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COMPARISON SURFACES FOR THE
WILLMORE PROBLEM

RoB KUSNER

The infimum of the conformally invariant functional W = [ H’
is estimated for each regular homotopy class of immersed surfaces in
R>. Consequently, we obtain rather sharp bounds on the maximum
multiplicity and branching order of a 1¥-minimizing surface. In the
case of RP? we provide an example of a symmetric /¥ -minimizing
Boy’s surface (W = 127)—as well as symmetric static surfaces of
higher index—thereby solving part of the Willmore problem.

0. Introduction. This paper addresses the well-known variational
problem posed by T. J. Willmore [WT] in 1965:
Find the minimum for the squared-mean-curvature integral

W(M) = /M H*da

among compact embedded surfaces M C R3 of a given genus.

Willmore noted that W(M) > 4n, with equality only for round
spheres. He also found a torus M, c R3 with W(M;) = 2n? and
conjectured this value to be the minimum among embedded tori. Al-
though Willmore’s conjecture remains unresolved, at least his example
serves as a comparison surface, showing that the infimum of W among
embedded tori is not greater than 27? < 8.

This is our starting point: for each genus g we exhibit a comparison
surface M, C R? with W(M,) < 8x. More generally, we consider the
Willmore problem for immersed surfaces M # R3. A path of immersed
surfaces is a regular homotopy, and the path component—or regular
homotopy class—of M / R3 is denoted by [M]. We will construct (in
§5) appropriate comparison surfaces to deduce the following

MAIN THEOREM. The infimum Wiy for W over any regular homo-
topy class [M] of compact immersed surfaces M 7 R3 satisfies

VVEM] < 20rm,

with the best upper estimates known given in §5. In particular, the
infimum of W among compact immersed surfaces of a given topological
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type M 7 R3 is strictly less than (<)

8n if M is orientable,
12n  if M is non-orientable with x(M) even,

and
16m  if M is non-orientable with y(M) odd.

(Our result should be compared with the recent work of W. Kuhnel
and U. Pinkall [KWP], who do not consider the regular homotopy
class problem and who obtain only the weak (<) inequality in the
latter part of our main theorem. Pinkall has independently observed
the strict inequality inf W < 8x for orientable surfaces—see [SL] and
the appendix to [KWP].)

Next we consider the regularity problem for W-minimizing sur-
faces. Already, L. Simon [SL] has employed our comparison surfaces
M, C R? to obtain results for embedded surfaces minimizing W. In
§6 we indicate how his machinery extends to the immersed case, and
we shall apply our estimates on W[ to bound the local branching
order of a W-minimizing branched-immersed surface. A key idea here
is the Li-Yau inequality [LY]

dru(M) < W(M)

relating W to the maximum multiplicity u of the surface. We derive
(in §1) a sharp version of this inequality valid for branched-immersed
surfaces. Our derivation employs a form of the Gauss-Bonnet formula
for proper branched-immersed surfaces. In §7 we reinterpret this as a
Riemann-Hurwitz formula and compute a bound on the fotal branch-
ing order, using a method introduced by R. Bryant [Brl].

Some further comment on the construction of our comparison sur-
faces is due. First, an important property of W is its conformal in-
variance (§1). This led us to two sources of surfaces for which W is
computable: complete minimal surfaces in R3 (§2) and compact mini-
mal surfaces in S3 (§3). Conformal geometry also suggests—using the
enumeration of regular homotopy classes (§4) as a guide—the most
efficient way to weld these basic surfaces together and obtain the re-
quired comparison surfaces (§5).

Second, many of our comparison surfaces are critical points for
W, and at least one—the Boy’s surface P; /7 R® with W = 12n—
achieves the minimum among immersed projective planes! (See §2.)
We conjecture that the embedded surface M, C R3 also achieves the
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minimum for the original Willmore problem. (The case g = 1 is Will-
more’s conjecture.) A small measure of evidence for this conjecture
is provided in the final section (§8) of this paper.

It remains a pleasant task to thank the many people who made im-
portant contributions: Robert Bryant and Leon Simon, for introduc-
ing the author to this problem; Rick Schoen and S.-T. Yau, for their
encouragement and interest; Geoff Mess and Gang Tian, for discus-
sions on regular homotopy classes and line-bundles, respectively; Wu-
Yi Hsiang, for inviting the author to lecture on this work at Berkeley
in March 1985; Tiny, for her patient support, for postponing physics
and supercomputers, and for our son, Woden; and Woden, for helping
to get “Daddy’s paper” finished, even though he was “only an idea”
when the first draft was written (1984). The author also wishes to
thank the University of California, Berkeley and San Diego for their
financial support and hospitality during the preparation of this paper.

A revised version of this paper appears as a chapter in the author’s
doctoral dissertation [KR2] at the University of California, Berkeley.
Some results of this paper have been announced in [KR1]. We should
also mention the very recent survey article [PS] which provides a pic-
torial introduction to this subject, and the author’s article [KR3].

1. Branched-immersed surfaces, conformal invariance, and the Li-
Yau inequality. A surface embedded in R3 can be represented in sev-
eral (equivalent) ways: as a subset of R3 which is locally the graph of
a function R? — R; as the image of an embedding; or, as an equiva-
lence class of embeddings modulo reparametrizations. This latter view-
point reflects the fact that geometric quantities—such as the functional
W=[H 2 da—are independent of parametrization; and it is the eas-
iest to generalize for our purposes.

DEFINITION 1.1. Let X be an abstract smooth surface and B a (nec-
essarily) discrete set in . A branched-immersed surface M # R3 is
an equivalence class of branched immersions f: £ — R3 (with branch
locus B), where f ~ g provided there is a diffecomorphism F: X — X
(preserving B) such that f = go F.

We call f a representative, and F a reparametrization of M, and we
use the self-evident terminology: M is immersed (if B is empty), M is
embedded (if any f is an embedding), M is compact (if X is compact),
and so forth.
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Note that—unlike embedded surfaces—distinct branched-immersed
surfaces may have the same image. However, a C!® branched-
immersed surface can still be represented locally as a union of (mul-
tiple) C1-* graphs away from the (image of the) branch locus. Near a
branch point y € £ we may choose a representative

f(r,0) = (rcosm@,rsinm@, h(r,0))

where m = m(y) is a positive integer, 2 € C!* with |h| < Crl*e, |Dh|
< cr*, and where (r, ) is a polar coordinate centered at y. (Cf. [GOR],
[SL].)
We introduce
px)= > m@)
yef-(x)
for the multiplicity of M at x € R3. Define the local branching order

Bx)= > (m()-1)
yeftx)
and observe f(x) # 0 iff x is in the image of the branch locus. Also
set
#(M) = max u(x)

and define the total branching order by

B(M) =" B(x).

xeM
Henceforth we adopt the abbreviation surface, and note that the
concept (and notation) extends naturally to any ambient manifold. In
particular, it will be convenient to work also in S3, which we regard

as R3 U oo via stereographic projection.
If M 7 R3 denotes the proper surface obtained from a compact
surface M / S3 via stereographic projection, we reserve the notation

n(M) = p(co)

for the multiplicity of M at co. Notice that the number of ends of M
(that is, the difference in Euler numbers (M) — x(M)) equals n(M)
iff each end of M is embedded iff M is unbranched at co. In general,
we have the relation

X(M) +n(M) + B(M) = (M) + B(M).

We are now prepared to state a useful version of the Gauss-Bonnet
formula, and apply it to study the functional W = [ H?da. (The
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derivation is quite simple, but we postpone it to §7, where we rein-
terpret it as a Riemann-Hurwitz formula for branched-immersed sur-
faces.)

LEMMA 1.2. Let M be a proper surface obtained from a compact
Cle surface M 7 S? via stereographic projection. Then the curvature
K of M 7 R3 satisfies

/Mkda = 2n(x(M) — n(M) + B(ID)).

This formula was known for a complete minimal surface of finite
total curvature in R3: in fact, such a surface always conformally com-
pactifies to a C1-® surface in S? [KR1], [KR2]. Of course, for a compact
surface M Z R3 we have

/MKda =2n(x(M) + B(M)).

Using the Gauss equation one obtains a similar formula for the extrin-
sic curvature K of a compact surface M 7 S3:

/M_(l +K)da = 21(3(31) + B(D)).

Recall that the basic conformal invariant of a submanifold [TG],
[CBY] is the traceless-second-fundamental-form

A= (h;) = (h;j — Hg;).
On a surface M # N3 this yields the conformally invariant density
(H? - K)da = L(x; - k;)? da = }| 4 P da.

Thus, if N — N is a conformal map carrying M Z N to M 7 N, then
/ (H?> - K)da =/. (H?> -K)da.
M M

In particular, if M Z R3 is a compact surface, and if there is a Mobius
transformation carrying M to another compact surface M # R3, then
Gauss-Bonnet implies

W(M) = /M H*da = /M H*da =W (M),



322 ROB KUSNER

and in this sense W is itself a conformal invariant. In fact, this is a
special case of a formula which holds when a Mobius transformation
carries a compact surface M to a proper surface M /Z R3; we compute

wn = [ (@ -Kda+ [ Kda
- /M(H2 — K)da +27(x(M) + B(M))

- /M H2da - 27(3 (M) + B(M) — n(M))

+27(x(M) + B(M) + n(M))
= W(M) + 4nn(M).

Here we have used our Gauss-Bonnet formulas (and the relation pre-
ceding them) to handle the Gauss curvature terms. We can now derive
a sharp version of the Li-Yau inequality [LY]:

PROPOSITION 1.3. Let M / R3 be a compact surface with maximum
multiplicity u(M). Then

W (M) = /M H2da > d4nu(M).

Equality holds iff there exists a complete minimal surface M / R3 of
finite total curvature with n(M) = u(M), and a Mébius transformation
carrying M to M.

Proof. Let x be a point of maximum multiplicity for M. Then
the proper surface M obtained from M by a Mébius transformation
carrying x to oo satisfies the previous formula with n(M) = u(M).
Obviously M is complete, with finite total curvature, and W (M) > 0
with equality iff A is minimal. ]

We apply this result in §6 to estimate the maximum multiplicity of
a W-minimizing surface. To this end, we need to exhibit comparison
surfaces for which W is computable. The preceding discussion sug-
gests that complete minimal surfaces in R3 provide a natural source:

Fact 1.4. The compact immersed surface M / R3 obtained (via a
Mobius transformation) from a complete immersed minimal surface
M 7 R3, with finite total curvature and p (separately) embedded ends,
satisfies

‘ W(M) = 4np.
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Examples and further discussion will be given in the next section.

Another source of comparison surfaces is compact minimal surfaces
in S3. Indeed, if M # S3 is a compact surface (which avoids co) and
M 7 R3 is the compact surface obtained by stereographic projection,
then a computation similar to the one above (using now the Gauss-
Bonnet formula for f3(1 + K)da) yields

W (M) =/ (1+ B da,

M
from which we deduce

Fact 1.5. The compact surface M Z R3 ob@ned (by stereographic
projection) from a compact minimal surface M /# S3 satisfies

W (M) = area(M).

The areas of Lawson’s [LHB] minimal surfaces in S3 will be esti-
mated in §4.

Finally, we remark that Proposition 1.3 can be used to show that co
is the point of maximum multiplicity for a complete minimal surface
in R3 [KR1), [KR2], a fact we will use in §7.

2. Complete minimal surfaces in R3. In this section we describe
a new family of complete minimal surfaces of finite total curvature
(which were announced in [KR1]), and we indicate their relationship
to the Willmore problem.

THEOREM 2.1. For each odd p > 3 there is a complete immersed

minimal surface M, / R with the following properties:
(i) M, has p ends, each of which is embedded and flat.

(i) M, is non-orientable. The conformal compactification M, / S*
is a C%* (in fact, real algebraic) immersed real projective plane RP2.

(iii) The total curvature of M, equals —2n(2p — 1).

(iv) There is a flat plane R*> C R3 such that M, N R? contains p
straight lines meeting at equal angles. The dihedral group of order 2p
acts on M, by reflections around these lines.

Proof. We use the classical Weierstrass representation, suitably mod-
ified for the non-orientable setting [SM], [MW1]. Let z denote a
meromorphic coordinate on S2, the orientation-double-covering-space
of RP2. Then the Weierstrass representatives are

gp(z) = 2P71(2F —5)/(s2P + 1)
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and
fo(z) = i(s2? + 1) /(2% +rzP — 1)?

where s = v/2p — [ and r = 2s/(p — 1). These values are chosen so
that the Weierstrass 1-forms

p=f(1-g%i(l+g%,2g)dz

are exact. It follows (after a long, but straightforward computation)
that M, is represented by the conformal harmonic map Re ®, where

z
)= [ o
.__; -1 _ , _ (5201 p;l 2p
22P+rzl’—1(z z,—i(z +z), ) (zF+1)).

In terms of the coordinate z, the antipodal map *: S? — S2 is given
by
z—zxk=—-1/z,

and one readily checks that
D,(zx) = Opy(2)

so that Re @, is well defined on RP?; equivalently (see [SM], [MW1]),
one checks

8(zx) = (g(z))*
and
flzx) = —(28(2))2 f(2).

Properties (i), (ii), and (iii) can now be verified.
To establish property (iv) use the identities

D,(z) = Pp(2)4, @, (e*"'/P 2) = ®,(z%)B?
where
-1 0 0 cosn/p —sinn/p O
A= 0 1 0|, and B=|sinzn/p coszm/p O|. O
0 0 -1 0 0 1

We write P, for the compact surface in R? gotten from M, by a
Mobius transformation. By Fact 1.4 we see

W(P,) = 4np.
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Now every immersed RP2 /# R3 must have a triple-point, so by Propo-
sition 1.3 we have the immediate

COROLLARY 2.2 [KR1]. The surface P; # R3 minimizes W among
all immersed real projective planes, with value

W (P;) = 127.

We remark that the other surfaces P, are static surfaces—also known
as “Willmore surfaces”—that is, they are critical points for W; in fact,
P, minimizes W among competing surfaces with the same symmetry
group (see below). It is also interesting to note [KR1], [KR2] that for
even values of p the corresponding formula for @, gives rise to a static
sphere S, 7 R? with conformal dihedral symmetry and with

W(Sp) = 8np.

The surface S, has a quadruple-point and represents the midpoint of
an eversion of the sphere.

In a sense this entire procedure can be reversed. By choosing the
Mobius transformation carefully we may assume P, has p-fold ro-
tation symmetry. Now any immersed RP2 # R3? with this symmetry
must have a point of multiplicity greater than p [FG], and so by Propo-
sition 1.3, P, minimizes W among all such surfaces. But R. Bryant
[BR1] has shown that any static sphere arises from a complete minimal
surface in the manner described. By double-covering, the same is true
for static real projective planes, and we are led to a complete minimal
surface M, / R3? with the indicated total curvature, asymptotics, and
symmetries. This information is then used to derive the Weierstrass
representatives. An additional consequence [KR1], [KR2]: P, is the
unique surface possessing conformal dihedral symmetry (of order 2p)
in the moduli space I, of immersed static RP? / R® (modulo Mébius
transformations) with W = 4zp.

One can show (using, for example, the Weierstrass representation)
[KR1], [KR2] that II, is a noncompact complex variety of dimension
p—2. By a different method, Bryant [BR2] has explicitly computed I13
to be a closed half-plane C C; he also observed that Meeks’ minimal
Moébius strip [MW1] provides a natural compactification of Il; to a
closed disk.

A point we want to emphasize is this: the compact surface obtained
from Meeks’ minimal Mébius strip is also a W-minimizing RP? with
W = 12z, but with a single branch point of order # = 2. Thus branch
points are an essential feature of the general Willmore problem.
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3. Compact minimal surfaces in S3. In 1970 Lawson [LHB] con-
structed three families of minimal surfaces—denoted &, 7, and n—
thereby showing that every compact surface (save RPZ, which is pro-
hibited) can be minimally immersed in S3. The areas of these surfaces
will be estimated in this section.

Recall the construction [LHB] of the minimal surface &, ;, C S°.
Fix integers m,k > 0 and let

Ap = (e?P™**1,0),  B,(0,e™/mt1)

in S3 (which we regard as the unit sphere in C2 = R*). These are
the endpoints of a (unique) shortest geodesic arc 4,B, in S3. The
geodesic polygon

I“m,k = AyBoU ByA, U A;B; U B Ay
bounds an area minimizing disk J,, ;, C S3. Repeated reflection of
Jm x around the geodesics {4,B,|0 < p < k, 0 < g < m} produces the
compact surface &, 4.
Now it is an elementary matter to check that £, ; is the union of
2(k + 1)(m + 1) disks, each congruent to d,, x, and the genus (&, x) =

mk. Furthermore, &, o C S® is an equator, and &m k 18 congruent to
&k m» 0 we may assume (without loss of generality) that m > k > 1.

LEMMA 3.1. We have the strict inequality

area(d,, k) < 2m/m + 1.

Proof. We compare 6,, , with the pair of totally geodesic simplices
Ymx = AoBoB1 U A1 B By.

Since J,, ; is area-minimizing, since the angle y,, , makes along the
geodesic arc ByB; is 7/k + 1 < =, and since

a(am,k) = I-‘m,k = a(?m,k)a

we conclude that
area(dy, k) < area(y,, k)-

However,
area(y,, ) = area(domain on S? between longitudes 0 and /m + 1)
= area(S?)/2(m + 1) = 2n/m + 1

which proves the lemma. O
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Combining Lemma 3.1 with the preceding observations gives the
following

PROPOSITION 3.2. Let &, C S* be Lawson’s genus mk minimal
surface (m > k > 1). Then

area(&y, k) < 4n(k +1).

We remark that this estimate is sharp in the following sense: if we
fix k, then as m — oo,

area($,, k) — 4n(k + 1),

(The rate of convergence can also be estimated [KR2], [KR3].)

Next we estimate the areas of the second family of surfaces. The
minimal surface 7, , may be constructed in the same way as ¢, «,
replacing I, , with

AoBoU ByB, U B A; U A Ayp.

However, its area can be estimated more efficiently if we note (as
Lawson did [LHB]) that 7,, ; is ruled, and so can be parametrized by
the doubly-periodic mapping

Wmi: [0,27] x [0,7] C R? — S* c C?
given by the formula
ikx

W i(X,y) = (e"* cosy, e siny).

ProPosITION 3.3. Let 1, ; be Lawson’s compact ruled minimal sur-
faceinS3 (m >k > 1). Then

n’(m + k) < area(ty, &) < 4n(m + k).
Equality holds (on the left) if and only if m = k.

Proof. Observe [LHB] that area(t,, x) is exactly 7 times the elliptic
integral

2n
Im,k:/ \/m2c052t+k2sin2tdt.
o

Clearly I,,, ; < 4(m+k), since for 0 < a, b we have \/(a? + b?) < a+b,

and since
2n 2n
/ lsintldt=/ |cost| dt = 4.
0 0
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To show I, , > m(m + k) notice that equality holds when m = k, and
that the (strict) inequality holds for m > k because (for fixed k)

9
om

2r
I =/ m cos? t/\/m2cos2t+k2sin2tdt
0

2n
>/ cos?tdt = m. o
0

We should point out that 7, ; = &, ; is the familiar Clifford minimal
torus with area 2n2. The surface 75,1 is a minimal Klein bottle with
area strictly less than 12z. (In fact, numerical integration yields an
area between 97 and 10x.)

Finally, we compute the area of the Lawson surface 7,, ; in the same
way as we did for &,, . For k odd (which we will assume) 7, ; is a
non-orientable surface with Euler number 1 — mk, and it is a union of
2(m + 1)(k + 1) disks each congruent to the unique area-minimizing
disk spanning

(—'BI)AOBI UBA; U A ByU By(—By).

Again assuming m > k > 1, and using a totally geodesic comparison,
deduce

PROPOSITION 3.4. Lawson’s non-orientable minimal surface 1,
with Euler number 1 — mk satisfies

area(ny, k) < 2n(m + 2)(k + 1).

We note that n;; = 7, is Lawson’s Klein bottle. In §5 we will
make use of surfaces from all three of Lawson’s families.

Not only is the value of W easily computable for the stereographic
projection of a compact minimal surface in S3 (by Fact 1.5), but also
we find (by applying a first variation argument to Fact 1.5—or see
[TG], [BR1]) that the projected surface in R3 is indeed a critical point
for W —a static surface! We will comment on this further in §8.

4. Enumerating the regular homotopy classes of immersed surfaces.
The classification of immersed surfaces in R3 up to regular homotopy
—part of the “folklore” of low-dimensional topology—has recently
been completed [HH], [PU]. Here we organize the results into a con-
venient format. This section is essentially expository: the reader may
refer to [HH], [HJ], and [PU] for background.

Two immersed surfaces are said to be regularly homotopic provided
they have regularly homotopic representatives. This is easily seen to



COMPARISON SURFACES FOR THE WILLMORE PROBLEM 329

be an equivalence relation. We write [M] for the regular homotopy
class of the immersed surface M # R3. It may be useful to think of
[M] as the path component of M in the space of immersed surfaces.

We proceed to state the basic facts about regular homotopy classes
of immersed surfaces in R3.

Fact 4.1. Given immersed surfaces M, N /Z R3, there is a well-
defined connected-sum operation which produces an immersed surface
M#N /7 R3.

We give one geometric construction of this operation (the “con-
formal connected-sum”™) in the next section. The important point is
that—up to regular homotopy—connected-sum is unique, and so we
may write [M] + [N] for the class [M#N]. In this way the set of
all regular homotopy classes of compact surfaces in R becomes an
abelian semigroup .. The (unique) regular homotopy class of the
sphere provides the zero element O for .#.

Fact 4.2. % has four generators (in the notation of [PU]):

S = [a standard torus], B = [a (right-handed) Boy’s surface],
T = [a twisted torus], B = [a (left-handed) Boy’s surface].

Examples of each are provided in_ the next section. As the preceding
notation suggests, we will write [M] for the class of the mirror image
M~ / R3 of the surface M.

Fact 4.3. There is a function § from .# to the real numbers modulo
2n. This function is additive
Oparr+v = By + Oy
and involutive
19[;{-] = —19[ M]-

We call & the twist since (for M in general position) ¥y can be
viewed geometrically as (half) the angle in the rotation group SO(3)
through which the double-point locus of M twists [HH]. (An algebraic
interpretation is that e® is the multiplicative Arf invariant of a cer-
tain inner product space associated to A/ [PU].)

We come now to the main fact, which was first published in [PU]:

Fact 4.4. Immersed surfaces M, N Z R3 are regularly homotopic if
and only if
(i) their domains are diffeomorphic, and
(ii) they have the same twist Oy = Oy
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TABLE 4.6
(The “geometrically distinct” regular homotopy classes.)

T T+S | T+2S | T+3S T+4S | T+5S

Ko+S | B+2S | K+25 |B+K+2S

Ky B+S K+S | B+K+S| 2K+S

B K B+K 2K

It is interesting to note that if one drops condition (1), then Fact 4.4
is modified to read

“...M,N 7 R are cobordant ...” [HJ][WR].

Since the surfaces M and M~ contain the same geometric informa-
tion (save chirality) we will ignore the distinction between the classes
[M] and [M], and can therefore use the real Arf invariant cos Oy
to enumerate the regular homotopy classes of “geometrically distinct”
immersed surfaces in R3. This is an elementary matter if we decom-
pose

[M]=mS+nT + pB +¢B

and use the following

Fact 4.5. The twist on the generating classes is (modulo 27x)

=0, Opg=m/4,
Yr=m, U = —n/4.
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Here we have used the notations
K=2B and Ky=B+B

for the right-handed and amphichiral Klein-bottle classes, respectively.
(The latter is the familiar version with a plane of reflection symmetry.)
We have also used the identity

B+Ky=B+S;
another important identity is
B+K=B+T.

Both follow from Fact 4.4 and the fact that (abstract) connected-sum
of three copies of RP? is diffeomorphic to the sum of RP? with a
torus. In the next section we use the identity

AK=Kp+T

which follows from the previous one by adding B to both sides.

Finally, we note that the numbers p and g count (modulo 4) the
right-handed and left-handed Mobius strips in the immersed surface,
provided we use a decomposition with m = n = 0.

5. Constructing comparison surfaces. Let W7 denote the infimum
of W over the regular homotopy class [M] of a compact immersed
surface M # R3. It is a simple matter to estimate Wi from below,
using Proposition 1.3 and well-known facts about multiple points of
immersed surfaces [BT], [HJ]. (See Table 5.14). To estimate W[
from above, we construct a global comparison surface—for which W
is computable—in the class [M].

We begin with a technical result which will permit us to “weld”
comparison surfaces together.

PROPOSITION 5.1. Let M C R3 be a compact embedded surface and
let S C R3 be a round sphere (or plane). Let

X={xeMNS|TM = T,S}

where Ty denotes the tangent plane at x. Then for any ¢ > 0 there is a
neighborhood U of X in S, and a C'*-close surface N C R3 such that

W(N) < W(M)+e¢

and with
UcCNNS.

In particular, U is contained in the umbilic locus of N.
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Proof. There is a neighborhood Y of X in S so that (locally) M is
represented as a graph of a function y: ¥ — R with y = |Vy| =0 on
X. Let ¢ > 0. Then a simple mollifier argument (see, for example,
[GT], Chapter 7) shows that there are neighborhoods U € V' € Y of
X and a function u: Y - Rwithu=0on U, u—-y =0o0n Y\V, and

lu —plcre + |4 — ylw22 < e.

The approximating surface N is given by the graph of u. a

COROLLARY 5.2. Any immersed surface can be approximated (in the
above sense) by one which is umbilic in a neighborhood of a point.

Proof. Let x € M. By an initial approximation we may assume that
a neighborhood of x is embedded. Now apply the proof of Proposition
50toS=T M. 0

We use this to give an explicit construction of the connected-sum of
two immersed surfaces M, N /7 R3. As above, we may assume x € M
has an embedded, umbilic neighborhood. Let M be the proper surface
obtained from M by a Mobius transformation x to co. Then M has
one end (n(M) = 1) and this end (outside a large ball) is planar! N
is obtained similarly. We weld together the planar ends of M and N
in the obvious smooth way, so the resulting surface M#N also has
one, planar end. By another Mébius transformation we recover the
compact surface M#N / R3, a conformal connected-sum of M and N.

If we observe that W(M#N) = W (M) + W(N) and apply the for-
mula preceding Proposition 1.3 (where # = 1) we find

W(M#N)=W(M)+ W(N) —4n.
We can now derive an important consequence of this discussion.
PROPOSITION 5.3.
Wimsny < W + Winy — 4n.
Proof. For any ¢ > 0 we may choose M, N such that
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and we may assume both have umbilic neighborhoods at the connect-
ed-sum (by Proposition 5.1). So the preceding remarks imply

< Won +Wiv —4n +e. O

Next we consider the basic surfaces to be welded together. Recall

from §3 the compact minimal surface &, ; C S3. Let M, C R3 de-

note its compact stereographic image. Clearly M, is a standard torus

and, in fact, [M,] = gS. By Fact 1.5 and Proposition 3.2 we deduce
immediately

PropPosITION 5.4.
Wo=4n and Wy < W(Mg) = area(,,) < 87.

The minimal surface 7, / S3 is a diagonally double-covered Clif-
ford torus. Let T Z R3 denote the compact surface obtained via stereo-
graphic projection. Then T can be perturbed to a general position im-
mersed torus whose double-locus corresponds to a diagonal (or “1,1”)
curve on a standard torus. The torus makes a full twist around this
curve, so [T] = T. Therefore

PROPOSITION 5.5.
Wy < W(T) = 2area(t; ;) = 4n>.

Comparison surfaces for the remaining orientable regular homotopy
classes T + g$ can be represented by the conformal connected-sum
T#M,. However, for even values of g, this is not the most efficient
procedure. Instead, for g = 2(k — 1), one can diagonally double-cover
the surface M) (in complete analogy to the way T covers M;). We
conclude

PROPOSITION 5.6.
Wrigs < W(T) + W(M,) — 4n = 4n? + area(é, 1) — 4n < 4n(1 + n);
and for odd genus,
Wriak-1ys < 2W (M) = 2area(&,1) < 167.
(Of course, Wy s < 612 —4n < 167; a numerical estimate of area(3 1)
shows also that Wy 35 < 167.)

In the non-orientable case we have the W-minimizing Boy’s surface
P;5 constructed in §2. The family with twist & = n/4 is obtained by
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taking conformal connected-sum of P; with M,; these surfaces satisfy

ProrosITION 5.7.
Wg=W(P;) =12n

and

Wairgs < W(P3)+ W(Mg) — 4n = 8n + area(y 1) < 167.
Now we need a little topological

LEMMA 5.8. The minimal surface f,, 1 # S? contains m+1 (disjoint)
M©obius strips, all with the same chirality. Therefore, the surface
N, / R3 arising from Np—1,1 (via a stereographic projection) represents
the class pB, and in particular

[M]=K and [N3]=B+K.

Proof. One Mobius strip in S? is gotten by reflecting the basic
piece around the geodesic (—B;)A4yB; and reflecting the result around
the geodesic (—A;)B;A; (see §3). The other Mdbius strips come
from rotating this one successively by 2n/m + 1 about the geodesic
(—Ay)ApA,. ]

We remark that this result can also be obtained easily for the Lawson
Klein bottle 7, ; = 7,,; by using the parametrization y; ;.

Combining this lemma with Propositions 3.3, 3.4, and again using
conformal connected-sum, deduce:

PROPOSITION 5.9.

Wk < W(N,) = area(ty ) < 12m,
Waik < W(N3) = area(n,,;) < lém,
Wk+gs < W(Ny) + W(My) — 4n = area(t, ;) + area(lg ) —4n < 167

and

Waik+gs < W(N3)+ W (Mg)—4n = area(n,,;)+area(g ) —4n < 20m.
(In fact, Wkys < 127 by the numerical integration of area(t; )

noted in §3.)

To complete the program we need another construction, also based
on Proposition 5.1.
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LEMMA 5.10. For any & > 0 and any parallel planes P, P' C R3 there
exists a (rotation symmetric) cylinder Z C R3 with W(Z) < ¢, and a
ball b c R? such that

Z\b = (P U P")\b.

Proof. Simply apply the argument of Proposition 5.1 to each end
of the catenoid
{x?+y?=cosh’z} C R3,
which has W = 0. o

(One could also apply Corollary 5.2 directly to the inverted catenoid,
then invert the result, using Proposition 1.3 to keep track of W.)

We use this construction to attach “orientation-reversing handles”
to an immersed surface: at the level of regular homotopy classes this
will add K.

PropoOSITION 5.11.
Wik gs < 4n? < 16m.

Proof. Consider first the case g = 0. Recall the identity 2K = Ky+T.
Represent T by the diagonally double-covered torus 7 Z R3 (as in
Proposition 5.5). Use Corollary 5.2 to flatten out both sheets of T
in a small neighborhood. We may assume the sheets are parallel and
slightly separated. Use Lemma 5.10 to insert a cylinder Z between the
sheets, and weld this up to obtain a surface M # R3. For any ¢ > 0,
we can obviously arrange W(M) < W(T) + & = 4n2 +e.

We claim that [M] = Ko+ T. To see this, slide one end of Z around
a meridian of the standard torus which 7" double-covers. The two ends
of the cylinder now attach to the same sheet of 7', looking much like
a “drain-trap”. This drain-trap reverses orientation and has a plane
of reflection symmetry; hence it represents connected-sum with an
amphichiral Klein bottle.

In case g > 1, we simply weld in g + 1 of these cylinders between
the sheets of T, and recall that

T+Kp=2K K+Ko=K+§$
which implies that the resulting surface represents
T+(g+ 1)Ko =2K+ gKg=2K + gS$

as required. o

Only the non-orientable surfaces with ¥ = 0 remain.
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PROPOSITION 5.12. Wi 4gs < 272 + 47 < 127,

Proof. First assume g > 1. Consider M; as torus of revolution
“standing on its end”—it has 2 vertical planes of symmetry and a
height function with four critical points which we order according to
their height. Choose a round sphere .S which is tangent to M, at the
first and third critical points. Now flatten M; and S at these points of
tangency, and shrink S slightly towards its center. As in the proof of
Proposition 5.11, we insert one cylinder at the first, and g cylinders
at the third level. For any ¢ > 0, we can ensure that for this surface

W<W(M)+W(S)+e=2n>+4n +e.

One easily checks that this surface is non-orientable, and that the con-
struction can be done while preserving one vertical plane of symmetry.
Therefore, the surface is amphichiral, and must represent K, + gS§.

Surprisingly, the most familiar non-orientable surface—the amphi-
chiral Klein bottle (the case g = 0)—requires the most elaborate con-
struction. Choose ¢ > 0. Begin again with M; C R3 and consider the
(two) circles X = M; N P, where P is a vertical plane of symmetry.
By Proposition 5.1, we flatten a neighborhood of X (preserving the
symmetry plane). Use a Mobius transformation to carry a point of X
to oo (also preserving P). The resulting proper surface N C R3 has
one (horizontal) planar end. In fact N resembles an “underpass” with
a planar “road” passing beneath an umbilic “bridge”. Note that

W(N) < 2n* —4n +e.

Similarly, we take a cylinder Z (from Proposition 5.10) with a sym-
metry plane Q cutting its “neck”, a neighborhood of which we have
made umbilic. We scale Z so that its neck matches the bridge of N.

Now separate Z along Q, and weld the planar ends together, cre-
ating a surface Y with one planar end and two umbilic “holes”, one
facing left, and the other, right. Obviously, W(Y) = W(Z) < e. Also
separate N along P and weld each half of the bridge onto the corre-
sponding hole of Y; then weld in a planar strip to fill the split in the
road.

The proper surface M # R3 so obtained has two planar ends (one
horizontal, one vertical) and

W(M)=W(N)+W(Y)<2n>—4n + 2e.
Apply another Mébius transformation to get a compact M /Z R3 with
W(M)=W(M)+8n < 2n’ + 4n + 2e.
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(Here we have used the formula preceding Proposition 1.3, setting
n=2)

Observe that M resembles a sphere with a bulging drain-trap welded
in, so (as in the proof of Proposition 5.11) [M] = Ky which completes
the proof. O

In summarizing the results of this section (and in applying these in
the next sections) it will be convenient to write ul™! for the greatest
integer in W/4n. Our upper bounds on W, imply those on utM]
(upper number in Table 5.14). A lower bound for uM! follows from
the Li-Yau inequality (Proposition 1.3); indeed, if we write u5s) (lower
number in Table 5.14) for the infimum of the multiplicity u(M) over
[M], then:

TaABLE 5.14
(Multiplicity bounds.)

—
—
—

—
—_
—
—
—

T+S T+2S | T+3S T+4S | T+5S

w
w
w
w
EN

2 3 3 4

Ko+S | B+2S | K+2S |B+K+2S

2 3 2 3
3 2 3 3

7
Ky B+S K+S | B+K+S| 2K+S

w
~
w
w

w
N
w
~

The upper and lower numbers are remarkably close! The author
does not know whether the “gaps” detect a gap in our knowledge of
comparison surfaces or an invariant related to the twist 9. (The gaps
occur for cos ¥ < 0, corresponding to the “more twisted” surfaces.)

We conclude by observing that the theorem stated in the Introduc-
tion follows directly from the results of this section.
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6. Partial regularity for /¥ -minimizing surfaces. Here we use our
estimates on W], together with regularity results of L. Simon [SL] to
bound the multiplicity and local branching order of a W -minimizing
surface.

DEFINITION 6.1. Let M # R3 be a compact immersed surface. De-
note by [[M]] the closure of the regular homotopy class [A/] in the
space of branched immersed surfaces with the following topology:

A Cle surface M’ /# R3 (with branch locus B) is the limit of a
sequence {M;} c [M] provided there are representatives f’: ¥’ — R3
of M, and f;: £ — R3 of M;, as well as embeddings F;: Z\B — X
onto open sets U; such that

(i) fioF; = f'in CI%C(Z’\B,R3), and

(ii) For any 6 > 0, and large enough 7, fi(Z\U;) C Uyes(p) b5 (%),
where b;s(x) is the ball of radius J about a point x in the (image of
the) branch locus.

We remark that if N € [[M]] is immersed, then either N € [M], or
N is of lower topological type, by which we mean (M) < x(N). (We
use the fact that O is the sole regular homotopy class of the sphere
in R3; the corresponding statement for immersed two-spheres in R is
false [HJ], [KR3].) In general, B(N)+ x(N) > x(M), and in particular
(the domain of) N may become disconnected (as a neck pinches).

Now Simon’s regularity theorem [SL] applies to minimizing func-
tionals of the form

V(M) = /M(v +14P)da (v >0)

for M immersed in a compact manifold. The main—and rather non-
trivial—idea used in proving this theorem is that a surface minimizing
V' is well-approximated locally by biharmonic graphs, except on a finite
set of “bad points” where the limit surface has necks pinch or even
branch points develop. (See [KR2] for further discussion.) If we work
in S3, then by the proof of Fact 1.5 (and the Gauss-Bonnet formula
and Gauss equation)

W (M) = / (1+H)da = %/M(z +1412) da + n(x(M) + B(M)),

M

so Simon’s theorem applies to minimizing W as well, since y or f can
only increase in the limit.
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THEOREM 6.2. Let {M;} C [M] be a W-minimizing sequence
(W(M;) = Wn). Then there is a subsequence {M;}, a sequence of
Mobius transformations {G;}, and a surface N € [[M]] such that (in
the sense of Definition 6.1) G;(M;) = N. Moreover,

W(N)< Wpn<20n andso u(N)<uM <4,

It follows that the local branching order N is no more than u!M1—1 < 3.
(The best values of ™) known appear in Table 5.14.)

Proof. By the preceding discussion, the only hypothesis to check
in Simon’s regularity theorem [SL] is that the diameter of A; does
not shrink to zero: the Mobius transformation G; prevents this. The
remaining statements follow from lower-semicontinuity of ¥ in the
topology of Definition 6.1 and from results in previous sections. 0O

It is an interesting open problem to determine those regular homo-
topy classes which contain a W -minimizing surface. The only classes
for which the answer is known (and affirmative!) are O and B (by ex-
plicit examples), and S (by an argument of L. Simon—see §8); partial
results are available for K and K using methods developed in the next
section.

Again we emphasize that for N € [[M]] the equality W (N) = Wy
does not guarantee that N is regular. The compactified Meeks’ min-
imal Mobius strip (with a branch point of order f = 2) provides a
counterexample (see §2) with

W = WB = 12m.

7. A bound on the total branching order of a static surface. In the
previous sections we deduced a bound on the local branching order
of a W-minimizing surface. Here—using a technique of R. Bryant
[BR1]—we bound the fotal branching order. In fact, we shall prove
the following

THEOREM 7.1. Let N /Z R3 be a (compact, connected) static surface
with total branching order B(N). Then at least one of these alternatives
holds:

(i) B(N) < —x(N); or
(i) B(N) < 2u(N) — x(N), and there is a Mobius transformation
carrying N to a complete (branched) minimal surface N / R3 with



340 ROB KUSNER

finite total curvature; or
(iii) B(N) =2u(N) — x(N), and N is a u(N)-fold branched cover of
a round sphere S C R3.

Proof. We represent N by a branched conformal immersion f: £ —
R3. By a standard double-cover argument we can (and will) assume
that X is oriented and given a complex structure compatible with
the orientation and conformal structure induced by f. Consider the
following complex line-bundles (see, for example [GH], Chapter 2)
over X:

K = the canonical line-bundle of X;

L = the pullback of the line-bundle (7*N @ C)!:? via f, whose fiber
over y € X is the (1, 0) part of the complexified cotangent plane of N
at f(y);

[I(B)]| = the line-bundle corresponding to the branching divisor
(B) =3, ep(m(y) — 1)y of f. (Here our notation differs from [GH].)

These line-bundles satisfy the following

Formula 7.2.

K=|(B)| ®L.

To check this, compare with the equivalent statement about the de-
grees

d°(K) =d°(||(B)|) + d°(L);
using the most elementary form of the Chern-Weil theorem [GH] this
becomes

1) = BV - 5 [ Kda,

and the latter is just the Gauss-Bonnet formula (Lemma 1.2) for the
compact surface N.

We may view Formula 7.2 as a generalized Riemann-Hurwitz for-
mula for branched immersed surfaces. Indeed, if N is represented by
the branched cover f: X — X' onto an embedded surface X’ C R3, then
L = f*K' is the pullback of the canonical line-bundle K’ of X', and
the degree version of the formula can be written in the more familiar
way [GH]

-x(Z) = B(f) —d°(N)x(Z).

Now we use our assumption that N is static. For in this event,
R. Bryant [BR1] has shown how to construct a holomorphic quartic
differential on N, which we denote by Q. This means that Q is a holo-
morphic section of the fourth power of L, and so—assuming Q # 0—
1(Q)o]l = L* where (Q)o denotes the vanishing divisor of Q. This is a
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positive divisor, so
—x(N) = B(N) =d°(K) —d°(| B]l) =d°(L) > 0

which implies alternative (i).

From now on assume Q = 0. Then Bryant [BR1] shows that /V arises
from a complete (branched) minimal surface N # R3 via a Mobius
transformation. We could then argue as before, using instead the
Hopf differential, and another Riemann-Hurwitz formula. However,
assertions (ii) and (iii) follow directly from the Gauss-Bonnet formula,
since the Gauss curvature of a minimal surface is negative. In fact,
from Lemma 1.2 we have

X(N)—n(N)+ B(N) <0

with equality if and only if N is flaz. But u(N) < n(N) for a complete
minimal surface of finite total curvature [KR], [KR1], [KR2] so u(N) =
n(N). Using this and the formula preceding Lemma 1.2 we rewrite
the above inequality

X(N)=2u(N)+ B(N)<0

with equality if and only if N is totally umbilic, which yields (ii) or
(iii). 0

COROLLARY 7.3. A static torus or Klein bottle is either immersed, or
it arises from a complete (branched) minimal surface with finite total
curvature in R3.

We remark that in the #-minimizing case, the only way the second
alternative can hold (for the classes S, K, and Kj) is with N (branched)
covering a round sphere or union of two round spheres. L. Simon (see
the next section) showed that for S the first alternative of Corollary
7.3 can hold! (We believe the same is true for K. However, the
comparison surface we constructed for K, suggests that the second
alternative may hold here: the W-minimizing surface would appear
to be the union of two orthogonal spheres!)

We conclude this section with a proof of the Gauss-Bonnet formula.

Proof of Lemma 1.2. We reduce our version to the standard one
for a compact immersed surface A/ # R3 with boundary 8 M whose
geodesic curvature is k:

/Kda+/ kds=2ny(M).
M oM
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By an obvious induction argument, it is sufficient to treat the case
where the proper surface M # R3 has one end and one branch point
(at 0). Let M, = M N (b,\by,,) where b, = b;(0). Also set s, = db;.

Then
/ Kda——-—/ icds—/ kds +2ny(M,).
M, Mns, Mns,,

The terms on the right converge (as r = 0o) to
/ K ds = 2mu(co) = 2nn(M),
Mns,
/ kds=2nu(0)=2n(B(M)+1), and
Mﬂsl/,

x(M;) = x(M\{0}) = x(M) = 1.

Adding these together, and letting r = oo on the left hand side too,
gives us the desired formula. O

8. Remarks on the embedded case. The only explicitly known W-
minimizing surfaces are the round sphere (for O) and the Boy’s sur-
face P;—and its deformations [KR1], [KR2], [BR2]—described in §2
(for B). By Theorem 6.2 and Table 5.14, we see for [M] = g§ the
W -minimizing surface N in [[M]] must be regular (3(N) = 0) and
embedded (u(N) = 1).

L. Simon has observed that for g > 1 one can always choose a se-
quence of Mobius transformations G; (as in the statement of Theorem
6.2) so that the limit N is not a round sphere [SL]. This implies

THEOREM 8.1 [SL]. There exists an embedded torus M C R3 with
W (M) = Ws < 22,
and therefore we have also a strict lower bound
4 < Ws.
More generally, if one can show that strict inequality holds in Propo-

sition 5.3 (for non-trivial connected-sums) then Simon’s argument im-
plies that there exists an embedded genus g surface M C R? satisfying

W (M) = Wss.
Since we have shown W < 87, this hypothesis will obviously be true
provided one can obtain the lower bound 67 < Ws.

Certainly a necessary condition on an embedded W -minimizing sur-
face is that it be static. Our comparison surfaces M, C R? are static
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(as are any compact surfaces stereographically projected from mini-
mal surfaces in S? [GT], [BR1]) and there is some evidence [KR2],
[KR3] that the corresponding minimal surface & ; C S> has the least
area among those of genus g.

Another consideration is the second variation of W. If we write A
for the spectrum of the Jacobi operator [SM]

a"=A+2+ |4

on the minimal surface ¢ # S3, then its stereographic projection
M 7 R3 is W-stable if and only if AN (-2,0) is empty. (This can
be seen quite simply by setting

W (M) = /5(1 +H»)da=a+ %(a’)z.

Since @’ = 0 when ¢ is minimal, one computes the Hessian
WII(M) — %all(z + all).

Therefore, W”(M) > 0 if and only if a” has no eigenvalues between
—2 and 0.) For example, the Clifford torus &; ; C S3 is a flat square
torus, with @” = A+ 4, so it is easy to check the following (which was
earlier discovered by J. Weiner [WJ])

PROPOSITION 8.2. The stereographic image My C R3 of & | is W-
stable.

(It also appears that M, is W-stable.)

Finally, we observe that—if the ¥ -minimizing surface of genus g
exists—then there must be a path of embeddings connecting it to the
unknotted surface M, C R3:

PROPOSITION 8.3. Suppose M C R3 satisfies W(M) < 8n. Then M
is unknotted.

Proof. Let M, = {x € M| K(x) > 0} be the region of non-negative
Gauss curvature. We have the inequalities

87z>/ sza=/ sza+/ H%da
M : M\M,

2/ (H2—K)da+/ Kda> | Kda.
M, M, M,



344 ROB KUSNER

But the average (over the sphere of directions) number of local max-
ima for linear height functions on M equals

L/ Kda<?2,
47 M,

so there is a height function with exactly one local maximum on M.
It follows [MW2] that M is standardly embedded. O

We hope that the preceding remarks make plausible the following

Conjecture 8.4. Up to Mobius transformation M, C R3 is the
unique W-minimizing surface in its regular homotopy class. In par-
ticular, Wy = W (Mp).

Of course, the case g = 1 is Willmore’s conjecture [WT]. We also
conjecture that the stereographic projections of the surfaces 7, ; and
12,1 are the W-minimizers for the regular homotopy classes K and
B + K, respectively.
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