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THE DIOPHANTINE EQUATION x2 = 4qn - 4q + 1

CHRIS SKINNER

In this paper all integral solutions to the equation x2 = 4qn—4q+1
when q is an odd prime are determined. This is done by working in a
quadratic field, using the unique factorization of ideals to reduce the
problem to one about certain binary linear recurrences. One of the
results is that the equation has no solutions with n > 2 if q > 5.

0. Introduction. In 1913 the Indian mathematician S. Ramanujan
conjectured that the equation x2 = 2n - 7 had only five solutions in
positive integers. The solutions he gave were:

Λ = 3 4 5 7 15
x=l 3 5 11 181

This conjecture was first proved by T. Nagell in 1948. There followed
during the period 1950-70 a number of proofs based on a variety
of methods (see for example [2], [5]). The purpose of this paper is to
solve a generalized form of the Ramanujan equation: x2 = 4qn-4q+1
where q is any odd prime.

In NagelΓs paper unique factorization of integers was used to reduce
the problem to one about a binary linear recurrence which was then
solved using p-adic methods. To solve the title equation for all odd
primes q, we will use unique factorization of ideals along with linear
recurrences and congruences. Most importantly, we show that for
q > 5 there exist no solutions with n > 2.

1. The diophantine equation x2 = 4qn - 4q + 1. We will determine
the values of n which provide solutions to the title equation: x2 =
4qn - 4q + 1, which we prefer to view as

(1) x2 + 4q-\ =4qn

where q is any prime. The two obvious solutions that exist for all q are
x = 1, 2q - 1 with n = 1,2, respectively. We now prove the following
theorems which provide a characterization of solutions to (1).

THEOREM 1. The only even n for which x2 + 4q - 1 = 4qn has a
solution is n = 2.
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Proof. Let m = n/2. Then 4q - 1 = (2qm + x)(2qm - x). If m > 1,

THEOREM 2. x 2 + 4<? - 1 = 4#" /zαs a solution if and only ifbn = ±1
where {bk} is defined recursively by bk = bk_\ - qbk_2> k > 2, b\ =
b2=L

Proof. Clearly any solution x is odd. Let γ = (x - l)/2, d = 4q - 1,
C = (1 + \Γ=d)β, ζ' = (1 - x/z^)/2, and R the ring of integers of
Q(O Equation (1) can now be written as

(2) (y + ζ)(v + ζ') = ζnCn

and so

(3) (γ + ζ)(y + C) = (ζ)n(ζT

where (α) means the ideal generated by a. By algebraic number theory
the ideals on the right in (3) are seen to be the decomposition of (qn)
into prime ideals. We now show that the ideals on the left in (3)
are relatively prime. The factors (γ + ζ) and (γ + ζf) are easily seen
to be relatively prime. Assume there is some prime ideal π which
divides both of these. Then π divides their sum x and their difference
yf^d. Upon taking norms we find that Norm(π) must divide x2 and
d. However, this implies Norm(π) = 2 or q, both of which are prime
to d. It follows that (γ + ζ) and (γ + ζ') are relatively prime. Note that
ζ and C are not units in R. Now if (ζ)\(γ + ζ) and (ζ)\(γ + ζ') then
there exist α, β e R such that aζ = (γ + ζ) and βζ = (γ + ζ'). However,
this is impossible since (γ + ζ) and (γ + ζ') are relatively prime. The
same argument holds if we assume that (ζ')\(γ + ζ) and (ζ')\(γ + C;)
It follows that (γ + ζ) and (7 + ζ') are relatively prime. Thus we must
have

(Qn = (y + Q or (ζ)n = (γ + ζ')

and so

CΛ = ±(y + C) or ζ» = ±{γ + ζ').

We know that ζ + ζf = 1 and ζζr = q so ζ2 = ζ - q. From this we
find ζn = ±(γ + ζ) or ζn = ±(γ + 1 - ζ). We now write ζn in the
form a + bζ, a,b e Z. Thus if « is a solution to (1), b = ± 1 . Letting
££ = ak + bkζ, we have ζk+x = - ^ ^ + (ak + bk)ζ. It follows that
bk = ̂ _ ! - qbk__2> b\ = 62 = l Thus we have the linear recurrence
found in the statement of the theorem.

If bn = ±1 for some /i, then 4CnC/Π = (2αrt ± I) 2 + 4q - 1 and we
have a solution to (1).
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THEOREM 3.1fn is an integer, n > 2 such that bn = ±1, then n is
of the form n = qk + 2 and q φ 3, n = 1 or 2 (mod 6).

Proof. It is easily seen that bn = qcn + 1 where {c«} is defined
recursively by cn = cn-\ - qcn-ι ~ 1 and Ci = <?2 = 0. Since q > 2, - 1
never appears in {bn} and so we concern ourselves only with the case
bn = 1. Now &„ = 1 iff cn = 0, so we consider {cn} modulo q. The
first few terms of this series are

0 , 0 , 0 - 1 , . . . , 2 , 1 , 0 , 0 - 1 , . . . .

This series has period q, and for n > 2, cn can equal 0 only if n is of
the form qk + 2. Since bn = 1 only when cn = 0, bn = I only if rc is
of the form n = qk + 2.

Now consider the series {6W} modulo 0—1. The first eight terms of
this series are

1,1,0,-1,-1,0,1,1,....

This series has period 6 and so if n is a solution to (1) then n = 1 or
2 (mod 6). The case q = 3 is an exception since - 1 = 1 (mod2).

In the following theorems we find all solutions to (1). In the first we
show that for q > 5 there are no solutions with n > 2. In the second
we find all solutions for q = 3 and 5.

THEOREM 4. If q is an odd prime > 5 then the only solutions to
x2 + Aq - 1 = 4qn occur when n = 1 and 2.

Proof. In Theorem 3 we have shown that if n is a solution to (1)
then n = qk + 2 and n = 1 or 2 (mod 6). However, if n = 2 (mod 6)
and (6,0) = 1 then k = 0 (mod 6) and so n is even. But in Theorem
1 we have shown that the only even n for which a solution exists is
n = 2. The case when « = 1 (mod 6) is a little more complicated. It
is well known that the binary linear recurrence of Theorem 2 can be
written as

bk=εak+δβk

where a, β are the roots of x2 = x - q and

ε = (bι-boβ)/(a-β) and δ = (boa - bx)/{a - β).

In this case a = ζ, β = ζ' and e = -δ = (ζ - ζ ' ) " 1 so
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Suppose n = 1 (mod 6); then we wish to solve

(4) ζm+ι _ ζim+ι = ζ _ ζt w h e r e m = « - l .

Now C3 + 1 = (C + l)( ί 2 - C + 1) = -(C + 1)(<7 - 1). If m = 3r, then
(4) implies

(5)

Now q - 1 Φ 1,2,4, so (q - l)/2 does not divide

Equation (5) can be written as

rC— : 1

and we obtain

r

If r > 0, the sum must vanish. It is easily seen that (q—l)k ι/k = 0
(mod(q - l)/2) if k = 2 and (? - l)k~{/k = 0 (mod^ - 1) if fc > 2.
This implies that (q - l)/2 divides the first term of the sum

which we have already seen to be impossible. Thus r must equal 0,
and n = 1 gives the only solution to (1) with n = 1 (mod 6) and q > 5.

THEOREM 5. The solutions to x2 + 4q - 1 = Aqn when q = 3 αtfύf 5

(i) β = 3
n = 1 2 5
x = l 5 31

(ϋ) q = 5
/ι= 1 2 7
x = l 9 559

In the proof of this theorem we will make use of the following two
lemmas.



THE DIOPHANTINE EQUATION x2 = 4qn - 4q + 1 307

LEMMA 1. If n is a solution to x2 + 4q - 1 = 4qn, then n satisfies
2n~ι = n (modrf) where d = 4q - 1.

Proof. We have seen that if n is a solution to (1), then ζn - ζfn =
ζ — ζr. Expanding the left side and reading it modulo d we find

2n~ι =n (modi/).

LEMMA 2. Ifn and m give solutions to (I) then n cannot be congruent
to m modulo dφ{d)9 d a prime.

Proof. The proof of this theorem follows the same reasoning as one
that appeared in [6] for the case d = 7. Assume that m and n are two
such solutions. Let de be the highest power of d dividing m-n. Then

Now
(1/2)"-"2 = [(i/2)*W](n-mV*W = i (modi/*+1)

and

(First raise to the powers d,d2,...,de, then to the power (n-m)/de.)
Since

ζm = (l + m\/Ξd)/2m (modde+ι)

substituting in (6) gives

ζn = ζm + [(n -

and

But
rm _ rim rn _ rin

so
(m-n)V^d = 0 (modde+ι).

Since m and « are integers,

which contradicts the definition of e. It follows that there are no
solutions to (1) congruent modulo dφ{d).

It is now relatively easy to find the solutions to (1) for the cases
q — 3, 5. By Lemma 2 all possible n are uniquely congruent to numbers
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less than qdφ(d). Thus we search for numbers of the form qk + 2 less
than qd{d - 1) which satisfy the restriction of Lemma 1.

Carrying these computations out on a computer we find the follow-
ing solutions to 2n~ι = n (modof):

ff = 3
n = 2,5 (mod 330)

Q = 5
n = 2,7 (mod 1710)

All of these provide solutions to (1) and it follows from Lemma 2 that
they are the only solutions. Thus we have proved Theorem 5.

2. Summary of results. In the preceding section we have solved the
title equation for all odd primes. In particular we have shown:

(i) The diophantine equation x2 +11 = 4-3" has only the solutions
given by

n = 1 2 5
x = l 5 31

(ii) The diophantine equation x2 +19 = 4-5" has only the solutions
given by

n= 1 2 7
x = 1 9 559

(iii) The diophantine equation x2 + 4q - 1 = 4qn (q > 5) has only
the solutions given by

n = 1 2
x = 1 2? - 1

3. Discussion. We have thus solved the diophantine equation x2 =
4qn — 4^ + 1 for all odd primes q. As already noted, the case when
q = 2 has been discussed elsewhere (see for example [5]). The meth-
ods used in this paper are mostly elementary. By elementary we mean
we have not used analytic number theory. In fact, the only place where
knowledge of even algebraic number theory is necessary is in the proof
of Theorem 2. There are other more advanced methods which could
be used to solve similar types of problems. The most prominent of
these is Skolem's /?-adic method. In [5] this has been used to solve
the case q = 2. Petho and de Weger in [3] give a method for solving
a similar type equation based on the powerful methods of /?-adic and
complex Gelfond-Baker theory. However, this method is purely algo-
rithmic and insufficient when trying to determine all solutions for a
class of equations as in this paper.



THE DIOPHANTINE EQUATION x2 = Aqn - Aq + 1 309

A number of equations similar to the one discussed in this paper
have been solved. Tzanakis in [7] discusses the equation y2 - D — 2k.
In [8] Tzanakis and Wolfskill discuss the Calderbank equation y2 =
4qn + Aq + 1 where q is a prime power.

Though Ramanujan introduced his problem as essentially one in
number theory, it has turned out to have applications to such diverse
areas as coding theory [4] and differential algebra [1]. It is possible that
the equations discussed in this paper may have similar applications in
these areas. The Calderbank equation, which is very similar in form,
arose from a study of a certain class of codes.
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