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ON THE PROPAGATION OF DEPENDENCES

WlLHELM STOLL

An alternative proof of recent uniqueness theorems by Shanyu Ji
is given. Ji's results are extended to the propagation of certain de-
pendences from analytic subsets to the total space. Also these results
are lifted from Cm to ramified covering spaces of C m . The first and
second main theorems of value distribution are the essential tools in
the proof.

Introduction. Let M be a connected, complex manifold of dimen-
sion m. Let π: M —• Cm be a proper, surjective, holomorphic map.
Let A\,...,Aqbt pure (m -1)-dimensional analytic subsets of M with
dim(^4/ Π Aj) < m - 2 whenever i Φ j . Define A = A\ Π Π Aq. Let
Eι,...,Eg be hyperplanes in general position in the projective space
Pn with n + 1 < q. Let p and k be integers with 2 <p <k <n+ \.
For each λ — l,...,/c let fχ. M —> Pn be a linearly nondegenerated
meromorphic map. Assume that at least one of these maps fχ grows
quicker than the branching divisor of π. Assume that at least one of
these maps fχ has transcendental growth. For each j = 1,...,<? as-
sume that fχl{Ej) = Aj does not depend on λ = l,...,fc. Assume
that for each collection of integers 1 < λ\ < λι < < λp < k the
restricted maps fλι\A,..., fλp\A are not in general position. If

(0.1) kn<(h-p+\){q-n-\)

then f\,...,fk are not in general position (Theorem 4.2). This ex-
tends Theorem B of Shanyu Ji [Jl] to parabolic covering spaces. He
considers the case M = Cm,p = 2,/c = 3 and q = 3n + 1 only. He
concludes that fufι>fo satisfy a certain Property (P), which is perhaps
a bit stronger but rather incomprehensible. Either condition implies
algebraic dependence.

If each map fλ: M -+Pn has rank n, condition (0.1) can be replaced
by

(0.2) k<{k-p+\){q-n-\)

and we obtain the generalization of Ji's Theorem A (Theorem 6.2).
Also Ji's Theorem C is extended (Theorem 6.1). Ji uses a special
differential operator on Cm while we use the First Main Theorem for
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maps in general position. Then the proof becomes much shorter and
clearer. The paper is self contained. The necessary concepts and
results are explained to facilitate the reading of the paper. For the
general theory of value distribution consult Stoll [S5], Stoll [S6], Stoll
[S7], Stoll [S8] and Shabat [SI].

Historically the theory of uniqueness theorems began about 60 years
ago. Many contributed. Some of the relevant papers are listed under
"References". Smiley [S3], [S4] first considered the propagation of
dependences from an analytic subset to the whole space.

1. General position. Let V be a complex vector space of dimension
n + 1 > 1. The vectors oi,. . ., ak are said to be in general position if
and only if for each selection of integers 1 < j$ < j \ < < j p < k
with p < n, the vectors α/0,..., α/p are linearly independent, that is, if
and only if

(1.1) θfcΛ Λα/,^0.

If k < n + 1, the vectors a\9..., ak are in general position if and only
if they are linearly dependent.

The vectors αi , . . . , ak are said to be in special position if and only
if they are not in general position. Take p e N[l,k]. Then αi , . . . , α̂
are said to be in p-special position if and only if for each selection
1 < j \ < - - < jp < k, the vectors α 7 l , . . . , α/p are in special position.
If p = l5 this means aj = 0 for j = 1,..., k. If p < n + 1, this means
α 7 l , . . . , djp are linearly dependent. If 1 < q < p < k and if αi , . . . , ak

are in ^-special position, then they are in p-special position. Also
/c-special position is the same as special position.

Put K* = V-{0}. Let P(F) = F*/C* be the complex projective space
associated to V. Let P: F* -• P(V) be the residual map. For A C V
define P{A) = {P(y)|0 φ ί € A}. Take aly...,ak in P(F). Then aj =
P(dj) with α/ e V* for j = 1,..., k. The points ax,..., ak are said to be
in general position (respectively special position, respectively p-special
position) if and only if m,. . . , ak are in general position (respectively
special position, respectively p-special position). If a\,..., ak are in p-
special position, then 2 < p < k. Obviously a\,...,ak are in 2-special
position if and only if a\ = aι = = ak. Take a\,...,ak in general
position in P(V) with 1 < k < n + 1. Take α, € F* with P(α7) = aj for
j = 1,..., k. Then αi Λ Λ ak Φ 0. Define

(1.2) a\A"Άak = P(αi Λ
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These definitions do not depend on the choice of the representatives
aj.

Let F* be the dual vector space of V. Take a e P(F*). Then
α € V* exists with P(α) = a. Here α: V —> C is a linear map. The
kernel ker α depends on a only and is a «-dimensional linear subspace
of F. Then E[a] = P(kerα) is a hyperplane in P(F). Thus P(F*)
provides a bijective enumeration of all the hyperplanes in P(F). Take
αi,...,α& in P(F*). Then E[a\]9... 9 E[ak] are said to be in general
position if and only if α 1 ? . . . , a^ are in general position.

Let (I): F x F —• C be a positive definite hermitian form on F.
It is called a hermitian metric on F. Also F together with such a
hermitian metric is called a hermitian vector space. The associated
worm is defined by ||y|| = (?|?)ly/2 for all p e F. The given hermitian
metric on F defines associated hermitian metrics on F* and Λ& ^ If
ay = p(αy) G P(F) for 7 = 1,..., fc, then

Π W Π/i λ λ/7 Π Hαl Λ Λ α fc l l
( 1 . 3 ) D α i Λ Λ α ^ D = -7τ—η ΓT—-Tj-

llαill Ίlα*ll
depends on # i , . . . , a^ only with 0 < Oa\ λ Aa^Ώ < 1. The dots over
Λ indicate that D D is not a function of a\ Λ Λ a^ as defined in
(1.2). Infact D^iΛ Λ(2̂ D Φ Ofor A: < n + \, if and only if α i , . . . , ^
are in general position.

An inner product (p, α) between t e V and α e F* is defined by
(?,α) = α(y) G C. If x = P(y) G P(F) and a = P(α) G P(K*), the
distance from x to E[a] is defined by

(1.4)

where 0 < D;c?αD < 1. The distance Πx.aΠ depends on x and a
only. Here Ox, aO = 0 if and only if x e is [α].

These concepts shall be extended to meromorphic maps. Let M
and N be connected, complex manifolds of dimension m and n re-
spectively. Let S be an analytic subset of M with S Φ M. Let
/ : M - S -• ΛΓ be holomorphic. The closure Γ(/) of { (JC,/(*)) |X G
M - S) in Λf x Λ̂  is called the closed graph of / . Let n: Γ(/) —• M and
/ : Γ(/) -+ N be the projections defined by π(x, 7) = x and /(x, y) = y
for all (jc,y) € Γ(/). Then / is said to be meromorphic on M if and
only if n is proper and Γ(/) is analytic. Assume that / is meromor-
phic. Define m = dim M. Then the indeterminacy.

(1.5)



314 WILHELMSTOLL

is analytic with dim /(/) < m-2. The map / extends to a holomorphic
map / : M-I(f) -> N, but does not continue holomorphically to any
larger open subset of M. If AC M and B C N define

(1.6) f(A)=f{π-ι{A))9 Γι(B) = π(Γι(B)).

Let V be a complex vector space of dimension n + ί. If N = P(V),
an alternative definition for a holomorphic map / : M — £ —• N to be
meromorphic on Λf is available: Let £/ Φ 0 be an open, connected
subset of M. A holomorphic map 0 Φ t): £/ —> F is called a represen-
tation (zip eM if peU) of f if and only if / (*) = P(t>(x)) for all
x G C/ - 5 with t>(x) 7̂  0. The map / is meromorphic, if and only if
there is a representation of / at every point of M. A representation
D : U —> V is said to be reduced if and only if dim t>~1 (0) < m-2, which
is equivalent to /(/) n U = d~ι (0) if / is meromorphic. If dy: £// —• V
are representations of / for j = 1,2 with U\ Γ\ U2 φ 0\ then there
is a meromorphic function Λ: t/j n U2 —• C such that t>2 = Λϋi on
ί/i Π ί/2. If Hi is reduced, A is holomorphic; if &i and t)2 are reduced,
A is holomorphic and without zeroes.

For j = l,...,fc let /}: Af -• P(K) be a meromorphic map. Put
/ = /(/j) u -Ul(fk). Then / ^ . . . J ^ a r e said to be in general position
if and only if there is a point x e M -I such that /1 (x),. . . , fk(x) are
in general position. If so, this is true for all x e M - S, where S is
analytic with / C S Φ M. Let Όj•: U —• V be a representation of /)•
for 7 = 1,..., fc. If fc < /ί + 1, then / 1 , . . . , fk are in general position
if and only if κ>\ Λ Λ x>k Φ 0. If so, one and only one meromorphic
map

(1.7) /iΛ ΛA:M->pί/\Fj

is defined by

(1.8) (/jΛ Λ fk){x) = fx{x) Λ Λfk(x) for all x e M - S.

Take k eN and p G N[l,fc]. Let /}: Λf -> P(F) be meromorphic
maps for 7 = l,...,/r. Take x € Aί. Let d7: C/ -* F be a reduced
representation of fj at x for y = 1,...,/:. Then / i , . . . ,/ f c are said
to be in p-special position at x if and only if t>\(x), ...,&*(*) are in
p-special position at x. This definition does not depend on the choice
of the reduced representations t>7. If Q Φ 0 is a subset of Λf, then
f \ , . . . , fk are in p-special position on Q, if and only if they are in p-
special position at every point of Q. If Q = M omit "on <2". Also
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"special position" means "/c-special position". Obviously, f \ , . . . , fk

are in special position if and only if they are not in general position.
If S is a set Sk = S x x S (/c-times). Let N be a connected,

complex manifold. For j = 1,..., k let f}•: M —• N be meromorphic
maps. Put / = /(/i) U U I(fk). Then / i , . . . ,Λ are said to be
algebraically dependent if there exists an analytic subset G of Nk with
G ^ JV* such that (/ (x),..., fk(x)) e G for all x e M -1.

PROPOSITION 1.1. Let M be a connected, complex manifold of di-
mension m. Let V be a complex vector space of dimension n + 1.
For each jGN[l,fc] let fj\ M —• P(F) be a meromorphic map where
k < n + 1. If f\9...9fk are in special position, then f\,...,fk are
algebraically dependent.

Proof Since k < n + 1, an analytic subset Gk of Vk with Gk Φ Vk

is defined by

(1.9) Gfc = {(? 1,...,?it) 6 KΛ |? 1Λ-- Λίik = 0}.

A surjective holomorphic map P^: (V*)k —• P(V)k is defined by

(1.10) P / c (?i, . . . ,^)

for all (Γl rjt) € (K,)*. If 0 φ λj e C and (n,...,jk) eGkn (K)k,
then (λ\t\9...,λιcγιc) ^ GkΠ (V*)k. Hence Gk = P(Gk) is an analytic
subset of P(V)k with Gk φ P(V)k.

Define / = I{fλ) U u I(fk). Take c € M - I. Let d7: U -> F be
a reduced representation of fj at x for j = 1, . . . , A:. Since A: < « + 1
and since / i , . . . , fk are in special position x>ι Λ Λ κ>k = 0. Hence

Λ '-Λ*k(x) = 0. Thus (t)i(x),...,t)^(x)) G ̂  n(K*)^. Hence
)€(?jfc. Thus / i , . . . , fk are algebraically dependent.D

The rank of a holomorphic map is explained in [Al]. Let M and N
be connected, complex manifolds. Let / : M —• TV be a meromorphic
map. Let π: Γ(/) —> M and / : Γ(/) —• N be the projections. Define
rank/ = rank/. Then rank/ = dim TV if and only if f(M - /(/))
contains an interior point.

PROPOSITION 1.2. Let V be a finite dimensional complex vector space.
Let N be a connected, n-dimensional, compact, complex submanifold
of P(V) such that N is not contained in any hyperplane of P(V). Let
M be a connected, complex manifold of dimension m. Take k e N
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with k < n + 1. For each j = 1,...,k, let fi: M -> N be a mew-
morphic map. Let i: N —• P(W) be the inclusion map. Assume that
f\,...,fk are algebraically independent. Then i o fx,...,ι o fk are in
general position.

Proof. If s G N [1, k], the set Gs is analytic in Vs and Gs = PS(GS) is
analytic in P(V)S. Hence Ds = Ns n Gs is analytic in iV5. Abbreviate
gj = i o fj for 7 = 1,...,k. Assume that g\,...,gk are in special po-
sition. A smallest integer p exists such that g\,..., gk are in p-special
position. Then 2 < p < k. We re-enumerate such that ^ i , . . . , ^ - !
are in general position. If p < k, put A = Dp x Nk~p; if p = k, put
A = Dp. Then A is analytic in Nk. The set / = J(/i) U U /(/^) is
analytic in M with dim / < m - 2. Take x e M -1. We claim

(l.Π) . (/iW,.. . ,ΛW)6iί?tΛΓ*.

There is an open, connected neighborhood t/ of x in M - / such that
there is a reduced representation ϋ,: f/ -> F* of gj for j = l,...,fc.
Because g\,..., ^p_i are in general position, z G C/ exists with t>i(z) Λ
• Λ t)p_i(z) ^ 0. The linearly independent vectors t>i(z),..., ϊ>p_χ(z)
span a complex linear subspace L of V with

(1.12) dimL = /? - l < j p < λ ; < t f + l < dimF.

Thus iV ς P(L). Take ^ = P(tυ) eN- P(L) with tυ G F - L, which
implies t>{(x) Λ ••• Λ t)p_i(z) Λ tυ ^ 0. Thus (/i(z),...,^_1,i(;) G
Np -Dp. Therefore

(1.13)

Therefore Aφ Nk.
Because g\,..., gp are not in general position, &i (x)Λ Λt)p(x) = 0.

Hence (/ t(x),..., fp(x)) G Z>p and (/i(x)9...,Λ(x)) G ̂ 4. The claim
is proved. Thus f \ 9 . . . , fa are algebraically dependent contrary to the
assumption. Consequently, gu..., gk are in general position. α

2. Divisors. Let M be a connected, complex manifold of dimension
m. Let O be the sheaf of germs of holomorphic functions on M. For
each a G M, the stalk £)α of £) over a is an integral domain with
unique prime factorization and with a unique maximal ideal mα. For
p G N, let m£ be thepth power of ma. Put m£ = Da. Take 0 / / e O f l .
One and only one non-negative integer μ(f) exists with

(2.1)
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The number μ(f) is called the zero-multiplicity off. If 0 Φ f e Da,
and 0 Φ g e Da, then

(2.2)

(2.3) μ(f+g)>Min(μ(f),μ(g)) iff+gφO.

If μ(f) φ μ(g), equality holds in (2.3). If g e Oa - m*, then (2.2)
implies

(2.4) μ(fg)=μ(f).

Let U Φ 0 be an open, connected subset of M. Let / Φ 0 be a
holomorphic function on U. For each z e £/, the germ fzφ0off
at z is defined. A function μ9 : Ϊ7 —• Z+ called the zero divisor off is
defined by /ιj.(z) = μ(fz) for z e U.

Let z/: Λf -» Z be an integral valued function. Then (U,g,h) is
called a Cousin definition ofv (at α if <z € £/) if and only if U is an
open, connected subset of M and if g Φ 0 and A ̂  0 are holomorphic
functions on U with i/|C/ = μ° - μ°h and with dimίg-^O) ΠΛ-^O)) <
m - 2. The function z/: Λf —> Z is said to be a divisor on Λf if and only
if there is a Cousin definition of v at every point of M. If (£//, gy, Λ7 )
are Cousin definitions of v for 7 = 1,2 and if C/ = £7i Π C/2, then there
exists a holomorphic function k without zeros on U such that gι = kg\
and hι = kh\ on £/. The divisor v is non-negative (as a function) if
and only if there is a Cousin definition (U,g,l) at every point of M,
that is for each a e M, there is an open, connected neighborhood U
of a and a holomorphic function g φθ on U such that i/|C/ = μ°g.

If ^ is an analytic subset of M, the set %K{A) of regular points of A
is open and dense in the topological space A. The set Σ(A) = A-9i(A)
of singular points of A is analytic in Λf and nowhere dense in A. If A
is a pure (m - 1)-dimensional analytic subset of Λf, one and only one
divisor vA on M exists with vA{x) = 1 for all x € 9l(A) and vA(x) = 0
for all x e M - A. Then vA > 0 on M.

The set 3)Λ/ of all divisors on M is a module under function addi-
tion. The zero element of Ί)M is the null-divisor v = 0. Take */ e 2)^/.
The closure suppi/ of {x e M\v(x) Φ 0} is called the support ofv.
Then supp v = 0 if and only if z/ = 0. If v Φ 0, then S = supp v is a
pure (m - 1)-dimensional analytic subset of M. Here v\9ft(S) is locally
constant. Let OS be the set of branches of S. Then {R(S) n 5}#e<B
is the family of connectivity components of 91(5). Each 5 e 55 is
the closure of £H(S) Π 2?. For each B e 05, there is a unique integer
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p(v,B) φθ such that

(2.5) v\(Vt(S)nB)=p(v9B).

The locally finite sum

(2.6) v

is called the analytic chain representation of v. If n e Z, the divisor

(2.7) i/W

is called ίAe truncation ofv at level n. Here 0 φ v > 0 if and only if
/?(*/, B) > 0 for all B e 53 ^ 0 which is the case if and only if

(2.8) suppi/ = {XE M\v{x) >O}φ0.

Let 2s be an analytic subset of M with dim is < m — 2. For each
divisor v: M - E -+ 1 there is one and only one divisor z>: M —> Z
with P|(Af - E) = v. If ι/ > 0, then £ > 0. The map v -± v defines
an isomorphism ΏM-E —• 2)M Thus if ^i and ί/2 are divisors on M
with IΊ|(Aί - E) = v^{M — is), then Ϊ/I = i/2 o n Λ^

Let iV be a connected, complex manifold of dimension «. Let
f:M —• iV be a meromorphic map. Let v\ N —• Z be a divisor
on ΛΓ with /(AT - /(/)) £ supp z/. Then there exists one and only one
divisor f*(u) on M called the pw// back divisor satisfying the following
condition:

(C) Let U Φ 0 be an open, connected subset of M - /(/) . Let
(IV, g, h) be a Cousin definition of i/ with /(C7) c W. Then gof\U φ

(2.9)

If i/ > 0, then /*(ι/) > 0. If f*(i/j) exists for j = 1,2, then
/*(^i + ̂ 2) exists with /*(^i) + f*{yi) = f*(v\ + v2). If A is a pure
(n - l)-dimensional, analytic subset of N with /(Λ/ - /(/)) $ 4̂? ab-
breviate / * ( ^ ) = /*(^) and f\a) = /*({α}) if ^ = {α}.

Now, we will introduce various divisors which will be needed later
on. Let Pi = P(C2) = Cu{oo} be the Riemann sphere. A meromorphic
function on M is a meromorphic map / : M —> Pj with f φ 00. Take
ft € Pi with f φ b. Then f*(b) is a non-negative divisor on M
called the b-divisor of / . If / is a holomorphic function on M, then
μθ = y*( 0). Hence we denote f*(b) = /1}..
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Let V be a complex vector space of dimension n+l. Let / : M —•
P(F) and g: M -+ P(F*) be meromorphic maps. Then / , # are said
to btfree if there exists a point x e M-(I(f)uI(g)) such that /(x) ^
2s [£(*)]. If /, # are free, then one and only one divisor μ^g > 0 called
the intersection divisor is defined by the following condition.

(I) Let U Φ 0 be an open, connected subset of M with reduced
representations t): U —• V of / and tυ: £/ —> F* of #. Since /, # are
free, (Ό,ΪΌ) φ 0. Then μ ^ l t / = μ\^y

If g = a is constant, μ^a is also called the intersection divisor off
with E[a] and we have μfA = f*(E[a]).

Let s be a holomorphic section of a holomorphic vector bundle W
over Λf. The zero set Z{s) = {x e Af|̂ (jc) = 0* e W }̂ is analytic.
Here Z(s) = M if and only if s = 0. Assume that s Φ 0. Let 21 =
{(^'/uΛ OheΛ be the family of all triples (Uλ,tλ,hι) where Uλ φ 0
is an open, connected subset of M9 where hχ Φ 0 is a holomorphic
function on £/* and where ^ is a holomorphic section of W over
C/Λ with dimZ(^) < m - 2 such that j |I7 λ = A^^. Then {Uμ}μeA

is a covering of M. If μ e Λ and ζ e Λ with U = Uμ n Uζ Φ 0,
then μ^ |C/ = //̂  |C/. Hence one and only one divisor μs called the
zero divisor of s exists on A/ such that μs\Uχ = μ^ for all λ e Λ.
Obviously μ5 > 0 and suppμ5 C Z(s) with dimx Z(^) < m - 2 if x e
Z(ί) - suppμ5. If W is a line bundle, suppμ5 = Z(s) and Z(tλ) = 0
for all λ e Λ.

Let X(M) be the holomorphic cotangent bundle on M. Take /? e
N [ 1, m]. A holomorphic form φ of degree p is nothing but a holomor-
phic section of f\pZ(M). Hence μφ > 0 is defined if $P 7̂  0. Recall
that KM = /\m X(M) is the canonical bundle oΐM. It is a holomorphic
line bundle.

Let M and iV be connected complex manifolds of dimension m.
Let / : M —• N be a holomorphic map of rank m. If (7 ^ 0 is
open and connected in M and W is open and connected in JV with
f(U) C W and if φ Φ 0 is any holomorphic form of degree m on N,
then /*(^) φ 0. There exists one and only one divisor β called the
branching divisor of β such that the following property is satisfied:

(B) Let U Φ 0 be open and connected in M. Let W be open and
connected in N with f(U) C W. Let ^ be a holomorphic form of
degree m on N with Z(^) = 0 . Then β\U = μf.^jj.

Obviously β > 0. If J? = supp/?, then / is locally biholomorphic at
x G M if and only if x € Λf - B.
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Let V be a complex vector space. Let Ό : M -> V be a holomorphic
vector function with t) ^ 0. Then M x V is a trivial line bundle. A
holomorphic section 6 of M x V is defined by b(x) = (x, t>(jc)) for all
x G M. Then 6 φ 0 if and only D ^ O . Assume that t> ̂  0. Then
the zero divisor μD = μ$ > 0 is defined with supρμ0 c r ^ O ) . If
X G Γ ^ O ) - suppμD then dimx fc-^O) < m - 2.

Let F be a complex vector space of dimension n + 1. Take k e
N [ 1 , Λ + 1 ] . Let/): M—• P(F) be a meromorphic map for y = 1,...,/:.
Assume that f \ , . . . , fa are in general position. Then there exists one
and only one divisor μ(/iΛ A fa) on M satisfying the following con-
dition:

(G) Let U Φ 0 be an open, connected subset of M. Let t>7 : £/ —» F
be a reduced representation of f} ϊox j = 1,..., k. Since f \ , . . . , fa are
in general position with /: < « + 1, the vector function tυ = Ό\ Λ Λ
\)k: C/ -• /\^: F is not identically zero. Then

(2.10) M/iΛ ΛΛ)|t/ = μm.

Obviously μ(/iλ A^) > 0. The dots indicate that μ is not a func-
tion of /i Λ Λ fa as defined in (1.7) and (1.8) but of the fc-tuple

The following theorem is the fundament of our proof of Ji's theo-
rems.

THEOREM 2.1. Let Mbe a connected complex manifold of dimension
m. Let A be a pure (m- \)-dimensional, analytic subset ofM. Let V be
a complex vector space of dimension n + 1 > 1. Let p and k be integers
with 1 <p <k < n + 1. For each j = l,...,k, let fj: M-> P(F) be a
meromorphic map. Assume that f\,.. ,fa are in general position. Also
assume that f\,...,fa are in p-specialposition on A. Then we have

(2.11) (fc-P + l ) ^ < M / i λ ΛΛ).

REMARK TO THEOREM 2.1. The assumptions imply p > 2. If p = 2,
then / i , . . . , fa are in 2-special position on A if and only if

(2.12)

In his paper [Jl] Ji considers only the case p = 2.

Proof Since vA\(M - A) = 0 and μ(/iΛ λfa) > 0 it suffices to
prove (2.11) on A. Again by the properties of divisors, it suffices
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to prove (2.11) on A — / where / is an analytic subset of M with
dim/ < m - 2. Abbreviate S = suppμ(/iλ Λ^). Then

k

(2.13) / = Σ(S)uΣ(A)Ul(f{ Λ • • Λ/*) U | J /(/,)
7 = 1

is an analytic subset of M with dim/ < m — 2.

Take any x e i - / . Then there exists an open, connected neighbor-
hood U of x with {7 n / = 0 and reduced representations t>y : C/ —> F
of fj for 7 = 1,...,/: and t): U —> h^V of f{ Λ - - A fk. Since
C/n/ = 0, we have tj(z) ^ 0 and t)7(z) / 0 for y = 1,.. .,fc for
all z G ί/. Also their exists a unique holomorphic function h on
£/ such that fit) = DiΛ Λ ^ . Then μ(f\A- - λfk)\U = μ°h and
5 Ί Ί [ / = /z~ *(()). Since f\,...9fk are in /7-special position on ,4, we
have t)i(z)Λ Λdp(z) = 0 and t>i(z)Λ Λt)^(z) = 0 for all z G C/n^.
Since rj(z) φ 0 for z G U Π ̂ , we obtain λ(z) = 0 for all z G t/ Π ^ί.
Thus AΠU gSnU. Consequently x e S. Thus A- I C S. Then

Again consider the local situation constructed above. Since Unl =
0, we have x G ίH(yί)nίH(5r) with i C 5 and d im x A = m-1 = dim^ 5.
Therefore we can take U such that U ΠA = U ΠS = U Π 9t(̂ 4) =
UnΐR(S) is a connected, ( m - l)-dimensional complex submanifold of
U and such that there is a biholomorphic map a = (β,χ): U —• PxQ.
Here /* is a ball centered at β(x) = 0 e Cn~ι and Q is a disc centered
at χ( c) = 0 G C . The restriction β: U Π ̂ 4 —• P is biholomorphic.
Let J = (y?|J7 Π ̂ ) - 1 : P -^ [/ n ^ be the inverse of β. We have
^-1(0) = A n t/ with /(z) φ 0 for all z G C/. Hence ^ | C / - μ°χ.
The Hartogs series development of d7 delivers holomorphic vector
functions ΪΌJ: P -+ V and 37: C/ —> K such that

(2.14) O y = tny o ̂  + ^ - 3>/.

Since J : P -> C/ Π A is biholomorphic and χ o δ — 0, we obtain m7 =

Take any 9 € N[l,fc]. Let Tq be the set of all increasing, injective
maps τ: N[l,g] —> N[l,fc]. If 1 < 9 < fcandif τ G 7^, then there exists
one and only one τ G Γ^_^ such that (Jmτ) Π (Jmτ) = 0 . Obviously,
we have (Jmτ) U (Jmτ) = N[l,fc]. One and only one permutation
π τ : N[l,fe] -> N[l,fc] is defined by π τ(;) = τ(j) for j =l,...,q and
πτ(y) = τ(j - q) for all j = 9 + 1,...,/:. \ϊ q — k, define π τ = τ. If
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τ eTq with ήΈN[l,/c] define ετ = signπτ and

(2.15) tυτ = tυ τ ( 1 ) Λ • Λ toτ{q): P - /\ V,
Q

(2.16) 3τ=3τ(i)Λ Λ3τ t e ): U -> /\ V.
q

The identity i: N[l,k] -> N[l,k] is the only element of Tk. Define

(2.17) 3 = 3,=3iΛ Λ3^:C/

lfqeN[l,k- 1], define

(2.18) '9*=X>(tυ τojS)Λ3 f: U ^ f\V.
τeTq k

The vector functions tυτ?3τ?t)^ and 3 are holomorphic.
Because f\9...9fk are in p-special position on A with 2 < p < k <

n + 1, we have tυτ = 0 for all τ e Tq with p < q <k. Therefore we
obtain

(2.19) h - t ) = υ ι Λ - - Λ Ό k = Σ / " % + X k ' h
q=\

(2.20)

Since tj(z) Φ 0 for all zEί/5 (2.20) implies

(2.21) M/iΛ • Mk)\U = μ*>(k-p+ l)μ°χ = (k -p + l)vA\U.

Thus (2.11) holds on M - I. Since / is analytic with dim/ < m - 2,
the inequality (2.11) holds on M. D

3. Value distribution theory on parabolic manifolds.

(a) Parabolic manifolds. Let AT be a connected, complex manifold
of dimension m. Let τ be a non-negative function of class C°° on M.
For 0 < r e R define

(3.1) M[r] = {xe M\τ(x) < r2}, M(r) = {x e M\τ(x) < r2},

(3.2) M(r) = {xe M\τ(x) = r2}, M* = {x e M\τ(x) > 0}.

The exterior derivative d splits into d = d + d and twists to d c =
(i/4π)(d-d). Define

(3.3) ϋ = ddcτ on M, ω = rfrfc log τ on Λf*,

(3.4) σ ^ ^ l o g τ Λ ω ^ 1 on M*.
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Then τ is said to be a parabolic exhaustion and (Af, τ) a parabolic
manifold if and only if τ is unbounded, M[r] is compact for all 0 <
Γ G R and

(3.5) ω > 0 , dσ = ωm = 0^vm on AT*.

Then v>0onM. Define <&τ = {r e R+\dτ(x) φ 0 for all x e M{r)}.
Then R+-(£τ has measure zero. If r G <£τ, then Af (τ) is the boundary of
Af(r) and M{r) is a differentiate, (2m - 1)-dimensional submanifold
of class C°° which we orient to the exterior of M(r). A constant ς > 0
is defined by

(3.6) ς= f σ i f r e £ τ , / υm = ςr2m i f O < r e R .
JM(ή JM[r]

For example (Cm, TQ) is a parabolic manifold where

(3.7) τ o ( z 1 , . . . , z m ) = | z 1 | 2 + + | z m | 2 if ( z b . . . , z m ) e C m .

Here <8τo = R+ and ς = 1.
Let M be a connected complex manifold of dimension m. Let

π: Λf —> Cm be a surjective, proper holomorphic map. Then τ = τooπ
is a parabolic exhaustion of M. Then (M, τ) is called a parabolic cov-
ering space ofCm. Let /? be the branching divisor of M. Then (Af, τ)
is said to be affinely branched if and only if the (m - 1)-dimensional
component of π(supp/?) is affine algebraic.

The disjoint union Pm = Cm U Pm_i is the projective compactifica-
tion of C m . The parabolic covering space (Af, τ) is said to be α#z«£
algebraic if and only if the following conditions are met:

(1) M is an affine algebraic manifold with projective closure M.

(2) π: Af —• Cm extends to a holomorphic map π: Af —• P m =

If so, π(supp β) is an affine algebraic variety in C m of pure dimension
m — 1 if β = 0. In particular, (Af, τ) is affinely branched. Every con-
nected m-dimensional affine algebraic manifold Af can be represented
as an affine algebraic, parabolic covering space (Af, τ) of C m .

(b) Divisors on parabolic manifolds. Let (Af, τ) be a parabolic man-
ifold of dimension m. Let v be a divisor on Af. Put S = suppz/ and
S[t] = Sn M[t] for 0 < t e R. The counting function nv: R+ -» R of v
is defined by

(3.8) nv{t) = * 2~ 2 m / for all t e R+.
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Then nv{t) -> nv(0) for / -> 0 with t > 0. We have

(3.9) nw(t) = / vωm~x + nu{0) for all teR+.
JS[t]

If Ϊ/ > 0, then nv > 0 increases, define

(3.10) 0 <«„(<»)= lim «„(*)< oo.

A divisor v > 0 is said to have #$«e growth if and only if # (̂00) <
00. A divisor v > 0 on an affine algebraic parabolic covering space has
affine growth if and only if π(suppz/) is affine algebraic in Cm.

If v\ and vι are divisors on Af, then nVχ+Vl — nVχ + nVl. If (Af, τ) =
(Cm, τ0) and if 1/ is a divisor on Cm, then ^(0) = i/(0).

For all 0 < 5 < r the valence function Nv of ẑ  is defined by

(3.11) [
J s

If I/!,I/2 are divisors on Af, then Λ^1+ί/2 = NUχ + NVl. lΐ v > 0, then
Np > 0 increases with r and decreases with s. We have

ΛΓ fr v"i
(3.12) lim ^ ' ; = Λ l / (oo) < 00.
V ^ r^cx) logr V } -

(c) 77ẑ  F/r̂ ί Main Theorem. Let (AT, τ) be a parabolic manifold
of dimension m. Let F be a hermitian vector space of dimension
n + 1 > 1. Define τv: V -> R+ by τF(ϊ) = ||?||2 for all y e K. Then
there exists one and only one form Ω of bidegree (1,1) on P(V) with

(3.13) P*(Ω) = ddc\ogτv on F*.

The form Ω is positive and of class C°°. It is called the Fubini-Study
form on P(F).

Let / : M —• P(F) be a meromorphic map. For all / > 0 the spheri-
cal image function Af of / is defined by

(3.15) AAt) = t2-2m ί /*(Ω) Λ υm~ι.
JM[t]

Then 4̂/ > 0 increases. Define -4/(0) = limo<ί->o-4/(0 G R+ and
Afipό) = limr_oo -4/(0- F°Γ 0 < t e R we have

(3.16) Λ / ( 0 = / /*(Ω)Λω— ι+Af(0)
JM[t]

for all / > 0. The map / is said to have rational growth if .4/(oo) <
00 and transcendental growth if Af(oό) = 00. If (Af, τ) is an affine
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algebraic parabolic covering space of C m , then / has rational growth
if and only if / is rational. In the general case / is constant if and
only if Af(oo) = 0.

For all 0 < s < r G R the characteristic function Tf of / is defined

by

(3.17)

Here Tf > 0 increases in r and decreases in s. Also / is constant if
and only if Tf = 0. If / is not constant, then Tf(r, s) —> oo for r —> oo.
Also we have

(3.18) lim Z f M = ,4 (oo).
v ' r-κx> l o g r JK }

The non-constant meromorphic map / : M —• P(V) is said to grow
quicker than the non-negative divisor v: M —> Z+ if and only if

Let #: M —• P(V*) be a meromoφhic map such that fg is free.
Then riftg > 0 denotes the counting function and Nfg > 0 the valence
function of the intersection divisor μfg > 0. Also D/, gD φ 0. A
continuous function my ̂  on R+ called the compensation function of
/ and g is uniquely defined by

(3.20) mLg(r) = f ^ log ϋ y ^ ϋ ^ > 0 for all r e «τ.

For 0 < 5 < r G R, the FOTί Main Theorem holds

(3.21) 7>(r,5) + Tg(r,s) = NLg(r,s) + mLg(r) - mLg(s).

If g = a e P(V*) is constant, then Ta{r,s) = 0. The meromoφhic
map / is said to be linearly non-degenerated if and only if (/, a) is
free for all a e P(F*). If so, then

(3.22) Tf(r,s)= f Nfa(r,s)Ω* for0<^<rGR
JaeP(V*)

where Ω* is the Fubini-Study form on P(V*).

(d) The Second Main Theorem. Take 0 < s e R. Let g and h be
real valued functions on R(j,+oo). We write g < h if and only if

there exists a set E of finite measure in R(s, +oo) such that g{r) <
h(r) for all r G R(5?+oc) - E. Since our functions may depend on
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several parameters we write g(r) < h(r) instead of g < h where the

function variable is always denoted by r and E may depend on the
other variables.

THEOREM 3.1. Second Main Theorem. Let (M,τ) be a parabolic
covering manifold of Cm with branching divisor β. Let V be a hermi-
tian vector space of dimension n + 1. Let f:M^P(V)bea linearly
non-degenerated meromorphic map. Let a\,...,aq be in general posi-
tion in P(V*) with q > n + 1. For j = l,...,q, let N{

f

n^ > 0 be the

valence function of the truncation μ^a of the intersection divisor μfdj.

Take s > 0. Then there is a constant c > 0 such that

(3.23) (q-n-l)Tf(r9s)

7=1

+ c(log Tf(r9s) + \og+Nβ(r,s) + log(r/s)).

Proof We refer to Stoll [S7, pp. 169-180]. The assumptions (Bl)-
(B5) on p. 171 are satisfied with Ricτ(r,s) = Nβ(r,s) by (11.27). There
exists a holomorphic form B of bidegree (m - 1,0) on M such that
τ majorized B with majorant Y(r) < 1 + r2n~2. Thus assumptions
(A1)-(A8) are satisfied. Therefore (11.23) holds. Thus a constant
c> 0 holds such that

(3.24) (q-n-l)Tf{r,s) + Ndιι(r9s)

7 = 1

+ c(log Tf(r, s) + log+ Nβ(r, s) + log(r/s)).

By [S7, Lemma 13.3, p. 180, estimate 13.21] or by [S8, Theorem
8.7, p. 260, estimate (8.25)] we have

(3.25) έ^/ Γ ^)^^>^) + Σ^/2y(
Γ^)

7 = 1 7 = 1

Now (3.24) and (3.25) imply (3.23) immediately. D

(e) The First Main Theorem for general position. Let (M, τ) be a
parabolic manifold of dimension m. Let V be a hermitian vector
space of dimension n + 1. For j = l,...,fc let /}: M ~> P(V) be a
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meromorphic map. Assume that 1 < k < n +1. Assume that f \ , . . . , fk

are in general position. The divisor μ(/iλ - Kfk) > 0 exists. Let
NβΛ'- Kfk be the valence function. Also Π/iλ Λ^D = 0. Hence
the compensation function

(3.26)

exists for all r e <£τ and extends to a continuous function on R+. For
0 < . s < r e R w e have the First Main Theorem for general position

k

(3.27)
7 = 1

(see Stoll [S8, p. 146, equation (3.36)]. Now (3.27) yields the estimate

k

(3.28) Nfχh..κfk{r9s) < ] Γ Tfj(r9s) + mM...Afk(s)
7=1

for 0 < s < r e R.

4. The propagation theorem for maps into projective space. In this
section we consider the case of a meromorphic map / : M —• P(V).
In §6 we shall consider the case of a dominant meromorphic map
f:M-+N where M and N are connected complex manifolds and N
is a compact projective variety. Dominant means dimiV = rank/.

THEOREM 4.1. Let (Af, τ) be a parabolic manifold of dimension m.
Let Abe a pure (m - \)-dimensionaly analytic subset ofM. Let NA be
the valence function of the divisor vA. Let V be a hermitian vector space
of dimension n + 1. Let p and k be integers with 2 <p <k <n + \.
For λ = 1,...,fc let fχ\ M —• P(V) be a meromorphic map. Assume
that f\,...,fk are in general position on M. Assume that f\,...,fk are
in p-special position on A. Then for 0<s<reRwe have

k

(4.1) (k -p + \)NA{r,s) < £ Tfi{r9s) + mfιA...Afk(s).

Proof. Theorem 3.1 implies

(4.2) (k-p+ l)NA(r9s) < NM^k(r9s).

Now (3.28) and (4.2) imply (4.1). D
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THEOREM 4.2. First Propagation Theorem. Let (M9 τ) be a parabolic
covering manifold of Cm with branching divisor β. Let V be a hermi-
tian vector space of dimension n + 1 > 1. Let p and k be integers
with 2<p<k<n+ί. For λ = l,...,fc let fλ: M -> P(V) be
a linearly non-degenerated, meromorphic map. Assume that at least
one of these maps fχ grows quicker than the branching divisor β. As-
sume that at least one of these maps fχ has transcendental growth. Let
a\,...,aq be in general position in P(V*) with q > n + 1. Assume
that for each j = 1,...,# the analytic set Aj = s u p p μ ^ does not
depend on λ= 1,..., fc. Assume that dim(^4yi Π Aj2) < m - 2 whenever
1 < j \ < h < Q Define A = A\ U U Aq. Assume that f\,.. ,fk are
in p-special position on A. Assume that

(4.3) nk<(k-p+l)(q-n-l).

Then fι,...,fk are in special position on M. In particular, f\,...,fk
are algebraically dependent.

Proof. Assume that / i , . . . .fa are in general position on M. Since

nvAi > μ j i , ίoτ J = *> ># and λ = 1,...,fc, and since vA = vAx +
\-i/Aq> Theorem 3.1 implies

(4.4) (q - n - \)Tfk{r,s) < nNA(r,s) + \n{n + l)Np(r,s)

+ cλ(\og Tfλ (r, s) + l o g + ^ (r, s) + log r/s).

Define T=Tf{-\ \-Tfk and c = Cγ-\ h ck > 0. Addition yields

(4.5) (q - n - l)T(r9s) < nkNA{r,s) + \n(n + \)kNβ{r,s)

+ ck(\og T{r,s) + \ogNβ(r,s) + log r/s).

Here

fλ c\ Nβ(r>s) π Λ logr/5

(4.6) -φ-—Γ -+ 0 and * ' -^0 for r -> oo.

Hence (4.1), (4.5) and (4.6) yield

(4.7) (q-n- l)(k-p + 1) < nk

which contradicts (4.3). Therefore f \ , . . . , fa are in special position on
M. By Proposition 1.1, / j , . . . 9fk are algebraically dependent. D

If M = Cm and if π: M -> C m is the identity, jff = 0. Thus Theorem
4.2 extends Theorem B of Ji [Jl] who considers the case M = Cm,p =
2,fc = 3 and p = 3n + 1 only. He concludes that fufi^h satisfy



ON THE PROPAGATION OF DEPENDENCES 329

a certain condition (P), which is perhaps a bit stronger but rather
incomprehensible.

If we assume p = k in Theorem 4.1 we obtain a special case of a
Theorem of Smiley [S3], [S4] see also Stoll [S7, Theorem 13.8 and
Theorem 13.10].

5. Value distribution theory for dominant maps. Let M and N be
connected, complex manifolds. Put m = dim M and n = dim N. A
meromorphic map f:M-+Nis said to be dominant if and only if
rank/ = n, which is the case if and only if f(M) has an interior
point. In the case of an algebraic map this means precisely that f(M)
is dense in N. In the non-algebraic case, f(N) may not be dense if
/ is dominant. If / : M -> N is a dominant meromorphic map, then
m > n. The Carlson-Griffiths-King theory of value distribution [Cl],
[Gl] applies to dominant meromorphic maps. We will not outline the
most general setting of this theory (see Stoll [S5]) but restrict ourself
to a special case. We will make the following assumptions.

(Al) Let (M, τ) be a parabolic covering manifold of Cm with branch-
ing divisor β.

(A2) Let V be a finite dimensional hermitian vector space.
(A3) Let N be a compact, connected, complex submanifold of P(F).
(A4) Put dimJV = n and let i: N —• P(V) be the inclusion map.
(A5) Assume that N is not contained in any hyperplane of P(V).
(A6) Let K be the canonical bundle of N. Let H be the hyperplane

section bundle of P(V) and define L = H\N.

Here (A5) is equivalent to the requirement that / is not linearly
degenerated. Take a eP(V*). Then a = P(α) with α e V*. Then α
defines a section α e Γ(P(V),H) with E[a] = supρμa. This section
restricts to a holomorphic section α = oo/ = α|Γ(ΛΓ,L) with

(5.1) EL[a] = suppμa = E[a] n N.

LEMMA 5.1. Assume (A1)-(A6). Let f:M->Nbea dominant
meromorphic map. Define g = / o / : M —• P(V). Take a e P(F*).
Then g,a are free.

Proof. Assume that g,a is not free. Then f{M - /(/)) C E[\ά\.
Because f(M - /(/)) contains an interior point of N, we obtain N =
EiXa] which contradicts (A5). D

Therefore we define the value distribution functions of / as those
of g = i of. Hence Af = Ag9Tf = Tgynu = ng^Nu = NgA,
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^a = mgia and the First Main Theorem holds

(5.2) Tf{r9s) = Nu{r,s) + mu{r) - mu{s) if 0 < s <r G R.

Take a\9...,aq in P(F*). Then i?L[^iL--->^L[^l a r e s a id to have
strictly normal crossings at x e EL[a\] u U EL[aq] = £ if and only
if the following property holds:

(H) Take any holomorphic section s of L over an open, connected
neighborhood U of x in N with Z($) = 0. Pick α, G f? with P(α/) =
α7 for j = 1,..., q. Then there are holomorphic functions hj Φ 0 on
[/ such that α/|ϊ/ = hjS for y = 1,..., q. Let 1 < yΊ < < j t < q be
any collection of integers with x e EL[ajλ] for λ = l,...,t. Then

(5.3) dhJι(x)Λ...Adhjl(x)ΪO.

Thus iϊEι\a\],..., Eι\aq] have strictly normal crossings and if Ix =
{j e N[l,^]|x G ̂ [fly]} then #IX < n.

LEMMA 5.2. Assume (A2)-(A6) with N = P(V). Take au...,aq

in P(V*). Then E[aj] = EL[aj] for j = 1,...,# and a\,...,aq are
in general position if and only ifE[a\],..., E[aq] have strictly normal
crossings.

Proof Take any x = P(y) e P(V). Then E(x) = {λι\λ e C} is the
complex line defined by x. Take any b e V*. Then b: V —> C is a
linear map and £[Z>] = P(kerb). Also A(b) = {? G F|b(y) = 1} is an
^-dimensional affine plane in V and P b = P: A(b) —> P(V) - E[b] is
biholomorphic. Take z e P(V) and let Tz be the holomoφhic tangent
space of P(V) at z. If z e P(V) - E[b], then Tz can be identified via
P b with kerb affixed to 3 = P^ !(z) G -4(b) as tangent space of A(b).
Thus P(a) = z with b(3) = 1.

Now b defines a section b = b of H = L on P(V) by b(x) = b\E(x)
since H is the dual bundle to the tautological bundle {(.x,?) G P(F) x
K|y G E(X)}. Then Z(b) = £[&].

For each j G N[l,^r] take α7 G K,* such that P(α, ) = α7. Take
x = P(y) in P(F) and 6 = P(b) G P(K*) with b(y) = 1. Then there is a
holomorphic function hj on P(F) — £[£>] such that α; = Λyb. Take any
z G P(K) - E[b]. Then αy (z) = Λy(z)6(z). If 3 e A(b) with z = P(3),
then aj(z) = oy(a) and b(z)(3) = 1. Hence hj(z) = ajd)/b(i). If
d G kerb = Γz, then

(5.4) dhjiz,t>) = aj(υ).
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Assume that a\,...,aq are in general position. Take x e E[a\] u
• U E[aq]. Take any collection of integers 1 < j \ < < j t < q
with x E E[ajx] for λ = 1, . . . , # . Determine b,b,α/,y as above. Then
aJλ (y) = 0 for λ = 1,..., t. If t > n + 1 then α; , , . . . , ajn+ι are lin-
early independent. Hence y = 0 which contradicts b(y) = 1. There-
fore t < n. By general position, α ; p . . . , α 7 r are linearly independent.
If a/,Ikerb,...,aJt\kerb are linearly dependent, there are constants
C\,...9ct not all zero such that α = C\ajx + ••• + ctaJt e V* with
kerb c kerα. Also 0 Φ y e kerα - kerb. Hence dim ker α = # + 1
and α = 0. Since α 7 l , . . . , aJt are linearly independent, α = 0 is im-
possible. Thus dhjx{z) = α;,I kerb,...9dhj t(z) = a/Jkerb are linearly
independent. Hence E[a\],...,E[aq] have strictly normal crossings.

Assume that E[a\],...,E[aq] have strictly normal crossings. Take
any collection of integers 1 < j \ < < j t < q with t < n + 1, with t <
n + 1, then we have to show that α 7 l , . . . , α7/ are linearly independent.
Assume that α 7 l , . . . , α7/ are linearly dependent. Then ^eV* exists such
that ajλ(t) = 0 for λ = 1,..., t. Thus x = P(y) G E[aj{] Π ΓΊ £[fl/J.
Strictly normal crossings implies t < n. Since o ;,,...,α 7 / are linearly
dependent, also α7l | ker b, . . . , ajt \ ker b are linearly dependent. By (5.4)
we obtain dhj{{x) Λ Λ dhjt(x) = 0 which contradicts (5.3). Thus
a/,,..., a/, are linearly independent. D

Now we will make the following additional assumption:
(A7) Take au...,aq in P(F*) such that EL[aχ],...,EL[aq] have

strictly normal crossings.
The hermitian metric on V defines a hermitian metric / along the

fibers of H whose Chern form c(H, I) is the Fubini Study form Ω on
P(V). Naturally, / restricts to a hermitian metric / along the fibers of
L such that c{L, ϊ) = ι*(c(H, /)). Thus if / : M —> TV is a meromorphic
map and g = i o f we obtain

(5.5) s*(Ω) = gΊ*(c(H,l)) = /*(c(L,/)),

Tf(r,s) = Tg(r,s) = Γt2'2*" ί /*(c(L,/)) Λ υm'1^
Js JM[ί] t

such that our definition of the characteristic agrees with [S5].
Let Φ be the set of all real numbers κ R + such that there is a

hermitian metric K along the fibers of K such that

(5.6) c(K,κ) + vc{L,l)>0 onJV.

Since c{L, /) = Ω > 0 we see that Φ Φ 0. Define

(5.7) [K* : L] = inf Φ.
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THEOREM 5.3. Second Main Theorem for dominant maps. Assume
(A1)-(A7). Assume that q > [K* : L]. Let f:M-+Nbea dominant
holomorphic map. Take s > 0 and ε > 0 with ε < q - [K* : L\. Define
Aj = supp/" 1 (EL[aj]) for j = 1,..., q and A = Ax U U Aq. Then
there is a constant c > 0 such that

(5.8) (q-[K*:L]-e)Tf(r,s)

< NA (r, s) + Nβ (r, s) + c log Tf(r, s) + ε log r.

Proof. We want to apply Theorem 18.13E in [S5]. Obviously as-
sumptions (D1)-(D8) are satisfied. Assumption (D9) requires: "Let
F be an effective Jacobian section of / dominated by τ. Let Y be
the dominator". We will not discuss the definition of these terms. An
effective Jacobian section is a holomorphic section F ψ 0 in a cer-
tain line bundle on M. Under our assumption [S5, Proposition 18.6]
provides us with an effective Jacobian section F dominated by τ with
Y = m. Hence the assumptions (D1)-(D9) are satisfied. Let μ? be
the zero divisor of F in Theorem 18.13E; the exceptional set E in R+

is picked such that fExε dx < oo. Because xε > 1 if x > 1, the set E
has finite measure. Thus Theorem 18.13E with 18.17 implies

(5.9) NμF(r,s) + (q - [K* : L] - ε)Tf(r,s)

+ c\ log Tf{r, s) + c2 log m + C3 log r

where C\ > 0 and cι > 0 are some constants and c?> = 2εςn. We have
Ricτ(r,s) = Nβ(r,s) in our situation. Replacing ε by another smaller
ε, we can replace C2logm + c^logr by εlogr. Lemma 4.1 by Smiley
[S3] (see also Drouilhet [Dl]) ascertains

(5.10) ΣNuλr>sϊ ~ N»Λr,s) < NA(r,s).
7=1

Thus (5.9) and (5.10) imply (5.8). D

Now we proceed to replace the holomorphic map / in Theorem
5.3 by a meromorphic map. Assume that (A1)-(A7) holds and that
f:M-+Nisa dominant meromorphic map. Recall that we are given
a proper, surjective holomorphic map π: M —> Cm such that τ = | |π | | 2

and that β is the branching divisor of π. Let Γ(/) be the closed
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graph of / in M x N and let ζ: Γ(/) -> M and / : Γ(/) - TV be the
projections. The map ζ is proper and ζ: Γ(/) - ζ~ι (/(/)) —> Λf - /(/)
is biholomoφhic. Let λ\ M -* Γ(/) be a resolution of singularities
of Γ(/). Then Λf is a connected, complex manifold of dimension ra.
The map A: Λf —> Γ(/) is proper, surjective and holomorphic. The set
/(/) = λ-ι(ζ~ι(I(f))) is analytic with /(/) φ M. The map

(5.11) λ: M-i(f)-+Γ(f)-ζ~ι(/(/))

is biholomoφhic. The map p = ζ o λ: M -+ M is proper, surjective
and holomorphic. The map p: M-Ϊ(f) -» M-I(f) is biholomoφhic.
The map π = nop: M -> Cm is proper, surjective and holomoφhic.
Then τ = τo/? = τ o o π i s a parabolic exhaustion of M. Therefore
(A/, τ) is a parabolic covering manifold of Cm. Let β be the branching
divisor of π. Because p: M - /(/) -» M - /(/) is biholomoφhic we
have β(x) = β(ρ(x)) for all c G M - /(/).

LEMMA 5.4. Assume that there are given divisors v on M and v on
M such that ϋ{x) = v{p{x)) for all x e M - /(/). Take 0 < s < r.
Then

(5.12) Nfi{r,s) = Nu(r9s).

Proof. Define S = suppi/ and S = suρpz>. Define SQ = S Π /(/)
and 5Ό = 5 ΓΊ /(/). Put ^ = S - So and S{ = 5 - So. Then p: Sj ~>
5Ί is biholomoφhic. Let C be a branch of 5Ό Then C = p(C) is
an irreducible analytic subset of /(/). Hence dimC < m - 2. Let
j : C -+ M and j : C —• Λf be the inclusion maps. The map p restricts
to po: C -+ C such that j o ρ0 = p o ]. Because dimC < m - 2, we
have;*(um"1) = 0. Thus

(5.13) j*(ΰm-{) = j*{ddcτm-{) = j*{(ddcτop)m~ι)

) ^ α ^ ) ) /o() = o.
Take 0<teR. We obtain

(5.14) / ϋυm-χ /
JS[t] JSilt] JSo[t]

= f
S[t]

Thus ftj> = «i/ which implies (5.12). D
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In particular N& = Nβ. The map / = foλ is holomorphic. If

xeM- /(/), then f(x) = f(λ(x)) = f(ζ(λ(x))) = f(p(x)). Thus

/ has rank n. If a e P(F*), then μ^a{p(x)) = βfa(x)- Define Aj =

supp/zy β and yly = supp//^ = y~ (-£χ[Λy]). Then Aj — I(f) =

p~x (Aj - /(/)). Define A = AιU'-UAq and i = ̂  U U Aq. Then
we have

(5.15) NA(r,s) = NA{r,s) for all 0 < s < r.

Because p: M - /(/) -• M - /(/) is biholomorphic and / = / o p on
M - /(/), we have

(5.16) / /*(Ϊ*(Ω)) Λ β ^ 1 = / /?*(/*(/*(Ω)) Λ o ^ 1 )
^M[ί] JM[t]

= / /*(z*(Ω)Λϋ m - 1

for all t > 0. Thus 7% = 7y. The assumptions of Theorem 5.3 are

satisfied for f,M, τ9Aj,A. Hence (5.8) holds accordingly. With these

identities we obtain

THEOREM 5.4. Second Main Theorem for dominant meromorphic

maps. Assume (A1)-(A7). Assume that q > [K* : L]. Let f\M -*

N be a dominant meromorphic map. For j = I9...9q define Aj =

suppμ/ j α / Put A = A\ U U Aq. Take positive real numbers s and ε

with ε <q - [K*: L]. Then there is a constant c> 0 such that

(5.17) (q-[K*:L]-ε)Tf(r,s)

< NA(r9s) + Nβ(r,s) + clogTf(r9s) + εlogr.

6. Propagation Theorems for dominant holomorphic maps.

THEOREM 6.1. Second Propagation Theorem. Assume (A1)-(A7).

Assume that q > [K* : L]. Let p and k be integers with 2 < p < k <

dim V. For λ = I9...9k let fλ: M —• N be dominant, meromorphic

maps. Assume that at least one of these maps fχ grows quicker than

the branching divisor. Assume that for each j = I9...9q the analytic

set Aj = supp///λj^ does not depend on λ = 1 , . . . ,&. Define A =

A\ u U Ak. Define gχ = i o fλ for all λ = 1 3 . . . , k. Assume that

g\>- ->gk a r e inp-specialposition on A. Assume that

(6.1) k<(k-p+l)(q-[K*:L]).
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Then g\9...,gk are in special position on M and f \ , . . . , fa are alge-
braically dependent

Proof. Since Tfλ = Tgλ for λ = l,...,k, T = Tfι + ••• + Γ Λ =
7^, H yTgk. Assume that g\9...,gk are in general position. Then
(4.1) implies

(6.2) (k-p+l)NA(r,s) < T(r,s) + mgιA...Agk(s).

Take ε e R with 0 < ε < q - [K* : L] and 0 < s e R. Then (5.17)
holds for each fχ where 4̂ and β do not depend on λ. Also c can be
taken independently of λ and Tfλ < Tforλ= l,...9k. Hence addition
implies

(6.3) (q-[K*:L]-ε)T(r,s)

< kNA(r,s) + k(Nβ(r,s) + clogT(r,s) + εlogr).

The constant in (6.2) can be absorbed into εlogr. Hence (6.2) yields

(6.4) (q-[K*:L]-ε)

k k

Here T(r,s)/logr -> Agι(0) + + Agk(0) < cx> for r -• oo where the
limit is positive. Hence a constant B > 0 exists such that

(6.5) (q - [K : L] - ε) <
k J

Thus ε ~> 0 yields (fc - p + \){q - [#* : L]) < fc which contradicts
(6.1). D

If (M9τ) = (C w ,τ 0 ) and if k = 3,p = 2 and [ΛΓ* : L] < ί - 2, we
obtain Theorem C of Ji [Jl] except that his "Property (P)" is replaced
by special position.

Assume that K ® Lq~2 is positive. Then [K* : L] < q - 2 and
k = 2 = p satisfies (6.1). Hence / i , ^ arc in special position on M,
which means f{ = f2. We retrieve a Uniqueness Theorem of Drouilhet
[Dl].

If N = P(K), then # = i/"""1 and L = if. Thus [#* : L] = π + 1.
Lemma 5.2 and Theorem 6.1 imply

THEOREM 6.2. Γ/πraί Propagation Theorem. Let (M, τ) be a para-
bolic covering manifold ofCm with branching divisor β. Let V be a
hermitian vector space of dimension n + 1 > 1. Let p and k be integers
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with 2<p<k<n + l. For λ = l,...,fc let fλ: M -> P(F) be
dominant meromorphic maps. Assume that at least one of the maps fλ

grows quicker than the branching divisor β. Let a\,...,aq be in general
position in P(V*) with q > n + 1. Assume that for each j = 1,..., 1
the analytic set Aj = suppμ/A iΛj does not depend on λ = 1,..., k. Put
A = A\ U U Aq. Assume that / i , . . . , Λ are in p-specialposition on
A. Assume that

(6.6) k<(k-p

Then f\,...,fk are in special position. In particular they are alge-
braically dependent

Thus for dominant maps, Theorem 4.2 is improved. No fλ needs to
have transcendental growth. Different Aj may have common branches
and kn in (4.3) is replaced by k in (6.4).

If (M, τ) = (C w , τ0) and if k = 3,p = 2 and q = n + 3, then (6.6)
is satisfied and we obtain Theorem A of Ji [Jl] with "Property (P)"
replaced by "special position". If k = 2 = p and q > n + 3, then (6.6)
is satisfied. Hence f\,fι are in special position on M. Thus fx = f2.
Therefore we retrieve a Uniqueness Theorem of Drouilhet [Dl].

If each map fχ does not grow quicker than the branching divisor,
but if at least one map fχ separates the fibers of π, we still obtain
propagation theorems by a Theorem of Noguchi [N2], Also see Stoll
[S9].
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