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OPERATORS WHICH SATISFY
POLYNOMIAL GROWTH CONDITIONS

BRUCE A. BARNES

Consider the class of bounded linear operators S such that
||exp(/7^)|| has polynomial growth in \t\ on R. In this paper it is
shown that the operators in this class have many interesting proper-
ties in common with selfadjoint operators.

1. Introduction. If S is a bounded linear selfadjoint operator on
Hubert space, then exρ(itS) is a unitary operator for all / G R , and
thus

(1) ||exp(/ίS)|| = l (ί e R).

When S is an operator on a Banach space for which (1) holds, then
S is called Hermitian. The class of Hermitian operators has proved
useful in the study of spectral operators. In this paper we study a more
general class of operators, those for which the growth of || exp(ιί*S)||
is at most polynomial in t G R, explicitly:

(2) 3K>Q and 3δ > 0 such that ||exp(*7S)|| < K{\ + \t\δ)

(/eR).

Although this is a special class of operators, it does contain many
interesting examples, and useful properties can be proved for operators
in this class.

Throughout this paper X is a Banach space. All operators on X are
automatically assumed to be linear and bounded. Let &>(X) denote
the set of all operators on X for which (2) holds. Here is a list of
some types of operators in &{X)\

A. Hermitian or Hermitian equivalent operators.
B. Operators on a Hubert space of the form TRS where R > 0

and ST is selfadjoint.
C. Well-bounded operators (T is well-bounded means that for

some interval [a,b], 3K > 0, such that for all polynomials

D. Nilpotent and projection operators.
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E. When X is weakly complete, scalar-type spectral operators with
real spectrum.

F. Algebraic operators with real spectrum.
G. Operators on Hubert space which are in Gιfc and have real

spectrum (T e Gι°c means that for some open neighborhood
U of <τ(Γ),

\\(λ - T)-ι\\ < (dist(λ,σ(T))Γι for all λ e U\σ(T)).

That the operators which satisfy some property (A)-(G) are in
will be proved in §2.

What are the special properties of the operators in &>(Xy> We prove
that when S e &{X\ then

1. The spectrum of S is real.
2. 3K>0 and 3δ > 0 such that for all A e C with Im(A) φ 0,

3. For all λ e C, λ - S has finite ascent.
4. The closed subalgebra generated by S and the identity is regu-

lar.
5. If the spectrum of S contains more than one number, then S

has a proper closed hyper-invariant subspace.

Furthermore, we prove that when S, T e 3*{X) and ST = TS, then
S+Te &>(X) and ST e &>{X).

2. The class &{X). For an operator 5, let J^(S)9 3?(S), a(S)9 δ(S)9

and σ(S) denote the null space of S, the range of S, the ascent of S,
the descent of S, and the spectrum of S, respectively.

Consider the following three properties that may hold for an oper-
ator S ((II) is the defining condition for S e&*(X)):

I. 3K > 0 and 3δ > 0 such that || exρ(i/ι5)|| < K(l + \n\δ) (n e Z);
II. 3K>0 and 3δ > 0 such that || exp(itS)\\ < K{\ + \t\s) (t e R);

III. σ(S) C R and 3ϋΓ > 0 and 3δ > 0 such that when I G C with

Im(Λ) φ 0, then ||(A —S1)-1!! < κ ( ι + \hn(λ)\'δ).
In fact these three conditions are equivalent (the values of K and

δ may differ in the different conditions). The equivalence of (I) and
(II) is an elementary fact. For suppose (I) holds for S, and K and δ
are as in (I). Since t -+ \\exp(itS)\\ is continuous, 3/ > 0 such that
sup{||exp(/ί£)||: ί € [-1,1]} < / . Then for t e R, 3υ e (-1,1) and
neZ such that t = v + n and \n\ < \t\. Thus

II exp(itS)\\ < || exp(h;S)|||| exp(inS)\\ < JK(l + \n\δ) <JK{\ + \t\δ).
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From this it is clear that (I) and (II) are equivalent.
On the way to proving the equivalence of (I)—(III) we establish sev-

eral important results.

THEOREM 1. Assume (II) holds for an operator S. Fix λ e C with
c = lm(λ) φ 0. Ifc > 0, then

/•oo

{λ-S)-{ = -/ / eiλte~itSdt.
Jo

Ifc<0, then

(λ-S)~ι = i / eiλte~itsdt.
J — oo

Proof. We prove the formula in the case c > 0; the proof of the
other case is similar. For w > 0,

id - Cϊ / pi(λS)tdt— / (pi(λ-S)t\\ rft — Pi(λ-S)w j

Jo Jo [dt J
Also, | | e ' ^ - 5 ) w | | = e-cw\\e-iwS\\ < e~cwK(l +wδ). Thus ||e<(*-'s)«'|| ->
0 as w -+ oo. This proves

/•oo

i(λ-S) / ei{λ~s)t dt =-L
Jo

COROLLARY 2. (II) => (III).

Proof. Assume (II) holds. Assume λ e C with c = Im(λ) ^ 0. We
assume c > 0. Then by Theorem 1

(λ-S)~ι = -/ / eιλte~ιbtdt.

Thus,

Now

The definite integrals involved are evaluated by
/•oo

where Γ is the gamma-function. Thus (III) holds for the appropriate
choice of constants.
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THEOREM 3. (Ill) =• (II).

Proof. Assume S is an operator for which (III) holds. We may
assume \\S\\ < 1, so σ(S) c [-1,1]. Fix ε, 0 < ε < 1. Define paths γjt

1 < j < 4, by

-is, J

y2(0 = - 2 - it,
γ4(t) = 2 + it,

Let y be the closed path encircling σ(S) counter-clockwise defined by
γ = γ{ + γ2 + y3 + y4# By the holomorphic operational calculus we have

eitS = ̂ U / ^/ ί λ(λ - S)- 1 rfA (ί G R).

We show (II) holds by making estimates on

f eitλ{λ-S)-ιdλΆ9 1 <7 < 4.

We make the estimates for j = 1,2; the computations for j = 3,4 are
similar.

έ^μ-s)-1^ <

< 4 / e~εtK(l + e~δ) dx = AKe~ε\\ +
Jo

Next, let
/ = sup{||((-2 + ix) - S)~ι\\: x e R}.

Note that / is finite. Then for tΦ 0

^ ( A - ί T 1 ^ < / k/ίy2(JC)|||(?2W-5'Γ1ll^

< / £ Jax = Jt (e — e j .

Similar estimates hold for the norm of the path integrals:

I eitλ{λ - S)
Jγ3

ί eitλ{λ - S)
Jγ,

dλ

dλ

<4Keet{l+ε-δ),

<MΓι(eεt-e-εt)
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where / Φ 0 and

M = sup{||((2 + ix) - S ) ~ ι \ \ : x e R}.

Assuming \t\ > 1, let ε — \t\~x in the estimates above. This gives for
|;| > 1, ||exp(/*S)|| < K\\ + |ί|*) for some choice of K'. Thus, (II)
holds.

REMARK. It is useful to note that (III) is true if σ(S) c R and we
assume only that the inequality in (III) holds for all λeU, Im(λ) Φ 0,
where U is some open neighborhood of σ(S). For it is well known that
limμi-oo | |(λ-S)~ ι\\ = 0. Therefore 3/ > 0 such that \\(λ-S)~l\\ < J
for λ$U. Then for λeC, Im(A) φ 0,

LEMMA 4. IfS e &>(X), then S2 e

Proof. We may assume ||5Ί| < 1. Fix ε, 0 < ε < 1. Define the paths
Yj, 1 < j < 4, and γ, just as in the proof of Theorem 3. Then

exp(itS2) = ̂ U ίeitλ\λ - S)~ι dλ (/ e R).

For 1 < j < 4, let

ί

By Corollary 2 3K > 0 and 3(5 > 0 such that

\\(λ-S)-ι\\<K(l + \h

whenever Im(A) Φ 0. The following estimates hold (the argument
being similar to the proof of Theorem 3): For t Φ 0,

Ax < {2εt)-\e4tε - e-4tε)K{\ + ε~δ);

A2<J(4t)-ι(e4tε-e-4tε);

A3 < {2εt)-\e4tε -e'4tε)K{\ +ε~δ);

A4<M{4t)-ι(e4tε-e-4tε).

Here M > 0 and / > 0 are fixed constants. Then letting ε = \t\~ι

when |ί| > 1, we have that || exp(itS2)\\ is polynomial in |ί|.

THEOREM 5.

(1) IfT9Se&(X) andST=TS, then S + Γ e&>(X);
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(2) IfT,Se^{X) andST=TS, then ST
(3)IfSe &>(X) and p(λ) is a polynomial with coefficients in R,

then p(S) e &>(X).

Proof. (1) is easily proved and (3) follows from (1) and (2). To
prove (2) suppose S and T are as in the statement of (2). Then

ST=±{(S+T)2-S2-T2}.

By Lemma 4, (S + T)2,S2, and T2 are in &>(X). It follows that ST e

The algebraic closure properties of the class &>(X) proved in Theo-
rem 5 contrast with the failure of these properties relative to interest-
ing subclasses oΐ&*(X). In particular:

(1) The square of an Hermitian operator need not be Hermitian [2,
Example 4.13, p. 107].

(2) The sum of commuting scalar-type spectral operators need not
be of scalar type [2, Chapter 9].

(3) The sum and product of commuting well-bounded operators
need not be well-bounded [2, p. 362].

There is another class of operators defined in terms of a growth
condition of the resolvent operator which is of interest here. Define
an operator S to be in &{X) when

3K > 0 and 3δ > 0 such that \\(λ - S)~ι\\ < K{\ + d(λ)-δ)

whenever λφσ(S)\ here d(λ) is the distance from λ to σ(S).

Just as in the Remark following Theorem 3, we note that the inequality
in the defining property for &{X) need only be assumed to hold for
all λ G U, λ $. σ(S), where U is some open neighborhood of σ(S).

We have from Corollary 2 that (II)=Φ>(ΠI) and this gives immediately
the following result.

PROPOSITION 6. IfS e &(X) and σ(S) c R, then S e &>{X).

Next we verify that the examples of types of operators listed in the
Introduction are in

THEOREM 7. IfS is an operator with one of the properties (A)-(G),
thenSe&(X).

Proof. (A): If S is Hermitian or Hermitian equivalent, then S sat-
isfies (II) with δ = 0 by [2, Theorem 4.7, p. 104] and [2, Definition
4.16, p. 108].
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(B): Assume W has the form W = TRS as described in (B). Then
by [1, Theorem 3.4] 3K > 0 such that

\\exp(itW)\\<K(l + \t\) ( ίeR).

(C): Assume S is a well-bounded operator on X. Let [a,b] be the
given interval in the definition; see [2, Def. 15.1, p. 287] where / =
[a,b]. When f(x) is absolutely continuous on [a,b], let

= \fΦ)\+ [b\f{x)\dx
Ja

as in [2, p. 287]. By [2, Lemma 15.2, p. 287] 3K > 0 such that

\\txp(itS)\\<K\\\eitx\\\ (/eR).

Since || |<?' ίx | | | = 1 + \t\(b - a), S satisfies (II).
(D): This is an easy computation. For example, if P2 = P, then

exp(ϊίP) = ei(P + (I-P).

Thus in this case 3K > 0 such that

||exp(/ί/>)|| < AT (teR).

(E): Assume X is weakly complete and that S is a scalar-type spectral
operator on X with σ(S) c R. By [2, Theorem 6.13, p. 166] 3M > 0
such that for each rational function g with poles outside of σ(S)

\\g(S)\\<Msup{\g(z)\:zeσ(S)}.

Fix λ <£ σ(S), and let g(z) = (λ- z). By the inequality above

\\{λ - SYX || < il/sup{μ - zl"1: z e σ(S)} = Md{λ)~ι.

Thus S e&(X) in this case.

(F): Assume S is an algebraic operator with σ(S) c R. Then by [5,
p. 338] S has the form

k=\

where is/t-E/ = ^kj^k, 1 < ^>7 < w, {λi,...,Am} c R, and Λ̂  is
nilpotent with NE^ = EkN for all k. Now as we have noted, E^ G

for all k and N e &>(X). It follows from Theorem 5 that

(G): Let S be an operator on Hubert space, S e Gιfc, and with
σ(S) c R. Since S e C/1,00, there 3ί/ an open neighborhood of σ(S)
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such that | P - S)~ι\\ < d{λ)~ι for all A € U, λ £ σ(S) [3, Definition
7.3.17, p. 294]. Therefore S e &{X) in this case.

REMARK. Assume T is an invertible operator and 3K > 0 and
3δ > 0 such that

\\T»\\<K(l + \n\δ) ( Λ € Z ) .

Then σ(Γ) C {λ: \λ\ = 1}. Suppose this inclusion is proper. Then 3S
an operator such that T = eiS. Thus, by the inequality for HΓ"^*?
satisfies (I), soS

3. Properties of operators in &(X). If S is a selfadjoint operator
on Hubert space, then for l e C , ^f((A - 5')2) = jT{λ - S). Thus in
this case a(λ — S) is always either 0 or 1. Also, if (λ - S) has closed
range and λ e σ(5), then A is an isolated point of σ(5) and a pole
of the resolvent operator. Operators in 9°{X) have similar properties
which we elucidate in the first part of this section. If δ e R, then let
[δ] denote the smallest integer n with δ < n.

THEOREM 8. Assume S e &>{X). Then 3m e Z, m > 0, such that
a(λ-S) < mforallλeC.

Proof. We may assume λ e σ(S), and in fact, we may assume that
λ = 0 (since we may replace S in the following proof by λ - S). We
prove a(S) is finite. By Corollary 2 3K > 0 and δ > 0 such that

\\(it-S)-ι\\<K(l + \t\-δ) ( ί€R, t*0).

Let m = [δ] + 1. Then

Suppose a(S) > m. Then we can choose x e X and β e X' such that
Sm+ι(x) = 0, 5w(x) ^ 0, and β(Smx) = 1. Define a continuous linear
functional φ on the space of bounded operators by φ(T) = β{Tx). By
Theorem 1,

{it - S)-χ = -i Γe~txe-ixSdx (t > 0).
./o

Then for t > 0

PO

φ((it - S)-{) = -i
JO <k=0
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Now φ(Sk) = β(Skx) = 0 for k > m, so for t > 0

(it)mφ((it-Syι) = -(i)m+1tmΣ^jr \ xke~ίxdx\ φ(Sk)

= -{ί)2m+ι{m + l)^" 1 + {terms involving nonnegative

powers of t}.

Thus (it)mφ((it - S)'1) •+> 0 as t -+ 0+, a contradiction. We conclude
that α(S) < m.

THEOREM 9. Assume S e ^ ( X ) . ΓΛ r̂̂  exϋϋ an integer m > 0

5)wΓ forj>m.

In particular, if&(λ - S) is closed, then δ(λ- S) < m. In this case if
λ G σ(S), then λ is an isolated point ofσ(S) and a pole of the resolvent
operator.

Proof Fix λeC. Now S' e &{X'), so by Theorem 8 3a nonnegative
integer m such that a(λ - S') < m. Thus, yΓ((λ - Sy') = yT((λ - S')m)
for j > m. It follows that <&((λ - Sy)~ = 3ί{{λ - S)m)~ forj > m.

Now suppose &{λ - S) is closed. Then &((λ - Sy) is closed for all
j > 1. Thus by what was proved above m({λ -Sy)= ^((λ - S)m) for
j > m. This proves δ(λ - S) < m. Assume λ e σ(S). We have that
both a(λ - S) and δ(λ - S) are finite. It follows from this that λ is an
isolated point of σ(S) and A is a pole of the resolvent operator; see [5,
Theorem 10.2, p. 330].

When S G &{X), then S has the strong property that any isolated
point in σ(S) is a pole of the resolvent. This is an easy fact which we
prove now.

PROPOSITION 10. IfSe &{X) and λ0 is an isolated point ofσ(S),
then λo is a pole of the resolvent

Proof Let U be an open neighborhood of λo with σ(S) n U =
Let

λo + reu, te[0,2π]
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where r > 0 is chosen so that γ(t) e U for all t. Since S e
3K > 0 and 3<5 > 0 such that for λ<£σ(S)

Let m = [<?]+ 1. Then

/(A - Λ0)
m(Λ - S)" 1 dλ < ί π rmK{\ + r~m)rdt

Jγ JO

= 2πK(rm+ι +r).

Now let r —• 0+. This proves /l0 is a pole of the resolvent by [5, pp.
328-329] (in the notation in [5], we have proved Bn = 0ϊorn> m+l) .

Now we consider other properties of self adjoint operators on a
Hubert space which hold for operators in 3d {X). When S is selfad-
joint, then the closed subalgebra generated by S and the identity op-
erator can be identified with C(Ω), the algebra of all complex-valued
continuous functions on a compact set Ω. The algebra C(Ω) is regular
in the sense that if Γ is a closed subset of Ω and ω e Ω\Γ, then there
is a function / e C(Ω) such that /(Γ) = {0} and f(ω) φ 0. Now as-
sume S G &(X). Denote by A[S] the closed subalgebra generated by
S and the identity operator. Via standard Gelfand theory, the Banach
algebra A[S] is identified with some subalgebra sf of C(Ω). Then
A[S] is regular if whenever Γ is a closed subset of Ω and ω e Ω\Γ,
then there is a function / G J / such that /(Γ) = {0} and f(ω) Φ 0.
We note below that A[S] is regular.

THEOREM 13. Assume S e&>(K). Then
1. A[S] is regular; and
2. ifσ(S) contains more than one point, then S has a closed proper

hyper-invariant subspace.

A proof of Theorem 13 can be constructed along the same lines as
the proof of Theorem 5.2 in [1]. We give a brief indication of what
is involved in such a proof. The key condition is that 3K > 0 and
3δ > 0 with

\\exp(inS)\\<K(l + \n\δ) (neZ).

Let an = max(||exp(/Az5t)||, ||exp(-/wS')||) for n e Z, and set a = {an}.
The space of complex sequences b — {bk}keZ with the property

kez
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is a commutative convolution Banach algebra; see [3, pp. 118-120].
Denote this Banach algebra by W(ά). Now W(a) is semisimple (being
a subalgebra oflι(Z)) and regular by [3, pp. 214-215]. The conclusion
that W(a) is regular uses the key condition above. Define an algebra
homomorphism φ: W{a) —> A[S] by

oo

<P({bk})=

We may assume | |5 | | < 1, in which case the subalgebra {φ{{ak})\ {ak}
G W(a)} strongly separates points of the Gelfand space of A[S]. This
is enough to conclude that the results in Theorem 13 hold by using [1,
Theorem 5.1].

After the completion of this paper, the author found a recent paper
by T. Pytlik which contains results related to some of the results given
in §3: Analytic semigroups in Banach algebras and a theorem of Hille,
Colloq. Math. 51 (1987), 287-293.
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