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ON CONSTRUCTIONS SIMILAR TO THE
BURNSIDE RING FOR COMMUTATIVE RINGS
AND PROFINITE GROUPS

C. GREITHER AND D. K. HARRISON

The question of finding all isomorphism classes of finite dimen-
sional commutative semisimple rational algebras is an unsolved one
and is equivalent to the question of finding all number fields. We
feel that this problem may eventually be solved by the Burnside ring
method, where the number fields are related to each other in many
different ways. In this note we generalize the problem to the larger
setting of G-algebras, where G is a finite abelian group. This gives
even more relations—which we investigate. In order to see what is
special about the rationals, we work as long as possible with a com-
mutative ring R.

Separable ring extensions of a commutative ring R correspond by
Galois theory to actions of a profinite group I'. Hence we work with
either commutative rings or profinite groups. In either case, we use a
“twisting” by a finite abelian group G (more specifically, G cyclic of
prime order). This allows us to form what we call the *-product. In
the ring case, the *-product of R-algebras 4 and B is the R-algebra

A+gB={Y x®y €48r B|Y xi®y;
=Y ox;®c'y; VaeG}.

One more parameter J is needed to get additive inverses in the result-
ing commutative ring with identity. (The addition comes from direct
product in the ring case and from disjoint union in the case of sets
with action of the profinite group.) In the ring case, we call the result-
ing ring W (R, G;J). For k a finite field and G cyclic of order p, we
calculate W (R, G;J) explicitly.

1. General theory. Let R be a commutative ring which is nonzero
(i.e. 1# 0) and which has no idempotents except 0 and 1. Let G
be a finite abelian group. By an (R, G)-algebra (A, 6) we will mean
a commutative, finitely generated, projective, separable R-algebra A
with a group homomorphism 6 from G to Autg(4). Let (4,6) and
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(B,'¥) be such. We write
(4,0) = (B,Y¥)
if there exists an R-algebra isomorphism f: 4 — B such that
fol(g)=¥(g)of forallgedl
(A4, 0) *g (B,¥) (or A g B for short) will denote the pair
({ucder B|(0(g)®1)(u)=(18¥(g))(u) Vg €G},0®1).

This is again an (R, G)-algebra. (4,60) & (B,¥) (or A ® B for short)
will denote the pair
(Ax B,0 x¥).

Let (E, ¢) denote the pair

(Map(G, R),¢), &(g)(f):h— f(g™'h).

Let us write P(R, G) for the set of isomorphism classes of (R, G)-
algebras. (The set-theoretical difficulties here can easily be overcome.)

THEOREM 1.1. @ and * (= xg) induce on P(R, G) the structure of
a commutative semiring with additive cancellation and with neutral
element (E, €) of *.

The proof of this and the following theorems will be given after
Theorem 1.5 in a different setting. (A4, 8) will be called indecomposable
if A#0, and

(4,0)= (X, %) & (Y, ¥7)

implies either X =0 or Y = 0.

THEOREM 1.2. Every (R, G)-algebra is a direct sum (®) of indecom-
posable ones in a unique way.

Now let K be an abelian extension of R. For a definition, see [2].
If R is a number field, K is just an abelian field extension of R. We
called (4, 6) K-invertible if there exists (B, ¥) with

(4,0) xg (B,'Y) = (E.¢)

and
(K®r A, K®0)=x (K®r E,K®e¢),

where =g means isomorphism of (K, G)-algebras.
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THEOREM 1.3. The isomorphism classes of K-invertible (R, G)-
algebras are finite in number. Under *, they form an abelian group
Uk (R, G) which is naturally isomorphic to Hom(Autg(K), G).

We call an (R, G)-algebra (A4, ) K-hyperbolic if
(4,0) * (B,¥) = (A4,0) forall (B,¥)e Ug(R, G).
We call (4, 0) K-reduced if
(4,0) = (X, ¥) o (Y,¥;), (X ¥;) K-hyperbolic implies X = 0.

We denote the set of all (isomorphism classes of) K-reduced (R, G)-
algebras by W (R, G; K).

THEOREM 1.4. Every (R, G)-algebra (A, 6) can be written uniquely
in the form
(4,0)=(4,0),®(A4,0),

where (A, 0), € W(R, G;K) and (A, 0),, is K-hyperbolic.

Let x,y € W(R, G; K). Define

X+y=x®y),
xX-y=(x*xy).

THEOREM 1.5. With + and -, W(R, G; K) is a commutative ring.

Let R be the separable closure of R (see [3]) and let I = Autz(R) be
the profinite Galois group of R over R. Let Algy denote the category
of all commutative finitely generated, projective, separable R-algebras.
Let Setr denote the category of all finite continuous I'-sets. (A I'-set
X is continuous if the stabilizer subgroup of every x € X is open
inT.)

The functors

A Algg(4,R) (A4 € Algg),

X — Setr(X,R) (X € Setr)
are (essentially) inverses of each other and establish a duality (= con-
travariant equivalence) of categories between Algp and Setr (see [3]

or [1]). A group homomorphism G — Autg(A4) will correspond to a
group homomorphism

G — Autr(Alg(4, R))°P = Autg(A).
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Hence we have a contravariant equivalence of categories

Alg(R,G) = Set(r,G) .

The latter category (in which we choose to work) is described as fol-
lows:
I' is a profinite group; G is a finite abelian group. A (I, G)-biset is a
finite continuous (I" x G)-set. Equivalently, it is a triple (X, u, v) where
(i) X is a finite set.
(i1) u#: T x X — X is a continuous map, and
Mo, u(B, x)) = u(ap, x), pler,x) = x.
(iii) v: Gx X — X is a map, and
v(a,v(t,x)) =v(at, x), v(eg, X) = X.
(iv) u(e,v(o,x)) =v(o, u(a,x)) VaeI' Vo € G.
From now on, we write ax for u(a, x) and ox for v(a, x). An example
is provided by G itself with the obvious G-action, and ax = x for
acel,xedG.
Let X, Y be (T', G)-bisets. Write for (x,y) € X x Y

x+xy={(ox,07'y)|c€eGtC X x7Y;
XxgY={xxy|xeXyeY}
o(x*xy)=0xx*y (=X *ay);
a(x*y)=ax* ay.

One checks that X g Y is a well-defined (I", G)-biset. We write XY
for the disjoint union X UY. In a canonical fashion, X ® Y is again a
(', G)-biset. Let P(I', G) denote the set of all isomorphism classes of
(T, G)-bisets.

THEOREM 1.6. For I a profinite group and G a finite abelian group,
® and *g induce on P(I", G) the structure of a commutative semiring
with additive cancellation.

Proof. All statements except the last one can be checked easily.
The additive cancellation property follows from the fact that every
I" x G-set has a unique decomposition as a disjoint union of transitive
I' x G-sets (= orbits). For reference, let us point out this fact as a
theorem:

THEOREM 1.7. Every (I, G)-biset is uniquely the disjoint union of
indecomposable ones.
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For f € Hom.(I', G), write G for the (I', G)-biset G with
ula,0) = f(a)-0, v(r,0)=10 (0,7€G, a€l).

One can check that Gy * Gy = Gy.7, and G is neutral in P(T', G) un-
der *g.

THEOREM 1.8. The units of P(T', G) are exactly the bisets Gy, f €
Hom((T', G).

Proof. Let X *g Y be isomorphic to G, via ¢. Then Y # O, so take
y € Y. Let x1, x; € X. Since G, is transitive under G, thereis 0 € G
such that

X1y =0(x3*y).

Hence there is a 7 € G such that (x;, y) = (tax,, 7" !y). Therefore
X1 = 10X, s0 G is transitive on X. Suppose ox = x. Then a(x * y) =
X *Y,s0 0 = eg. Now choose xy € X. For each a €I there is exactly
one f(a) € G such that

axo = f(a)xo.
One checks that f is a homomorphism. Ker(f) is the stabilizer of x;
in T, so it is open in I', and f is continuous. We have Gy = X by
o +— 0xy. On the other hand, G is a unit with inverse Gy, f(a) =
(f(a))~!. This proves the theorem.
By a (T, G)-triple (or just triple) we mean a triple (A, H, t) where A
is an open subgroup of I', H is a subgroup of G, and
t:A— G/H
is a continuous group homomorphism. For a € T, (a~!Aca, H, 1) is
again a (I', G)-triple, where
t%(8) = t(ada™l).
We call this a conjugate of (A, H, t). Now let X be an indecomposable
(T", G)-biset. Choose x € X. Let
A={d eTI'| 3o € G: ox = ox},
H={1eG|tx=x},
t(0) =0H if ox = ox.
We call this the (I', G)-triple associated to X. One checks that
(AH, f-1)
is the triple associated to X *g G, where

(f - )(9) = f(9)t(6) € G/H.
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THEOREM 1.9. The above correspondence sets up a bijection between
the set of all isomorphism classes of indecomposable (I", G)-bisets and
the set of all conjugacy classes of (I', G)-triples.

Proof. The indecomposable (I", G)-bisets correspond to transitive
continuous I" x G-sets, and these in turn correspond to conjugacy
classes of open subgroups of I x G. It is easily checked (and to our
knowledge, a part of the mathematical folklore) that open subgroups
of I x G can be described by triples as indicated above.

Now let J be a finite subgroup of Hom.(I', G). For X a (T, G)-biset
and f € J, we write X, for X with the new (I, G)-structure

Ula,x) = f(a) -a-x, v(o, x) = ox.

Note that Xy = X 6 G;. If X = X; & --- ® X, X; indecomposable,
then
Xe=X)r® & Xm)ys,

and the (X;), are indecomposable. Call X J-hyperbolic if
X=X forall felJ

Call X J-reduced if there is no J-hyperbolic Z # O such that X =
YoZ

THEOREM 1.10. Every biset X can be uniquely written as
with X, J-reduced and X, J-hyperbolic.

Proof. The only thing to prove is uniqueness. Hence suppose X =
Y® Z, Y J-reduced, Z J-hyperbolic. We proceed by induction over
|Z|. If Z =3, X =Y is J-reduced, so X;, = J, and we are done. Now
suppose G # Z =Z,U---UZ,,, Z; indecomposable. Call Z; associate
of Z, if Z; = (Z,)s for some f € J. Let Z C Z be the disjoint union
of all associates of Z;, and Z = ZUW. It is easily checked that both
Z and W are J-hyperbolic. Not all indecomposable pieces of Z can
lie in X,, since X, is reduced and Z # &. Therefore, without loss of
generality, Z; C Xj,. Since X, is also hyperbolic, all associates of Z,
are in X, too. Hence Z C X,. Now we may cancel Z from both
representations X = X, ® X, X = Y & Z, and we get X, = Y and
X}, = Z from the induction hypothesis.

We write

w(T,G;J)



CONSTRUCTIONS FOR RINGS 63

for the set of all isomorphism classes of J-reduced (I", G)-bisets. For
x,y € W(T,G;J) we define

X+y=x®y),
Xy =(X*g Y)r

THEOREM 1.11. With these operations, W (I, G, J) is a commutative
ring.

Proof. Everything except the inverse under addition is a routine
verification (using 1.10). Let x € W(I, G;J). Since U rerXrs is J-
hyperbolic, the reduced part of y = |J renN(XSs is the inverse of x
under addition.

Now we return to (R, G)-algebras. The contravariant equivalence
Algrr = Setr) preserves the x-product and the direct sum .
Therefore Theorem 1.1 follows from 1.6, and 1.2 follows from 1.7.
The subgroup U, (R, G) of the units of P(R, G) corresponds to a sub-
group Jy of P(I', G). By [2], Uy(R, G) and therefore also J are finite.
By Theorem 1.8, Jy has the form {G; | f € J}, J a finite subgroup
of Hom,(I', G). Then K-hyperbolic (R, G)-algebras go to J-hyperbolic
(T, G)-sets and vice versa. Now Theorems 1.4 and 1.5 follow from the
corresponding Theorems 1.10 and 1.11, respectively. Note in partic-
ular that W (R, G;K) and W (I', G;J) are isomorphic rings.

2. Functoriality. Let ¢: G — H be a homomorphism of finite
abelian groups. Recall the definitions of the semirings P(I', G) and
P(T", H) from the first section. We define

P(p): PI',G)— P(I',H)

as follows: P(¢)(X) is the (I', H)-biset H xg X, where a(h*x) = h*xax
and W'(h+xx)=hh+xforael, h,h € H, x € X. One checks that
this is indeed a well-defined (I", H)-biset.

THEOREM 2.1. P(9) is a homomorphism of semirings, i.e. P(9) is
compatible with @, preserves the neutral element, and

P(p)(X *g Y) = P(p)(X) *n P(p)(Y)
forall X,Y € P(T', G).

Proof. Routine calculation.
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If J is a finite subgroup of the units of P(I', G), and J = P(¢)(J),
then P(¢p)(X) is J-hyperbolic whenever X is J-hyperbolic. Hence we
get a map

W(p): W, G J)— W(,H;J),
X = (P(9)(X))r.

THEOREM 2.2. W () is a ring homomorphism.
Proof. This is essentially a consequence of Theorem 2.1.

THEOREM 2.3. (a) If ¢ is injective, then P(9) is injective.
(b) If ¢ is injective, then W (@) is injective.

Proof. (a) Without loss of generality, ¢ is an inclusion G C H. Let
X be a (T, G)-biset, and let Y be H *g X, considered as a (I', G)-biset
(not as a (I', H)-biset).

Claim. Y = XU---UX([H : G] copies) as a (I', G)-biset.

Proof of the claim. Let H = J_, hiG,n = [H : G]. One checks
that H xg X = X, U---U X, as (I', G)-bisets where X; = {h;g*x | x €
X, g € G}. Moreover, X = X; by the map x — A;  x.

Now suppose X and X' are (I', G)-bisets such that P(¢)(X) =
P(p)(X'). This implies Y = Y’ as (I', G)-bisets; therefore X U---UX
(n times)= X'U---U X' (n times). To infer X = X’ from this, use the
uniqueness of the decomposition into indecomposable bisets.

(b) Let x € W({T,G;J), x # 0. By definition, x is J-reduced.
Suppose W (¢)(x) = 0. This means P(¢)(x) = H *¢g x is J-hyperbolic.
This implies P(¢)(x) *g P(¢p)(u) = P(p)(x) for all u € J. By part
(a) and Theorem 2.1, this implies x *g ¥ = x for all u € J, i.e. x is
J-hyperbolic, a contradiction.

We consider the group Q/Z. Let I be the set of all finite sub-
groups of Q/Z. Let J be a finite subgroup of the character group
Hom,(I',Q/Z). Then there is a G € I such that J actually lies in
Hom.(T', G). For H;,H, € I, G C H, C H3, let ig g, be the inclusion
G C Hj, and iy, g, the inclusion H; C H,. Denote P(ig g)(J) by JH.
By 2.3, the map

WH!»HZ = W(iH1,H2) . W(r’ HI;JHI) - W(r’ HZaJHz)
is injective. We can take the direct limit over the system (Wy, g,) and

define
W(T.Q/Z;J) = lim W (T, H;Jn)
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The concepts of the rest of this section are motivated by the phe-
nomenon of ramification in number fields (with some twist of termi-
nology at the infinite primes).

Let T", A be profinite groups. Given ¢, 9, € Hom.(I", A), we define
@1 ~ @, if there exists § € A such that ¢,(y) = 6 1¢,()é for all
y € I'. A morphism for I to A is an equivalence class [¢] with respect
to ~. Let G be a finite abelian group and X a (A, G)-biset, and [¢] a
morphism from I' to A. We define a (T', G)-biset X, by

X =X, as a set;
u(y,x) = o(y)x, v(o,x)=o0x, (xeX,yel',a ().
The isomorphism class of X, depends only on [¢], as is easily checked.
Therefore we have a semiring homomorphism
A=P([¢],G): P(A,G)— P(T,G).

Of course, units map to units under 4, and if X is J-hyperbolic, then
A(x) is A(J)-hyperbolic, so a ring homomorphism

W(lel. G J): W(A, G J) — W', G5A(J))
is induced. Here J is a finite subgroup of P(A, G), or (which is the
same by Theorem 1.8) a finite subgroup of Hom.(A, G).

A profinite group ¥ is called procyclic if it has a topological gener-
ator (i.e. it has a cyclic subgroup whose closure is V).

By a procyclic segment of a profinite group I" we mean a pair (®, A),
where ® is a closed normal subgroup of A, A is a closed subgroup of I
containing @, and A/® is procyclic. Let (P, A) be a procyclic segment
of T, and X a finite continuous I'-set. X is called ®-unramified, if
yx = x forall y e ®, x € X. If X is d-unramified, then X is naturally
a A/®P-set (as one easily checks). We may write

X=XU---UX,.
where the X; are transitive A/®-sets. We define

fi=1x;|, i=1,....g
Then |X| = Y% | fi. We call X normal if forall o, § €T and x € X,
ax = x implies affix = fx.

THEOREM 2.4. Assume X is transitive, normal, and ®-unramified.
Then f; = fj foralli,je{l,...,g}.

Proof. Pick x; € X;, x; € X;. For k € {i, j}, let
Ay ={/1€A|,1xk=xk}.
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Since X is transitive, there is an o € I' with ax; = x;. If Ax; = x;,
then Aax; = ax; by normality; hence Ax; = x;. This implies A; = A,
so fi =[A:A;]=[A:A;]= f;, which proves the theorem.

Now let G be a finite abelian group. We write P,(I', G) for the set of
those X € P(I', G) which are ®-unramified. P,(I’, G) is a subsemiring
of P(T', G). We write

¢: P,(I',G)— P(A/D,G)

for the natural map.

Let J be a finite subgroup of Hom.(I', G) with f(®) = 1 for all
f € J. We call J ®-unramified and identify it in an obvious way
with a subgroup J of Hom.(I'/®, G). We restrict this to A/® to get
J' € Hom,(A/®, G). We write W, (T", G;J) for the set of those X €
P,(T", G) which are J-reduced. We define

0: Wu(T, G, J) — W(A/®, G J')
by x — ¢(x)r-

THEOREM 2.5. W, (T, G;J) is a subring of W(T', G;J). Also, 6 is a
ring homomorphism.

Proof. This is easy to check.

Although the properties of this last map are not clear at the moment,
it suggests to examine the special case I" procyclic more closely.

3. Calculations. As before, let I" be a profinite group, G a finite
abelian group, J a finite subgroup of Hom.(I", G). A (T, G)-biset X is
called free, if for all x € X and ¢ € G we have ox = x only for g = e.
It is easy to see that disjoint union and *-product of free bisets are
free. This allows us to make the following definitions:

(size of X =)s(X) = |X/G|(= |X]|/|G]|) for X free.
Py(T', G) = semiring of isomorphism classes of G-free (I", G)-bisets.

Wy(I', G;J) = ring of isomorphism classes of J-reduced G-free
(T, G)-bisets.

(Here we also used the trivial fact that the J-reduced part of a free
biset is again free.) Note that s(X®Y) = s(X)+s(Y) and s(X*5 Y) =
s(X)-s(Y) for X, Y free.
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For technical purposes, we define one more notion: A biset X is
called separated if it is free, indecomposable, and the following holds:

Vaoel,ceG: ax=0x=ax =X

One checks that the separated bisets X correspond to the triples
(A, e, 1) in the correspondence of Theorem 1.9.

THEOREM 3.1. If X and Y are separated of coprime sizes, then X g
Y is separated.

Proof. We know that X and Y correspond to triples (A;, e, 1) and
(A, e, 1). Therefore, X and Y are isomorphicto I'/A; xGand I'/A; xG
respectively, with the canonical I x G-structure. One verifies:

(T'/A; x G) xg (T'/Ay x G) = (T/A; x I'/Az) X G,

where I' operates diagonally on I'/A; x A;. Since the numbers [I" :
Al =s(X) and [T": A;] = s(Y) are coprime, the

I'-set F/AI X F/Az

is canonically isomorphic to the I'-set I'/A; N A;. Therefore X x5 Y
corresponds to (A NA,, e, 1) and is separated.
For the rest of this section, assume I" abelian.

THEOREM 3.2. Every separated biset X is uniquely the x-product of
bisets X, (p runs over all primes dividing s(X)) which are separated
and whose size is a power of p.

Proof. There is an open subgroup A C I" such that X = T'/Ax G
as a biset. Let X, be a biset of the form I'/A, x G, A, C T open, p
running over a finite set of primes. Then X is the *-product of the
X, if and only if the I'-sets I'/A and []I'/A, are isomorphic, where I'
operates diagonally on the latter. If [I" : A,] is assumed to be a power
of p, then (as in the last proof)

[IT/A,=T/()A, as T-sets.

Therefore the existence of a product representation as in the theorem
is equivalent to the existence of a representation A = (Ap, [I": Ap]
a power of p. The same goes for the uniqueness. Since I" is abelian,
existence and uniqueness of the representation A = (A,, [[': A,] a
power of p, follow. This proves the theorem.

Now let G = C), be cyclic of order p, and let " = Z be the “proin-
tegral” group. Let J be the finite group Hom.(I', C;).
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THEOREM 3.3. (a) Every reduced indecomposable (', G)-set X is free.
(b) For every reduced indecomposable X there is precisely one f € J
such that X xg Gy is separated.

Proof. (a) Let (A, H, t) be the triple associated to X. Suppose H =
G (= Cp). Then for all f € J, the triple associated to X xg G is
(AJH, f -t),and f -t =1t (recall 1: A — G/H, and G/H is the trivial
group here). Therefore X is J-hyperbolic. Thus H has to be the trivial
group e, and this implies that X is free.

(b) By part (a), X is associated to (A, e, ), a homomorphism A —
G. Suppose that for all f € J we have f(A) = 1. Then f -t = ¢
for all f, and X would be J-hyperbolic. Thus there exists an f € J
with f(A) # 1, i.e. A ¢ pZ. Then one checks that there is an f, €
Hom/(T", G) with fy | A=t. Then X x5 X i is associated to the triple
(A,e, 1), whence it is separated. The uniqueness statement in (b) is
easy to check.

Theorem 3.2 motivates the following definition: Let g be a prime.
W,(I', G;J) is the set of isomorphism classes of J-reduced bisets X
which satisfy: Every indecomposable component Y of X has size s(Y)
a power of q.

THEOREM 3.4. W, = W,(T', G;J) is a subring of W (T, G;J).

Proof. G| € Wy since s(Gy) = 1. W, is trivially closed under addi-
tion. Let X, Y € W,. We may suppose they are indecomposable and
even separated (use 3.3b) and the fact that G, € W, for all f € J.
Thus X and Y are isomorphic to I'/A; x G and I'/A; x G respectively,
where A, A, are open subgroups of I" with indices ¢g® and ¢®, respec-
tively. Hence X *¢ Y = (I'/A; x I'/A;) x G, T" operating diagonally
on I'/A; xI'/A,. One checks that I'/A; x I'/A; is I'-isomorphic to the
disjoint union of |I'/A;A;| copies of I'/A; N A,. Since the index of
A} NA; in I is again a power of ¢, this proves X xg Y € W,.

THEOREM 3.5. Recall T was Z and G was C,. The ring W(T', G;J)
is canonically isomorphic to
Q) W, G;J),
q prime#p
where the tensor product is taken over the ring

S = ZJ/ (Z f) = Z7[¢,)

feJ
(The module structure is given by f - X = X * Gy).
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Proof. First claim. W = W(T,G;J) is S-free on the separated
bisets.

Proof of first claim. By 3.3(b), every indecomposable reduced X has
the form f - Y, with Y separated and f € J. One verifies that the
annihilator of Y in ZJ is precisely (3 ,.,.f). (Note P res S Y s
J-hyperbolic.)

Second claim. W), is S-free on the separated bisets whose size is a
power of g.

Proof of second claim. Similar to the first one.

Now we can write down all separated bisets X : X,, = I'/A x G with
A =nZ, n € N. Note s(X,) = n. On the proof of 3.3(b) we saw that
X, is J-hyperbolic if p | n, so we only take n prime to p. Therefore
W has an S-basis

{Xn|neN, (p,n) =1}

W, has an S-basis
{X, | e € N}

for y # p. There is a canonical ring homomorphism

ViQW,—-W  (®overs).
q#p

We claim it is an isomorphism. As in the proof of 3.4, one works out
the multiplication rule

Xm - Xn =ged(m, n) - chm(m,n)-

Using the given S-bases of W, and W, it is stralghtforward to check
that V' is an isomorphism.

To finish this section, we give an explicit description of the ring
W, =W, (Z Cp;J). To this end, we define a subring 7, of the ring
SN of mﬁmte sequences in S (addition and multlphcatlon via com-
ponents). Recall S = Z[{,], {, a primitive pth root of unity.

X, = x,_ymodgqg” forall v > 1,

T, =(x S N
g= )€ { (x,) eventually constant.
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One can define special elements z, € T, (e € N) as follows:

zo=(1,1,1,1,...)
z1=(0,9.9.9,...)
z,=(0,0,¢4%,4¢%...)
z3=(0,0,0,4%...)

Then the z, form an S-basis of 7;,. We can define an isomorphism of
S-modules

¢: Wq b d Tq;
@ (Xge) = 2.

The multiplication table for the X, is as follows: Fore < f, Xge- X, =
q¢- X,s. It is easy to see that for e < f, we also have z.-zy = ¢°- z;.
Therefore we conclude:

THEOREM 3.6. ¢: W, — T, is a ring isomorphism.

We add some remarks about the ring 7,, omitting the (not very
difficult) proofs.

1. T, is connected.

2. If g C S is a prime over g, then T; has exactly one prime ideal
Q= (q,e,e,e3,---) over ¢, and this is maximal.

3. If p C S is a prime not over ¢q (including the case p = 0), then
there is an infinity of primes By, B, P>, ..., Poo over p. They
are defined as follows:

Pi=n;7'(P) (n;: T, — S is the ith projection),
Po ={(xy) € Ty | lim(x,) € p}.

(The lim makes sense since (x,) is eventually constant.) These
are minimal primes with residue class ring = S if p = 0, max-
imal primes with residue class ring = S/ otherwise.

Since the absolute Galois group I of a finite field k is isomorphic to

Z, this calculation also applies to the ring W (k, C,; K), where K is the
unique field extension of degree p over k.
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