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A UNITARY REPRESENTATION OF THE
CONFORMAL GROUP ON MINKOWSKI SPACE

AND DYNAMICAL GROUPS I

ERNEST THIELEKER

This paper studies the so-called dynamical group of the «-dimen-
sional non-relativistic quantum mechanical Kepler problem. This
group turns out to be isomorphic to the real pseudo-orthogonal group
O(2, n + 1). First it is shown that there exists a Lie algebra G of
formal differential operators on R" which has the following proper-
ties: The algebra G is isomorphic to the Lie algebra so(2, n + 1) and
contains the formal hamiltonian operators for the positive and neg-
ative energy spectra of the Kepler problem. This much is done in
the spirit of the work in the physics literature for the case n = 3.
The main results of the paper show that there exists a unitary rep-
resentation of the group O(2, n + 1) whose differential is a skew self
adjoint extension of the Lie algebra G. In outline, this group repre-
sentation arises as a certain intregral transform of a solution space of
the (n + 1)-dimensional wave equation on Rn+ι. The latter solution
space is derived from a suitable non-unitary induced representation of
O(2, n + 1) induced by a certain maximal parabolic subgroup.

1. Introduction. Let n be a positive integer and let for y e RΛ,

Euclidean real «-space, r{y) = Jy\ H γy\. Write <9Z = djdyi for

1 < / < n. Let Δ be the Laplace operator Δ = df H + 9W

2 on R".
In suitable units the Schrόdinger equation for the "hydrogen atom"
(ignoring fine structure) is

(1.1) (z/r

where z is a parameter. The eigenfunctions Ψ belong to a suitable
linear space of differentiable functions. This equation is "obviously"
symmetric under the orthogonal group on Rn. In other words, the
commutant of the operator H := (z/r - jA) contains the operators
representing the rotations on Rn. Taking the infinitesimal point of
view, this says that the commutant of this operator contains the skew
adjoint operators which are the infinitesimal generators of the rota-
tions. Now this would also be the case if the Coulomb potential -z/r
were replaced by "any" function V: Rn => R of the form V(y) — W{r).
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However it was pointed out by Fock [F] and Bargmann [Bl] for the
case n = 3 and Alliluev for general n, that because of the special
form of the Coulomb potential, the equation (1) possesses a higher
symmetry: In addition to the infinitesimal generators of the rotations,
the commutant of H also contains differential operators of the sec-
ond order, which are formally skew adjoint. These together with the
infinitesimal rotations generate a Lie algebra isomorphic to the Lie al-
gebra of a (pseudo-) orthogonal group of Rw+1. For negative elements
of the spectrum this is the group SO(n + 1), and for the positive spec-
trum this group is SO(π, 1). An important consequence of these results
is that the eigenspace of operator H are representation modules for
these higher dimensional orthogonal groups. This gives rise to the
so-called accidental degeneracy of the spectrum of H.

However an even larger finite-dimensional Lie algebra comes into
play here. By making a change of variables yι => y/±2λyi, i = 1,..., n,
(the + sign for the positive eigenvalues, and - sign for the negative
eigenvalues) one can rewrite (1.1) as two equations:

(1.2_) {rA-r}ψ = z-ψ,

(1.2+)

where z± = 2z/y/±2λ. The first equation is equivalent to (1.1) for
negative eigenvalues, while the second equation is equivalent to (1.1)
for positive eigenvalues. One then replaces the original problem by an-
other related problem: One considers the operators on the left hand
sides of equations (1.2±) as acting on the same function space, and
considers the eigenfunctions and eigenvalues of both operators. This
problem differs from the original one. In fact, if orthogonal projection
is defined relative to usual Li Hubert space structure, the projections
of the original Schrόdinger operator corresponding to the positive and
the negative spectra commute with each other, while the operators
r - rA and r + rA do not commute. However it turns out that the
spectra and spectral multiplicity of each of these operators are the
same as the operators derived from the orthogonal projections. Now
in the case n = 3 it was pointed out in Barut [Ba], that the operators
ί(r - rΔ), and i(r + rA) generate a Lie algebra isomorphic to the Lie
algebra sl(2,R). Moreover, what is more remarkable, if one tosses in
the first and second order differential operators which either commute
with r - rA or with r + rΔ, the Lie algebra that is generated by such
operators remains finite-dimensional and is isomorphic to so(2, n+l).
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The generalization to arbitrary n can be obtained by methods similar
to those of Barut. (See §2.) In case n = 3, this Lie algebra is gen-
erally called the dynamical Lie algebra of the system. We apply this
terminology to the case of general n.

A main result of this paper is to prove the existence of a unitary
representation of the group O(2, n + 1) that gives rise to the above
dynamical Lie algebras of operators as infinitesimal generators of the
one parameter subgroups in this representation. The irreducibility of
this representation is taken up in the next paper in this series. Later
we intend to study various classes of representations of the groups
SO(2,/2 + 1) and their spinor covering groups which generalize this
representation. Along the way we develop some geometric results on
Mόbius transformations on the Minkowski spaces. The paper also
contains a result expressing the class one spherical functions of the
generalized Lorentz group SO^l, n) in terms of solutions of the wave
equation on (n + 1)-dimensional space (Proposition 12).

Unitary representations of the groups O(2, ή) are of interest in many
areas of mathematics and mathematical physics. First, these represen-
tations give an example of a quantization of a dynamical system with
symmetry. Here we are taking the more traditional point of view,
rather than the more general point of view of quantization as defined
by Kostant and Souriau, [So.2]. See in this context also the paper
by Elhadad [El]. For the case n = 3, (the original hydrogen atom
problem) the dynamical Lie algebra has been extensively studied. The
reference [Ba2] contains an extensive bibliography to applications of
the dynamical Lie algebras and some of their generalizations to de-
termination of energy spectra of some quantum mechanical systems.
Most of the results concerning the dynamical group are of a formal
nature (see §2). In fact it isn't clear from such formal considerations
in what sense these operators are skew self adjoint. In fact it turns out
that there is a Hubert space defined on suitable function classes on W
for which appropriate skew self adjoint extensions of these operators
are infinitesimal generators of unitary transformations, but such re-
sults come out of considerations such as the ones given in this paper.
In this effort we apply some recent ideas from the theory of infinite
dimensional representations of semisimple Lie groups.

One of the main results of this paper (Theorem 4) is that the dy-
namical Lie algebra is the Lie algebra of infinitesimal generators of a
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suitable unitary representation of the orthogonal groups O(2,n + 1).
We outline the construction as follows.

One considers a representation of the identity component of G =
O(2, n+l) induced by a not necessarily unitary one dimensional rep-
resentation of a maximal parabolic subgroup of the group. These one
dimensional representations are called pseudo-characters. It turns out
that the representation modules for these induced representations may
be viewed as sections of a line bundle over a projective n + 1 space.
For "generic" values of the inducing parameter such representations
are irreducible. However the representations fail to be irreducible for
certain "half-integer" values of this parameter. For each n the rep-
resentation that is of particular interest in this paper occurs for one
of these half integer values. In this case one has an irreducible com-
ponent having a lowest weight vector. This irreducible component
can also be defined as a solution subspace of a wave equation. The
dynamical Lie algebra is obtained from a suitable "Poisson" integral
transform of the wave equation. The dynamical Lie algebra consists
then of differential operators on this light cone corresponding to the
infinitesimal action of the group on the solutions of the wave equation.

We outline the paper in more detail.

Section 2 introduces a dynamical Lie algebra for the ^-dimensional
Kepler problem more or less in the spirit of A. O. Barut for the case
n = 3. The proof of the main result is only indicated here, since it is
reobtained as a corollary to the considerations later in the paper.

Section 3 is devoted to those properties of the groups O(2,Λ + 1)
and their Lie algebras needed in this paper. In particular the Bruhat
decompositions correspnding to the maximal parabolic subgroups are
introduced. The relation to the so-called Mobius transformations on
projective n + 1 space with this decomposition is given. The action of
the group O(2, n+1) on projective n+1 space which is of major interest
in this paper is closely related to the conformal group on the projective
compactification of Minkowski space. If the Minkowski metric here is
replaced by a Euclidean metric, then the action of the conformal group
is precisely what have recently been called the generalized Mobius
transformations. See [Al, A2].

In §4 we define the relevant induced representations, and work out
the infinitesimal action explicitly. It is also pointed out here that the
Schwartz space on R"+1 is a natural module for the global action of
the group (Lemma 6).
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Section 5 is a review of the theory of universal enveloping algebras
of the group G. It contains the construction of elements which are in-
variant under a certain subgroup K which is isomorphic to the Lorentz
group S O ( 1 , M + 1).

In §6 differential equations invariant under the subgroups G and K
are derived. The principal result in this section determines the pseudo-
character for which the wave equation defines an invariant subspace
of the representation space of the induced representation. We also
note here that the eigenspace of the ΛΓ-invariant differential equations
may all be expressed in terms of solutions of the wave equation for
any value of the inducing pseudo-character. This is accomplished by
means of a simple transformation. This result gives a simple expres-
sion of the class one spherical functions of the generalized Lorentz
groups SOe(l, ή) in terms of solutions of the wave equation.

Section 7 contains a discussion of the transformation which maps
the representation module defined by solutions of the wave equation
onto the representation module consisting of functions defined on the
light cone in Rn + 1. A chief point of this paper is that for the critical
pseudo-character, this transform transfers the infinitesimal action of
the Lie algebra G discussed in §3 onto the dynamical Lie algebra of
§2. The main result here implies Theorem 1. The transform is given
explicitly by Segal [SI] for the case n = 3.

Finally we use the following notation. The symbols R and C denote
respectively the field of real and complex numbers. For each positive
integer m Rm denotes the space of m-tuples viewed as column ma-
trices. For A a matrix of finite size AΎ denotes the transpose of this
matrix. The notation for the real classical groups used here is from
Helgason [He].

2. The dynamical Lie algebra. Let y = (yu... ,yn) e Rn. Let (, ) be
the standard inner product defined by (x9y) = ]C?=i -̂ iJΊ' As before
write r(y) = y/(y,y). For x =* p(x) a C°° self mapping of RΛ, let
p(y) - V denote the operator defined on C°°-functions /, which in
general can be vector valued, by

a i ί=0

Considered as operators on C°°(Rn) they are just the globally defined
vector fields on Rn. Also for i = 1,..., n let {e\,..., en} be the natural
basis of Rn. Consider vectors as constant vector valued functions.
Then as a special case one has eιf d = d; = djdyi. For any C°°-map
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p from RΛ to itself denote by p'(x) its derivative at x G R". Thus for
each x,p'(x) is a linear endomorphism of RΛ. One notes for future
reference, that one has the following commutation relations for the
operators defined above:

[ ' J = (q(x) ' Vp(x)) V - (p(x) Vq(x)) • V.

We consider the operation of multiplication by a C°° -function as a
differential operator of order 0. Consider the associative algebra of
differential oeprators on Rn generated by these multiplications and the
vector fields. The differential operators also form a Lie algebra under
commutation: [A, B] = AB-BA. We shall define a finite dimensional
subspace G of this algebra which will turn out to be a Lie subalgebra.

First define for i,j = 1,..., n

Lu = yfij - yjdi.

It is clear that L/7 = —Lμ and La = 0. We also define the Laplacian:

and the so-called Euler operator in the above notation is E = y d\ y
here is considered as the identity map. In more traditional notation,

Finally the "symmetrized" Euler operator is defined as

It is also clear that F = E + \n\. Finally, one defines the following
real linear subspaces of the algebra of differential operators:

where

M = sρanR{L/7: 1 < / < j < n},

and
? ! =spanR{rd/: i = l,...,/i},

W_ =
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Define G as the space spanned by W+, Wo, and W_:

LEMMA 1. One has the following commutation rules between the sets
of differential operators defined above and the individual operators:

(1) The vector space direct sum G = W+ + Wo + W_ is direct, in fact,
it is the eigenspace decomposition ofG under the linear mapping X =>
[-(F - \l)9X\ with eigenvalues +1,0 - 1. That is, [-(F - %1),X] =
X, 0, -X depending on whether X is in W+, Wo, or W_ respectively.

(2) [Wo?Wo] = Wo? [W0,W+] = W+, [W0,W_] = W_,

In particular, the subspace G is a Lie subalgebra of the Lie algebra of
differential operators under the Lie bracket [, ] multiplication.

(3) The linear subspace M + Pi is a Lie subalgebra.

(4) The sum defining the algebra in (3) is direct, and gives a Cartan
decomposition:

[? ! ,? ! ] = M, [P!,M] = Pi, [M,M] = M.

In particular, M is a subalgebra.

Proof. All assertions concerning the structure of G as a Lie alge-
bra can be checked from (1) and from the following observation:
If A,B,C are elements of any associative algebra, then [A,BC] =
[A,B]C + B[A9 C]. Thus X => [A,X] is a derivation. It follows from
this remark that if p(y) is a homogeneous polynomial of degree r, and
q{d) is a homogeneous polynomial of degree s in the operators <9/,
then

This results immediately in (1). The derivation property referred
to above results also in the second and third lines of (2). One also
has [dhyj] = δφ [dhr] = yi/r, and [Δ, Λ ] = 2dh and [Δ,r] =
(l/r)(2F-l). With these observations one can also verify [W+, W+] =
{0}. Since we will have other means of seeing this, the slightly messy
details are left to the reader. The observation that [W_, W_] = {0} is
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obvious. The above considerations lead easily to

(2.2) [rdh rdj] = yft - yjdj = Lu.

This implies the first relation in (4). The remaining assertions can be
verified in a similar spirit. However, the following short cut makes
them obvious. For T a rotation, let T denote the operator on C°°(Rn)
defined by Tf(y) = f(T~ιy) for y =>• Ty the usual linear action. One
checks by standard arguments that for 1 < / < j < n, Ltj is the vector
field associated with the rotations in the 2-plane spanned by e\ and βj.
(See proof of Theorem 1 below.) Since it is known that these infinites-
imal rotations span the Lie algebra so(/ί), M must be isomorphic to
the Lie algebra so(n). One considers the action D => Ύ~ιDΊ of the
rotations on the differential operators. It is then easy to check that the
operators (F - ^1), Δ, and r are invariant under this action. It follows
also that the operators dt(F — j l ) — JΔJ>/, rdu and yι transform like
the vectors in Rn under the rotations. By differentiating along the one
parameter subgroups of the rotations one gets the remaining assertions
of the lemma.

One can now establish an isomorphism from the algebra G onto the
Lie algebra so(2, n +1). For this purpose let 2?( , •) be a non-degenerate
bilinear form on R"+3 defined by

B(x,y) = -X-iJJ-i - xoyo + x\yi + '" + xnyn + * Λ + I3ΊI+I

for x,y e Rn + 3. The Lie algebra SO(2,Λ + 1) is defined as the set of
linear endomorphisms T of R"+3 that satisfy B(Tx,y) = -B(JC, Ty).
Let Eij = eiej be the matrix units for - 1 < i9j < n + 1. From the
above definition one checks easily the standard fact that so(2, n + 1)
has as a linear basis the endomorphisms:

1 < i < j < n + 1 , 1 < k < n + 1 } .

Let Xij = Eij - Eji, for 1 < / < j < n. These are the elements of
the above basis that are to correspond to the infinitesimal rotations in
the "original" H-space. Let X = -£_io + ^b-i and for 1 < k < n,
Xk = Ek9n+\ ~ En+\,k These then are the additional infinitesimal
rotations of the above basis. Let for 1 < k < n, Yk = E_xk + Ekr_u

£Ό,Λ+I +Έ/i+i,o These are the infinitesimal hyperbolic rotations of the
above basis.
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The relevant facts can be summarized in the following:

THEOREM 1. There is an isomorphism Ψ ofG onto so(2, n+l) which
maps the basis elements given above according to the following table.

H -(F-
Y - X - irA
Y + X -ir

Yk-Xk -2i{dk{F-\\)-\Ayk)

where i = yf^Λ.

Proof. The above table defines by linearity a linear isomorphism
from G onto so(2, n +1). The main point then is to check that the
commutation rules are preserved under the map Ψ. Again, since we
shall present global methods for verifying that Ψ is a Lie algebra iso-
morphism, only the main points are sketched. One essential short
cut has already been pointed out in the proof of Lemma 1, namely
to consider the action of the rotations. First one observes that if
feC°°(Rn), then

Lijf = dexp(-tXij)f/dt\t=0.

One notes next that under the representation of the rotations given by
D => Ί"ιDΊ9 the subsets {rdj}, {-**}, and (dk(F - \l) - \\yk) trans-
form as the vectors in Rn under the usual action of the rotations, while
the elements rΔ, r, and (F - \\) are invariant. From this observation
it is a standard argument to show that the commutation relations of
the Xij with the remaining elements of the above basis of so(2, n + l)
are preserved by the mapping Ψ.

The commutation relations with the element -(F-\\) were pointed
out in Lemma 1. These correspond to the following relations for
the matrices: [H, Y ± X] = τ(Y ± X), [H, Yk ± Xk] = τ(Yk ± Xk)>

= 0, and[//,Lo]-0.
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The techniques mentioned in the proof of the above lemma lead to
the formulas:

(2.3) [dk(F - \\) - μ \ j

(2.4) [rΔ, rdi] = 2{di{F - \\) - \Ly{)9

(2.5) [r,rdi] = -yh

(2.6)

(2.7)

(2.8)

(2.9a) [dk(F - $ 1) - \Ayk,yk] = (F - ±1),

(2.9b) [βfc(F - ±1) - iAyk9yj] = L,*, j # fc,

(2.10) [0*(F - ±1) - μyk9r] = rdk + [dk,r]-yk/r = rdh.

The commutators not indicated are 0. Again the details are left to the
reader. These formulae make explicit (2) of Lemma 1. One can then
check easily that (2.2) together with the above list of commutation
rules correspond, to the following matrix commutation rules: (2.2) <=>
[ZhZj] = Xφ (2.3) o [Yk - Xk9Zj] = -δkJ(Y - X\ (2.4) o [Y - X,
Zk] = Yk-Xk, (2.5) o [Y + X,Zk] = -(Yk + Xk), (2.6) o [Yk+Xk9

Zj] = -δkJ(Y + X), (2.7) o [Y - X, Y + X] = 27/5 (2.8) ^ [Γ - X,
^ + Yk] = -2Z^ ? (2.9a) ^ [Γ* - X^? Y) + Xj] = 2Xjk, (2.9b) ^
[Yk - Xk, Yk + Xk] = 2//, (2.10) o [Yk - ^ y + X] = -2Zk. This
establishes the theorem.

One remarks that the table in the theorem implies in particular that
the elements Xk commute with the element X. The latter represents
the Hamiltonian operator for the case of the negative energy levels,
while the elements Yk commute with the element Y, which is the
Hamiltonian operator for the positive energy levels.

3. The orthogonal groups O(2, n + 1) and their Lie algebras
so(2, n + 1); description of the conformal groups on Minkowski spaces
and Mδbius transformations. Let / be the (n + 3) x (n + 3) matrix
given by diag[-l, 1,1,..., 1]. Then it is clear that J2 — 1, so that the
map X =̂> Θ(X) = JXJ is an involution on the general linear group
Gl(n + 3,R). Let B be the matrix B = d iag[- l ,- l , 1,..., 1], and let
the bilinear form B be defined by B(x,y) = xΎBy, x,y e Rn + 3. (Re-
call that for any matrix A, AΎ denotes its transpose.) Then the group
O(29n + 1) is by definition the invariance group of the form B. In
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terms of the matrix B, this definition is equivalent to the definition:

O(2,n + 1) = {g e Gl(/i + 3,R): gΎBg = B}

The second condition follows easily from the first by the fact that
B2 = l.

Let G = SOe(29n + 1), the identity component of O(2,« + 1). In
any topological group the identity component is a normal subgroup of
the group. In the present case it is known that O(2, n + 1) has four
components; equivalently, the quotient group O(2, n + 1)/SO^(2, n +1)
is of order four. More precisely, this quotient is the direct product of
two cyclic groups of order two. (See Lemma 4.)

It is clear that JB = BJ. One deduces from this fact that the
involution θ stabilizes the group O(29n + 1). Thus θ also defines an
involution on the latter group which will also be denoted by θ . By
differentiating along the one parameter subgroups t >-• exp(tX), one
sees that so(2, n+1) as defined in the previous section is the Lie algebra
of O(2, n + 1). Let G denote this Lie algebra. Its definition may be
recapitulated in terms of B as follows:

G = {X e Rn

nχ]: B(Xy9y) = -B(y,Xy),Vy e R*+3}

= {Xe Rn

nχ]: XΎB = -BX}.

The map θ acts as an involution on the Lie algebra G. Again denot-
ing this involution by the same letter as before, one has θ(exp(X)) =
exp(θ(X)). This point is easy to check from the exponential series
and the fact that J2 = 1. On the Lie algebra level let L and K denote
the - I and +1 eigenspaces respectively of the linear map X => Θ(X).
Since this map is involutive, it is semisimple and these are the only
eigenspaces. Hence one has the direct sum: G = LθK. Let Wo, W±, M
and P denote the subspaces and subalgebras corresponding respec-
tively, under the isomorphism of Lemma 1, to the spaces of operators
denoted by the corresponding bold face letters. In terms of the matri-
ces defined above one has explicitly:

M = span{X/7: I < i < j < n}9

^ , 7 : l<k<n}®M9

/,X: 1 < k < n}9

Pi =span{Z^: 1 < k < n},
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Also set

P 2 = span{Y^: 1 < k < «}, P 3 = span{X^: 1 < k < n}.

Then define Mi, M2 and M3 by

Mj : = M © P l 5 M2 :=P 2 ΘM, M3 : = P 3 φ M .

Clearly then the involution θ fixes the subalgebra Wo and interchanges
the spaces W+ and W_. One notices that because the P7 for j = 1,2,3,
transform like Rn under the adjoint representation of the rotations,
one has [P7 , M] = PJ9 j = 1,2,3. Thus the My are subalgebras of G. It
follows easily from the definitions that M\ and M2 are isomorphic to
SO(1,Λ), while M3 is isomorphic to so(n + 1).

SetGi =span{Z,r ,Z} .

PROPOSITION 1. The space G\ is a subalgebra, isomorphic to so( 1,2).
M2 andM3 are isomorphic toso(\,n) andso(π +1) respectively, andM\
is isomorphic to so(l, ή). The direct sums defining these algebras are
Cartan decomposition. This means that [P ί9 P, ] = M, and [M, Pf ] = P, ,
i = 1,2,3. Moreover, Wo = RH ®M\ is the centralizer of H in G,
RY 0 M2 is the centralizer ofY in G, and RX © M3 is the centralizer
of X in G. The latter centralizer is a maximal compact subalgebra
ofG. The algebra K is isomorphic to so(l, n + 1) and is a maximal
semisimple subalgebra ofG. The direct sum 6 = L θ K i π Cartan
decomposition, exhibiting (G, K) as a non-Riemannian symmetric pair
whose Cartan involution is θ . The major inclusions and isomorphisms
are summarized in the diagram below:

n
G D K s so(l, n + 1) D Mi = so(l, n) D M

G D Wo = Mi θ RH D M s so(n)

GDRY®M2DM

U K D M 3 ^ S O ( « + 1 ) D M

Proof. These results follow in a straightforward manner from the
commutation rules for the spanning elements of the Lie algebra G,
pointed out in the proof of Theorem 1.

The following remark is also useful in our analysis.
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PROPOSITION 2. The centralίzers of the elements H, Y, and X are
the algebras UH Θ Mi, UY θ M2, and RX θ M3 respectively.

Proof. To check that the centralizer of H is as asserted, one notes
that the elements Zk are the only spanning elements of G, other than
H itself, that commute H. The assertion follows from the definition
of the subalgebra Mi and by linearity. The other assertions follow in
a similar manner.

In order to analyze the component structure of certain subgroups
of G we need the following lemmas:

LEMMA 2 {Polar decomposition). Let O(p, q) be the orthogonal group
of a real quadratic form with signature p+ and q-. Assume 0 < p < q.
Then one has the polar decomposition O(p, q) = QS, where S consists
of the positive symmetric elements in O(p, q), and Q consists of the
orthogonal elements in O(p, q). One has Q n S = {1}.

Proof. This follows from standard arguments in linear algebra. (See
for example [Th].)

LEMMA 3. Let Q be the identity component ofQ. Let J\, J2, and J3
be the matrices defined by Jι = diag[-l, \p+q-\], h = diag[l p +^_i,-l],
and J3 = /1/2. Q is a normal subgroup of Q, and the quotient group
Q/Q consists of the four cosets Q, J\Q, J2Q, and J3Q. Thus Q/Q is
isomorphic to the direct product of two cyclic groups of order 2.

Proof. We realize the group O(p,q) as the set of (p + q) x (p + q)
matrices A such that AΎCA = C, where C is a diagonal matrix with
diagonal entries: Cu = - 1 , if 1 < i < p, and C// = 1, if p + 1 <
i < P + Q- If in addition to belonging to O(p,q), A is orthogonal,
then AΎA = lp+q = AAΎ. Thus by pre-multiplication of the defining
condition by A, one sees that AC = CA. Using partitioned matrices
one checks that Q is given by the matrices of the form: diag[α, δ]9

with a and δ p x p and q x q orthogonal matrices respectively. Thus
Q is isomorphic to O(p) x O(q). Now it is known that for any positive
integer m orthogonal group O(m) has two connected components. The
identity component consists of those elements with determinant equal
to one. The component that does not contain the identity consists of
the matrices with determinant - 1 . As a coset representative for this
latter component one may take any element in O(m) of determinant
— 1. The lemma follows then easily from these remarks.
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LEMMA 4. Let SOe(p,q) denote the identity component ofθ(p,q).
This identity component is a normal subgroup of O(p, q), and the
quotient group O(p,q)/SOe(p,q) consists of the four cosets SOe(p,q),
JιSOe(p,q), J2SOe(p,q), and J3SOe(p,q).

Proof. It is known that every element of S is the exponential of
a symmetric element in O(p,q). Thus S is homeomorphic to the
Euclidean space consisting of the symmetric elements of the Lie al-
gebra G. Thus the space consisting of the symmetric elements of the
Lie algebra G. Thus the lemma follows from the polar decomposition
(Lemma 2).

Let the analytic subgroups corresponding to the above Lie subal-
gebras be denoted by the corresponding plain capital letter. Let K
denote the centralizer of the matrix / . From the definition of the
involution θ , one has equivalently that K is the subgroup of G which
is elementwise fixed under this involution. Since the subalgebra K is
the fixed point subalgebra under θ , it follows that K c K. Moreover,
since all of the matrices in K have zeros in the first row and column,
one has explicitly:

K = {diag[l,fc]: k e SOe(l,n+ 1)}.

Incidentally, this also shows that K is isomorphic to so (1, ft + 1) as
pointed out in Proposition 1. On the other hand, one checks that

K = {diag[±l,fc]: k e O(l,n + 1)} n SOe(2,n + 1).

Note that B is in the identity component of G. In fact B is in the one
parameter subgroup

cos(0) J ' 1 ' - ' V
with θ = π. However the element B\ defined by

is not in G. By specializing Lemma 4 to the case p = 2, one obtains
that K has the coset decomposition:

(3.1) K = KUBK.

In paticular, K has two components.
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Let M\ denote the centralizer of the matrix H in K. One checks by
the definition that the centralizer of H must have the following block
matrix form:

fa 0 . . . 0 b\
0 0
: m :
0 0

.b 0 . . . 0 a)

with a,b eR> and m an n + 1 by n + 1 matrix. However in order for
such an element to be in K, one must have from the above consider-
ations, a = ±1, b = 0. Now since Mi is the centralizer of H in K, as
pointed out in Proposition 1, one has that M\ c M\. Since the matri-
ces in M\ have no non-zero elements in rows and columns numbered
- 1 , and n + 1, it follows that the elements of M\ have the above form
with a = 1, b = 0. Identifying M\ with SOe(l, ή) for the moment, one
finds from Lemma 3 that a complete set of representatives of the com-
ponent group consists of the matrices lr t+i, diag[-l, ln]9 diagtU, -1],
and diag[-1,1 „_ i, - 1 ]. However, only the identity matrix and the last
matrix can be fit into (3.1) to produce a matrix in G. Hence writing
J\ = diag[—1, — 1, l w _ i , - l , - l ] , one has established the following:

PROPOSITION 3. For the centralizer M\ of H one has the coset de-
composition: M\ = Mi U J\M\. In particular, M\ consists of two
components.

PROPOSITION 4. Let A = {exp(ί/J): t e R}, and P± = W±AM{.
Then P± are subgroups ofG. They are parabolic in the sense that they
are their own normalizers in G, and are maximal with respect to this
property. AMγ is a normal subgroup ofP±, and A is the center ofM\.

For a G A9 m G M9 and n G W+9 one has amn = mnaa, where
na = ana~ι G W+.

Let C be any matrix in G with the properties C 2 = 1, and that
CHC = -H.

PROPOSITION 5 (Bruhat decompositions). The group G can be ex-
pressed in terms of unions of products:

G = W-AMX W+ U CAMi W+.

Proof. This is proved elsewhere. See [Th].
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For each x e Rw+1 one defines the elements V{x) by

(3.2a) V(x) = xo(Y + X) + xι(Yι+Xι) + - + Xn(Yn + Xn),

and N(x) = Θ(V(x)). Hence, the abelian subalgebras W_ and W+
may be expressed as

W+= {#(*): jceRΛ + 1}, and W_ = {V(x): x e R"+1}.

Explicitly,

(3.3a) N(x) = xo(Y-X)-xι(Yi-Xι) xn{Yn-Xn).

The matrices V{x) and N(x) may also be expressed as follows:

(3.2b) V(x) =

0
xo
X,

X
n

0
0
X

0

-xo

XO

x
Ύ
B

{

°n+l
_
 χ
Ίβ.

Xl

-Xl

0"
X

0

X
n
 0

Xθ

Xl

Xn

... -X
n
 0 .

(3.3b) N(x) =
0 - x τ # i 0

. 0 -x"τ+5i 0.

where B\ is the n + 1 by n + 1 matrix given by 2?i = diag[— 1,1,..., 1].
Define the real symmetric form defined on R"+1 by

(3.4) (x,y) = -xoyo xnyn.

Notice that the matrix B\ is the matrix of the form ( , ); that is
(x,y) =xΊBxy.

Next, for t e R, and for x € Rn+ι define elements a{t) 6 A, v(x) e
W- by a{t) = exp(tH), and

(3.5) υ(x) = exp(F(x)) = exp ίx o ( r + X) + ΣXΛYJ + χj) I

Define the «(x) G ίF+ by n{x) = θ(v(x)).



MINKOWSKI SPACE AND DYNAMICAL GROUPS 355

By using the observation that the matrices N(x) and V(x) are nilpo-
tent of order 2, and from the Maclaurin series for cosh and sinh, one
computes explicitly:

" cosh(0 + \eι (x, x) xΊBx sinh(ί)
(3.6) v(x)a(t) = eιx lΛ+i eιx

_ sinh(f) - \eι{x, x) -xΊBχ cosh(ί) - \el{x, x) _

1 + \ (JC, JC) -XΊBX - \ (JC, JC)

(3.7) n(x)= -x 1 Λ + 1 x
-lx x) —x^B 1 — -(x xy

Note that one can also obtain the last expression for n{x) from n(x) =
θ(v(x)) = Jv{x)J.

The Bruhat decomposition allows one to characterize the homoge-
neous space GjAM\ W+ and, as will be shown in the next section, to
obtain explicit formulas for the group action. We now work out this
characterization.

Let <?nJrl denote projective [n + 2)-space. This is realized as the
set of equivalence classes {λx: λ e R, λ Φ 0} of non-zero vectors x in
Rw+3. For 0 Φ x G R"+3 let [JC] denote the corresponding element in
^ w + 2 . One defines an action of the general linear group G\{n + 3,R)
on the projective space <?n+2 by #[JC] = [gx], where g e Gl(n + 3, R),
x G R"+3, and (g,x) => gx is the usual action of matrices on Rw+3.

We look at the orbit of the vector ( l ,0 Λ + i , l ) τ in R"+3, and also
the point [(l,0Λ +i, l ) τ ] in e ^ / 1 + 2 . One sees from (3.7) that the vector
(1,0,1+1, l ) τ is fixed by the subgroup W+. This vector is also fixed
by the subgroup M\. The element B takes this vector to the vector
—(l,0π +i, l ) τ . Thus from Proposition 3 the elements of the first dou-
ble coset in the Bruhat decomposition (Proposition 5) map this vector
into

(3.8) (±e'(l + <*,*»,2e'x,±e'(l - (x,x)))T, x e

while the elements of the second double coset map this vector into

(3.9) ( τ ^ , 0 π + 1 , ± ^ ) τ .

These considerations lead immediately to the following lemma:

LEMMA 5. Suppose g EG. Write

g I 0" I =



356 ERNEST THIELEKER

Then a + γ = ±2et, a - γ = ±2et(x,x) and β = 2etxf for g in the
first double coset of the Bruhat decomposition with g = υ (x)a(t)mn(y)f

x G R"+1, and m e M\. The + sign occurs when m is in the identity
component of M, and the minus sign otherwise. For g in the second
double coset one has β = 0, and a + γ = 0, a- γ =

One also notes:

PROPOSITION 6. The orbit in &>n+2 containing the point [(1, 0w+1,1 ) τ]
is

(x,x))9x, i ( l - (x,x)))Ύ]: x e R*+1} u {[(-l,

The isotropy subgroup is AM\ JV+.

Proof. One applies Lemma 5 and the formulas (3.6) and (3.7). The
statement then follows from the Bruhat decomposition.

Thus, this orbit may be identified with the coset space G/AM\ W+.
For t = 0, the elements in the first column second row of the matrix
(3.6) is just x. Hence the map x >-* v(x) is a one to one map from
RΛ+1 to W-. Hence, all the points in this orbit, with the exception
of the point [ (- l ,0 Λ + i , l ) τ ] , are coordinatized by Rπ + 1. Denote the
exceptional point by oo. The non-exceptional points will be referred
to as finite points.

It follows from the Bruhat decomposition that in computing the
action of G it is sufficient to consider the action of the subgroups
W- (translations), A (dilatations), M\ (orthogonal transformations or
homogeneous Lorentz transformations) and W+ (the conjugate trans-
lations).

Write for g e (?,

for AU9Aι3,A3UA33 e R, ̂ 12,^32 e RΛ +i, ^21^23 e RΛ+1, A e R»+\.
Then it follows again from Lemma 4 and formulas (3.6) and (3.7) that
the point x corresponding to [g(l9On+\, l ) τ ] = [(α, β, γ)Ύ] is given by

(3.10) x = (A2l+A23)/(An+Al3) = β/(a + γ),

with a zero denominator interpreted as the point 00. This observation
follows from Lemma 4.
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Thus if we write the action of g in the above coordinates as x' = gx,
then

x1 = x + a, if g = v(a), x' = eιx, if g = exp tH9

x' = A22X, g € M, usual linear action of A22 for x e

, _ X - (x, X) _
X ~ l + (a,a)(x,x)-2(x,ay g " Λ W '

REMARK 1. Formula 3.10 implies that the orbit of G in &>n+2 can
be identified with the projective space 3°n+x.

Let G be the group generated by the element / and the group
G. Recall that / = diag[—1,1,1,..., 1]. Thus G is a subgroup of
O(2,n + 1), and contains SOe(2,n + 1). It follows from statement 2
of the last proposition that one has:

x

J X = η r,
(χ,χ)

for x a finite point, and Zoo = 0w + 1. This mapping may be interpreted
as the reflection in the unit quadric defined by {x,x) — 1. From the
last proposition one obtains the following proposition as a corollary:

PROPOSITION 7. The group G is generated as a transformation group
on the projective space by the orthogonal transformations M\, the trans-
lations W- = {υ(a): a e Rn}, the dilatations, and the inversion x >->
Jx.

Proof This statement follows from Proposition 6, statement 3 and
the observation that

x — a(x,x)
(Jv(-a)J)-x =

x - alx x)
x ' = n{a) 'X.1 -2(a,x) + (a,a)(x,x)

REMARK 2. In case the form ( , ) is positive definite, the transfor-
mations of the projective space ^ w + 1 corresponding to the group G
are called the Mόbius transformations. The characterization in Propo-
sition 7 is usually taken to be the definition of this group.

REMARK 3. Since JW-J = ΘW_ = W+, G is generated by the
subgroups Mi, W-, A, and the elements of C and /. The above
proposition could also be deduced from this fact. However it is useful
to have the above explicit formulas for the action of G on
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4. Infinitesimal actions for the Lorentz groups. From now on we
write W = W+ and P = P+. For every complex number / there exists
a homomorphism λ of the subgroup A onto the multiplicativle group
of the non-zero complex numbers C* defined by λ(exp(tH)) = etl. Let
λ be such a homomorphism. We extend this to a mapping from the
entire subgroup P to C* by writing λ(amw) = λ(a)9 with m e Mχ9 and
w e W. However this extended map is in fact a homomorphism as
one easily checks from the fact that M\ W is a normal subgroup of
P. The set of such homomorphisms, called pseudo-characters of P, is
denoted by C.

For λ E C, let C%°(G) be space of complex valued functions having
continuous derivatives up to arbitrary order, and having the transfor-
mation properties:

f(gp) = λ(p-ι)f{g), peP, feC?(G).

Let ^ ( R * * 1 ) be the Schwartz space of rapidly decreasing functions on
Rw+1. Recall that the map v from Rπ + 1 to W- defined by (3.5) of the
previous section is a diffeomorphism. Let S^(W-) denote the space of
functions on W- defined by

Finally let λ G C. By the Bruhat decomposition define the space <9χ(G)
of the functions / on G as follows:

fiwp) =λ(p~ι)f(w), weW-,peP, fe&(W-),

= 0 on BP.

LEMMA 6. One has the inclusion S^λ(G) c C$°(G).

Proof. The point is that the functions in <¥χ(G) together with their
derivatives are continuous at the coset CM\AW+. However, in ac-
cordance with the discussion of the previous section this coset cor-
responds to the limit point oo in ̂ " + 1 . The definition of ^ ( R w + 1 )
implies that the functions in this space and their derivatives have the
limit 0 as |(JC,.X)| —• oo in Rn + 1. Since the functions in <5%(G) are
determined by their restrictions to W-, the result follows.

The group G acts on <9\(G) by left translations: L(g)f(h) =
f(g~ι(h), g,h e G, f e s{(G). For a fixed pseudo-character λ, let
Π^ denote the transfer of this action to the Schwartz space
that is, Uλ(g) = pL{g)p~x, where p is the map from<9χ(G)
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defined by (pf)(x) = (foυ)(x), x e R"+1. (This map is a linear iso-
morphism, by the above discussion.) For I G G , the Lie algebra of G,
one defines the operator dϊlλ(X) by

(4.1) dUλ(X)pf(x) = !L]

d
= P-f(exp(-tX)v(x))

ί=0

t=0

Then X —• dϊlλ(X) is a representation (homomorphism) of the Lie
algebra G into the Lie algebra of differential operators defined on the
space S^{UnJr{). The first task is to describe this Lie algebra action
explicitly. From the Lie algebra Bruhat decomposition Lemma 1, it is
sufficient to look at the actions of the subalgebras A, Mj, V_, and W+.
The operators p{x) V for x —• p(x) a C°°-self mapping of R"+1 is
defined in a manner analogous to the definition of §2. The Lie algebra
action is given in the following statement:

PROPOSITION 8. For a e R"+1, and for Γ E M .

dUλ{N{a)) = -2(a,x)l + (x,x)a V - 2(x,a)x V,

where T

Tesofl

dΐlλ(T) = -Ύ(x) •

and T are defined by

T =

,n).

" 0

0

v,

-1
0 Λ + i

T

0 Λ + i

0

0

REMARK 1. Write for b e Rw+1

? bι = bτBx. If a,b e Rn+ι then
abι - baι is an element of the Lie algebra so(l,π). By definition,
this is the Lie algebra of the orthogonal group of the form (x,y) =>
(x,y) = xιy = xB\y. It is known that this Lie algebra is spanned by
such elements. Recall then that subalgebra M\ — diag[l,so(l,n), 1].

Proof of the proposition. For the first statement recall that v(a)υ(x)
= v(a + x). Thus by definition of the action (4.1) one has for / e

recalling that v(x) = exp(F(x)),

dnλ(V(a))=^-tf(x-ta)
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Observe in general for Z e Mi Θ A Θ N,

Zv(x) = Zexp(K(x)) = exp(F(x))exp[ad(-K(x))]Z = v{x)Z\

where

j=o

Therefore writing for / e ^{Rn+ι), φ = p~λ of

(4.2) dUλ(Z)f(x) = ^
ί=0

= jj-tΦ(υ(x)exp(-tZ'))
ί=0

Note that (ad(K(jc))yZ = 0 if j > 3. This remark follows from the
fact the eigenvalues of ad(H) are —1,0, and 1. In case Z = N(α), Z'
becomes

= N(a) - [V(x)9 N(a)] + \[V{x\ [V{x)9 N(a)]]

= N(a) + 2(ax( - xat)E22 - 2(x, a)H - (x, x) V(a) + 2(x, a) V(x),

where we write

0 0M4.i 0
(ax1 - xat)E22 =

0
ax1 - xaι

0 0

The second formula follows from 4.2. For the third formula, set Z =
H. Then Z' becomes

Z' = H- [V{x),H] = H- V(x).

Thus the third result follows again from (4.2). Finally setting Z =
T e Mi, then Z' = Γ-[F(x), Γ] = T+V(Tx), as one easily computes.
Thus the last equation follows.

REMARK 2. One knows from general principles that the operators
given in the above proposition provide a representation of the Lie
algebra G. However, it is interesting to check the commutation rela-
tions directly. This can be accomplished by observing as in (2.1) with
n replaced by n + 1,

[p(x) • V,g(x) • V] = (p(x) • Vg(x)) • V - (q(x) • Vp(x)) V.
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Thus for example one obtains

[dΠλ(V(b))9dΠλ(N(a))]

= - ( x , b)a-V + (x, a)b-V + 2(a, b)(x V + / I ) .

Notice that this says that if a is orthogonal to b, then this commutator
is 2Uλ(T) with T corresponding to the element T = ab* - baι. If
a = b, then the commutator is a generator of the one dimensional
algebra dllλ(f\).

Let {er. 0 < i < n} be the natural basis RΛ + 1. Thus, (e^βj) = 0, if
/ Φ j , and fa, βi) = β| , where β/ = - 1 , if / = 0, and β/ = 1, if 1 < / < n.
Then note that {x,et) = (ei9x) = β, jc, , and ^ V = 9, := d/dX(. One
has in terms of the basis introduced in §2,

(4.3) V(e0) = Y + X, V{ei) = Yt + Xu for 1 < / < n.

N(e0) = Y-X, N{βi) = -Yi + Xu for 1 < / < n.

Define the elements V[ and iV/ by

(4.4) Vi = \V{ei)9 Ni = \

To simplify the notation write

Nj = ±dnλ(N(ei)) = dnλ(Ni),

H = dUλ(H), and Ly = dΠλ(T) for T = (erf - eje
t

i)E22.

(This notation is consistent with that used in §2.) In fact, one com-
putes

(erf - eje\)x = e^ehx) - βj(ehx) = Xyx,

if 1 < / < j < n, and

- ejefox = (eoej + ejej)x = Zjx.

(4.5)

Ly =

xjdi, if 1 < / < j < n,

+ Xjdo)> if i = 0 < 7 < n.
REMARK 2 (continued). Again, pursuing the comment of Remark 2

one may check directly that,
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for / Φ j , and
[\N]

5. Some elements of the universal enveloping algebra. For a Lie
algebra L let C/(L) denote the universal enveloping algebra of L. Recall
that by definition this is the quotient algebra of the tensor algebra
Γ(L) modulo the ideal J" generated by the elements X®Y-Y ®X-
[X, Y] for X, Y G L. This algebra is characterized by the following
universality property:

Let φ be a homomorphism of the Lie algebra L into some asso-
ciative algebra s/, with Lie multiplication [ , ] on L going over into
commutators in sf. Then φ extends uniquely to a homomorphism φ
of the associative algebra C/(L) into the associative algebra sf.

Thus, in the setting of the previous section, for each pseudo-charac-
ter λ the Lie algebra representation dΠλ of G extends to a homomor-
phism, also denoted by dΠλ, of Γ/(G) into the algebra of differential
operators on SeP(Rn^1). The image of this homomorphism is just the
subalgebra consisting of the differential operators generated by the el-
ements dΠλ(X), X e G.

REMARKS. Some additional remarks are needed concerning the ex-
tension of derivations and automorphisms of Lie algebras to their
universal enveloping algebras. Let A be an automorphism of a Lie
algebra L. Then by definition, A is a linear map on L such that
A(X, Y) = [A(X)9A(Y)]. A extends to an automorphism of the tensor
algebra Γ(L) such that

A(x\ ® X2 ® ® xn) = Ax\ ® Ax2 ® ® Axn,
for xι e L. It follows from the fact A is an automorphism of the
Lie algebra that the ideal <J is invariant under A. Hence A induces an
automorphism on the universal enveloping algebra C/(L), also denoted
by the same symbol A.

We apply this extension of automorphisms to groups acting on the
Lie algebras. If L is a Lie group (not necessarily connected) whose Lie
algebra is L, then L acts on L as automorphisms by g => Ad(g). By
the above considerations this action extends to the universal envelop-
ing algebra U(L). Let L denote the identity component of L. The
differential of the action Ad of L is just the extension of the inner
derivations ad on U(L). More explicitly one has:

ad(X)tf = -r
ui t=0

for X e L, and q G C/(L). Thus if q e C/(L), then zd(X)q = [X,q].
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Now if L is any subalgebra of G, it follows from universality that
we may identify ί/(L) with the subalgebra of ί/(G) generated by the
elements of L. We do in fact make these identifications. We have the
following definition:

DEFINITION. Let L be a Lie subgroup of G (not necessarily con-
nected). An element q e ί/(L) is said to be L invariant if Ad(h)q = q
for all heL

It follows from the above remarks that if an element q is L invariant
for L the identity component of L, then this condition is equivalent
to ad(X)q = 0 for all XeL.

Let ( , ) denote the bilinear form on G defined by (X, Y) =
-jTτace(X, 7T), for I J e G . This bilinear form has the follow-
ing properties:

(i) ( , ) is symmetric and positive definite.
(ii) ( , ) is invariant in the sense that ([X,Y],Z) = <Y,[XT,Z]),

all X,Y,Z e G. In other terms the adjoints of the operators ad(ΛΓ)
with respect to the form ( , ) are given in terms of transposition by
ad(X)* = ad(Xτ). These properties are easily checked from the in-
volution property of transposition, and the standard properties of the
trace.

Let {U^} be any orthonormal basis of G relative to the form ( , )
define the Casimir element of C/(G) to be

p. i j ιιG = - 2^ vjυj-

Of course multiplication is in the universal enveloping algebra. More
generally, if H is any reductive (direct sum of semisimple and abelian)
subalgebra of G, and {Vk} is an orthonormal basis of H, then one
defines the Casimir element of H as Ω# = - Σ ^k Vk The following
facts are standard and not proved here:

(i) For H a reductive Lie subalgebra the definition of Ω// is inde-
pendent of the orthonormal basis chosen.

(ii) The element Ω// commutes with all the elements of H, and hence
with the elements of t/(H). In particular ΩG is in the center of the
universal enveloping algebra of G.

REMARKS, (i) The definitions of the Casimir elements differ from
those usually given for semisimple Lie algebras in so far as the form
( , ) replaces the Killing forms. A Schur lemma argument shows that
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the elements defined here differ from the usual ones by a real constant.
Our definitions have the advantage that by using a standardized in-
variant form the sum formulas given below take a simpler form.

(ii) The choice of sign guarantees that if H is a compact subalgebra,
then the eigenvalues of Ω# are positive.

Note that the basis introduced in §2 is indeed an orthonormal basis
with respect to the form ( , ). Also XΎ = X for X symmetric, and
XΊ = —X for X skew. One has the following:

n-\ n

If one defines the elements Z,ψ, and 2P by

k=\ k=l k=l

then one has from the foregoing remark and from the definitions of
the algebras M1? M2, and Ml 3 in §3,

(5.3) ΩMχ = Z + ΩΛ/, ΩMl = ¥ + Ω M , ΩΛ/3 = ST + ΩM.

Ωκ = Y2+3r + %p + ΩM = Y2+^ + ΩMι = Y

It is useful to define the element ΩL e U(G) by

Then from (5.1),

(5.4) ΩG = H2 - X2 +y + Ωκ = ΩL + Ωκ.

We shall also need to express the elements Ω# and Ω^ in terms of the
bases of W+ and W_ introduced in §3, and more explicitly in (4.4).
Note first that from (4.4) and (5.2)

MT +Y2 = -Σ(Vk + Nk)
2 + (Vo + N0)

2.
k=\

By using the commutation rules -[No, Vo] = \H = [Nk, Vk], one gets
the following two expressions:

(5.5a) *+Y2 = -Σ*k(Vί + Nl)-2Σ
k>0 k>0

(5.5b) =-Σ*k(V? + N})-2Σ
k>0 k>0
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Recall that εk = 1, if k > 1, and β0 = - 1 . Similarly,

k>\

(5.6a) =f2εk(V2 + N2)^2j2
k>0 k>0

(5.6b) =J2ek(V2 + N2)-2f^
k>0 k>0

In particular, from the second expression in (5.3), (5.5a), and (5.5b),

(5.7a)
k>0 k>0

(5.7b) =-Σ£k(v2 + N2)-2Σ ί

k>0 k>0

From (5.4), (5.6a), and (5.7b),

n

(5.8) ΩG = H2 + (n + l)H^4^ekVkNk + &Mr

k>0

PROPOSITION 9. The elements Ω^ and ΩK cire invariant under the
subgroup K and under the Lie algebra K.

Proof. By the above remarks Ω<? is invariant under G, and therefore
under the subalgebra K. Since Ωκ is the Casimir element of the latter
subalgebra it is also invariant under K. Therefore, since ΩL = ΩG -
Ω#, Ω/, is also invariant under K. This assertion is equivalent to the
assertion that ΩL is invariant under the connected subgroup K. By
the coset decomposition (3.1), it remains to check that this element
is invariant under the automorphism X >~> BXB of the Lie algebra
G. However, by one of the defining relations for the Lie algebra G,
BYB = YΎ, for Y e G. Hence, if Y is either a symmetric or a skew
symmetric element of G, then the tensor product Y ® Y is invariant
under this automorphism. Therefore the image modulo J is invariant
under this automorphism. It follows that all the elements defined in
(5.2), (5.3) and (5.4) are invariant under this automorphism.
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6. Invariant differential operators. Next we compute the represen-
tations of the elements of the universal enveloping algebra of G in the
representation dΐlλ. Define the wave operator by

k=0

THEOREM 2. Let λbea pseudocharacter of the subgroup P with B the
complex number defined by Λ(exρ tH) = elt. Then in the representation
dllχ one has:

dUλ(ΩG) = l{l - \{n + \))\

dΠλ(ΩL) = i ( l + (x,x))2Π + (/ - \{n - 1))(1 + (x,x))(E + /I) - /I

dΠλ(ΩMι) =E2 + (n- \)E - (x,x)Π.

Proof. Using the notation of §4, let / e ^(R"*1), p~ιf e
Since the latter space consists of C°°-functions on the group G, (Lem-
ma 6) it makes sense to consider the representation R of U{G) de-
fined by right translations. However, since ΩQ is in the center of
the enveloping algebra and since G is connected, L(g)dL(Ωo) =
dL(Ωo)L(g) all g e G. Moreover for φ a differentiate function
on G one has at the identity e e G: R(ΩG)φ(e) = L(ΩG)φ(e). With
these preliminary remarks one gets for / e ^ ( R w + 1 ) , x e R"+1 from
equation (5.8), by writing φ = p~ι:

dΠλ(ΩG)f(x) = pL{ΩG)φ{v{x)) = pL(ΩG)L(v(x))φ(e)

= PL{v{x))L{ΩG)φ{e) = pL{v{x))R{ΩG)φ{e)

n \

-2ΣεkR{Vk){-λ(Nk))\φ{e)
k=0 /

l))pL(v(x))φ(e) = 1(1 - \{n

One uses the fact that λ acts trivially on W+ and on M\. This proves
the first assertion.
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To get the expression for dϊlA(ΩL) one uses (5.6b) and (4.5). First
note that

1

One computes:

4
k=0 k=0

= (x,x)2Π + 2(x,x)E,
k>0

n

Σ ek(xk(E + II)2) = (x9x)(E + ll)(E + (/ + 1)1),
k>0

n

k=0

= -2(x9x)(E + ll)(E-$(n + 1)1) - (x9x)E,

from which one obtains

k>0

We also have

k=0 k=0 k=0

Noting finally that

dΠλ(H2 - \{n +1)H) = (E + ll)(E + (/ - 1)1 - \{n - 1)1),

the formula for JΠ^(ΩL) follows. The formula for d!lλ(Ωκ) follows
from dΠλ(Ωκ) = dΠλ(ΩG) - dUλ(ΩL).

Let ^(R"* 1 ) denote the linear subspace of the Schwartz space
^(R"* 1 ) consisting of functions satisfying the wave equation: DΦ =
0. The following observations are important for the following discus-
sion:

PROPOSITION 10. The operator dUλ(Ωκ) commutes with the action
Πλ of the subgroup K. Ifl = j(n-l), then the solution set of the wave
equation is invariant under the full group G.

Proof. By Proposition 7 Ω# is invariant under the subgroup K.
Since Π^ is a homomorphism of groups, and dΠλ is a homomorphism
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of Lie algebras the first result follows easily. To establish the second
remark, note first that under the stated condition one has:

It follows from the first remark that this operator commutes with
Ylλ(K), and hence with the opertors dΐlλ(G) for λ(exptH) = ei{n~λ)ΐ.
In particular, this operator must commute with the operators dΠλ(Xij)
= L y , 0 < ij < n, as well as with the dUλ(Xk) = Nk - Yk, 1 < k < n,
and dΠλ(Y) = N o + Vo. One finds that the following commutators:

[dj,{l + (x,x))2Π] = 4xj(l + (x,x))Π,

[E +11,(1 + <x,x))2Π] = 2((x,x)2 + (χ,χ) + 1)D.

It follows that if Φ e ^ ( R w + 1 ) , then also dΠλ(Vj)Φ = -djΦ e
<9b{Rn+x\ and dUλ(H)Φ = (E + /1)Φ e <9b{Rn+ι). The above re-
marks show that the space <9$(UnJrX) is invariant under the operators
corresponding to K as well. However the elements Vj9 H, together
with K span the Lie algebra G. Since G is connected, the second result
follows.

The following result shows that the eigenspaces for the operator
dΠλ(Ωκ) can be expressed in terms of solutions of the wave equations
for any value of the parameter. This result is of independent interest.

PROPOSITION 11. Let Φ satisfy the differential equation d\\χ(£lκ)Φ
= [(m + I)2 - jl(n - 1) - mn]Φ at its regular points. Let Ψ =
(1 + (x,x))~mΦ. Then Ψ satisfies the differential equation Ω^ m Ψ =
-(m + l)(m + l-\{n- 1))Ψ, where

1(1 + (x,x))Π + {m + l-\{n- \))E.

Proof. We have

dnλ(Ωκ)(l + (x,x))mΨ

= (1 + (x,x)Γ{dUλ(Ωκ) + [dUλ(Ωκ), (1 + <x,x)

One computes

[D,(l + (x,x)Γ]

= 4(1 + (JC, JC>Γ"2{(1 + (x,x))m(m + \{n - 1) + mE)

-m(m- 1)}.
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so that,

= -(1 + (x,x))m{(l + (x,x))(m(m - \{n -\) + E) + Urn)

+ (~m2 - 2/ra + nrn)l}.

Thus,

dUλ(Ωκ)Φ

= -(1 + (jc,x))m + 1{!(l + (x,x))Π + (m + / - £(/i - ί))E

The result follows.

Now, if in the above result one chooses the parameter m =
\{n - 1) - /, then the differential equation for the function Ψ sim-
plifies to

Thus one has

PROPOSITION 12. SetΨ = (l + {x,x))2in'ι)~ιΦ. Then on the regular
points, Φ satisfies the equation

dUλ(Ωκ)Φ = \{n + 1)[/ - \{n - 1)]Φ,

if and only ifΨ satisfies the wave equation DΨ = 0.

7. Representation defined by an integral transform of the solution
space of the wave equation. Define the space <9*2(Un) to be the linear
space of rapidly decreasing C°°-functions Φ for which the integrals

(7.1) / Φ(y)conj[Φ(y)]^
JRn rw)

converge. We write r = r(y) = χ/(y,y), where (y, x) for x, y e Rn is the
usual inner product on Rn. We also write for x € FJΛ+1, x = (XQ,X),

with xeRn, XQ €R.
Let r denote the function &:Rn+ι xUn => C defined by <r(x,y) =

exp /{(x,y) + ̂ or(y)}j where as before / = \f-ϊ. Define the transform
S\

(7.2) (SΦ)(x)= f βr(χ,
JR«
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x e Rn+\ Φ e S^2{Rn). One checks easily that the functions x =>
&(x,y) satisfy the wave equation. It follows then from a uniform
continuity argument that the image of S consists of solutions of the
wave equation.

We compute now the transfer of the infinitesimal action of the Lie
algebra G = so(2, n + 1) given in Proposition 8 or in (4.5) to the space
^2(Rn). Let Δ and F denote the Laplacian and the symmetrized
Euler operator on Rn as defined in §2. We also write Ex = E and
E = Ey for the Euler operator on R"+1, and Rn respectively. When it
is necessary to call attention to the coordinate variables the subscripts
will be employed. One has the following result:

THEOREM 3. The image of S is invariant under the infinitesimal
action ofso(2,n + 1) defined by (1), and this action is transferred to

as follows. For the infinitesimal translations:

(i)

For the elements ofM\:

For the infinitesimal scale changes one has:

(iv) (E + l(n-l)l)S=-S(F

For the infinitesimal conjugate translations:

(v) tyS = S -

(vi) JVoS = sqr(y)A.

Proof. Let (, )7 denote the duality S"(R") x<9"(Rn)=>C defined by

(Φ, ψ)y = / Φ(y)Ψ{y) dy,

φ e S?{Un), ψ G <?"(Rn). In this notation the definition of the trans-
form (7.2) can be written:

(7.2)
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For a differential operator T define the operator T* on S*(Rn) by
(T*φ,ψ)y = (φ9Tψ)y> φ e «5*(RΛ), ψ e <9"(Rn). Clearly one has
(AB)* = 2?*,4*, for differential operators A, and i?. A differential op-
erator T is called formally self adjoint if T* = T. If T is formally
self adjoint then (iT)* = -iT. It is clear that the operators of multi-
plication by real-valued functions are formally self adjoint. It is also
a fact that the operators Ay and iFy are formally self adjoint. This
remark follows easily by integration by parts. By integration by parts
one also deduces that the operators id/dyj for 1 < j < n are formally
self adjoint. If U is a differential operator with complex coefficients,
U denotes the operator whose coefficients are the complex conjugates
of those of U.

First for the infinitesimal translations V/ note that:

(7.3)

(7.4)

Then from the above considerations and (7.3),

(VjSφ)(x) = i(-i

=

Similarly from (7.4),

This establishes the first line in the theorem.

In order to establish some of the remaining formulae, note that the
definition of formal adjoint implies

(7.5) (TV(x, )Λl/r)φ)y = (S(T + [T*, l

Then for the operators corresponding to the elements of the subalgebra
Mi, we note that

(7.6) r(y)^P{x9y) = i(xjr(y)
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Then for <pe<9>2(R"),

Formula (ii) follows. For 1 < j < k < n,

(

One uses (7.5) noting that if T is an infinitesimal rotation on Rn, then
T* = —T, and T commutes with functions of r. Formula (7.7) then
implies (iii). To work out the action of H,

(7.8) Ey?(x,y) = i[(x,y) + xor(y)]e(x,y) = Exg(x,y).

Again one uses (7.5), noting that iFy is formally self adjoint, and
{F, l/r] = -I/A*. Formula (iv) follows easily from these observations.
Next, a straightforward computation shows that

(7.9) Ay*{x,y)=-(χ+^yχ+^j *{χ,y)

+ i(n l)

Note that Δyyj = yjAy + 2d/dyj, thus,

(7.10)
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From (7.8) one has for 1 < j < n,

dyj

Thus, using (x, x) = -XQ + (x, x),

(n - 3)1)) «r(*,y)

A +χ;.(£x + J(Λ -

by (4.5). To prove (v) one uses (7.5). Here one sets

Then T = -T*, and

A straightforward computation shows that [T*, l/r] = -i(l/r)d/dyj.
Note that (F + \\)d/dyk = d/dyk(F - £l). Formula (v) follows.

Finally from (7.9) one has

r(y)A,,r(x,y)

From (7.8) then,

(7.11) r{y)Ay?(x,y)

= -i2{-^(x,x)d/dxo-xo(Ex

= 2iΛΓ0r(jc,y),

by (4.5). Therefore for ψ e<5*2(Rn), one has from (7.2) and (7.5)

N0(Sψ)(x) = 4(/r ^

This establishes (vi).
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It is now possible to give the alternative discussion of Theorem 1
mentioned in §2. The formal verification of the table in Theorem
1 is immediate from the last proposition. It is necessary to make
precise the space on which these operators act. We know that the
operators given by (4.5) span a real Lie algebra, because by Proposition
8 they are the differentials of a group action of the group O(2, n + l)
on the space ^{W1*1). Moreover for the case considered here the
parameter / = \{n - 1). Then we know from Proposition 10 the set
of solutions of the wave equation defines an invariant linear subspace
of ^ ( R n + 1 ) . Now consider the function φ = exp(-r(y)), y e Rn.
Clearly this function is in the space S^2(Rn). Hence, it is mapped by
the transform S into the solution space of the wave equation. Let
^ ( R " * 1 ) be the subspace of this solution space spanned by the group
translates Πλ(g)Se~r('\ g e G. By Proposition 10 again, this subspace
is contained in the solution space of the wave equation.

Let ( , ) be the inner product on S*2(Rn) defined by

(7.12) (Φ,Ψ) = / Φ(y)conj[Ψ(y)]^.
JR" rw)

The definition of the space ^2(Rn) and the Cauchy-Schwarz inequality
implies that the integrals in (7.12) exist. Hence this is an inner product

Next note that the transform S is one to one. This remark follows
from Definition 7.2 and the fact that the Fourier transform on Rn is
one to one on the Schwartz space. This is an immediate consequence
of the Plancherel theorem. Hence Sφ = 0 implies exp(ixor(y)(p/r) =
0. Thus φ = 0. This proves the remark.

Since the transform S is one to one the preimage of S^(RnJrX) is a
well defined linear subspace of S^2(Rn), which we denote
One can and does also define an inner product on

(7.13)

Φ,Ψ € ^ 2 (R n ) . Thus the action of G on ^ ( R ^ 1 ) is transferred to
an action of the group G on S^(Rn). It is claimed that this action
is preunitary with respect to the inner product defined in (7.13). It
will follow from this last assertion that there is a uniquely defined
unitary representation the completion of <9ff(Rn) with respect to the
metric defined in (7.12). The claim now follows from the following
considerations: Let S~x denote the inverse of S on the range of the
latter transform. Then by definition the action of the group G on the
space <9ϊ?(Rn) is given by the operators S~ιπλ(g)S for g e G. The
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infinitesimal generators of the one parameter subgroups of this action
are elements of the real linear span of the operators list on the right
in the table of Theorem 1. Thus it is sufficient to check that these
operators are formally skew-adjoint with respect to the inner product
defined in (7.12). For all except for the next to last member of the list
this result is a fairly straightforward consequence of the facts that the
operators />, /Δ, L// dk are formally skew adjoint with respect to the
usual L2-inner product on L2(Rn). The details are left to the reader.
The problematic verification is to check the formal skew-adjointness
of the next to the last operators i(dk (F - j 1) - \Δyk). For this purpose,
let ( , )2 denote the L2 inner product. It is defined on Sff(Rn). Then
for φ, ψ e <9ff(Rn), one has

(7.14) (i(dk(F - , ψ) = (i(dk(F -
9 ψ/r)2

One notes that [(F + \l),dk] = -dk, and [yk,Δ] = -2dk. Thus one
has

(F + \\)dk - \ykA = dk(F I {

The commutator is computed as follows:

For the last term one finds

It follows that

Thus from (7.14)

(i(dk(F - i l ) - ±Ayk)φ, ψ) = -{φ,{dk{F - i l ) -

The next theorem follows immediately from these considerations.
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THEOREM 4. For each positive integer n > 1 there exists a unitary
representation of the groups G. These representations are defined on
the completions of the spaces <9b(Rn+ι) with respect to the Hilbert space
metric defined by (4.13).

In the next paper of this series we shall prove the irreducibility of
these representations. It will also follow from those considerations
that these Hilbert spaces are the completions of the entire images of
the spaces ̂ 2(Rn) under the transform S.
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