NONRATIONAL FIXED FIELDS

JAMES K. DEVENEY AND JOE YANIK

We present an example of a flag of rational extensions, stabilized by the action of the group of order 2 such that the fixed field under the group action is not retract rational and hence not rational. This fixed field is shown to be a genus 0 extension of a pure transcendental extension.

Let $L \supset K \supset F$ be fields finitely generated over F. If $K = F(X_1, \ldots, X_n)$ where $\{X_1, \ldots, X_n\}$ is algebraically independent over F then K is a rational extension of F. Saltman defined K to be a *retract rational extension of* F if K is the quotient field of an F-algebra A and there are maps $f: F[X_1, \ldots, X_n](1/w) \to A$ and $g: A \to F[X_1, \ldots, X_n](1/w)$ such that $f \circ g = \text{id}$, where $\{X_1, \ldots, X_n\}$ is algebraically independent over F and $w \in F[X_1, \ldots, X_n]$. If rational extensions are considered free objects then retract rational extensions could in some sense be considered as projective objects.

Let G be a finite group of k-automorphisms of a rational function field $k(X_1, \ldots, X_n)$. Assume that the "flag" of subfields $\{k[X_1, \ldots, X_i)/1 \le i \le n\}$ is stablized by G. Then in many situations, for example if |G| is odd, the fixed field of G will be rational over k [10, Lemma 4, p. 322]. We present an example of G as above, where |G| = 2 and the fixed field of G is not even retract rational. We also describe this field as a genus 0 extension of a pure transcendental extension of the rational members.

Let α be the automorphism of $Q(X_1, X_2, X_3, X_4, Z_1, \dots, Z_8)$ defined by

$$\alpha(X_i) = X_{i+1} \text{ for } 1 \le i \le 3, \\ -X_1 \text{ for } i = 4, \\ \alpha(Z_i) = Z_{i+1} \text{ for } 1 \le i \le 7, \\ Z_1 \text{ for } i = 8.$$

Then α is a k-automorphism of order 8 and induces a G-action on $Q(X_1, X_2, X_3, X_4, Z_1, \ldots, Z_8)$ where $G = C_8$. Furthermore, the restriction of α induces a faithful G-action on each of $Q(X_1, X_2, X_3, X_4)$ and $Q(Z_1, \ldots, Z_8)$. By [2, Propositioon 1.4, p. 303] this implies that $Q(X_1, X_2, X_3, X_4, Z_1, \ldots, Z_8)^{\alpha}$ is a rational extension of both

 $Q(X_1, X_2, X_3, X_4)^{\alpha}$ and $Q(Z_1, \dots, Z_8)^{\alpha}$. But $Q(Z_1, \dots, Z_8)^{\alpha}$ is not retract rational [6, Theorem 5.11, p. 281] and stable isomorphism preserves retract rationality [4, Proposition 3.6, p. 183], so $Q(X_1, X_2, X_3, X_4)^{\alpha}$ is not retract rational.

Consider $Q(X_1, X_2, X_3, X_4)^{\alpha^2}$. We claim that

$$Q(X_1, X_2, X_3, X_4)^{\alpha^2} = Q\left(\frac{X_3^2 - X_1^2}{X_1 X_3}, X_1^2 + X_3^2, X_1 X_2 + X_3 X_4, X_2 X_3 - X_1 X_4\right) \equiv L.$$

Clearly L is fixed by α^2 and

$$L \subseteq L\left(X_1X_3, \frac{X_3}{X_1}\right) \subseteq Q(X_1, X_2, X_3, X_4).$$

Since X_3/X_1 is a root of

$$Z^{2} - \left(\frac{X_{3}^{2} - X_{1}^{2}}{X_{1}X_{3}}\right)Z - 1 = 0$$

and, $X_1X_3 = (X_1^2 + X_3^2)/(X_1/X_3 + X_3/X_1)$,

$$\left[L\left(X_1X_3,\frac{X_3}{X_1}\right):L\right]=2.$$

Since X_3 is a root of $(X_1/X_3)Z^2 - X_1X_3 = 0$,

$$\left[Z(X_1, X_2, X_3, X_4): L\left(X_1X_3, \frac{X_3}{X_1}\right)\right] = 2.$$

Thus L is of codimension 4 and the claim is established.

Let $U = (X_3^2 - X_1^2)/X_1X_3$, $V = X_1^2 + X_3^2$, $W = X_1X_2 + X_3X_4$ and $Y = X_2X_3 - X_1X_4$. Then α has order 2 on Q(U, V, W, Y) and $Q(U, V, W, Y)^{\alpha} = Q(X_1, X_2, X_3, X_4)^{\alpha}$.

One can check that $\alpha(W) = Y$, $\alpha(Y) = W$,

$$\alpha(V) = \frac{W^2 + Y^2}{V}$$
 and $\alpha(U) = \frac{(W^2 - Y^2)U + WY}{-4WYU + W^2 - Y^2}.$

Thus α stabilizes the flag of subfields

$$Q(W+Y) \subseteq Q(W,Y) \subseteq Q(W,Y,U) \subseteq Q(W,Y,V,U),$$

 α has order 2, and its fixed field is not retract rational.

It is interesting that the fixed field of α has a rather simpler description:

where L_1 and L_2 are the fixed fields of the restrictions of α to Q(W, Y, V) and Q(W, Y, U), respectively, and $Q(W, Y, V, U)^{\alpha} = L_1 L_2$. $L_1/Q(WY, W + Y)$ and $L_2/Q(WY, W + Y)$ are both genus 0 because they became rational after a change of base to Q(W, Y). So the fixed field of α is just the free join of two genus 0 function fields over a pure transcendental extension of Q. Actually, it is possible to get an even simpler description, but first we need a few preliminaries.

Let L/K be a Galois extension with group G and let Z be transcendental over L. It has been noted (for example in [11]) that an extension of G to L(Z) corresponds to a "crossed homomorphism" from G to $PGL_2(L)$, (i.e. to an element of $H^1(G, PGL_2(L))$) in the following manner: Given an extension we define

$$G \rightarrow PGL_2(L)$$

by $\sigma \mapsto \overline{M}_{\sigma}$ where,

if
$$\sigma(Z) = \frac{aZ+b}{cZ+d}$$
 then $M_{\sigma} = \begin{bmatrix} a & c \\ b & d \end{bmatrix} \in \operatorname{GL}_2(L)$

(note the transposition of the b and the c) and \overline{M}_{σ} is the image of M_{σ} in PGL₂(L). Then one can check that $\sigma \tau \mapsto \overline{M}_{\sigma} \overline{M}_{\tau}^{\sigma}$ where

if
$$M = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$
, $M^{\sigma} = \begin{bmatrix} \sigma(a) & \sigma(c) \\ \sigma(b) & \sigma(d) \end{bmatrix}$.

In the case where $G = \{e, \sigma\}$ is a group of order 2 the above can be summarized by saying that there is a one-to-one correspondence between extensions of G to L(Z) and equivalence classes of matrices M_{σ} such that $M_{\sigma}M_{\sigma}^{\sigma}$ is a diagonal matrix. The correspondence is given by

$$\sigma(Z) = \frac{aZ + b}{cZ + d} \mapsto \overline{M}_{\sigma}$$
$$= \overline{\begin{bmatrix} a & c \\ b & d \end{bmatrix}} \quad \text{where } \overline{M}_{\sigma} = \overline{N}_{\sigma} \Leftrightarrow M_{\sigma} = \lambda N_{\sigma} \text{ for some } \lambda \in L.$$

The fixed field of the extension of M_{σ} , $L(Z)^{M_{\sigma}}$ is actually a generic splitting field for a quaternion algebra over K (see [1], [3]). The associated algebra has $\{1, \theta\}$ as an L-basis with multiplication defined by $\theta^2 = a\sigma(a) + c\sigma(b)$ and the requirement $\theta f = \sigma(f)\theta$ for $f \in L$.

THEOREM 2. Let L be a Galois extension of K with group $G = \{e, \sigma\}$ of order 2 and let Z be transcendental over L. Let M_{σ} and N_{σ} be extensions of G to L. Then $L(Z)^{M_{\sigma}}$ is K-isomorphic to $L(Z)^{N_{\sigma}}$ if and only if $M_{\sigma}M_{\sigma}^{\sigma} = \eta N_{\sigma}N_{\sigma}^{\sigma}$ where η is the norm of an element of L. In particular, $L(Z)^{M_{\sigma}}$ is rational over K if and only if $M_{\sigma}M_{\sigma}^{\sigma}$ is the norm of an element of L (identifying L* with the diagonal matrices in $GL_2(L)$.

Proof. The above theorem can be seen as a relatively straightforward application of the fact that the map $H^1(G, \operatorname{PGL}_2(L)) \to H^2(G, L^*)$ is one-to-one [7, Theorem 1]. However, we choose to present a more constructive proof which avoids the cohomology.

Assume we have an isomorphism $f: L(Z)^{M_{\sigma}} \to L(Z)^{N_{\sigma}}$. Note that $L(Z)^{M_{\sigma}} \otimes_{K} L \cong L(Z)^{M_{\sigma}}[L] = L(Z)$ and that if we extend the action of σ on L to $1 \otimes \sigma$ on $L(Z)^{M_{\sigma}} \otimes_{K} L$ we get M_{σ} under the above identification with L(Z). Extend f to $\overline{f}: L(Z)^{M_{\sigma}} \otimes_{K} L \to L(Z)^{N_{\sigma}} \otimes_{K} L$ by $\overline{f} = f \otimes 1$. Then \overline{f} is an L-automorphism of L(Z) over L, so $\overline{f}(Z) = (aZ + b)/(cZ + d)$ for some $a, b, c, d \in L$.

Let $B = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$. Then by the above discussion we must have $\overline{M}_{\sigma} = \overline{B^{-1}N_{\sigma}B^{\sigma}}$ in PGL₂(L).

Therefore, there is a $\lambda \in L$ such that $M_{\sigma} = \lambda B^{-1} N_{\sigma} B^{\sigma}$. Thus

$$M_{\sigma}M_{\sigma}^{\sigma} = \lambda B^{-1}N_{\sigma}B^{\sigma}\sigma(\lambda)(B^{\sigma})^{-1}N_{\sigma}^{\sigma}B$$

= $\lambda\sigma(\lambda)N_{\sigma}N_{\sigma}^{\sigma}$ (using the fact that $N_{\sigma}N_{\sigma}^{\sigma}$ is a scalar matrix).

Now let $\eta = \lambda \sigma(\lambda)$.

Suppose that M_{σ} and N_{σ} correspond to extensions of σ and that

$$M_{\sigma}M_{\sigma}^{\sigma} = \eta N_{\sigma}N_{\sigma}^{\sigma}$$
 where $\eta = \lambda \sigma(\lambda)$.

By replacintg N_{σ} with λN_{σ} we can assume that $\eta = 1$. Suppose that we can choose a matrix A in $M_2(L)$ so that

$$B = AM_{\sigma}^{\sigma} + N_{\sigma}A^{\sigma}$$
 is invertible.

Then we claim that $M_{\sigma} = B^{-1} N_{\sigma} B^{\sigma}$. In fact

$$N_{\sigma}B^{\sigma} = N_{\sigma}A^{\sigma}M_{\sigma} + N_{\sigma}N_{\sigma}^{\sigma}A$$
$$= N_{\sigma}A^{\sigma}M_{\sigma} + AN_{\sigma}N_{\sigma}^{\sigma} \quad (\text{because } N_{\sigma}N_{\sigma}^{\sigma} \in L^{*})$$

But
$$N_{\sigma}N_{\sigma}^{\sigma} = M_{\sigma}M_{\sigma}^{\sigma}$$
.
Note that
 $(M_{\sigma}M_{\sigma}^{\sigma})(M_{\sigma}^{\sigma}M_{\sigma})^{-1} = M_{\sigma}M_{\sigma}^{\sigma}M_{\sigma}^{-1}(M_{\sigma}^{\sigma})^{-1}$
 $= M_{\sigma}^{-1}M_{\sigma}M_{\sigma}^{\sigma}(M_{\sigma}^{\sigma})^{-1}$ (because $M_{\sigma}M_{\sigma}^{\sigma} \in L^{*}$)
 $= I$.

Hence $M_{\sigma}M_{\sigma}^{\sigma} = M_{\sigma}^{\sigma}M_{\sigma}$. Therefore

$$N_{\sigma}B^{\sigma} = N_{\sigma}A^{\sigma}M_{\sigma} + AM_{\sigma}^{\sigma}M_{\sigma} = (N_{\sigma}A^{\sigma} + AM_{\sigma}^{\sigma})M_{\sigma} = BM_{\sigma}$$

and the claim is established.

But, as before, if \overline{f} is the *L*-automorphism of L(Z) corresponding to *B* then $M_{\sigma} = B^{-1}N_{\sigma}B^{\sigma}$ means that $M_{\sigma} = \overline{f}^{-1} \circ N_{\sigma} \circ \overline{f}$ and $L(Z)^{M_{\sigma}} \cong L(Z)^{N_{\sigma}}$. Therefore, it only remains to prove the following.

LEMMA 1. With M_{σ} , N_{σ} as in the theorem, there is always an A such that $B = AM_{\sigma}^{\sigma} + N_{\sigma}A^{\sigma}$ is invertible.

Proof. We will show that, in fact, we can choose A to be of the form $A = \begin{bmatrix} x & 0 \\ 0 & y \end{bmatrix}.$ Let $M_{\sigma} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, N_{\sigma} = \begin{bmatrix} a' & c' \\ b' & d' \end{bmatrix}$. Then $B = \begin{bmatrix} x\sigma(a) + a'\sigma(x) & x\sigma(c) + c'\sigma(y) \\ y\sigma(b) + b'\sigma(x) & y\sigma(d) + d'\sigma(y) \end{bmatrix}$ det $B = [(\det M_{\sigma}^{\sigma})y + d'\sigma(a)\sigma(y)]x + [a'\sigma(d)y + \det N_{\sigma}\sigma(y)]\sigma(x) - b'\sigma(c)x\sigma(x) - c'\sigma(b)y\sigma(y).$

By the algebraic independence of 1 and σ we can choose y so that det $M_{\sigma}^{\sigma}y + d'\sigma(a)\sigma(y) \neq 0$.

With this choice of y we get

det
$$B = \alpha x + \beta \sigma(x) + \gamma x \sigma(x) + \delta$$
 with $\alpha \neq 0$.

Now choose x so that det $B \neq 0$.

Finally, $L(Z)^{M_{\sigma}}$ is rational over K if and only if $L(Z)^{M_{\sigma}}$ is isomorphic to $L(Z)^{I}$ where I is the identity matrix. Thus $L(Z)^{\sigma}$ is rational over K if and only if $M_{\sigma}M_{\sigma}^{\sigma}$ is a norm.

Returning to the example, with L = Q(W, Y), $K = Q(W, Y)^{\alpha}$ and Z = U, α on Q(W, Y, U) corresponds to the matrix

$$N_{\alpha} = \begin{bmatrix} W^2 - Y^2 & -4WY \\ WY & W^2 - Y^2 \end{bmatrix} \text{ and }$$
$$N_{\alpha}N_{\alpha}^{\alpha} = \begin{bmatrix} -(W^2 + Y^2)^2 & 0 \\ 0 & -(W^2 + Y^2)^2 \end{bmatrix}.$$

Since $(W^2 + Y^2)^2$ is a norm, Theorem 2.1 says that we can find a new variable Z such that $\alpha(Z) = -1/Z$.

In fact, referring to the proof of the theorem, with $N'_{\alpha} = N_{\alpha}/(W^2 + Y^2)$, $M_{\alpha} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, and $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ we get $M_{\alpha} = B^{-1}N'_{\alpha}B$ where

$$B = AM_{\alpha}^{\alpha} + N_{\alpha}'A^{\alpha} = \begin{bmatrix} \frac{W^2 - Y^2}{W^2 + Y^2} & \frac{-4WY}{W^2 + Y^2} + 1\\ \frac{WY}{W^2 + Y^2} - 1 & \frac{W^2 - Y^2}{W^2 + Y^2} \end{bmatrix}$$

i.e. if

$$Z = \frac{\left(\frac{W^2 - Y^2}{W^2 + Y^2}\right)U + \frac{WY}{W^2 + Y^2} - 1}{\left(1 - \frac{4WY}{W^2 + Y^2}\right)U + \frac{W^2 - Y^2}{W^2 + Y^2}}$$
$$= \frac{(W^2 - Y^2)U + WY - (W^2 + Y^2)}{(W^2 + Y^2 - 4WY)U + W^2 - Y^2)}$$

then $\alpha(Z) = -1/Z$.

So $Q(W, Y, U)^{\alpha} = Q(W, Y, Z)^{\alpha}$ is not rational over $Q(W, Y)^{\alpha}$, but it is rational over Q, as can be seen by applying [4, Proposition 1.4] to $Q(W, Y, Z)^{\alpha}$. One generating transcendence basis is

$$\left\{\frac{Z^2-1}{Z}, W+Y, \frac{Z^2+1}{Z}(W-Y)\right\}.$$

Applying the theorem again to $Q(W, Y, V)^{\alpha}/Q(W, Y)^{\alpha}$ we see that $Q(W, Y, V)^{\alpha}$ is not a rational extension of $Q(W, Y)^{\alpha}$ (because $W^2 + Y^2$ is not a norm). Thus the fixed field of α is a genus 0 extension of a pure transcendental extension in three variables over Q.

References

- S. A. Amitsur, Generic splitting fields of central simple algebras, Ann. of Math., 62 (1955), 8–43.
- H. W. Lenstra, Rational functions invariant under a finite abelian group, Invent. Math., 25 (1974), 299-325.
- P. Roquette, On the Galois cohomology of the projective linear group and its applications to the construction of generic splitting fields of algebras, Math. Ann., 150 (1963), 411–439.
- [4] D. Saltman, Retract rational fields and cyclic Galois extensions, Israel J. Math., 47 (1984), 165–215.
- [5] _____, *Multiplicative field invariants*, J. Algebra, **106** (1987), 221–238.
- [6] _____, Generic Galois extension and problems in field theory, Advances in Math., 43 (1982), 250-283.

- [7] D. D. Triantaphyllou, Invariants of finite groups acting non-linearly on rational function fields, J. Pure Applied Algebra, **18** (1980), 315-331.
- [8] B. L. Van der Waerden, Algebra, Vol. 2, Frederic Unger Co., New York, 1970.

Received September 4, 1987 and in revised form, May 25,1988.

Virginia Commonwealth University Richmond, VA 23284