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STATE EXTENSIONS AND A RADON-NIKODYM
THEOREM FOR CONDITIONAL EXPECTATIONS
ON VON NEUMANN ALGEBRAS

CARLO CECCHINI AND DENES PETZ

Let M be a von Neumann algebra with a von Neumann subalgebra
M,. If E is a conditional expectation (i.e., projection of norm one)
from M into M;, then any faithful normal state ¢, admits a natural
extension ¢o o E with respect to E in the sense that £ = E, .. If
E, is only an w-conditional expectation, then ¢, o E,, is not always
an extension of ¢o. This paper is devoted to the construction of an
extension ¢, of ¢, generalizing the above situation for w-conditional
expectations, which leads also to a Radon-Nikodym theorem for w-
conditional expectation under suitable majorization condition.

Let M be a von Neumann algebra with a faithful normal state w and
M, a von Neumann subalgebra of M. A conditional expectation of M
onto M leaving w invariant exists if and only if A4 is stable under the
modular group g®. This is a result of Takesaki ([15], 10.1) and it was
the reason for a generalized conditional expectation E,: M — M,
which always exists and is referred to as the w-conditional expectation,
to be introduced by Accardi and Cecchini ([1]). If E, is actually a
projection, then for a faithful normal state ¢y on M, the composition
@o = @o o Ey, is a natural extension of ¢ to M and E, = E;. In
general, ¢ o E,, is not an extension of ¢, and as a consequence of
Theorem 4 in [11] (see also [12]) there is no extension of ¢, possessing
the same generalized conditional expectation mapping as w. We give
a construction of a @, that can be described briefly as follows.

Assuming that M C B(H) and w is determined by a cyclic and
separating vector Q € H, we consider the restriction of the action of
My to [MpQQ] = Hy. There is a natural positive cone Py, C Hy with
respect to M, such that w|M, and ¢, have the vector representatives
Q and @, in Py, respectively. We say that the vector state @gp(a) =
(a®g, Py) is the canonical extension of ¢y with respect to w. If the
cocycle [Dggy, D(w|My)]; is in the fixed point algebra of E,,, then our
@o reduces to gg o E,, and of course, this is the case where E,, is a
projection. In fact, ¢, depends rather on E, than w itself; that is, if
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E, = Ey then (¢9)~?” = (¢o)~". In general, E,(v*av) = E,(a) where
v is an appropriate isometry in M and y stands for (¢g)~%.

Our references on von Neumann algebras and their modular the-
ory are [14] and [15]. We use the standard notations of the Tomita-
Takesaki theory without any explanation. H will denote always a
Hilbert space and if M C B(H) then M’ is the commutant of M. For
the sake of convenience, states on M’ are marked with a prime, for
example o' etc.

The main results are contained in §§3 and 4.

1. Preliminaries. In this section we shall present some facts about
the spatial theory of integration on von Neumann algebras, w-condi-
tional expectations etc., which we shall use in this paper. Those facts
will be the extensions of results contained in the original papers quoted
from time to time.

Let M C B(H) be a von Neumann algebra with commutant A/’ and
v € M. The lineal of y is defined ([7], [9], [13], see also [15], 7.1)
as follows:

DH,y)={,eH: ||| < Csy(a*a) forallaec M}.

When y is of the form y(a) = (a¥,¥) (a € M) for some ¥ € H,
then D(H, y) = M'Y.

LemMMA 1.1. D(H, )™ = supp y.

Proof. Let p = suppy and g be the projection onto closure of
D(H,y). If £ € D(H, y) then |[p*¢| < C:y(p') =0 and so ¢ < p.
On the other hand, y(a) = Y (an;, n;) with a sequence (#,;) from H.
Clearly, n; € D(H, y). Since y(p —¢q) = 3{(p — @)ni,n:) = 0 we
obtain g = p.

When o is a faithful normal state on M and w € M with support
p then the functional ¥ (-) = w(-) + w(p*- pt) is faithful. This simple
trick will allow us to reduce the non-faithful case to the faithful one.

LEMMA 1.2. Ifw € M}, p = supp v and ¥ is a faithful normal func-
tional such that w — y is orthogonal to y, then D(H,y) = pD(H, @).

Proof. Let £ € D(H, ). Then
lap&|| < Cew(pa*ap) = Czy(a*a)

for every a € M and hence p¢ € D(H, y). The other inclusion is
obvious.
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Set (¥, ny, Hy) as the GNS-triple corresponding to . It is possible
to define for { € D(H, y) a bounded operator

RY():H, - H
such that
RV(Ony(a)=al (aeM).
It was proved in [7] that
ev(&) =RY(ERY() e M.
(See also [15], 7.1.)

LEMMA 1.3. Let y,w € M} such that y < Aw. Then D(H,y) C
D(H, ) and ©%(&) < A20V¥ (&) for ¢ € D(H, ).

Proof. D(H, y) C D(H, w) follows immediately from the definition.
Define v: H, — H, by vn,(a)Q = n,(a)¥ (a € M). Then the
diagram

R“(£)

— H,

R\ S

Hy
is commutative. Since ||v|| < A we have

RP(E)R?(€)* = R¥(Sww RY (&) < A’RY(ERY(E)".

LEMMA 1.4. Let w € M} and My be a von Neumann subalgebra of
M. If w stands for w|My, then D(H, y) C D(H, ) and ©“ (&) < ©Y¥ (&)
for& € D(H, y).

Proof. We proceed as in the proof of Lemma 1.3, but we use the
diagram
R*($)

— H,

N4

H,
where i: H, — H, is the natural embedding.
If y € M} is faithful and y' € (M')} then there exists a positive
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selfadjoint operator (dy’/dy) on H such that

(i) D(H,y) is a core for (dy'/dw)'/? and |(dy'/dw)'/?¢|> =
y'(©¥(&)) for{ € D(H, y),

(i) supp(dy'/dy) = supp ¥'.
(See [7] or [15], 7.3.)

ProrosITION 1.5 ([7], p. 158). If w € M} is faithful and y{, v} €
(M"Y} then
(d(y1 + wy)/dy) = (dyi/dy) + (dy;/dy).
Here one should add that the sum means form sum. However, we

need this result in the case of orthogonal supports when there is no
difference.

LEMMA 1.6. Let w € M} be faithful and @', y' € (M")}. If ' and
w' — w' are orthogonal and p' = supp y' then

(dy'/dw)* = (dy'[dy)*p = p(dy'/dy)*
for a € C with Rea > 0.
Proof. Due to property (ii) above the operators (dy’/dy) and

(d(¢' — y')/dy) have orthogonal supports. Proposition 1.5 and Lem-
ma 1.2 make the proof complete.

ProvrosiTION 1.7 ([7], p. 158; [15], 7.4). If both w € M and v' €
(M"T are faithful then (dy'/dy)~! = (dw/dy') and
(dy/dy')'a(dy/dy') " =6/ (a) (t€R, ae M)

ProrosiTION 1.8 (([5], 2.2). If w € M} and y' € (M")} are faithful
then

0V ((dy/dy')"E') = o¥,(8¥ (&)
foreveryE€ D(H,y) andt € R.

LEMMA 1.9 (cf. [8], 3.1). Let w € M} be faithful and y' € (M')}.
Then
(dy'/dy)'*D(H,y) C D(H, y").
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Proof. Let £ € D(H, y) and a’' € M'. Using Hilsum’s notation and
results ([9]) we have

' (dy'[dw) 2E|? = | | (dy' dw) ) |2
= / (dy' [dy)2a"*a(dy' |dy)' €Y (&) dy

<18* @)l [ (@' /dv)"aa(dy' jdy)' " dy

= |8¥ )|y’ (a"a).
Therefore, £ € D(H, y').

LEMMA 1.10 (cf. [3] AND [16]). Let w € M} and v' € (M')} be
faithful. Then the mapping

iyia— [(dy/dy) Padyidy) P dy' (@€ M)

is a positive linear mapping of M into M,. It does not depend on y'.
For a € M, the majorization iy(a) < ||a||ly holds. If y is faithful then
iy is injective and i, (M.) consists of all ® € M} such that v < Ay
with some A > 0.

Proof. Since (dy/dy')'/?a(dy/dy')'/? € L'(M, y), the mapping i,
is well-defined, positive and linear. For faithful y the statement is
completely covered by 3.7 and 3.9 of [3]. Let p = supp ¥ and take an
auxiliary ¥ € M such that it is faithful and ¥ — w is positive and
orthogonal to . Then

iy (a)(b) = / (dw/dy') Pa(dy/dy') bdy’
- / p(d/dy')\ a(dy/dy') " pbdy’

= [(avyay)'atdyjdy)'pbpdy’ = ip(a)(pbp)
for a,b € M. Now clearly i, (a) does not depend on y’ and

iy(a)(b) = iy(a)(pbp) < ||la||w(pbp) = ||a||w(d)

ifa, b >0.

Let M, be a von Neumann subalgebra of M, ¥ a normal state of M
such that y|My = yq is faithful. In the light of the previous lemma
for a € M there is an element i,/‘,ol(i.,,(a)IMo) € M,. We define the
w-conditional expectation E, : M — M, by setting

Ey(a) = iy, (iy(a)| Mo).
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So E is a positive, unital linear contraction. It generalizes the notion
of w-conditional expectation introduced for a faithful state y first in
[1] as it follows from [2], [3] and [10].

ProrposiTION 1.11 (cf. [4]). Let w € M and My a von Neumann
subalgebra of M. Assume that yy = w|My is faithful. Then for & €
D(H, y'") we have

E,(8¥'() = 8% ((dyo/dwg) ™" *(dy/dy") %)
if wj € (MQ)} is faithful and y' = yy|M'.

Proof. Due to Lemma 1.9 (dy/dy')!/?¢' € D(H,y) c D(H, y),
and the right hand side makes sense. By simple calculation we have
for ag € (My)+

iy, (©¥0 ((dyo/dyg) ™2 (dy/dy')'/2E")) (ap)
- / (dyo/dy)'2a®% ((dyo/dyh) ™V (dy/dy') &)

x (dwo/dy)' Papdy’
= || lad/>(dwo/dwl) 2| (dwo/dwh) 2 (dw/dy') /2|12
= |lad/*(dy/dy") 3P = iy, (8¥'(¢"))(ao).

We note since the linear span of {8Y'(&'): & € D(H, y')} is dense in
M, the above formula characterizes Ey,.

2. Analytic continuation. Let S = {z € C: 0 < Rez < 1/2}. For
the sake of brevity we say that a function is analytic on S if it is
holomorphic on IntS and continuous and bounded on S. In this
section we consider vector-valued functions defined primarily on the
imaginary line and prove that they admit analytic extension to .S. Most
of the results are of auxiliary nature and will be used in the rest of the
paper, but some of them are interesting in their own right.

M will be always a von Neumann algebra with commutant M’ and
o' a faithful normal state on M’.

LEMMA 2.1. Let z — f(z) € H be an analytic functionon S. If A >
0 is a selfadjoint operator on a Hilbert space H and ||A'/2 f(1/2 + it)||
is bounded on R then z — A? f(z) is analytic on S.

Proof. Let n € D(A'Y?). So z — (f(z),A%n) is analtyic on S. If
Il f(it)]| < K and || f(1/2 + it)|| < L for all ¢ € R, then

[(f(it), A~ n)| < Klnll and [(f(1/2+it), AV>~"n)| < L]l
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for all £ € R. Applying the three lines theorem ([8], VI.10.3) we have
{f(2), AZm) < Clinll  (neD(A4'?))

with some constant C. Since D(A!/2) is a core for 4> we conclude
that f(z) € D(A?). Moreover, ||4%f(z)|| < C. The analyticity of the
function

z—(A*f(2),n) (neD(4'?)
implies that 4% f(z) is analytic, indeed.

PRrROPOSITION 2.2 (cf. [S], 2.3). Let ¢, w € M} and assume that
is faithful. Then the function

z — (dg/do' ) (dw/dw')~2E

is analytic on S for £ € D(H, w).

Proof. First assume that ¢ is faithful. By an application of Propo-
sition 1.8 we have

|(do/de)'*(dw/de) ' 27| = (@ ((dw/de')~ />~ 1&))

= ¢(a%/(8% ((dw/dw')"1%¢))) < |l0|| |0 (dw/dw') "1 /2E)].

Since (dw/dw')~1/?¢ € D(H, '), this upper estimate is finite and ref-
erence to Lemma 2.1 completes the proof in the faithful case.

In the general case, we consider ¢ = ¢ + w(p* - pt), where p =

supp ¢. Due to Lemma 1.6 (dg/dw')? = p(d@/dw')? and this formula
reduces the case to the faithful one.

COROLLARY 2.3. Let ¢, w and & be as above. Then
d'(dy/dw')* (dw/dw')~?¢ = (do/de)* (dw/dw')~*a’¢
foreverya' e M' and z € S.
Proof. Since d'¢ € D(H, w) both sides are analytic on S. Therefore,

it is sufficient to prove the equality on the imaginary line. Let ¢ be as
in the proof of the previous proposition. Then we have

d'(dp/de')"(dw/de')™"¢ = a' p(dg/de’)* (dw/dw') ¢
= d'p[D@, Dw]& = p[D¢, Dw)d'l = (dp/dw')* (dw/dw')"*a'¢

since (do/dw')"(dw/dw')~ is the Radon-Nikodym cocycle belonging
to M ([7] or [15], 7.4).



16 CARLO CECCHINI AND DENES PETZ

LEMMA 2.4. Let p € M} and &' € D(H, w). Then the function
t — |€%((dp/de)' /PHE)| (teR)
is bounded.
Proof. Let w be a faithful normal state on M and set ¢ = ¢ +
w(pt - pt), where p = supp ¢. By Lemma 1.3 we have
18°((dp/de’)!/2+11E")|| < |87 ((d@/da)' 1>+ p&')|
and the latest term is bounded due to Proposition 1.8 since p&' €

D(H, w).

PROPOSITION 2.5. Let M be a von Neumann algebra with commu-
tant M’ and a subalgebra My. Let ¢ (wq, w},) be a normal state on M
(Mo, M) and set ' = wi|M'. Assume that ¢y, wo and wy, are faithful.
Then for & € D(H, ') the function

z — (dwo/dwy)(dpo/dwy) % (dp/de)*E
is analytic on S.

Proof. For an iterated application of Lemma 1.12 we show that the
functions

[t = |(dpo/dar) ™" (dp/de) 7+1E| 2,
g: t — ||(dwo/dwy)'/*(dpo/dewly) ™" /*~ " (dp /de’) /*+1E!||2
are bounded on R. First by Lemma 1.4
f(t) = (8% ((dp/de)' **1E") < || ((dp/de)' 1)

and we can refer to Lemma 2.4 above.
We proceed similarly for g.

g(t) = wo(€“% ((dpo/dary) />~ (dp/de)!/2+1E"))
< (186 ((dpo/dawyy) ™" *(dp/de) PF1E)|.
Here we need 3.5 of [8], by which this equals
187 ((dg/de)' P+1E).

So the above argument completes the proof.

THEOREM 2.6. Let 9, 9, @, wy, @' and w}y be as in Proposition 2.5.
If the operator

T = (dw/dw')'*(dax/day)'?(dpo/dewy) ™' (dp/de) 2
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is defined on D(H, &') and has a bounded bilinear form (i.e., (T¢', n') <
C i€ Inll for all &, n' € D(H, ")), then the closure of T belongs to M
and does not depend on wy,.

Proof. (T&, n') is the value of the analytic function
F(z) = ((deo/dey)* (dpo/deq) ™ (dp/de)?¢!, (dw/dw') ™ n)

defined on S as it follows from Proposition 2.5. If ¢ = ¢ + w(p - p)
(p stands for the support of ¢), then

F(it) = (6%,([Dwo, Dgol,)[Dw, D@1 pE', 1)
does not depend on on wy, and neither does (7¢’, 1').

From now on we assume that @, wy, @' and w), are vector states
given by the same vector Q € H. Then simply D(H, w) = M'Q and
DH, ') =MQ. Take &' € D(H,w)ND(H, «') and a’ € M’ such that
a'l’ € D(H, ). Considering the functions

z — ((dwo/dwp)* (dpo/dwy)~* (dp/de)?d'E, (dw/da’)™ 1),

z — ((dwo/dwp)* (dpo/dwy)~*(dp/de')?E, (dw/de')™2d 1)
we establish that they are analytic on S and coincide on the imaginary
line. Hence

(Taié',é,) — (a'TE',é').
Due to the properties of the Tomita algebra ([14], 10.20-21) D(H, w)n
D(H,®')isdensein H and {a' € M': a’'D(H, w)nD(H, w')C D(H, @)}
is wo-dense in M'. Therefore we can conclude that the bounded clo-
sure of 7 is in M.

3. State extension. Let M, and M be von Neumann algebras with
My C M. We consider a faithful normal state ¢y (w) on My (M)
and intend to construct a canonical extension @, of ¢y with respect to
. We assume that M acts on a Hilbert space H and the cyclic and
separating vector Q determines w. As above wj, will be an auxiliary
faithful normal state on M and we use the notation w|M = w and
wp|M' = o'

We set ®g = (dpo/dwh)!/?(dwy/dwly)~1/2Q.

LEMMA 3.1. @y is cyclic for M.

Proof. We show that @ is separating for M’ C M. Let a' € M’
and assume that a'®y = 0. According to Corollary 2.3 we have

ad'®y = d'(dpo/dwp) ' (dw/dwl)~1/*Q
= (dpo/dwp)'/*(dwo/dwy) ™2’ Q.
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Since the spatial derivatives involved are injective a’®;, = 0 implies
aQ=0and ad =0.

We define now the canonical extension of ¢, as the vector state
corresponding to ®: go(a) = (a®y, Py) (a € M).

ProvrosITION 3.2. Let 9o, wy and w be as above. Then the function
F(it) = ({Dpo, Dwol;alDpo, D) (t€R,a € M)

admits an analytic continuation F to S and ¢o(a) = F(1/2).

Proof. The function
z — (a(dpo/dwy)* (dwo/dwy) ~*Q, (dpo/dwy) ™ (dwo/dwp) Q)
is an extension of F. Since
z — a(dyo/dwy)* (dwy/dwy) 2 Q

is analytic (Proposition 2.2), it is also analytic.

For an arbitrary w € M we set Q(y) = (dy/dw')/?(dw/dw')~1/?Q.
We know from Proposition 2.2 that z — (dy/dw')*(dw/dw')~*Q is
analytic on S. On the imaginary axis this is independent of @'. Con-
sequently, Q(y) is independent of «’. Considering o'(:) = (-Q, Q) we
conclude that Q(y) is the vector representative of y in the natural
positive cone associated with Q.

LEMMA 3.3. Let w € M} and ®y, ¢o, o be as above. Then the
operator
vy, a®y — aQ(y) (ae M)
is bounded if and only if w < Agy. When it is bounded, its closure
belongs to M.

Proof. ||v},(a®o)||> = ||aQ(w)||> = w(a*a). That is majorized by
Alla®o||? = A@o(a*a) if and only if ¥ < A@,. If this holds then vy b =
bu,, forall b e M.

THEOREM 3.4. Let ¢y, wo, w (w), @') be as above. If ¢ is a positive
normal extension of gy to M such that ¢ < A@o, then the operator

S = (dw/dw') ™V (dwy/dwy) *(dpo)dwly) ™' (de /de')
is defined on D(H, ') and its bounded closure lies in M.

Proof. We know from Proposition 2.5 that
(dwo/dwp)'/*(dpo/dwp) ™" (dp/de') ' (do/de’) ™ (dw /da) /2
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makes sense for £ € D(H, @'). As (dw/dw')\/?E' € D(H, ), so it can
be expressed as a’Q for some a’ € M'. By repeated application of
Corollary 2.3 and using Lemma 3.3 we have

(dwo/dw)y)*(dpo/dwl) ™" (dp/dw') *(dw/de') " 2a'Q
= d'(dwo/dwp)"*(dpo/dwl) ™ v, @y = a'v},Q
that is in d(H, w). Hence
181> = ||(dw/de)~"/a'v, Q||
= 0'(8°(a'v,Q)) = &' (a'v,0%(Q)v,a™) < ||v,|*w'(d'a™).

(Note that ©°(Q) = 1.) On the other hand,

I€'lI* = l(dw/de’) "' 2d' Q| = &' (8°(d'Q)) = ' (d'a™).
We have proved that S is bounded and now Theorem 2.6 gives that

its closure is in M.

THEOREM 3.5. Let 9o, o, @ (@}, @') be as above and stand § for
the extension of pg to M with respect to . Then the closure of the
operator

S = (do/dw')™"(dwo/dwp) ' (dpo/dawpy) ™ (d o /de) 12
(defined on D(H, ")) is a partial isometry with initial projection p =
supp @o, and with range H.

Proof. Taking the auxiliary faithful functional @(:) = @o(-) +
w(pt - pt) we consider the operator

T = (dg/dw)~"/? p(dpo/duwy)'* (dwo/dwp) ™' (dw/de')'

and show that it is a contraction on D(H, @'). Let &' € D(H, @'). Then
(dw/dw')'/2E" = a’Q for some a’ € M.

7€' = ||(¢/dw')~"/* pd (dpo/de’)/* (dwo /dewy) ™ *Q||?
= ||(dg/dw')~2d p®y||* = ||(dg/de) "' 2a' Dy ||?
= o' (67 (d'®y)) = ' (0% (Dg)a’™).
Since R?(®dy) is a partial isometry with range H, we have
ITE'|)? = o' (d'a™) = |I&'||>

We establish 7S = p. Since ||S|| < 1 the restriction of S to pH must
be an isometry. On the other hand, Sp* = 0, so S is a partial isometry
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with initial projection p. Since RngT C pH, we have RngS = H. (Of
course, S* =T.)

THEOREM 3.6. Let M, My, ¢, ¢o, wo, 0, ), &' be as above. Assume
that wy, w, wy, @' are given by a vector Q € H. If ¢ is a normal
extension of po to M such that

(i) D((dw/dew')~'/? (dawg/dwy)'/? (dpo/dar)~'/? (dop/dw')!/?) >
D(H, o),

(i) (dw/dw')~?(dwy/dw))*(dpo/dw}) = /2(dgo/de')/? has a

bounded closure,

then ¢ < Agg. In particular, if the closure is a partial isometry with
range projection I, then ¢ = ¢.

Proof. Stand S for the bounded operator mentioned in (ii). The-
orem 2.6 tells us that S € M. Let J, and A, (= (dw/dw')) be
the standard operators of the Tomita-Takesaki theory for Q. Set
w' = JpS*J,. From Tomita’s theorem w’' € M'. So fora € M
we have

w'a®y = aw' (dpo/dwh)'/?(dwy/dwf)~*Q
= a(dpy/dwl) ' (dwy/dwly) V2T, S* T ,Q
= a(dpo/dwh)*(dwo/dwh) " 2AY2SQ
= a(dgo/daw)y)'*(dwo/dwy) P A
= A,2(dwo/dwy) 2 (dypo/dewl) 2 (dp ) dw’) 2Q
= a(dp/dw')'?Q = aQ(p).
This shows that in fact w' = v,, and according to Lemma 3.3, ¢ < A¢o.
If a € M, then

p(a) = (aQ(p), Q(p)) = (w'a®y, w'Do) = (w"*w'a®y, Do)

and it equals (a®g, ®y) = @g(a) provided SS* = I.
We note that the proof gives a simple relation between S and vy,.
Namely, J,8Jw = (v,)*.

THEOREM 3.7. Let M, My, 9o, wj, and o' be as above. If w, and
w, are faithful normal states on M so that the generalized conditional
expectations E,,: M — My and E,,: M — M, coincide, then (¢¢)~*' =

(po)~2.
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Proof. We verify that
(doy/daly) ' (d(w|My) /dwp) ™' PQ
= (dpo/dwp)"*(d(w,|My) /day) ™ /2Q,
if Q;,Q, € H are vector representatives of @w; and w; in the natural

positive cone.
Due to Corollary 4 in [12] we have

[D(w1|Mo), D(w2|My)]; = [Dwy, Dwy]; (1 €R)
at our disposal. By analytical extension (cf. Proposition 2.2) we obtain
(d(1| M) /dey)'*(d (wa| My) /dey) 12,
= (dw, /dwp)'* (dw, /dw)) "1 ?Q,.

Hence
(dpo/dwly)V?(d(w | My) /dwly)~V2Q,

= (dpo/dwp)'*(d(w| M) /dwp) ™2
x (dw, [daw))'*(dw,/dey) ™ Q)
= (dpo/dw)y) ' (d(w,|My) [ dey) ™ *Q,.
It has turned out that the canonical extension of ¢ with respect to
w depends rather on E,, than on w itself.

THEOREM 3.8. Let M, My, 9o, w), o, o, g and E,: M — M,
be as above. If E,([Dggy, Dwgl;) = [Deo, Dwol; for all t € R, then
(90)™” = @0 - Ew.

Proof. Let M, be the fixed point algebra of E, and we denote by
¢, and w, the restrictions of ¢ and w to M, respectively. Due to
[12] [Dgo, Dao); € M, implies [Dgo, Dawo]; = [D¢y, Dw1]; (¢ € R).
Through analytic continuation we have

(dgo/dwpy)'*(dwo/dary) ™' *Q = (dp /dw))/2d(w) /dw)) 2 Q

and we obtain that the canonical extensions of ¢y and ¢, with respect
to w are the same.

Let F,, be the w-conditional expectation of M into M;. Actually,
it is a projection of norm one. Set ¢ = ¢, - F,. Since

((dw,/dw))? (dp, /de) *(de/dw')?E, (d(w/dw')"*n)
is analytic on S for ¢’ € D(H, «') and n € D(H, w), furthermore
[D¢, Dw); = [Dg¢y, Dwy]; (1 €R)
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we conclude that
((dw, /da)! 2 (dpy [de))™ 2 (dp/de) 2, (dow/da’) ™ 2y) = (& 7).

Consequently, (dw/dw')~V*(dw,/dw)"*(de;/dw')~"?(dp/dw')'/?
is defined on D(H, «') and admits a bounded closure, the identity.
Theorem 3.6 is applicable and tells us that ¢ = (¢)~“. So ¢ - E,, =
¢, -F, -Ey, =9, -F, = ¢ and ¢ is faithful. Reference to [12] gives
that

[D¢, Dw]; = [Dyy, Doyl = [D(9|Mo), Dy, (1 €R).

Therefore, p|My = ¢ and we obtain (§9)® = ¢ = @g o E,,.

It follows in particular from Theorem 3.8 that if E,, is a projection
then (@g)% is always ¢ o E,. The following example shows that in
general ¢g o E,, is not an extension of ¢.

ExAMPLE 3.9. Let My C M C B(H) and Q be a cyclic and separat-
ing vector both for M, and M. If w is the vector state on M given
by Q, then the w-conditional expectation E,,: M — M is an algebra
isomorphism and its range M, is a proper von Neumann subalgebra
of My (cf. [1], p. 259). If ¢ is a state on M| such that ¢y # w|M,,
however ¢o|M = w|My, then ¢ o E, = w, but ¢y # w|M,.

4. A Radon-Nikodym theorem. Connes proved ([6]) that if ¢ and @
are faithful normal states on the von Neumann algebra M and ¢ < Ao,
then ¢(x) = w(axa*) with an appropriate a € M. Since states can be
considered as conditional expectations onto the trivial subalgebra the
following theorem generalizes his result.

THEOREM 4.1. Let M and My be von Neumann algebras with My C
M and 9,0 € M}. Assume that o and 99 = @¢|My are faithful and
0 < AM@o)~?. ((po)~“ stands for the w-extension of ¢y with respect to
). Then there exists a € M such that E,(axa*) = E,(x) for every
xXeM.

Proof. By two applications of Proposition 1.11, we have
E,(©%(&") = ©“((dpo/dwp)~*(dp/da) ' 1?E')
= E,(8 ((do/de")™"*(dwy/dwp)'* (dpo /dap) ™' (dp/de') 12E))

for {' € D(H,&'). (wy is a faithful normal state on M and ' =
wy|M'.) According to Theorem 3.4 the closure of

(dw/dw') "1V (dwy/dwl)/*(dpo/dwl) V2 (dp/dw')!/?
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is in M. Hence
E,(a®” (&"a*) = E, (8 (&) for¢' € D(H, ).

As the linear hull of {8%'(¢'): ¢ € D(H, ')} is dense in M we proved
the theorem.

COROLLARY 4.2. There exists an isometry v € M with range projec-
tion supp(@o)~® such that

E,(v*xv) = Ey(x) (xeM)
if w stands for (po)~®.
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