notice next that (Wy(f), Wy(g)) = (f. g) for all f, g € CoX. For
we can write

o). Wolgh = Y | D f(x)g(x)b(bx,0x")

yy'eY | Ox=y
0x1=yl

=Y | T rgmmac )

».y' 69)f=y’
X' =y
= > fx)gxNa(x,x) = (f &),

as asserted. It follows that W,(/N) C N’ and that W induces a surjec-
tive isometry
W: CoX/N — CoY/N'.
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The closure of W is the required unitary operator from H(x,a) to
H(Y,b).

To prove (ii), we exhibit a unitary operator ¥ from H(X x Y,c) to
H(X,a)® H(Y,b). First, we define a linear transformation V|, from
Co(X x Y) into the direct sum of vector spaces CoX +CoY by Vy(f) =

(f1, f2) where
fix) =" fxy), L) =D f(x»).

yeyY xeX

Note that V) is surjective. For if f € CoX and g € Co(Y) and we
choose any points xo € X, yy € Y, then (f, g) = Vy(h) where & is the
function in Cy(X x Y) defined by

h(x,y) = 0x,(x)&(¥) + f(x)dy,(¥).
Let (-, -) be the sesquilinear form defined on Cy(X x Y) by c:

(f,8) =) fx, )X, ¥e((x.y), (X', y"),
the sum extended over all x, x’ € X and all y, ' € Y. Using

c((x,y), (x",y))=alx,x)+ by, ¥,
we find that

(fg) =Y fi)a(alx,x)+ > £(»)&(b», ¥
.y’

= (jlrglh +(f2, &2)2

where (-,); and (-, -), are the sesquilinear forms defined on CyX and
CoY by a and b respectively. This formula implies that 7, induces a
surjective isometry of inner product spaces

V:Co(X X Y)/N — Co(X)/Ny ®CoY/N,
and so the closure of V' is a unitary operator from H(X x Y,¢) to
H(X,a)®o H(Y,b). O
THEOREM 4.4. For any two product systems E, F we have
dim(EQ® F) =dim E + dim F.
Proof. Assume first that at least one of the two sets #z, ZF is void.
Then at least one of the two cardinals dim E, dim F is ¢, and hence

their sum is ¢. On the other hand, Corollary 3.9 implies that ZzgF
must be void and so dim(F ® F) is also c.
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Thus we can assume that both £ and F possess units. Let (%, a),
(ZF,b), and (ZggF, c) be the covariance functions of E, F,and EQF
respectively and let (Zz x %r,d) be the sum of (%%, a) and (%F, b):

d((u,v), (W', v") =a(u,u')+ b(v,v").
We claim that
(4.5)  dimH (% x ¢, d) = dim HZger, ¢) = dim(E ® F).

By Lemma 4.3(i), it is enough to observe that the map 0: % X Zr —
#rer defined by 0(u,v) = u ® v is surjective and satisfies

(4.6) c(O(u,v), 0, v")) =a(u,u')+b(v,v).

The surjectivity of 6 is immediate from (3.9). If u, ¥’ € g and
v, v’ € % then for every t > 0 we have

plc(u®vuweY') _ (u®v), (¥ @v'),)

= (U ® vy, Uy ® Vg) = (uy, Uy)(Vr, V1)
- eta(u,u’)etb(v,'u’) — et(a(u,u’)+b(v,v’))

and (4.6) follows from this.
Finally, Lemma 4.3(ii) implies that

dim H(Zg x #r,d) = dim H(%g,a) + dim H(%g, b)
= dimE + dim F,

and we are done. O

The main result on additivity of the index of Ey-semigroups is now
a simple consequence of (4.4).

COROLLARY 4.7. Let o, B be Ey-semigroups. Then we have

di(a® p) =d.(a) +d.(B).

Proof. Let E, and Ejy be the product systems associated to « and f
as in §2 of [1]. By ([1], Proposition 3.15 et seq.), E,gp is isomorphic
to the tensor product of product systems E, ® Ez. Hence

di(a® ) = dimE,gp = dim(E, ® Ep).
By Theorem 4.4 the right side is
dimE, + dim Eg = d.(a) + d«(B). o



36

(1]
(2]

(3]
[4]
(3]

WILLIAM ARVESON

REFERENCES

W. Arveson, Continuous analogues of Fock space, (to appear).

R. T. Powers, An index theory for semigroups of endomorphisms of B(H) and
type II, factors, Canad. J. Math., XL, No. 1 (1988), 86-114.

, A non-spatial continuous semigroup of x-endomorphisms of B(H), Publ.
Res. Inst. Math. Sciences, Kyoto, (to appear).

R. T. Powers and D. Robinson, An index for continuous semigroups of *-endo-
morphisms of B(H), J. Funct. Anal. (to appear).

V. S. Varadarajan, Geometry of Quantum Theory, 11, Van Nostrand, New York,
1970.

Received March 15, 1988. Research supported in part by NSF Grant DMS-86-00375.

UNIVERSITY OF CALIFORNIA
BERKELEY, CA 94720





