NONRATIONAL FIXED FIELDS

James K. Deveney and Joe Yanik

Abstract

We present an example of a flag of rational extensions, stabilized by the action of the group of order 2 such that the fixed field under the group action is not retract rational and hence not rational. This fixed field is shown to be a genus 0 extension of a pure transcendental extension.

Let $L \supset K \supset F$ be fields finitely generated over F. If $K=$ $F\left(X_{1}, \ldots, X_{n}\right)$ where $\left\{X_{1}, \ldots, X_{n}\right\}$ is algebraically independent over F then K is a rational extension of F. Saltman defined K to be a retract rational extension of F if K is the quotient field of an F algebra A and there are maps $f: F\left[X_{1}, \ldots, X_{n}\right](1 / w) \rightarrow A$ and $g: A \rightarrow$ $F\left[X_{1}, \ldots, X_{n}\right](1 / w)$ such that $f \circ g=\mathrm{id}$, where $\left\{X_{1}, \ldots, X_{n}\right\}$ is algebraically independent over F and $w \in F\left[X_{1}, \ldots, X_{n}\right]$. If rational extensions are considered free objects then retract rational extensions could in some sense be considered as projective objects.
Let G be a finite group of k-automorphisms of a rational function field $k\left(X_{1}, \ldots, X_{n}\right)$. Assume that the "flag" of subfields $\left\{k\left[X_{1}, \ldots, X_{i}\right) / 1 \leq i \leq n\right\}$ is stablized by G. Then in many situations, for example if $|G|$ is odd, the fixed field of G will be rational over k [10, Lemma 4, p. 322]. We present an example of G as above, where $|G|=2$ and the fixed field of G is not even retract rational. We also describe this field as a genus 0 extension of a pure transcendental extension of the rational members.

Let α be the automorphism of $Q\left(X_{1}, X_{2}, X_{3}, X_{4}, Z_{1}, \ldots, Z_{8}\right)$ defined by

$$
\begin{aligned}
\alpha\left(X_{i}\right)=X_{i+1} & \text { for } 1 \leq i \leq 3, \\
-X_{1} & \text { for } i=4, \\
\alpha\left(Z_{i}\right)=Z_{i+1} & \text { for } 1 \leq i \leq 7, \\
Z_{1} & \text { for } i=8 .
\end{aligned}
$$

Then α is a k-automorphism of order 8 and induces a G-action on $Q\left(X_{1}, X_{2}, X_{3}, X_{4}, Z_{1}, \ldots, Z_{8}\right)$ where $G=C_{8}$. Furthermore, the restriction of α induces a faithful G-action on each of $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$ and $Q\left(Z_{1}, \ldots, Z_{8}\right)$. By [2, Propositioon 1.4, p. 303] this implies that $Q\left(X_{1}, X_{2}, X_{3}, X_{4}, Z_{1}, \ldots, Z_{8}\right)^{\alpha}$ is a rational extension of both
$Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\alpha}$ and $Q\left(Z_{1}, \ldots, Z_{8}\right)^{\alpha}$. But $Q\left(Z_{1}, \ldots, Z_{8}\right)^{\alpha}$ is not retract rational [6, Theorem 5.11, p. 281] and stable isomorphism preserves retract rationality [4, Proposition 3.6, p. 183], so $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\alpha}$ is not retract rational.
Consider $Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\alpha^{2}}$. We claim that

$$
\begin{aligned}
& Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\alpha^{2}}=Q\left(\frac{X_{3}^{2}-X_{1}^{2}}{X_{1} X_{3}}, X_{1}^{2}+X_{3}^{2},\right. \\
& \\
& \left.\quad X_{1} X_{2}+X_{3} X_{4}, X_{2} X_{3}-X_{1} X_{4}\right) \equiv L .
\end{aligned}
$$

Clearly L is fixed by α^{2} and

$$
L \subseteq L\left(X_{1} X_{3}, \frac{X_{3}}{X_{1}}\right) \subseteq Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)
$$

Since X_{3} / X_{1} is a root of

$$
Z^{2}-\left(\frac{X_{3}^{2}-X_{1}^{2}}{X_{1} X_{3}}\right) Z-1=0
$$

and, $X_{1} X_{3}=\left(X_{1}^{2}+X_{3}^{2}\right) /\left(X_{1} / X_{3}+X_{3} / X_{1}\right)$,

$$
\left[L\left(X_{1} X_{3}, \frac{X_{3}}{X_{1}}\right): L\right]=2
$$

Since X_{3} is a root of $\left(X_{1} / X_{3}\right) Z^{2}-X_{1} X_{3}=0$,

$$
\left[Z\left(X_{1}, X_{2}, X_{3}, X_{4}\right): L\left(X_{1} X_{3}, \frac{X_{3}}{X_{1}}\right)\right]=2 .
$$

Thus L is of codimension 4 and the claim is established.
Let $U=\left(X_{3}^{2}-X_{1}^{2}\right) / X_{1} X_{3}, V=X_{1}^{2}+X_{3}^{2}, W=X_{1} X_{2}+X_{3} X_{4}$ and $Y=X_{2} X_{3}-X_{1} X_{4}$. Then α has order 2 on $Q(U, V, W, Y)$ and $Q(U, V, W, Y)^{\alpha}=Q\left(X_{1}, X_{2}, X_{3}, X_{4}\right)^{\alpha}$.

One can check that $\alpha(W)=Y, \alpha(Y)=W$,

$$
\alpha(V)=\frac{W^{2}+Y^{2}}{V} \quad \text { and } \quad \alpha(U)=\frac{\left(W^{2}-Y^{2}\right) U+W Y}{-4 W Y U+W^{2}-Y^{2}} .
$$

Thus α stabilizes the flag of subfields

$$
Q(W+Y) \subseteq Q(W, Y) \subseteq Q(W, Y, U) \subseteq Q(W, Y, V, U)
$$

α has order 2, and its fixed field is not retract rational.

It is interesting that the fixed field of α has a rather simpler description:

where L_{1} and L_{2} are the fixed fields of the restrictions of α to $Q(W, Y, V)$ and $Q(W, Y, U)$, respectively, and $Q(W, Y, V, U)^{\alpha}=L_{1} L_{2}$. $L_{1} / Q(W Y, W+Y)$ and $L_{2} / Q(W Y, W+Y)$ are both genus 0 because they became rational after a change of base to $Q(W, Y)$. So the fixed field of α is just the free join of two genus 0 function fields over a pure transcendental extension of Q. Actually, it is possible to get an even simpler description, but first we need a few preliminaries.

Let L / K be a Galois extension with group G and let Z be transcendental over L. It has been noted (for example in [11]) that an extension of G to $L(Z)$ corresponds to a "crossed homomorphism" from G to $\mathrm{PGL}_{2}(L)$, (i.e. to an element of $H^{1}\left(G, \mathrm{PGL}_{2}(L)\right)$) in the following manner: Given an extension we define

$$
G \rightarrow \mathrm{PGL}_{2}(L)
$$

by $\sigma \mapsto \bar{M}_{\sigma}$ where,

$$
\text { if } \sigma(Z)=\frac{a Z+b}{c Z+d} \text { then } M_{\sigma}=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \in \mathrm{GL}_{2}(L)
$$

(note the transposition of the b and the c) and \bar{M}_{σ} is the image of M_{σ} in $\mathrm{PGL}_{2}(L)$. Then one can check that $\sigma \tau \mapsto \bar{M}_{\sigma} \overline{M_{\tau}^{\sigma}}$ where

$$
\text { if } M=\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right], \quad M^{\sigma}=\left[\begin{array}{ll}
\sigma(a) & \sigma(c) \\
\sigma(b) & \sigma(d)
\end{array}\right] .
$$

In the case where $G=\{e, \sigma\}$ is a group of order 2 the above can be summarized by saying that there is a one-to-one correspondence between extensions of G to $L(Z)$ and equivalence classes of matrices M_{σ} such that $M_{\sigma} M_{\sigma}^{\sigma}$ is a diagonal matrix. The correspondence is given by

$$
\begin{aligned}
\sigma(Z) & =\frac{a Z+b}{c Z+d} \mapsto \bar{M}_{\sigma} \\
& =\left[\begin{array}{ll}
a & c \\
b & d
\end{array}\right] \text { where } \bar{M}_{\sigma}=\bar{N}_{\sigma} \Leftrightarrow M_{\sigma}=\lambda N_{\sigma} \text { for some } \lambda \in L .
\end{aligned}
$$

The fixed field of the extension of $M_{\sigma}, L(Z)^{M_{\sigma}}$ is actually a generic splitting field for a quaternion algebra over K (see [1], [3]). The associated algebra has $\{1, \theta\}$ as an L-basis with multiplication defined by $\theta^{2}=a \sigma(a)+c \sigma(b)$ and the requirement $\theta f=\sigma(f) \theta$ for $f \in L$.

Theorem 2. Let L be a Galois extension of K with group $G=\{e, \sigma\}$ of order 2 and let Z be transcendental over L. Let M_{σ} and N_{σ} be extensions of G to L. Then $L(Z)^{M_{o}}$ is K-isomorphic to $L(Z)^{N_{\sigma}}$ if and only if $M_{\sigma} M_{\sigma}^{\sigma}=\eta N_{\sigma} N_{\sigma}^{\sigma}$ where η is the norm of an element of L. In particular, $L(Z)^{M_{\sigma}}$ is rational over K if and only if $M_{\sigma} M_{\sigma}^{\sigma}$ is the norm of an element of L (identifying L^{*} with the diagonal matrices in $\mathrm{GL}_{2}(L)$.

Proof. The above theorem can be seen as a relatively straightforward application of the fact that the map $H^{1}\left(G, \mathrm{PGL}_{2}(L)\right) \rightarrow H^{2}\left(G, L^{*}\right)$ is one-to-one [7, Theorem 1]. However, we choose to present a more constructive proof which avoids the cohomology.

Assume we have an isomorphism $f: L(Z)^{M_{o}} \rightarrow L(Z)^{N_{a}}$. Note that $L(Z)^{M_{\sigma}} \otimes_{K} L \cong L(Z)^{M_{\sigma}}[L]=L(Z)$ and that if we extend the action of σ on L to $1 \otimes \sigma$ on $L(Z)^{M_{\sigma}} \otimes_{K} \underline{L}$ we get M_{σ} under the above identification with $L(Z)$. Extend f to $\bar{f}: L(Z)^{M_{c}} \otimes_{K} L \rightarrow L(Z)^{N_{c}} \otimes_{K} L$ by $\bar{f}=f \otimes 1$. Then \bar{f} is an L-automorphism of $L(Z)$ over L, so $\bar{f}(Z)=(a Z+b) /(c Z+d)$ for some $a, b, c, d \in L$.

Let $B=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$. Then by the above discussion we must have $\bar{M}_{\sigma}=$ $\overline{B^{-1} N_{\sigma} B^{\sigma}}$ in $\mathrm{PGL}_{2}(L)$.

Therefore, there is a $\lambda \in L$ such that $M_{\sigma}=\lambda B^{-1} N_{\sigma} B^{\sigma}$. Thus

$$
\begin{aligned}
M_{\sigma} M_{\sigma}^{\sigma} & =\lambda B^{-1} N_{\sigma} B^{\sigma} \sigma(\lambda)\left(B^{\sigma}\right)^{-1} N_{\sigma}^{\sigma} B \\
& =\lambda \sigma(\lambda) N_{\sigma} N_{\sigma}^{\sigma} \text { (using the fact that } N_{\sigma} N_{\sigma}^{\sigma} \text { is a scalar matrix). }
\end{aligned}
$$

Now let $\eta=\lambda \sigma(\lambda)$.
Suppose that M_{σ} and N_{σ} correspond to extensions of σ and that

$$
M_{\sigma} M_{\sigma}^{\sigma}=\eta N_{\sigma} N_{\sigma}^{\sigma} \quad \text { where } \eta=\lambda \sigma(\lambda) .
$$

By replacintg N_{σ} with λN_{σ} we can assume that $\eta=1$. Suppose that we can choose a matrix A in $M_{2}(L)$ so that

$$
B=A M_{\sigma}^{\sigma}+N_{\sigma} A^{\sigma} \text { is invertible. }
$$

Then we claim that $M_{\sigma}=B^{-1} N_{\sigma} B^{\sigma}$. In fact

$$
\begin{aligned}
N_{\sigma} B^{\sigma} & =N_{\sigma} A^{\sigma} M_{\sigma}+N_{\sigma} N_{\sigma}^{\sigma} A \\
& =N_{\sigma} A^{\sigma} M_{\sigma}+A N_{\sigma} N_{\sigma}^{\sigma} \quad\left(\text { because } N_{\sigma} N_{\sigma}^{\sigma} \in L^{*}\right)
\end{aligned}
$$

But $N_{\sigma} N_{\sigma}^{\sigma}=M_{\sigma} M_{\sigma}^{\sigma}$.
Note that

$$
\begin{aligned}
\left(M_{\sigma} M_{\sigma}^{\sigma}\right)\left(M_{\sigma}^{\sigma} M_{\sigma}\right)^{-1} & =M_{\sigma} M_{\sigma}^{\sigma} M_{\sigma}^{-1}\left(M_{\sigma}^{\sigma}\right)^{-1} \\
& =M_{\sigma}^{-1} M_{\sigma} M_{\sigma}^{\sigma}\left(M_{\sigma}^{\sigma}\right)^{-1} \quad\left(\text { because } M_{\sigma} M_{\sigma}^{\sigma} \in L^{*}\right) \\
& =I
\end{aligned}
$$

Hence $M_{\sigma} M_{\sigma}^{\sigma}=M_{\sigma}^{\sigma} M_{\sigma}$.
Therefore

$$
N_{\sigma} B^{\sigma}=N_{\sigma} A^{\sigma} M_{\sigma}+A M_{\sigma}^{\sigma} M_{\sigma}=\left(N_{\sigma} A^{\sigma}+A M_{\sigma}^{\sigma}\right) M_{\sigma}=B M_{\sigma}
$$

and the claim is established.
But, as before, if \bar{f} is the L-automorphism of $L(Z)$ corresponding to B then $M_{\sigma}=B^{-1} N_{\sigma} B^{\sigma}$ means that $M_{\sigma}=\bar{f}^{-1} \circ N_{\sigma} \circ \bar{f}$ and $L(Z)^{M_{\sigma}} \cong$ $L(Z)^{N_{o}}$. Therefore, it only remains to prove the following.

Lemma 1. With M_{σ}, N_{σ} as in the theorem, there is always an A such that $B=A M_{\sigma}^{\sigma}+N_{\sigma} A^{\sigma}$ is invertible.

Proof. We will show that, in fact, we can choose A to be of the form $A=\left[\begin{array}{ll}x & 0 \\ 0 & y\end{array}\right]$.

Let $M_{\sigma}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right], N_{\sigma}=\left[\begin{array}{ll}a^{\prime} & c^{\prime} \\ b^{\prime} & d^{\prime}\end{array}\right]$. Then

$$
B=\left[\begin{array}{ll}
x \sigma(a)+a^{\prime} \sigma(x) & x \sigma(c)+c^{\prime} \sigma(y) \\
y \sigma(b)+b^{\prime} \sigma(x) & y \sigma(d)+d^{\prime} \sigma(y)
\end{array}\right]
$$

$\operatorname{det} B=\left[\left(\operatorname{det} M_{\sigma}^{\sigma}\right) y+d^{\prime} \sigma(a) \sigma(y)\right] x+\left[a^{\prime} \sigma(d) y+\operatorname{det} N_{\sigma} \sigma(y)\right] \sigma(x)$

$$
-b^{\prime} \sigma(c) x \sigma(x)-c^{\prime} \sigma(b) y \sigma(y) .
$$

By the algebraic independence of 1 and σ we can choose y so that $\operatorname{det} M_{\sigma}^{\sigma} y+d^{\prime} \sigma(a) \sigma(y) \neq 0$.

With this choice of y we get

$$
\operatorname{det} B=\alpha x+\beta \sigma(x)+\gamma x \sigma(x)+\delta \quad \text { with } \alpha \neq 0 .
$$

Now choose x so that $\operatorname{det} B \neq 0$.
Finally, $L(Z)^{M_{\sigma}}$ is rational over K if and only if $L(Z)^{M_{\sigma}}$ is isomorphic to $L(Z)^{I}$ where I is the identity matrix. Thus $L(Z)^{\sigma}$ is rational over K if and only if $M_{\sigma} M_{\sigma}^{\sigma}$ is a norm.

Returning to the example, with $L=Q(W, Y), K=Q(W, Y)^{\alpha}$ and $Z=U, \alpha$ on $Q(W, Y, U)$ corresponds to the matrix

$$
\begin{aligned}
N_{\alpha} & =\left[\begin{array}{cc}
W^{2}-Y^{2} & -4 W Y \\
W Y & W^{2}-Y^{2}
\end{array}\right] \text { and } \\
N_{\alpha} N_{\alpha}^{\alpha} & =\left[\begin{array}{cc}
-\left(W^{2}+Y^{2}\right)^{2} & 0 \\
0 & -\left(W^{2}+Y^{2}\right)^{2}
\end{array}\right] .
\end{aligned}
$$

Since $\left(W^{2}+Y^{2}\right)^{2}$ is a norm, Theorem 2.1 says that we can find a new variable Z such that $\alpha(Z)=-1 / Z$.

In fact, referring to the proof of the theorem, with $N_{\alpha}^{\prime}=$ $N_{\alpha} /\left(W^{2}+Y^{2}\right), M_{\alpha}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$, and $A=\left[\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right]$ we get $M_{\alpha}=B^{-1} N_{\alpha}^{\prime} B$ where

$$
B=A M_{\alpha}^{\alpha}+N_{\alpha}^{\prime} A^{\alpha}=\left[\begin{array}{cc}
\frac{W^{2}-Y^{2}}{W^{2}+Y^{2}} & \frac{-4 W Y}{W^{2}+Y^{2}}+1 \\
\frac{W Y}{W^{2}+Y^{2}}-1 & \frac{W^{2}-Y^{2}}{W^{2}+Y^{2}}
\end{array}\right]
$$

i.e. if

$$
\begin{aligned}
Z & =\frac{\left(\frac{W^{2}-Y^{2}}{W^{2}+Y^{2}}\right) U+\frac{W Y}{W^{2}+Y^{2}}-1}{\left(1-\frac{4 W Y}{W^{2}+Y^{2}}\right) U+\frac{W^{2}-Y^{2}}{W^{2}+Y^{2}}} \\
& =\frac{\left(W^{2}-Y^{2}\right) U+W Y-\left(W^{2}+Y^{2}\right)}{\left.\left(W^{2}+Y^{2}-4 W Y\right) U+W^{2}-Y^{2}\right)}
\end{aligned}
$$

then $\alpha(Z)=-1 / Z$.
So $Q(W, Y, U)^{\alpha}=Q(W, Y, Z)^{\alpha}$ is not rational over $Q(W, Y)^{\alpha}$, but it is rational over Q, as can be seen by applying [4, Proposition 1.4] to $Q(W, Y, Z)^{\alpha}$. One generating transcendence basis is

$$
\left\{\frac{Z^{2}-1}{Z}, W+Y, \frac{Z^{2}+1}{Z}(W-Y)\right\} .
$$

Applying the theorem again to $Q(W, Y, V)^{\alpha} / Q(W, Y)^{\alpha}$ we see that $Q(W, Y, V)^{\alpha}$ is not a rational extension of $Q(W, Y)^{\alpha}$ (because $W^{2}+Y^{2}$ is not a norm). Thus the fixed field of α is a genus 0 extension of a pure transcendental extension in three variables over Q.

References

[1] S. A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math., 62 (1955), 8-43.
[2] H. W. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math., 25 (1974), 299-325.
[3] P. Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras, Math. Ann., 150 (1963), 411-439.
[4] D. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math., 47 (1984), 165-215.
[5] -, Multiplicative field invariants, J. Algebra, 106 (1987), 221-238.
[6] , Generic Galois extension and problems in field theory, Advances in Math., 43 (1982), 250-283.
[7] D. D. Triantaphyllou, Invariants of finite groups acting non-linearly on rational function fields, J. Pure Applied Algebra, 18 (1980), 315-331.
[8] B. L. Van der Waerden, Algebra, Vol. 2, Frederic Unger Co., New York, 1970.
Received September 4, 1987 and in revised form, May 25,1988.
Virginia Commonwealth University
Richmond, VA 23284

