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APPROXIMATE INVERSE SYSTEMS OF COMPACTA
AND COVERING DIMENSION

SIBE MARDESIC AND LEONARD R. RUBIN

Approximate inverse systems of metric compacta are introduced
and studied. The bonding maps in these systems commute only up to
certain controlled values. With every such system X = (Xa, εa, paa' > A)
are associated a limit space X and projections pa: X —> Xa A compact
Hausdorff space X has covering dimension dim X < n if and only if
it can be obtained as the limit of an approximate inverse system of
compact polyhedra of dimension < n. The analogous statement for
usual inverse systems is known to be false.

1. Introduction. An inverse system of spaces X = (Xa,Paa'>A)9 in
the usual sense, consists of a directed set A, spaces Xa, a e A, and

m a p s Paa' Xa' —• Xay & < CL1 > SUCh that paa = id, Paa'Pa'a" = Paa" >

a<a'< α". The (usual) inverse limit of X is the subspace X cγ\Xa

which consists of all points x = (xa) € T\Xa such that paa'(Xaf) = Xa
whenever a < a'. Projections pa'X —> Xa arc just the restrictions
pa = πa\X of the projections πa: Y[Xa —• Xa

It is well known that the inverse limit of an inverse system of non-
empty compact spaces Xa is a non-emepty compact space X. If the
covering dimension dxvaXa < n, a e A, then also dimX < n. In par-
ticular, a limit of compact polyhedra Pa with dim Pa < n is a compact
Hausdorff space with άivaX < n.

On the other hand, every compact Hausdorff space X is the limit
of an inverse system of compact polyhedra Pa [1]. If X is a compact
metric space and άimX < n, one can obtain X as the limit of an
inverse sequence of compact polyhedra Pa with dimPa < n ([2], also
see [4]). However, the analogous statement for compact Hausdorff
spaces is false as shown in 1958 independently by S. Mardesic [4] and
B. A. Pasynkov [6]. These authors produced examples of compact
Hausdorff spaces X with dim X = 1 which cannot be represented as
inverse limits of inverse systems of compact polyhedra of dimension
< 1. Further examples of this type were given by Mardesic in [3]
and Pasynkov in [7]. Recently, Mardesic and T. Watanabe [5] have
shown that a 1-dimensional compact Hausdorff space considered by
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Pasynkov in [7] is not even a limit of a system of compact ANR's of
dimension < 1.

In the present paper we define approximate inverse systems of met-
ric compacta and their limits, and we prove that compact Hausdorff
spaces X of dim X < n coincide with limits of approximate inverse
systems of compact polyhedra of dimension < n (see §6, Theorem
5). Our approximate inverse systems differ from the usual inverse
systems in that we do not insist on the commutativity requirement
Paa'Pa'a" = Paa", Cl<a! <d"\ rather we allow the tWO maps Paa'Pa'a"
and Paa" to differ, but in a controlled way. In particular, for suffi-
ciently large a1, a" the difference becomes arbitrarily small (see §2,
Definition 1).

2. Approximate inverse systems, basic definitions.

DEFINITION 1. An approximate inverse system X = (Xa, εa,paa'>A)
of metric compacta consists of the following: an ordered set (A, <)
which is directed and has no maximal element; for each a e A, a
compact metric space Xa with metric d and a real number εa > 0; for
each pair a < a1 from A, a mapping Paa'-Xw —• Xa Moreover the
following three conditions must be satisfied:

(Al) d(paιa2Pa2a3,Paιa3) < βfll, CL\ < a2 < fl3, Paa = id.
(A2) (Vfl e A)(Vη > 0)(3af > α)(Vα2 > *i > a') d(paaιpaιa2, paai)

(A3) {Ma e A)(Vη > 0)(3a' > a)(W > a'){Mx,x' e Xa») d{x,x')

< Za' => d(Paa"(x), Paa»(x')) < Ά

REMARK 1. If a! satisfies (A2), then any a\ > a' also does. The
same applies to (A3). Therefore, one can find a1 which simultaneously
satisfies (A2) and (A3) (even for a finite collection of α's and η9s).

REMARK 2. If X = (Xa, paa
f>A) is a usual inverse system of metric

compacta, A has no maximal element and is cofinite (every element
has only finitely many predecessors), one can define numbers εa > 0
so that (Xa, εa, Paaf>A) is an approximate inverse system.

Indeed, let \a'\ denote the number of elements a of A such that
a < a' (i.e., a < a1 and a Φ a'). Since A is infinite, it suffices to define
numbers εa such that for each JC, xf e Xa>

(1) d(x,x')<εa>

implies

(2) d{paa,(x),paal{x')) < l/2l*Ί, a < at.
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This can be done by induction on |α|, using uniform continuity of
the maps paa> and the assumption that A is cofinite.

With every approximate system X = (Xa,εa>Paa'Ά) we associate
its limit X = limX, which is a subspace of Π Xa

DEFINITION 2. A point x = (xa) e \[aeΛ Xa belongs to X — limX
provided the following condition is satisfied.

(L) (V* e A)(Vn > 0)(3a' > a)(W > ar) d{xa, Paa»{Xa")) < η.

Condition (L) can also be stated as

(Vfl eA) Xa=

We refer to points of X as threads. We also consider maps pa: X —•
Xa, a e A, which are defined as restrictions

(3) pa = na\X

of the projections πa: Π Xa —• Xa-

PROPOSITION 1. Let X=(Xa, εa,paa
f>A) be an approximate inverse

system, IfX is commutative, i.e., Paa'Pa'a" = Paa"> CL < a1 < a11, then
the limit X = limX as defined in Definition 2, coincides with the usual
limit Of X = {Xa, Paa'>A).

Proof. Let x = (xa) e lim X, let a\ < a-i and η > 0. Then by (L),
for all sufficiently large a" >a\ one has

(4) d(xaι,paιa"(Xa")) < n/2.

Let δ > 0 be chosen so that d(x, x') < δ implies d(paχai(x), paιa2{x')) <
η/2. Then by (L), for all sufficiently large a" > a2,

(5) d(xa2,Pa2a»(Xa")) <δ

and therefore

d(paιa2(Xa2)>Paιa2Pa2a"(Xa")) < Hβ.

Since paχaipaia» = Paxa», (4) and (6) imply

(7) d(paia2(xa2),xai) < η.

Since η was arbitrary, (7) shows that paιa2(
χa2) = Xaι9

 s o that x = (xa)
is a point of the usual limit. The reverse inclusion is obvious.

Remark 2 and Proposition 1 show that our "approximate" notions
extend the usual ones.
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PROPOSITION 2. Let X = (Xa, εa, Paa'Ά) be an approximate system
and let ε'a > 0 be numbers such that εf

a< εa. Then there is an ordering
<' of A such that A1 = (A, <') is directed and a\ <' a2 implies a\ < a2.
Moreover, X' — (Xa,e'a, paa

f»A!) is also an approximate system and the
limits X = limX and X1 = limX' coincide.

Proposition 2 shows that one can diminish the numbers εa below
preassigned levels and still preserve the limit space.

Proof. We put a <' a1 if a < a' and a1 satisfies (A2) and (A3) for
η = εf

a. We put a <' a' if a <f a1 or a = a1. It is readily seen that <'
is a new ordering of A and that A' = {A, <') is directed. Moreover,
a\ <f a2 implies a\ <a2.

It is also easy to see that X' is an approximate system and X c X'.
To show this we repeatedly use the following facts. Every a e A admits
an a1 e A such that a <! a1. If a\ <a2, then there is an a'2 > a2 such
that a\ <' af

2. If a\ <f a2 and a2 < #3, then a\ <' a^.
Now we will prove the reverse inclusion X' c X. Let x = (xa) e X1.

Consider a E A and η > 0 and choose a1 in accordance with (L) for
X1\ a and η/5. Note that a <! a'. We will also assume that a' is so
large that (A2) and (A3) hold for X, a and η/5.

We claim that a1 also satisfies (L) for X, a and η, so that x e X.
Indeed, let a\ > af. Since x e X', one can choose a" so large that
a' <' a", fl! <' Λ/;, and

(8) d{xa,Paa"{Xa")) <η/5,

(9) d{paa>Pa'a{Pa{a"{Xa")> Paa>Pa>aAXax)) < η/5.

Formula (9) is obtained by first choosing a δ > 0 so small that Paa'Pa'ax

maps £-near points to η/5 near points, and then applying (L) to X',
a\ and δ.

Note that

(10) d{Pa>a»{Xa"), Pa>a,Paxa"{Xa")) < Za>.

Therefore by the choice of α', we obtain respectively from (A3), (A2),
(A2),

(11) d{Paa>Pa'a"{Xa"),Paa'Pa'aίPaιa"(Xa")) <

(12) d{paa>Pa'a"{Xa"), Paa"(Xa")) < η/5,

(13) d(paaχxa[), paa,Pa'a^XaJ)
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Clearly, (8), (12), (11), (9) and (13) imply

(14) d{xa,Paa\Xa?i) < V>

which is the desired inequality.

3. The limit space is non-empty.

THEOREM 1. If in an approximate system X = {Xa>£a>Paa'>A), all
Xa φ 0, then also X = limX φ 0.

In order to prove this theorem we first define prethreads of an ap-
proximate inverse system.

DEFINITION 3. Let X be an approximate system. A point x = (xa) G
TίaeA Xa * s called a prethread of X provided for every pair a < a! one
has

(1) d{xa,Paa'{Xa')) < *a.

LEMMA 1. If each Xa Φ 0, then the set Xp of all prethreads is non-
empty.

Proof. For each pair a < a! we define a set Xaa< c Y[aeAXa by
putting x = (xa) G Xaa' whenever (1) holds for the pair (a, a'). Clearly
each Xaa> is a closed subset of Π Xa Moreover, the set of all prethreads
Xp satisfies

(2) Xp = Γ | Xaa
a<a'

It therefore suffices to prove that the collection {Xaa>:a < a'} has the
finite intersection property.

\ϊ a\ < a\,..., an < a!n, choose a! > a\,..., dn. Take any xa> e Xa

f

and define xa, G Xa, and xa* e Xa\ by

(3) Xa,= Pa,a'(Xa')> i=l,...,n,

(4) Xa> = Pa'ta'{Xa')r ί = I, .. . , n.

For a G A\{a\f...,anfa\t...,a
l

n,a'} choose for xa any point in Xa.

By (3), (4) and (Al) we have

(5) d(paιa'(Xa'),Xa,) < *a,, / = 1,...,Λ.
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This shows that

(6) x = (xa) e Xaιa\, / = 1,..., H,

so that x e Xaιa\ n n XΛna'n Φ 0

LEMMA 2. Let x = (xa) be a prethread. Then

(7) J>fl

exists for each ae A. Moreover, y — (ya) is a thread, that is, y e X =
limX.

Proof. Fix <z e 4̂ and consider all a' > a. Then (Paa'(Xa') a' > #) is
a net in Xa. We will prove that this is a Cauchy net and therefore the
limit in (7) exists.

For a given η > 0 choose α' > a so that (A2) and (A3) hold. If
a' <a\< #3, then

(8)

Since x is a prethread, we also have d(xUι, Pa^ix^)) < £<*,, and thus

(9) d{Paa{{Xax

Statements (8) and (9) yield

(10) d{paaι{X

Analogously, for a1 < aι < 03 we have

Using directedness of A, (10) and (11), we conclude that

(12) d(Paaι(Xaι)f Paa2{Xa2)) < 4ι/, whenever a1 < a{ and a! < a2.

Consequently, {Paa'(XaΎ-d > ^) is a Cauchy net.
In order to see that (7) defines a thread y — (ya) e X, it suffices to

notice that the application of lim^ to (8) yields

(13) d{Paax(yaλ).ya) < Ά> <*' <CLχ,

which establishes property (L) for y.

Theorem 1 is an immediate consequence of Lemmas 1 and 2.
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4. The limit space is compact.

THEOREM 2. The limit X of an approximate system ofcompacta is
a compact Hausdorjf space.

Proof. It suffices to show that X is a closed subset of
y = (ya) G ([[Xa)\X. We will exhibit a neighborhood U of y such
that UΠX = 0. This will prove that ([\Xa)\X is open.

Since y is not a thread of X, there is an ao e A and there is an η > 0
such that for every a' > ao there exists an a11 > a' satisfying

(1) d(yao,Paoa»(ya»))>η.

Choose a' > ao so that (A2) and (A3) hold for <z0 and η/β. Then
choose a11 > a1 so that (1) holds. Finally, define U as the set of all
points x = {xa)^]\Xa which satisfy

(2) dίxao.yao) <

(3) d(xa»,ya") < ta"'

Clearly U is an open set in Π %a and y eU.
We claim that U Π X == 0 . Assume to the contrary that x = (xa) E

[/f l l . By (L) applied to x, ao and ι//3, for sufficiently large indexes
a* > a" one has

(4) diXao.Paoa iXa )) <V/$

By choosing a* large enough we can also obtain

(5) d(ya»,Pa"aΛXa ))<ea»

Indeed, by (3), there is a δ > 0 such that the J-neighborhood
N(xa»,δ) c N(ya»,εa»). So (L) applied to x, a" and δ/2 shows that
d{xa", Pa"a*{χa*)) < δ for <z* > a" sufficiently large. However, this im-
plies (5).

By the choice of a' (property (A3)) and (5), we see that

(6) d{PaQa»Pa"a*{Xa*)> Pa,a"{ya")) <

Furthermore, by (A2),

(7) d(paoa"Pa"a*(Xa*)> Paoa*(Xa*)) <

Now (2), (4), (7) and (6) yield

(8) d(yao,Paoa"(ya")) <η

which contradicts (1).
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5. Covering dimension of the limit space.

THEOREM 3. Let X = (Xa,εa, Paa'Ά) be an approximate system of
metric compacta with limit X and let % be an open covering of X.
Then there exist an index a E A and an open covering "V of Xa such
that p~x(T) refines %.

We will first prove a lemma describing a basis for the topology
of X.

LEMMA 3. The collection of all sets of the form Paλ{Va)> where a eA
and Va c Xa is open, is a basis for the topology of X.

Proof. Let y e X and let U be an open neighborhood of y in X.
Then there is a finite collection of indexes a\,...,an E A and open
sets Vaι cχaι,..., Van C Xan such that

(1) yep-^n.-n^jcK

For each / = 1,... ,n choose an r\ι > 0 such that

(2) {teXaι\d(t,yaι)<ηi}CVaι, i=l,...,n.

Let a' > CL\ , . . . , an satisfy (A2) a n d (A3) for each α / ? / = 1,. . . ,«,
a n d r\ijS (see R e m a r k 1). Moreover, let a! satisfy (L) for y, at a n d
>///5? / = 1 , . . . ,n, so that

(3) d(yaι,paιa'(ya>)) < m/5, i=\,...,n.

Let Va> = N(ya>, efl/). We claim that

(4) yep^(vaf)cp-'(vaι)n -np-n

ι(van).

It suffices to show that x e Pά>l(Va'), i e.?

(5) d{xa>,ya>) <εa>>

implies

(6) d(xa,,yai) < Άi> i=l,...,n.

Notice that (L) applied to x yields an a" > a1 such that

(7) d(paιa"(Xa"),xaι) < m/5, i = 1, ...,n,

(8) d(pa>a"(Xa")>Xa') <ea>.
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By the choice of a1 we have

(9) d{paιa>Pa>a"{Xa»)> Pata"(Xa")) < tfi/5, ί = 1 , . . . , /I.

Moreover, (8) and (5) imply (by (A3))

(10) d(paia>Pa>a"(Xa")> Pam'iXa')) < V ι / 5 , 1 = 1 , . . . , / ! .

(11) d(paιa'(Xa'), Pa*'(ya')) < ?ί/5, 1 = 1,...,/!.

Now (7), (9), (10), (11) and (3) imply (6) as desired.

LEMMA 4. For every a e A and η > 0 ί/zere is an a! > a such that
for every a" > af one has

(12) d{Paa"Pa">Pa)<η

Proof. Choose a! > a so that (A2) and (A3) hold for a and η/3. Let
α" > α' and let x e X. By (L), for any sufficiently large a* > a11 one
has

(13) d(xa,Paa*(Xa*)) < η/X

(14) d(xa«,Pa"a*(Xa*)) < £a"

By (14) and the choice of a1,

(15) d(Paa"{Xa")> Paa"Pa"a*(Xa*)) <

(16) d(Paa»Pa"a {X(r).

Now, (13), (16) and (15) yield the desired inequality

(17) d(Paa"Pa"{x)> Pa(x)) = d(paa"(Xa")>Xa) < η.

Proof of Theorem 3. There is no loss of generality in assuming that %
consists of n sets of the form Pat

ι(Vi)9 *" = I , . . . , π, where α, G A and
Vi C ΛΓfl| is open (Lemma 3). Choose closed sets Ft c X, / = 1,..., n,
such that

(18) FiCp-ι{Vi), ι = l , . . . , π ,

and that {Fi,... fJFΛ} covers X. Next choose closed sets Hi c Xα.
such that /// c Fz and

(19) FiCp-^
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Finally, choose numbers γ\ι > 0, / = 1,..., n, such that the ηt-neighbor-
hood of Hi

(20)

By Lemma 4, there is an a > a\,..., an such that

(21) d(pa,,paιaPa) < 1i/2> / = 1, .. . , Λ.

Now consider the sets

(22) Wi = N(Hi,ηi/2),

(23) Gi =

We claim that

(24) P^iHΛCp

Indeed if x e Pa,1 (Hi), then (21) and (22) imply

(25) Pa,aPa(x)eWit I = I, ... , Π.

Now (25) and (23) imply pa{x) € Gu i-e., x E p~{(Gi), which estab-
lishes the first inclusion in (24).

In order to establish the second inclusion in (24) consider x e
Pa\Gi). Clearly pa(x) e Gt = pάt

ι

a{Wi)9 and thus

(26)

Using (21), we conclude that

(27) Pal(x)eN(Hi,ηi)CVi,

i.e., x^Pat

ι{Vi) as desired.
Since {F\,...,Fn} is a covering of X, (19) and (24) show that

{pal{Gι),...,p~ι(Gn)} is an open covering of X which refines %.
Therefore, Ψ' — {G\,..., Gn, Xa\pa{X)} is an open covering of Xa

which has the desired property that Pal(^) refines <%/.

The next theorem is an easy consequence of Theorem 3.

THEOREM 4. Let X = (Xa>εa>Paa'Ά) be an approximate inverse
system of metric compacta with limit X. If dim Xa < n for each a E A,
then also dimX < n.

Proof. Let ίί be an open covering of X. By Theorem 3, there is
an a E A and an open covering "V of Xa such that Pά1^) refines ^ .
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Since dimXα < n, there is an open covering W of Xa, which refines
7C and is of order < n+ 1. Clearly Pa1^) refines ^ and is of order
< n + 1, which proves that dimX < n.

REMARK 3. Having in mind applications of approximate inverse
systems of compact polyhedra, we have stated our definitions and
proved our theorems for approximate inverse systems of metric com-
pacta. However they generalize in a straightforward way to the case
of approximate systems of compact Hausdorff spaces. The numbers
εa and η must be replaced by open coverings % , jr. Conditions of
the form d{f,g) < ε become (f,g) < ^ and mean that the maps
/ , g are 2^-near. All our theorems remain true. The obvious changes
in the proofs require use of iterated star-refinements of the given cov-
ers.

6 The expansion theorem.

THEOREM 5. let X be a compact Hausdorff space of covering dimen-
sion dimX < n. Then there exists an approximate inverse system
of compact polyhedra P = (Pa,εa> Paa'Ά) such that ά\mPa < n and
the limit P = limP is homeomorphic to X. Moreover, caxά(A) <
weight (X).

In view of the negative results stated in §1 this expansion theo-
rem demonstrates the significance of this new concept of approximate
systems. It also shows that in general there is no way to modify an
approximate system (keeping its members) so as to transform it into
a commutative system with a homeomorphic limit.

The proof of Theorem 5 is divided into 5 parts.

5.1. Construction of P. By the Tihonov embedding theorem there
is an embedding e: X -> Y of X into an infinite cube Y = Iτ where
τ = weight(X). On the other hand the cube Y is the inverse limit
of an inverse system Y = {Ya>Qaa'>A) of finite-dimensional cubes Ya,
where A is the set of all finite subsets of a set of cardinality τ. Note
that A is cofinite (order by inclusion) and card(^4) < weight(X). Let
qa: Y —> Ya be the natural projections and let |α| > 0 denote the
number of predecessors of a e A. We will define, by induction on
|α|, the following data: for each a e A, a compact polyhedron Pa,
άivaPa < n, maps ga\X —> Pa, ha\Pa —• Ya and numbers εa > 0,

δa > 0 and for each pair a < a' a map Paa' Pa' —• Pa- We require that
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each ga:X —• Pa be surjective and that the following conditions hold.

(1) d(Paa>ga:ga)<*aPWHal. " < "'> Paa = id,

(2) d(qae,haga)<δa/3,

(3) X,JC' e Paf d(x,x') <εa=> d(ha(x),ha(x')) < δa/3,

(4) x , x ' e P a > , d ( x f x f ) < ε a f = ^ ^

(5) y.y'eYa',
The construction of such data is possible due to the following lemma,

proved in [4] (as Lemma 2).

LEMMA 5. Let X be a compact Hausdorff space with άimX < n.
Let Pχ,...,Pk be compact polyhedra, let εx > 0,...,εk > 0 and let
fx: X —> P\,..., fk: X ~> Pk be maps. Then there exist a compact poly-
hedron P, dimP < n, a surjective map g:X —• P and maps p\\P —•
Px,...,pk:P-+ Pk, such that d(fχ,pxg) <eϊf...9 d(fktpkg) < εk.

We now assume that we have already defined Pa, ga, ha, εa, δa and
paχa for \a\ < m and we assume that \a'\ = m + \. Let ax,..., ak be
all the predecessors of a! (different from a'). We first choose δa> so
that (5) is satisfied (uniform continuity). We then apply Lemma 5 to
polyhedra Paι,..., PQk, Ya'9 to numbers

3kHfliΓ ' l\a'\-\ak\> 3

and to maps gaχ>..- >gak>Qa1^- We obtain a compact polyhedron P =
Pa>, dim Pa' < n, a surjection ga>'.X —• PΛs a map ha>:Pa' -* ^ ; and
maps /?β/α/: Pfl/ -* PΛ |, / = 1,..., fc, such that (1) and (2) hold. Finally
we choose εa> so that (3) and (4) are satisfied.

5.2. Verification o/(Al)-(A3). We will now show that P = (Pa,ea,
Paa'Ά) is an approximate system. Indeed, if a < a1 < a", then for
every x G l w e have by (1)

(6) d(ga>(x),Pa'a"ga"(x)) < *a',

which by (4) implies

(7) d{Paa>ga<(x),Paa>Pa>a»ga"{x)) < ^ a ' ^ ^ < €a/3.

Also by (1) we have

(8) d(ga(x), Paa'ga>{x)) < εal3\a>\-\a\ < εa/3,

(9) d(ga(x), Paa"ga"{x)) < ε./3^l-lβl < εa/3.
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Now (7), (8), (9) yield

(10) d{Paa'Pa'a"ga"{x)> Paa"ga"{x)) < Za

Since ga"'.X -* Pa" is onto, (10) proves (Al).
In order to prove (A2) choose n so large that 3ea/3n < η and choose

a1 > a such that \a'\ > \a\ + n. Let a2 > ax > a'. Replacing in (7), (8),
(9) α', a11 by a\, a2, we see that

(11) d(paaιPaίa2ga2(x)9Paa2ga2(x)) < 2ββ/3'β lHβ| + β β / 3 t e | - N

< 3ea/3n < η,

which establishes (A2).
Finally, for the same choice of a! and a11 > af, we see that by (4),

x,x' e Pa", d{x,x') < εa« implies

(12) d(Paa»(x), Paa»(xf)) < Sa/^a"Ha] < η/3,

which establishes (A3).

5.3. The map g:X -+P. Let P be the limit of P and let pa: P -+ Pa

be the corresponding projections. We will now define a homeomor-
phism g:X -> P.

If x e X, by (1), the points ga(x) e Pa, a e A, form a prethread for
P. Let z = (zfl) be the thread generated by this prethread (see Lemma
2). Then za = limα/ Paa'ga'ix)- We now define g by putting g(x) = z,
i.e.,

(13) (g(x))a = lim/W &'(*)•
a'

In order to show that g is continuous, it suffices to show that the
map x »-> (g(x))fl = za is continuous for each aeA.

Given a point x e X and an */ > 0, we choose by the continuity of
ga, a neighborhood U of x in ̂  so small that

(14) x'eU^d(ga(x'),ga(x))<η/3.

We assert that

(15) x'eU^d(g(x')a,g(x)a)<η.

Indeed, choose a' > a so large that εΛ/3lα'Hαl < η/3. Then by (1),
#" > a' implies

(16) d(Paa»ga», ga) < Ba/3la"l'W < η/3.
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Therefore, for x1 e U, we have

(17) d(Paa"ga"{x)> Paa"ga"{x'))

"ga»{x)> ga(x)) + d(ga(x), ga(x'))

+ d{ga{x'),Paa"ga"{xf)) < V

Passing to the limit with α" in (17) we obtain (15), as desired.

5.4. g is injective. Consider any two distinct points x, x' G X. We
must show that g(x) Φ g(x').

Since e:X —• Y is an embedding, we have e(x) Φ e(x'). Therefore,
there is an index aeA such that

(18) qae{x)φqae{xl).

Choose a number η > 0 such that

(19) d(qae(x),qae(xf))>η>0.

We claim that for each sufficiently large af > a one has

(20) d{qaa'halga'{x)>qaa'ha'ga'{x1)) > ηβ.

Indeed, for a! > a we have

(21) d(qae(x), qae(x')) < d(qae(x),qaa>ha>ga>{x))

+ d{qaa'ha>ga>{x)> qaa'ha'ga'{x'))

Moreover, by (2) for a1 and (5), we have

(22) d(qaa<qa,e, qaa>ha>ga>) < <W3' β # H*l.

Therefore, for all sufficiently large a1 the first and the third term on
the right side of (21) are < η/3. If the same were true for the middle
term, (21) would contradict (19).

Now note that (5) and (20) imply

(23) d{ha.ga>{x), ha'ga'{x')) > δa>

for sufficiently large a1. Furthermore, (3) for a' and (23) imply

(24)

Our next claim is that

(25) d(pa>a"ga"(x)> Pa'a"ga"(x')) > *a'β
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for all sufficiently large a1 and all a11 > a1. Indeed,

(26) </(&*(*).&'(*'))

< d{ga>{x), Pa>a"ga"(x)) + d{pa>a"ga"{x)> Pa'a"ga"(x'))

By (1), the first and the last terms on the right side of (26) are < εa»/3.
If the middle term were also < εa'β, (26) would contradict (24).

Passing to the limit with a!1 in (25), one obtains

(27) d{{g{x))a,,{g{x'))al)>ea,β>0,

for all sufficiently large α'. Consequently (g(x))af φ (g(x'))a' and thus
g(x) φ g(x'), as desired.

5.5. g is surjective. Since X is compact, it suffices to show that
every z e P is in the closure of g(X), i.e., that g(X) meets every
neighborhood U of z. By Lemma 3, we can assume that U is of the
form p~x(V) where a e A and V c Pa is an open neighborhood of za.
Clearly there is an η > 0 so small that ueP and d(ua, za) < η imply
u e pάι(V). Therefore it suffices to produce a n x G l such that

(28) d((g(x))a,za)<η.

Choose ax > a so large that εΛ/3lαiHa| < η/$m Using (L) for z,
choose a1 > a\, so large that

(29)

Since gar. X -> Pα/ is onto, there is an x G I such that

(30) &'(*) = **'.

For α" > a\, by (1) we have

(31) d{paa»ga"{x), ga{x)) < tf/3.

Passing to the limit with a" in (31), one obtains

(32) d((g(x))a,ga(x))<ηβ

Also, by (1), one has

(33)

Now (32), (33), (30) and (29) yield the desired formula (28).
This completes the proof of Theorem 5.
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