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STATE EXTENSIONS AND A RADON-NIKODYM
THEOREM FOR CONDITIONAL EXPECTATIONS

ON VON NEUMANN ALGEBRAS

CARLO CECCHINI AND DENES PETZ

Let M be a von Neumann algebra with a von Neumann subalgebra
MQ. If £ is a conditional expectation (i.e., projection of norm one)
from M into Λ/o, then any faithful normal state φ0 admits a natural
extension φo o E with respect to E in the sense that E = EφQ.E. If
Eω is only an ω-conditional expectation, then φ0 o Eω is not always
an extension of φ0. This paper is devoted to the construction of an
extension φo of ψo generalizing the above situation for ω-conditional
expectations, which leads also to a Radon-Nikodym theorem for ω-
conditional expectation under suitable majorization condition.

Let M be a von Neumann algebra with a faithful normal state ω and
MQ a von Neumann subalgebra of M. A conditional expectation of M
onto MQ leaving ω invariant exists if and only if MQ is stable under the
modular group σω. This is a result of Takesaki ([15], 10.1) and it was
the reason for a generalized conditional expectation Eω: M —• MQ,
which always exists and is referred to as the ω-conditional expectation,
to be introduced by Accardi and Cecchini ([1]). If Eω is actually a
projection, then for a faithful normal state ψo on MQ the composition
φ0 = φ0 o Eω is a natural extension of ψQ to M and Eω = Eφ. In
general, (pQ o Eω is not an extension of ψQ and as a consequence of
Theorem 4 in [11] (see also [12]) there is no extension of ψQ possessing
the same generalized conditional expectation mapping as ω. We give
a construction of a ΦQ that can be described briefly as follows.

Assuming that M c B(H) and ω is determined by a cyclic and
separating vector Ω £ //, we consider the restriction of the action of
MQ to [Λ/QΩ] = HQ. There is a natural positive cone PQ C HQ with
respect to MQ such that CO\MQ and ψQ have the vector representatives
Ω and Φo in PQ, respectively. We say that the vector state φo(a) =
(αΦo,Φo) is the canonical extension of ψQ with respect to ω. If the
cocycle [Dφ0, D(ω\M0)]t is in the fixed point algebra of Eω, then our
ΦQ reduces to ψQ o Eω, and of course, this is the case where Eω is a
projection. In fact, ΦQ depends rather on Eω than ω itself; that is, if
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Eω = Eψ then (φo)~ω = {φo)~ψ In general, Eω(v*aυ) = Eψ{ά) where
v is an appropriate isometry in M and ψ stands for (φo)~ω.

Our references on von Neumann algebras and their modular the-
ory are [14] and [15]. We use the standard notations of the Tomita-
Takesaki theory without any explanation. H will denote always a
Hubert space and if M c B(H) then M1 is the commutant of M. For
the sake of convenience, states on M1 are marked with a prime, for
example ω1 etc.

The main results are contained in §§3 and 4.

1. Preliminaries. In this section we shall present some facts about
the spatial theory of integration on von Neumann algebras, ω-condi-
tional expectations etc., which we shall use in this paper. Those facts
will be the extensions of results contained in the original papers quoted
from time to time.

Let M c B(H) be a von Neumann algebra with commutant Mr and
ψ e M+. The lineal of ψ is defined ([7], [9], [13], see also [15], 7.1)
as follows:

D(H, ψ) = {ξeH: \\aξ\\ < Cξψ(a*a) for all a e M}.

When ψ is of the form ψ(a) = (aΨ,Ψ) (a e M) for some Ψ e H,
then D(H,ψ) = M'Ψ.

LEMMA 1.1. D(H, ψ)~ = supp^.

Proof. Let p = supp ψ and q be the projection onto closure of
D{H, ψ). If ζ e D(H, ψ) then \\p±ξ\\ < Cζψ(pλ) = 0 and so q < p.
On the other hand, ψ(ά) = Σ(arli> *//) w ^ h a sequence (?//) from H.
Clearly, ηt e D{H, ψ). Since ψ{p - q) = Σ((P ~ q)m.*li) = ° w e

obtain q = p.
When ω is a faithful normal state on M and ψ e M+ with support

p then the functional ψ(-) = ψ(-) + ω(p± pL) is faithful. This simple
trick will allow us to reduce the non-faithful case to the faithful one.

LEMMA 1.2. Ifψ e M+, p = supp ψ and ψ is a faithful normal func-
tional such that ψ - ψ is orthogonal to ψ, then D(H,ψ) = pD(H, ψ).

Proof Let ξ e D(H, ψ). Then

\\apζ\\<Cξψ(pa*ap) = Cξψ(a*a)

for every a e M and hence pξ e D(H, ψ). The other inclusion is
obvious.
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Set (Ψ,πψ,Hψ) as the GNS-triple corresponding to ψ. It is possible
to define for ξ eD(H,ψ) a bounded operator

R*{ξ):Hψ-+H

such that

Rψ(ξ)πψ(a) = aξ (aeM).

It was proved in [7] that

(See also [15], 7.1.)

LEMMA 1.3. Let ψ, ω e M+ such that ψ < λω. Then D(H, ψ) c
D(H, ω) and θω(ξ) < λ2θ^(ξ) for ξ e D(H, ψ).

Proof. D(H, ψ) C D(H, ω) follows immediately from the definition.
Define v: Hω -• Hψ by vπω(a)Ω = πψ(a)Ψ {a e M). Then the
diagram

Jv

is commutative. Since ||ι;|| < λ we have

Rω(ξ)Rω(ζy =

LEMMA 1.4. Let ψ e M+ and Mo be a von Neumann subalgebra of
M. Ifω stands for ψ\M0, then D(H, ψ) c D(H, ω) andθω(ξ) < Θ^(ζ)
forξeD(H,ψ).

Proof. We proceed as in the proof of Lemma 1.3, but we use the
diagram

Rω(ξ)
H < Hω

where /: Hω —• Hψ is the natural embedding.
If ψ e M+ is faithful and ψ' e {M')+ then there exists a positive
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selfadjoint operator (dψ1 /dψ) on H such that
(i) D(H,ψ) is a core for (dψ'/dψ)1/2 and \\(dψ'/dψ)ι/2ξ\\2 =

ψ'(ΘV(ξ))forξeD(H,ψ),
(ii) s\xρp(dψ'/dψ) — supp ψ'.

(See [7] or [15], 7.3.)

PROPOSITION 1.5 ([7], p. 158). Ifψ e Mi is faithful and ψ[, ψ'2 e
(M')i then

(d(ψ[ + ψ'2)ldψ) = (dψl/dψ) + {dψ'2ldψ).

Here one should add that the sum means form sum. However, we
need this result in the case of orthogonal supports when there is no
difference.

LEMMA 1.6. Let ψ e Af+ be faithful and ψf,ψ'e {M')+. Ifψ1 and
ψ1 - ψ' are orthogonal and p1 = supp ψ1 then

{dψ'ldψ)a = (dψ'/dψ)ap = p{dψf/dψ)a

foraeC with Reα > 0.

Proof. Due to property (ii) above the operators {dψ1/dψ) and
(d(ψ' - ψ')/dψ) have orthogonal supports. Proposition 1.5 and Lem-
ma 1.2 make the proof complete.

PROPOSITION 1.7 ([7], p. 158; [15], 7.4). If both ψ e Mi and ψ' e
(M')i are faithful then {dψ'ldψ)~ι = (dψ/dψf) and

(dψ/dψ'γ'aidψ/dψ'y* = σf{a) ( ίeR, a e M).

PROPOSITION 1.8 (([5], 2.2). Ifψ e Mi and ψ' e (M')t are faithful
then

for every ξ eD(H, ψ) and t e R.

LEMMA 1.9 (cf. [8], 3.1). Let ψ e Mi be faithful and ψ' e (M')i.
Then

{dψ'ldψγl2D{H, ψ) c D(H, ψ1).
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Proof. Let ξ eD(H, ψ) and a1 e M'. Using Hilsum's notation and
results ([9]) we have

= ί{dψΊdψ)ιl2d*a'{dψ'ldψ)χl2θψ{ξ)dψ

< \\®ψ(ξ)\\ [(dψ'/dψγ/2a*a'(dψf/dψ)ι/2dψ

Therefore, ξe D(H, ψ').

LEMMA 1.10 (cf. [3] AND [16]). Let ψ e M+ and ψ' e (M')+ be
faithful. Then the mapping

iψ:a^ f(dψ/dψf)ι/2a(dψ/dψf)ι/2(')dψ' (a e M)

is a positive linear mapping ofM into M*. It does not depend on ψf.
For a G M+ the majorization iψ(a) < \\a\\ψ holds. Ifψ is faithful then
iψ is injective and iψ(M+) consists of all ω e Λ/+ such that ω < λψ
with some λ> 0.

Proof Since (dψ/dψf)ι/2a(dψ/dψr)1/2 e Lι(M, ψ), the mapping iψ

is well-defined, positive and linear. For faithful ψ the statement is
completely covered by 3.7 and 3.9 of [3]. Let p = supp ψ and take an
auxiliary ψ e M+ such that it is faithful and ψ - ψ is positive and
orthogonal to ψ. Then

iψ(a)(b) = [(dψ/dψf)ι/2a(dψ/dψ')ι/2bdψf

= ί p(dψ/dψ')ι/2a(dψ/dψ')ι/2pbdψf

= I\dψ/dψ'γ/2a(dψ/dψ')ι/2pbpdψ' = iφ{a)(pbp)

for a,b e M. Now clearly iψ{a) does not depend on ψ1 and

iψ{a){b) = iψ(a)(pbp) < \\a\\ψ{pbp) = \\a\\ψ(b)

iϊa,b> 0.
Let MQ be a von Neumann subalgebra of M, ψ a normal state of M

such that ψ I MQ = ψo is faithful. In the light of the previous lemma
for a e M there is an element iψ^(iΨ(a)\M0) e Mo. We define the
^-conditional expectation Eψ: M —• MQ by setting

= i-o

ι(iψ(a)\Mo).
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So Eψ is a positive, unital linear contraction. It generalizes the notion
of ^/-conditional expectation introduced for a faithful state ψ first in
[1] as it follows from [2], [3] and [10].

PROPOSITION 1.11 (cf. [4]). Let ψ e M+ and MQ a von Neumann
subalgebra ofM. Assume that ψo = ψ\M0 is faithful. Then for ζ1 e
D{H, ψ') we have

'z e (M'0)ΐ is faithful and ψ1 = ψ'Q\M'.

Proof. Due to Lemma 1.9 (dψ/dψ')ι/2ξf e D(H,ψ) c D(H,ψo)9

and the right hand side makes sense. By simple calculation we have
for a0 e (Λ/o)+

We note since the linear span of {Θψf(ζ')\ ξ' G D(H, ψ')} is dense in
M, the above formula characterizes Eψ.

2. Analytic continuation. Let S = {z e C: 0 < Rez < 1/2}. For
the sake of brevity we say that a function is analytic on S if it is
holomorphic on IntS and continuous and bounded on S. In this
section we consider vector-valued functions defined primarily on the
imaginary line and prove that they admit analytic extension to S. Most
of the results are of auxiliary nature and will be used in the rest of the
paper, but some of them are interesting in their own right.

M will be always a von Neumann algebra with commutant Mr and
ω' a faithful normal state on M'.

LEMMA 2.1. Let z -• f(z) e H be an analytic function on S. If A >
0 is a selfadjoint operator on a Hilbert space H and \\Aχl2f(\j2 + it)\\
is bounded on R then z —• Az f{z) is analytic on S.

Proof. Let η e D(A{'2). So z -> (f(z),A2η) is analtyic on S. If
)ll < κ and ||/(l/2 + it)\\ < L for all t e R, then

\(f(it),A-ιtη)\<K\\η\\ and |(/(l/2 4- it)9A
l/2^)\ < L\\η\\
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for all ί e R . Applying the three lines theorem ([8], VI. 10.3) we have

\(f(z),A2η)\<C\\η\\ (ηeD(A1/2))

with some constant C. Since D(Aχl2) is a core for A2 we conclude
that f(z) e D(AZ). Moreover, | |Λ z/(z)| | < C. The analyticity of the
function

z->(A*f(z),η) (ηeD(A^2))

implies that Azf{z) is analytic, indeed.

PROPOSITION 2.2 (cf. [5], 2.3). Let φ,ω e M+ and assume that ω
is faithful. Then the function

z -> (dφ/dωf)z(dω/dωfyzξ

is analytic on S for ξ e D(H, ω).

Proof. First assume that φ is faithful. By an application of Propo-
sition 1.8 we have

\\{dφldω')χl2{dωldω')-χl2~itξ\\2 = φ{θω> ({dω/dω')-112'1^))

= φ(σ»(Θω'((dω/dω')-l/2ξ))) < IMI \\Θ»'((dω/dω')-l/2ξ)\\

Since (dω/dω')~χl2ξ e D(H, ω ;), this upper estimate is finite and ref-
erence to Lemma 2.1 completes the proof in the faithful case.

In the general case, we consider φ = φ + ω(p± p1), where p =
supp$p. Due to Lemma 1.6 (dφ/dω')z = p(dφ/dω')z and this formula
reduces the case to the faithful one.

COROLLARY 2.3. Let φ, ω and ξ be as above. Then

a\dφ/dω')z(dω/dω')-zξ = (dφ/dωf)z(dω/dω')-zafζ

for every a' e M1 and z eS.

Proof. Since a!ξ e D(H, ω) both sides are analytic on S. Therefore,
it is sufficient to prove the equality on the imaginary line. Let φ be as
in the proof of the previous proposition. Then we have

cί{dφldd)i\dωlddγitξ = a'p(dφ/dω')z(dω/dω')-zξ

= a'p[Dφ,Dω]tξ = p[Dφ,Dω]ta
fξ = (dφ/dω')z(dω/dω')-za'ξ

since {dφldω'y^dω/dω')'11 is the Radon-Nikodym cocycle belonging
to M ([7] or [15], 7.4).
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LEMMA 2.4. Let φ e M+ and ξ' e D(H, ω). Then the function

t - WiίdφldGJΫl^ζ^W (t e R)

is bounded.

Proof. Let ω be a faithful normal state on M and set φ = φ +
ω(p± - p1-), where p = supp φ. By Lemma 1.3 we have

\\eφ((dφldω')χl2+itξ')\\ < \\θφ{(dφ/dω'γlMtpξ')\\

and the latest term is bounded due to Proposition 1.8 since pζf e
D{H,ω).

PROPOSITION 2.5. Let M be a von Neumann algebra with cornmu-
tant M1 and a subalgebra MQ. Let φ (ωo, ω'o) be a normal state on M
(MQ, MQ) and set ω1 = ω'0\Mr. Assume that φo, CUQ and ω'Q are faithful.
Then for ζ1 e D(H, ω') the function

z -+ (dωo/dω'oy(dφo/dω'oΓ
z(dφ/dωfyξf

is analytic on S.

Proof. For an iterated application of Lemma 1.12 we show that the
functions

g: t -+ \\(dωo/dG/o)
ι'\dφo/dώti-1'2^

are bounded on R. First by Lemma 1.4

f{t) = ω'0(ΘV«((dφ/dω')ι/2+ιίξ')) '

and we can refer to Lemma 2.4 above.
We proceed similarly for g.

g(t) = ^ ' l

Here we need 3.5 of [8], by which this equals

So the above argument completes the proof.

THEOREM 2.6. Let φ, φ$, ω, ωo, ω' and ω'o be as in Proposition 2.5.
If the operator

T = (dω/dωf)^2(dω0/dωf

0)^2(dφ0/dωf

0)-^2(dφ/dωf)^2
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is defined on D(H, ω') and has a bounded bilinear form {i.e., (Tξf, ηf) <
C \\ξ'\\ \\η\\ for all ζ, ηf e D(H, ω')\ then the closure ofT belongs to M
and does not depend on ω'o.

Proof. (7ξf, η') is the value of the analytic function

F(z) = ((dωo/dω'o)
z(dφo/dωf

o)-z(dφ/dωfyξf, (dω/dω'Γ'η')

defined on S as it follows from Proposition 2.5. If φ = φ + ω(p p)
(p stands for the support of φ), then

F(it) = (σ»([Dωo,Dφo]t)[Dω,DφUpξ',ηf)

does not depend on on ω'o and neither does (Tξf, η').
From now on we assume that ω, coo, ω' and ωf

0 are vector states
given by the same vector Ω £ H. Then simply D(H, ω) = MΏ and
D(H, ω1) = ¥ Ω . Take ξ' e D(H, ω)nD(H, ω1) and α' e M' such that
α'ξ' G D(H, ω1). Considering the functions

z -> ((dωo/dω'o)
z(dφo/dω'oΓ

z(dφ/dω'yα'ξ', (dω/dω'y2η')>

z -> {(dωo/dω'Q)z(dφo/dω'o)-z(dφ/dω')zξf, {dω/dω')-~zα' * η')

we establish that they are analytic on S and coincide on the imaginary
line. Hence

(Tα'ξ',ξ') = (α'Tξ',ξf).

Due to the properties of the Tomita algebra ([14], 10.20-21) D(H, ω)Π
D(H, ω') is dense in H and {of e M': α'D{H, ω)nD(H, ω') cD(H, ω1)}
is wo-dense in Mf. Therefore we can conclude that the bounded clo-
sure of T is in M.

3. State extension. Let Mo and M be von Neumann algebras with
MQ C M. We consider a faithful normal state φo (ω) on Λf0 (M)
and intend to construct a canonical extension φo of ψo with respect to
ω. We assume that M acts on a Hubert space H and the cyclic and
separating vector Ω determines ω. As above α/0 will be an auxiliary
faithful normal state on MQ and we use the notation ω\M = α>o and
ω'0\M' = of.

We set Φ o = (d<po/dω'o)
ι/2(dωo/dω'o)-ι/2Ω.

LEMMA 3.1. Φo is cyclic for M.

Proof. We show that ΦQ is separating for M1 c MQ. Let α! € M'
and assume that α;Φo = 0. According to Corollary 2.3 we have

α'Φo = α'(dφo/dωΌ)ι/2(dωo/dωΌ)-ι/2Ω
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Since the spatial derivatives involved are injective α'Φo = 0 implies
a'Ω = 0 and a' = 0.

We define now the canonical extension of ψo as the vector state
corresponding to ΦQ: Φo{a) = (#Φo> Φo) (a

PROPOSITION 3.2. Let φ$, CUQ and ω be as above. Then the function

F(it) = ω([Dφ0, Dωo]*ta[Dφo, Dωo]t) (teR,aeM)

admits an analytic continuation F to S and Φo(a) = #(1/2).

Proof. The function

z - (a(dφo/dω'o)
z(dωo/dωf

oΓ
zΩ, {dφoldω'o)-~z{dωoldω'Q)-~zΩ)

is an extension of F. Since

z —• a(dφo/dωf

o)
z(dωo/dωf

oy
zΩ

is analytic (Proposition 2.2), it is also analytic.

For an arbitrary ψ e M+ we set Ω(^) = (dψ/dω')ι/2(dω/dωf)~ι/2Ω.
We know from Proposition 2.2 that z —> (dψ/dω')z(dω/dω')~zΩ is
analytic on S. On the imaginary axis this is independent of ω'. Con-
sequently, Ω(ψ) is independent of ω'. Considering ω'( ) = ( Ω, Ω) we
conclude that Ω{ψ) is the vector representative of ψ in the natural
positive cone associated with Ω.

LEMMA 3.3. Let ψ e M+ and ΦQ, φo, Φo be as above. Then the
operator

υ'ψ: aΦo-^aΩ(ψ) (aeM)

is bounded if and only if' ψ < λφo. When it is bounded, its closure
belongs to M1.

Proof. | | ^ ( t f Φ 0 ) | | 2 = | |αΩ(^) | | 2 = ψ(a*a). That is majorized by
λ||αΦo||2 = λφo(a*a) if and only if ψ < λφo. If this holds then v'ψb =
bv'ψ for all b eM.

THEOREM 3.4. Let ψo, ωo, ω (ω'o, ω
1) be as above. Ifφ is a positive

normal extension ofφ0 to M such that φ < λφo, then the operator

S = {dωldωTxll{dωQldω'oγl2{dφoldω'o)-ιl2{dφldω'γl2

is defined on D(H, ω') and its bounded closure lies in M.

Proof. We know from Proposition 2.5 that
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makes sense for ζ e D(H, ωf). As (dω/dω')ι/2ξr e D(H, ω), so it can
be expressed as α'Ω for some a1 e M1. By repeated application of
Corollary 2.3 and using Lemma 3.3 we have

'oΓ^v'yΦo = a'v'φΩ

that is in d{H, ω). Hence

\\Sζ'\\2 ^Widω/dω'r^a'v'^W1

= ω'(Θω(a'v'φΩ)) = ω'(a'vf

φΘ
ω(Ω)v'φa*) < \\vf

φ\\2ω'(afa*).

(Note that θ ω (Ω) = /.) On the other hand,

f | |2 = \\(dω/dω')-ι/2a'Ω\\2 = ω'(Θω(a'Ω)) = ω'(a'a*).

We have proved that S is bounded and now Theorem 2.6 gives that
its closure is in M.

THEOREM 3.5. Let φo, ω 0, ω (ω'o, ω') be as above and stand φ0 for
the extension of φo to M with respect to ω. Then the closure of the
operator

S = (dω/dωTι/2(dωo/dω'o)
ι/2{dφo/dωf

o)-ι/2(dφo/dω'γ/2

(defined on D(H, ωr)) is a partial isometry with initial projection p =
supp φo, and with range H.

Proof. Taking the auxiliary faithful functional φ(-) = φo(-) +
<*>{p± ' PL) we consider the operator

T = {dφ/dωf)-ι/2P(dφo/dωf

o)
ι/2{dωo/dωf

o)-^2(dω/dωf)^2

and show that it is a contraction on D(H, ω1). Let ζ1 e D(H, ω1). Then
{dωldω')χl2ξf = a'Ω for some a' e M'.

\\Tξ'\\2 =

= \\(dφ/dωfrι/2afpΦ0\\2 = \\(dφ/dωTι/2a'Φ0\\2

= ω'(ΘV{a'ΦQ)) = ω'(a'θ*(Φo)a*).

Since Rφ(Φ0) is a partial isometry with range H, we have

We establish TS = p. Since | |S| | < 1 the restriction of 5 to pH must
be an isometry. On the other hand, Sp -1 = 0, so S is a partial isometry
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with initial projection p. Since Rng T c pH, we have RngS = H. (Of
course, 5* = T.)

THEOREM 3.6. Let M, Mo, φ, φo, coo> ω> ω'o, (rf be as above. Assume

that coo, ω, ωf

0, ω1 are given by a vector Ω e H. If φ is a normal

extension ofφo to M such that

(i) D((dω/dωr)~ι/2 (dωo/dω'o)^2 (dφo/dωf

o)~^2 {dφ/dω1)1!2) D
D{H,ω'),

(ii) (dω/dωTι/\dωo/dωf

o)
ι/2(dφo/dω'o)-ι/2(dφo/dω')1/2 has a

bounded closure,

then φ < λψQ. In particular, if the closure is a partial isometry with
range projection /, then φ = ΦQ.

Proof. Stand S for the bounded operator mentioned in (ii). The-
orem 2.6 tells us that S e M. Let Jω and Δ ω (= (dω/dω')) be
the standard operators of the Tomita-Takesaki theory for Ω. Set
wf = JωS*Jω. From Tomita's theorem w' e Mr. So for a e M
we have

w'aΦ0 = awf(

= a(dφo/dω'oγ/2(dωo/dω'oΓ
ι/2JωS*JωΩ

= a(dφo/dω'o)
ι/2(dωo/dω'oΓ

ι'2AιJ2

This shows that in fact w' = v'φ and according to Lemma 3.3, φ <
If a e M, then

φ(a) = (aΩ(φ),Ω(φ)) = (w'aΦo,w'Φo) — (w'*wι'αΦo,Φo)

= (JωSS*JωaΦo,Φo)

and it equals (αΦo,Φo) = Φo(a) provided SS* = /.
We note that the proof gives a simple relation between S and v'φ.

Namely, JωSJω = (v'φ)*.

THEOREM 3.7. Let M, MQ, φ$, ω'Q, and ωf be as above. If ω\ and
0)2 are faithful normal states on M so that the generalized conditional
expectationsEω: M —> Mo andEω: M —> MQ coincide, then (ψo)~ω] =
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Proof. We verify that

if Ωj, Ω2 £ H are vector representatives of ω\ and ω2 in the natural
positive cone.

Due to Corollary 4 in [12] we have

[D(ωι\M0),D(ω2\M0)]ί = [Dωι,Dω2]ί (teR)

at our disposal. By analytical extension (cf. Proposition 2.2) we obtain

(d(ωι\Mo)/dωf

o)
ι/2(d(ω2\Mo)/dωf

o)-ι/2Ω2

Hence

x (dωι/dωf

0)
ι/2(dω2/dωf

0)-ι'2Ω2

= (dφo/dωf

o)
ι'2(d(ω2\Mo)/dω/

o)-^2Ω2.

It has turned out that the canonical extension of φo with respect to
ω depends rather on Eω than on ω itself.

THEOREM 3.8. Let M, Mo, φ0, ω'o, ω;, ω, ω 0 αnJ Eω: M -^ Mo

be as above. If Eω([Dφo,Dωo]t) — [Dφo,Dωo]t for all t e R, then

(<Po)~ω = Ψo ' Eω.

Proof. Let M\ be the fixed point algebra of Eω and we denote by
ψ\ and ωi the restrictions of φ and ω to M\, respectively. Due to
[12] [Dφo,Dωo]t e Mx implies [Dφo,Dωo]t = [DφiyDωι]t (t e R).
Through analytic continuation we have

(dφo/dωf

o)
ι'2(dωo/dωf

o)-^2Ω = {dφλjdω\)χl2d{ωxldω\γχl2Ω

and we obtain that the canonical extensions of ψo and ψ\ with respect
to ω are the same.

Let Fω be the α -conditional expectation of M into M\. Actually,
it is a projection of norm one. Set φ = ψ\ Fω. Since

is analytic on S for ξ' e D(H, ω') and η eD(H, ω), furthermore

/ ( ί e R )
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we conclude that

r, (dω/dω'yl/2η) = (ζf, */')•

Consequently, (dω/dωf)-{/2(dωι/dωf

ι)
{/2(dφι/dωf

ι)-ι'2(dφ/dω')1/2

is defined on D(H,ω') and admits a bounded closure, the identity.
Theorem 3.6 is applicable and tells us that φ = (ί?i)~ω. So φ Eω =
ψ\ - Fω - Eω — ψ\ - Fω = φ and 9? is faithful. Reference to [12] gives
that

[Dφ,Dω\t = [Dφx,Dωi\t = [D(φ\M0),Dω0]t (t € R).

Therefore, φ\M0 — φo and we obtain (φo)
ω = φ = φQo Eω.

It follows in particular from Theorem 3.8 that if Eω is a projection
then (φo)ω is always ψo o Eω. The following example shows that in
general φ$ o Eω is not an extension of φ$.

EXAMPLE 3.9. Let M o ζ ¥ c B{H) and Ω be a cyclic and separat-
ing vector both for Mo and M. If ω is the vector state on M given
by Ω, then the ω-conditional expectation Eω: M —• Λf0 is an algebra
isomorphism and its range M\ is a proper von Neumann subalgebra
of MQ (cf. [1], p. 259). If φo is a state on Mo such that 9?o ^ O)\MQ9

however φo\M\ = ω\M\, then φ^ o £ ω = ω, but 9?o 7̂  ω|Λ/o

4. A Radon-Nikodym theorem. Connes proved ([6]) that if φ and ω
are faithful normal states on the von Neumann algebra M and φ < λω,
then φ(x) = ω(axa*) with an appropriate a e M. Since states can be
considered as conditional expectations onto the trivial subalgebra the
following theorem generalizes his result.

THEOREM 4.1. Let M and Mo be von Neumann algebras with MQ C

M and φ, ω e M+. Assume that ω and φo = φ\M$ are faithful and
φ < λ(φo)~ω. ((φo)~ω stands for the ω-extension of φ§ with respect to
ω). Then there exists a e M such that Eω(axa*) = Eφ(x) for every
xeM.

Proof. By two applications of Proposition 1.11, we have

Eφ(Θω'(ξ')) = Θ

for ζf G D(H,ω'). (ωf

0 is a faithful normal state on MQ and ω1 =
ω'0\M'm) According to Theorem 3.4 the closure of

{dω/dωf)-^2{dω0/dωf

0)
ι'2(dφ0/dωf

0)-^2(dφ/dωf)1/2
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is in M. Hence

Eω(aβω'(ζ')a*) = E9{&*(ξ')) for £' e £>(//, ω')

As the linear hull of {Θω'(ξ'): £' e D{H, ω')} is dense in M we proved
the theorem.

COROLLARY 4.2. ΓAere exwte an isometry v e M with range projec-

tion supp(^0)~ω such that

Eω(v*xv) = Eψ(x) (x e M)

ifψ stands for (φo)~ω.
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