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COMMUTATIVE SUBALGEBRAS OF THE RING
OF DIFFERENTIAL OPERATORS ON A CURVE

P. PERKINS

Let X denote an irreducible affine algebraic curve over the complex
numbers. Let &{X) be the ring of regular functions on X. Denote
by 3{X) the ring of differential operators on X. We wish to charac-
terize (f(X) as a ring theoretic invariant of 3{X). It is proved that
@{X) equals the set of all locally ad-nilpotent elements oi3f(X) if
and only if X is not simply connected. However, for most simply
connected curves, we show there exists a maximal commutative sub-
algebra oi3f{X)t consisting of locally ad-nilpotent elements, which
is not isomorphic to (f(X).

0. Introduction. Let X be a curve, that is, an irreducible affine al-
gebraic curve over C. Write &{X) for the ring of regular functions on
X and 3{X) for the ring of differential operators on X. See [8] for
the basic definitions and facts about rings of differential operators on
curves. This paper is motivated by the following question. If X and Y
are curves with 3{X) = 3(Y)9 is X = YΊ Write X for the normaliza-
tion of X. Stafford [9] considers this question for X with X = A1, the
affine line. He shows that 3{X) = 2{X) if and only if X = X. He also
shows that if X is the cubic cusp y2 = x3 and Ϋ = A1, then X = Y
if and only if 3{X) = 3(Y). Higher dimensional non-isomorphic
varieties can have isomorphic rings of differential operators, see
Levasseur, Smith and Stafford [2].

If u e 3{X\ define ad(w) e End c (^(X)) by ad(κ)(u) = [u,v] =
uυ -vu. We say u is locally ad-nilpotent if for every v e 2f{X) there
exists neN with ad(u)n(v) = 0. Write

jr(X) = {ue 3J{X)\u is locally ad-nilpotent}.

Note that if ϋ: 3{Y) -> 3{X) is an isomorphism then ϋ(yT(Y)) =
Jf(X). It follows from the definition oΐ3{X) that &{X) is a maximal
commutative subalgebra oϊ3J(X) and that @(X) is contained in yV{X).
If genus {X) > 0 then Makar-Limanov [3] shows that &{X) = jr\x).
Hence if3(X) = 3(Y) with genus(X) > 0 then X = Y.

This paper expands on Makar-Limanov's result to prove the follow-
ing theorem. Let π: X —> X denote the canonical surjection.
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THEOREM. Let X be a curve. Then ^(X) = &{X) if and only if
either

(i) X φ A1 or
(ii) X = A1 and π: X —• X is not injective.

COROLLARY 1. Let X and Y be curves with 3f{X) = 3f{Y). If either
(i) X φ A1 or (ii) X = A1 α/w/ π: X -+X is not injective, then X=Y.

The condition that X — A1 and π: X —> X is injective is equivalent
to the condition that X is simply connected. This observation is due
to S. P. Smith and will be proved in §5. We obtain the following
connection between algebra and topology.

COROLLARY 2. Let X be a curve. Then &{X) = JV(X) if and only if
X is not simply connected. Thus if9t{X) =3r(Y) and X is not simply
connected then X = Y.

lΐ0(X) Φ yV{X) then X = A1 and π: X -> X is injective. In [8] it is
shown, for such X, that 3f{X) is Morita equivalent to ^(A 1 ) . Thus if
X and Y are curves with ff(X) φ J^(X) and <?(Y) φ Jf(Y) then 3{X)
is Morita equivalent \o2{Y). The results of [8] also show that 2{X)
and 3f{Y) are simple, hereditary C-algebras with the same Krull and
GK dimensions. Hence it will be difficult to distinguish between them.
Nevertheless, distinguishing between such "small" non-commutative
algebras is an important problem in ring theory.

We will always write ^(A 1 ) = C[t9d] where d = d/dt. Dixmier [1]
shows that all maximal commutative subalgebras of ^(A 1 ) , contained
inΛ^A1), are conjugate under Aut^ r(A1). Thus if φ: 3f{X) -^^(A 1 )
is an isomorphism, there exists μ e Aut«SΓ(A1) such that μφ restricts
to an isomorphism between &(X) and C[t] = ^(A 1). This leads one
to ask, for an arbitrary curve X, if every maximal commutative sub-
algebra of 2{X) which is contained in J^(X) is isomorphic to @{X).

Let X be a curve with X = A1 and π: X —• X injective. In §§3
and 4, we consider such curves with the additional hypothesis that X
has unique singularity at π(0). It is shown that for all but one such
curve, there are maximal commutative subalgebras oϊ3f{X) contained
in JV(X) but not isomorphic to &{X). The one "well behaved" curve
is the cubic cusp y2 = x 3. Thus maximal commutative subalgebras of
3J{X) consisting of locally ad-nilpotent elements are not alone suffi-
cient to distinguish these rings from one another.
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These results will appear in the author's Ph.D. thesis. I would like to
thank my advisor, S. Paul Smith, for interesting me in these questions
and for his many helpful comments and suggestions.

1. Curves with ff(X) = JV[X). In this section it is proved that if
&{X) Φ <SV{X) then X = A1 and the canonical surjection π: X -> X
is injective. The rest of the paper considers the case with X = A1 and
π injective; these are the only curves whose differential operator rings
are hard to distinguish from one another. Theorem 1.1 and Corollary
1.2 are results of L. Makar-Limanov. We thank him for allowing us to
present them here. The proofs will appear in [3]. Most of this section
is based on his methods.

THEOREM 1.1 (Makar-Limanov). IfX is a curve and@(X) Φ JT(X)
then <9(X) C C[b] for some b transcendental over C.

COROLLARY 1.2 (Makar-Limanov). IfX is a curve with genus greater
than zero then 0(X) = jr(X).

Using Theorem 1.1, we now show that if 0{X) φ Jf(X) then <9{X)
= C[t] for some t transcendental over C. Proposition 1.3 is probably
well known but we could find no reference for it.

PROPOSITION 1.3. Let X be a curve with <9(X) c C[b] for some b
transcendental over C. Then there exists t e Fract(f(X) with <9(X) =

cm.
Proof. Recall that X is an affine nonsingular curve. By Luroth's

theorem, X is rational, since Fract^f(X) = Fract^(X) c C(b). Thus
&(X) is a UFD and every nonzero prime ideal of <9{X) is principal.
Since &{X) c C[b] and C[b] is integrally closed in C(b)9 <?(X) c C[b].
Choose t e &{X) \ C of minimal degree in b. Then for all a e C,
t - a generates a maximal ideal of &{X). Indeed, if (t - α) were not
maximal then t - a = xy with x,y e &{%) nonunits, since &{X) is a
UFD. But then deg^(x) < deg^(ί), a contradiction.

Let m be the ideal generated by /. If m' is another maximal ideal
and φ: @{X) -> &(X)/m', then φ{t) = a e C. Thus m' contains the
maximal ideal (t - a) and hence equals it. If w is an irreducible
element of &(X) then 0 Φ (w) is prime and hence maximal since
dim^(X) = 1. Thus (w) = (t - β) for some β e C and so uw = t - β
for some unit of <9(X). But the only units of &{X) are in C since

C C[b]. Hence, by unique factorization, any element oϊ@(X) is
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oftheformλ(f-αi) (ί-α^forλ,αi,...,αfc € C. Thus^(X) c C[t]
and hence there is equality. D

COROLLARY 1.4. If X is a curve with <9{X) Φ JV{X) then X = A1.
Thus ifXφf\{ then 0{X) = JT{X).

Proof. By Theorem 1.1, <9{X) c C[b], Proposition 1.3 implies
X = C[t] and this yields the result. α

COROLLARY 1.5. Let X and Y be curves such that X Φ A1. If
3{X) = 3(Y) then X = Y. π

If X = A1 it is still possible to have &(X) = sV(X). Proposition 1.8
clarifies the situation. First are some technical lemmas. lΐ&(X) = C[t]
then 3(X) C C(t)[d] and hence inherits the filtration by order of
differential operator. We form the associated graded ring, denoted
gra 3{X) to avoid confusion with another graded ring considered later
in this paper. Write gr a^

r(A 1) = C[t,ξ]. If X = A1 then %rdSf(X) c
C[t,ζ] by [8, 3.11]. Throughout the paper we use {/, g} to denote the
Poisson bracket

(df/dζ)(dg/dt) - (df/dt)(dg/dξ)

with /, g e C(t)[ξ]. For u,v e C(t)[d], it is straightforward to check
thatgra[w,t>] = {grd(u),grd(v)}ifthe latter is nonzero. Thus{gra(w), }
G Endc(gra 3f{X)) for all u e 3[X).

LEMMA 1.6. Let pξn e C[t,ξ] where p e C[t] is of degree r and
n > 0. Let q e C[t] be of degree s > 0. If δ = {pξn, •} w nilpotent on
qξm then, for some i > 0, rm = ns + i(r - n).

Proof. Assume rm Φ ns+i(r-n) for all i > 0 and let f be the leading
term of p. We show by induction on / that δ^qξ™) = q^m^n~l)
where #/ has leading term α/ί5+/(r~"1) with 0 Φ α/ G C. This contradicts
the hypothesis that δ is nilpotent on qξm and hence proves the lemma.
Of course the result is true for / = 0. Note that, if h e C[t], δ{hξι) =
(nphf - lhp')ξι+n~x where f denotes df/dt. By induction, suppose

) = qiξ
m^n-χ) where the leading term of qt is α l ί

5+l"(Γ-1) with
e C. Then

and the leading term of #/+i is

ai(n(s + i(r - 1)) - (
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Since (n(s + i(r - 1)) - (m + i(n - l))r) = ns + i(r - n) - rm Φ 0 by
hypothesis, this completes the proof. D

LEMMA 1.7. IfX is a curve with X = A1 and u e yΓ(X)\<?(X) then
gτd(u) = λξn for some positive integer n and λ e C.

Proof. By way of contradiction, assume gr^(w) = pξn with deg(/?) =
r > 0 and let axm^{x)(C[t]/^(X)) = qC[t]. Then qC[t,d] c 2{X) and
q has order zero, whence qC[t,ξ] c gr^ 2f(X). Let deg(^) = s > 0 and
assume r > n. Since {gra(w), •} is nilpotent on q, Lemma 1.6 implies
0 = r 0 = ns + i(r - ή) > s, a contradiction. Thus r < n. Hence
if {gr^(w), •} is nilpotent on qξm

9 rm = ns + i(r - ή) < ns. Choose
m such that rm > ns. Then qξm e grd3f(X) but {gr^(w), } is not
nilpotent on it. This contradiction implies r = 0. D

PROPOSITION 1.8. IfX is a curve with X = A1 and &(X) φ JV(X)
then dim(C[^,^]/gra^(X)) < oo. In particular, π: X —• X is injective.

Proof. The second assertion follows from the first by [8, 3.12].
Choose u e ^{X) \&(X). By Lemma 1.7 we may assume that
gra(w) = ξn with n > 0. As in the proof of Lemma 1.7, pick q e
C[t] such that qC[t,ξ] c gτd3f(X) and let ts be the leading term
of q. We claim ξs^n"ι)C[t9ξ] c grd£r(X). Assuming the claim, let
v e C[t,ζ] \ffd&(X). Since qC[tyξ] c grd&(X), we may assume
t - deg(v) < s - 1. Since ί^Λ"^C[ί,^] c g r a ^ ( X ) , we may assume
ζ - deg(v) < S(Λ - 1) - 1. Thus ^ is in the finite dimensional vector
space spanned by {t^j\0 < i < s - 1,0 < j < s(n - 1) - 1} and this
proves the result.

To prove the claim, we show Vζi e %τd3ί{X) for all j > s(n - 1)
by induction on /. By the remarks before Lemma 1.6, δ = {ξn, -} e
End(gra 3f(X)). Note that δ(fξm) = nfξ

m+(n-χy> for / e C[t]. For all
m > 0, qξm e &d2f{X). Hence so is δs{qξm) = aξ

m^n-^ for some
OφaeC. It follows that for all j > s(n - 1), ξj e gra 3f(X) and we
can start the induction. Assume that / > 0 and for k < /, j > s(n - 1)
implies that tkξj e grd 3f(X). If / < s then

δs-\qξι) = βq{s-i)ζlHs-i){n-\) e &d&(X)

for all / > 0, where q(s~^ denotes the s - ith derivative of q and
0 Φ β G C. The leading term of #(5~/) is a nonzero constant times tι

so our induction hypothesis implies that f"£/+Gs-O(«-i) ̂  grd 3f{X) for
all / > i{n - 1). If / > s then t ^ q e grd&(X) for all / > 0. Since
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the leading term of t'~sξιq is tιξι and the induction hypothesis again
applies, this completes the induction and the proof. D

COROLLARY 1.9. IfX is a curve such that either
(i) X φ A1 or
(ii) X = A1 but π: X —• X is not injective

then ffi(X) = Jf{X).

Proof. Combine Corollary 1.4 and Proposition 1.8. D

COROLLARY 1.10. Let X and Y be curves with 2{X) = 3f{Y). If
either X φ A1 or π: X -^ X is not injective then X = Y. n

2. Locally Ad-nilpotent elements not in <9{X). In §1 we saw that if
either X Φ A1 or n: X -> X is not injective then ff(X) = JT(X). Thus
in either of these two cases, &{X) is the unique maximal commutative
subalgebra of 3(X) contained in JV(X). In this section we show, con-
versely, that if X = A1 and π: X —> X is injective then JV(X) properly
contains &{X). Indeed, 3f(X) contains a maximal commutative sub-
algebra 2§{X\ consisting of locally ad-nilpotent elements, such that
3f^(X)C\ff(X) = C. Several of the results will be proved in a generality
that will prove useful later.

When X = A1, %{X) is just C[d] and in the general case 3f^(X)
should be thought of as analogous to C[d]. However, in general there is
no derivation δ e D(X) with C[δ] a maximal commutative subalgebra
of3f(X) contained in JK(X). Thus finding the correct analogy of C[d]
is complicated.

Throughout §2, let X be a curve with X = A1.

DEFINITION. Let R be a subalgebra of C(t)[d]. A commutative
subalgebra S of R is ad-nilpotent if, for every ueR, there exists n eN
with [.?o,[£i,...[£n>M]]] = 0 for all So, . . . ,^ £ S. An ad-nilpotent
subalgebra of 3{X) is always contained in JV(X). By the definition
oί3(X\ 0{X) is an ad-nilpotent subalgebra oi9f{X).

Let K = C(ί) and consider 3f(K) = C(t)[d]. An element u e 3f{K)
can be uniquely expressed u = Σfkdk where k ranges over a finite
subset of N and fk e C(t). Since X = A1, we may identify ^ ( X ) with
a subalgebra of # ( * ) . Set άeg(f/g) = deg(/) -deg(g) for /, g G C[ί].

DEFINITION. If u = Σfkdk e 2J[K) define the t-degree of w
to be ί - deg(w) = max{deg(Λ)}. Set 3ι

k{K) = {u e 3{K)\t -
deg(w) < k} for fcEl It is clear that 3f(K) 3j(K) c ^ V
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so we obtain the filtration 9f(K) — \Jkel3'^(K). Form the graded
ring φkeZ(2^(K)/2^_ι(K)) in the usual way and denote this ring
%xt2s{K). Define the t-filtration on 3{X) by S^X) = 2{X) Π3%{K).
Then grt3(X) embeds in grt3f(K).

LEMMA 2.1. For α// n,mel, [^(K),^(K)] c ^ ^ ( A Γ ) and
hence gxt2>(K) is commutative.

Proof. Let h,f,p,q € C[ί], with deg(/z//) = n and deg(p/q) = m.
Ifkje N, it suffices to prove [{h/f)dk, (p/q)dι] e Sf^^K). Now

But

so t-de&h/f,d'] < de$(fh'-hf')f~2 < n-1. Thus (h/f)[Θk,p/q]dι

and (p/q)[h/f, d']dk are in ^ + w _ , (AT) and the result follows. o

LEMMA 2.2. g

Proof. Since gr(^(A^) is commutative and gr^gr/ i " 1 ) = 1, there
exists an algebra homomorphism

φ:C[s,s-ι][ξ]-+gτt3f(K)

given by 9»(j) = gr,(ί), φ{s~ι) = gτt(Γι) and φ(ξ) = gr,(S). If
ψiΣMM = 0 then Σgr ;U(^)ί') = 0, whence y (a) = 0 for all
/. Thus φ is injective. If / € K then / = g/h with g, h e C[t].
Write g = at" + p and h = βtm + q where a,β^0, deg(p) < n and
deg(̂ ) < m. Now f,aβ-χtn~m e^_m(K) and

f-aβ-λtn~m = {g- a ι

Thus gr,(/) = gτt(aβ~ιtn-m) € Im(ρ). If M G ^(AΓ) write w =
with fi e K and set ί - deg(«) = k. lϊ a,b e 2>{K) such that t -
deg(α + 6) = t - deg(α) = t - deg(6) then gr,(β + b) = gχt(a) + grt(b).
It follows that

/;) = A:}) = ̂ {grX^Oldeg^) = k}

and each gτt(fdι) = grt(f}) grt{dy G Im(^). Thus φ is surjective. D
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If R is any subalgebra of 9)(K), define the ί-filtration on R any
Rι

n = Rn^(K). We now prove the basic results about /?(,.

LEMMA 2.3. Let R be a subalgebra of 2>{K) such that &,{R) c
C[5,< ]̂ and let v e R'o. Let k > 0 and u e 3{K). Ifv<£C then
[υ,u] e^_ι(K) implies u e

Proof. Assume there exists n > k with u e Sf^K) \^_j(A"). Write
u = tnf{d) + x with x e3r^_ι(K). Write v = g(d) +ye%{K) with
y e Sι_x{K). Since υ <£ C,deg(^) > 0 because gτt(R) c C[s,ξ]. Hence

[v, u] = [g(d), tnf(d)] + [y,u] + [g(d), x]

= ntn-ιf(d)g'(d) + (something in

D

By [8, 3.11], gr a ^(X) c gτd^{X) = C[t,ξ] so we may take R =
2r(X) in the following result.

PROPOSITION 2.4. Let Rbea subalgebra of2>{K) such that %xd{R) c
Then

(a)grfCR)cC[ί,fl.
(b) R'Q is a commutative ad-nilpotent subalgebra ofR.
(c) R'o = gτ,(R) Π CK] as C-algebras.
(d) IfR'o φ C then it is a maximal commutative subalgebra ofR.

Proof, (a) If u e R with t - deg(w) < 0 then u = Σfkdk

deg(/A;) < 0 for all k, whence gra(w) <£ C[t,ξ]. Hence, if u € R then
t - deg(w) = n > 0. Write u = tnh(d) + v with v e 3f^x{K) and h a
polynomial. Then grt(u) = snh(ξ) e C[s,ξ].

(b) Since elements of R have non-negative ί-degrees, R'_y = (0). By
Lemma 2.1, [i?(,,i?J,] c R^^ Thus Rl

Q is ad-nilpotent. It is commu-
tative because [R'^RQ] C Rt_ι = (0).

(c) Note that gr, R Π C[ξ] is the image of R'o under the map R —»
gr,(i?). But this image is isomorphic to gχt(Ro) under the induced
filtration. Since /?'_, = (0),

gr,CR) ΓΊ CK] = g r , ^ ) = R'Q/RL, = R'o

as C-algebras.
(d) Let v GR'QX {€} and u € R. By (a), gr,(i?) c C[s,ζ]. Thus if

[υ, u]\ = 0 € Λ'_i then M G /?[, by Lemma 2.3. D
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By Proposition 2.4 and the remark before it, grt3(X) c C[s,ξ].
Thus if %{X) φ C, Lemma 2.3 implies that the /-filtration on 3{X)
can be defined by the degree of ad-nilpotence of &Q(X) on 2>{X).
That is

= { U G & ( X ) \ [ v o , [ v l , . . . [ v H , u ] . . . ] ] = 0 for al l vo,...,υne^(X)}.

This is analogous to the way the order of operator filtration is defined,
with %{X) playing the role of(f{X).

Our next goal is to prove 2^{X) ψ C, whence it is a maximal com-
mutative ad-nilpotent subalgebra. This will be achieved in Theorem
2.7. Note that g r ^ A 1 ) = C[s,ξ] and let M c N be distinct nonzero
gΓf-S^A^-submodules of grt3(K). The l-length of N/M is defined,
as in [8, 3.10], to be the largest integer n such that there exists a
chain of grjS^A^-modules M = Mo c Mi c ••• C Mn = N with
dimc(Λf,y.Λ//_i) = oo for each /.

LEMMA 2.5. Let q e C[t]. (i) If P is a left 2){f\ι)-module and

Uength{&tPlgrt®{f\1)) =

(ii) IfP is a right 2>{!\x)-module and3{ί\x) DPD q£>(f\ι) then

Uength{&t2i{f\x)l&tP) = lengthy m{3f{f\x)/P).

Proof. Let the leading term of q be tk. We claim

l-length(grf

 x 1

and

q~x

To prove the claim, note that

x χ tf) = k.

If u = qυ eq3(l\x) then

gr,(u) = (grί(ί))(grί(t;)) = sk{grt{υ)) e skC[s,ζ].
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Thus to see skC[s,ζ] = grt(q3f(f\1)), it suffices to note

sk+iξj = gritty) € grt(g3r(f\1))

for all /, j G N. The first part of the claim follows from

A similar proof, using %rt(q~x) = s~k, shows

Since k = deg(#) = \-\eτig\\ί{s~kC[s,ξ]/C[s,ξ\), the second part also
follows.

Note that if L D N are right ^(A')-submodules of&(K) then

(*) lengthy,)(L/iV) < l-length(gr, L/&, N).

The result now follows just as in [8, 3.10]. By the above paragraph
and the inequality (*) we have

= l-lengthCgr^CA^/gr,/>) + l-lengthfer,

Thus

l-length(gr, ̂ (A 1 )/ gr, P) + l-length(gr, P/ &t(q&(l\ι)))

= lengthy, ̂ (A'VP) + length^m(P/q3f(f\1)).

By (*),

l-lengthfer,^(A'Vgr^P) > Icngtham(3f(f\l)/P)

and

so l-length(wt&(l\l)/grtP) = \engfh&(Λi)(3r(f\ι)/P), proving (ii).
The proof of (i) is similar. α

LEMMA 2.6. Let R be a subalgebra ofS{K) with gτdR c
Assume there exist a left 2>{FKx)-module P, a right Q>'(f\ι)-module Q,
and q € C[t] with the following properties.

(i) 3f(Άι)q~ι DPD
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(ii) length^/i^A1)) = length^(F\ι)/Q),
(iii) QP c R.

Then gτtR c C[s,ζ] and dimc(C[s,ζ]/ gτt R) < oc.

Proof. Proposition 2.4 implies grt R c C[s,ξ]. The rest of the proof
is very similar to the proof of [8, 3.12]. We have

C[s9ξ] DgrtRD gτt(QP) D grt(Q)grt(P).

By Lemma 2.5,

(**) l-length(grίP/gr^(A1)) = 1

Set this common length equal to ra. Note that if I\ c I2 and / are
nonzero ideals of C[s,ξ] with dimc(h/Ii) = °°? then dimc(//2///i) =
oc also. Thus, if C[s,£] = /o c I\ C C Im = gr^P is a maximal
chain for which dimc(/////-i) = oc for all 7, then

gr, β = (gr, β)/ 0 c c (gr, Q)/m = (gr, β)(grr P)

is also a chain for which each factor is infinite dimensional. Hence

l-length((grίρ)(gr/P)/grίρ) > l-l

But

^]) = l-length(C[5,£]/gr,Q)

by (**), whence

\Λtng\HC[s,ξV&tQ) = Ueagth({grtQ)(&tP)/&tQ).

Thus dimc(C[i,^]/(gr? Q)(gτt P)) < oo and this proves the result. •

If X and Y are any pair of birationally equivalent curves then let
K = Fract^(X) = Fract^(y) and define

) = {De 3{K)\D *feffi(Y) for all /

where D* f denotes the action of D on /. If X and Y are curves such
that &{X) c <f(Y) c (X) then 3{Y,X) is a left ideal oϊ 2>{X) and a
right ideal oϊ2{Y). Note that 1 € 2{X, Y) τmά2}{Y,X)n@{Y) equals
the conductor of <f(Y) in ffi(X), whence both 3f{X, Y) and 3f(Y,X)
are nonzero. If π: X -» Z is injective then ^(X, X)^(X, X) = ^(X)
since it is a nonzero 2-sided ideal of a simple ring, by [8, 3.4]. Similarly
3f{X,X)3f{X,X) = 3f{X).
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THEOREM 2.7. Let X = A1 and π: X -• X be injective. Then
(a) &Q(X) is a maximal commutative ad-nilpotent subalgebra of

(c) &Q(X) is a finitely generated C-domain of dimension 1 with in-
tegral closure isomorphic to C[ζ].

Proof. As remarked earlier, &d3(X) c C[t,ξ] by [8, 3.11]. Thus
Proposition 2.4 applies and &Q(X) is a commutative ad-nilpotent sub-
algebra of 3f{X) intersecting &{X) in C. Furthermore, to see that it
is a maximal commutative subalgebra of3(X)9 it is enough to show
9f^(X) φ C. Thus it suffices to prove (c).

We do this by applying Lemma 2.6 to P = 3f{X,X) and P* =
&(X,X). Note that &t&(X) D (grt(P))(grt(P*)). Let q e C[t] gen-
erate the conductor of 0{X) = C[t] in 0{X\ Then q3f(l\x) c P and
P* c ^(A 1 )^" 1 . Since 3f{X) is a Noetherian domain, we can identify

ίP^ίA 1 )) with F = {WG STOIwP C ̂ (A1)}. Thus, since
is a hereditary domain,

By Lemma 2.6, dimc(C[^,^]/gr^(X)) < oo.
By Proposition 2.4, ^ ( X ) = fft3f{X) Π C[ί]. Thus

dim(C[^]/^(X)) = dim(CK] + (gr^(Z))/gr^(Z)) < oc

and 2Q(X) is a domain of dimension 1 with integral closure isomor-
phic to C[ξ]. That 3ΪQ(X) is a finitely generated C-algebra follows from
Eakin's Theorem [5, §3.5]. This proves (c) and the theorem. D

Combining Theorem 2.7 with Corollary 1.9 yields the theorem
stated in the introduction.

THEOREM 2.8. Let X be a curve. Then ̂ (X) = 0{X) if and only if
either (i) X φ A1 or (ii) X = A1 and π: X -> X is not injective. D

Let I b e a curve with X = A1 and π: X -• X injective. By Theo-
rem 2.7 there exists a curve Y with Ϋ = A1 such that ^(ΛΓ) = ̂ (Γ).
Moreover ff(Y) = 9>§{X) is a maximal commutative ad-nilpotent sub-
algebra of 3f{X). It would be interesting to know if there exists a C-
algebra isomorphism φ: 3{X) = ^ ( Γ ) such that φ{β^{X)) = &{Y).
If this were true then φ(0(X)) C J^{Y) \ ffi(Y)9 whence π: Ϋ ~* Y
is injective by Theorem 2.8. In [7] we compute an example where

ψ 0{X) and π: Ϋ —*• Γ is injective. However, it is unknown if
= 3f(Y) for this example.
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3. Non-monomial curves. The remainder of this paper is concerned
with those curves X for which ^(X) φ &(X). Theorem 2.8 tells us
precisely which curves these are. Thus, for the rest of §3 fix a curve
X such that X = A1 and π: X —• X is injective. We make the further
restriction that X has a unique singularity, which for convenience we
take to be π(0). Hence if ^(A1) = C[ί], it follows that C[t] D <?(X) D
trC[t] for some r. Our goal is Theorem 3.8 which says that for "most"

DEFINITION. A subalgebra R of C[t] is called a monomial algebra
if it has a basis consisting of monomials in t and dimc(C[/]/i?) < oo.
A curve X is a monomial curve if &{X) is a monomial algebra. If
R C C[t] is a monomial algebra, then Λ = {k e N\tk e R} is a
submonoid of the natural numbers and R = ΣλeA &*• If -R = &(X)>
call Λ the monoid associated to X.

The ring of differential operators on a monomial curve has been
studied in [6]. Of course C[t] is a monomial algebra with basis {1, t,
t2,...} and thus A1 is a monomial curve. A more interesting example
is the planar curve Z given by the equation ym = xn where (m, n) = 1.
Then ^(Z) = C[tm,tn]. Note that a monomial curve X has X = A1

and, if X ^ A1, unique singularity at π(0).
With the above restrictions on X, we will show 0{X) ψ 3f^{X) if

X is not a monomial curve. Let (tr) be the conductor fffjt) = C[t] in
0{X). Thus ^ ( X ) r C 3f{X) = C[t,d] so 3{X) C C ^ r 1 , ^ ] . The
element td e C[t,t~ι,d] is ad-semisimple so C[t,t~\d] decomposes
into a direct sum of ad(£<9)-eigenspaces, C[t,t~\d] = ^
Thus w G 3f{X) has a unique expression

u = Σ ^ ^ with keτjke C[ί0], and //,/m ^ 0.

Call this the standard form for w. Give ^(X) the ί-filtration
{^(jr)}rt€N and consider the associated graded ring gxt2(X). We
will usually apply the following lemma in the case n = 0.

LEMMA 3.1. Ifu e ^(JΓ), write u = Σm<k<ι tkfk in standard form.
Then u e 2Jι

n(X) if and only if I < n anddegtd(fk) < n - k for all

Proof If degtf(/fc) < n - k for all m < k < I then t-άt%{tkfk) < n
and u € &n(X). Let w G ̂ ( X ) and assume, by way of contradiction,
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that {k\k + deg(/fc) > n} Φ 0 . Choose j with s = j + deg(/) ) > n
maximal. Note u has a unique expression

ί'& with # G C[d] and / € Z,

since u G C[t, t~~ι,d], and gj = 0 for / > n because ί-deg(w) < n. Set
n(k) = deg(fk) and note

tkfk = akt
k+"Wdn(k) + (terms of lower degree in both t and d)

where 0 Φ ak G C. Since /: + n(k) < s for all k,

0 =

Therefore, since j + n(j) = s, there exists / ̂  j with / + n(/) = j
and n(i) = n(j). But then / = 7, a contradiction. Thus d e g ^ ) <n-k
for m < k < I. Since deg(//) > 0? « - / > 0. α

DEFINITION. If p e C[t] write p = aot
l + αi ί / + 1 H h ajti+j with

α o , α ; φ 0. Define Λ(p) = a.jti+j and /έ(p) = αo^z. For any curve Z
with Z = f\ι, write ^ ( Z ) = C[/] and define

Γ(Z) = {/ e N|3# G ^f(Z) with λ(q) = ί1'},

Ω(Z) = {/ G N|3ήr G ^ ( Z ) with μ(q) = ί1'}.

These are both submonoids of N. We write Γ for Γ(Z) and Ω for
Ω(Z) if it is clear what curve we mean. If Z is a monomial curve
then Γ(Z) and Ω(Z) both equal the monoid associated to Z. We
have the following converse.

LEMMA 3.2. IfX is not a monomial curve then T{X) \ Ω(X) Φ 0.

Proof. Since X is not a monomial curve and trC[t] c #(X), we
may choose j e Γ(X) maximal such that V £ (9{X). We show j e
Γ(X) \ Ω(X). If j G Ω(X) choose q e &{X) of minimal degree such
that μ(q) = V. Then λ(q) = aV+i with i > 0 and 0 Φ a G C. But
i+j G Γ(X) so ti+J G ^f(X) by hypothesis. Hence/? = q-ati+' G 0{X)
with /i(p) = ^, contradicting the minimality of deg(^). D

There is an algebra isomorphism φ: 3f^{X) = C[^] Π fpt3f(X) by
Proposition 2.4. By Theorem 2.7, there exists a curve Γ with F = A1

such that φ{β^(X)) = ffi(Y) C C[<̂ ] = <f(Ϋ). The puφose of the next
few results is to compare Γ(Y) with Ω(X) and Ω(Y) with Γ(X). This
is done in Proposition 3.7.
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LEMMA 3.3. Let I < 0 and u = Σm<k<ι tkfk e 3f{X) in standard
form. Then Uier\r-i(td - 0 divides fι 'and UieΩ\Ω-m(td - 0 divides
fm in C[td].

Proof. If / G Γ and (td - i) does not divide //, choose q e &{X) with

λ{q) = t\ Then / e Γ - / because u*qe 0{X) and λ(u*g) = fι(i)ti+ι.

Thus Uier\r-i(td ~ 0 d ί v i d e s //•
Similarly, if / e Ω and (/9 - /) does not divide fm9 choose q e 0{X)

with μ(q) = ί1'. Then / G Ω - m since u* q e 0{X) and //(w * ί ) =
fm{ϊ)ti+m. Thus Πi€Ω\Ω-m(ίβ - 0 divides / m . D

LEMMA 3.4. Let A be a submonoid ofN containing r + Nfor some
r E N. If k e Z, set n(k) equal to the cardinality of the finite set
Λ \ (Λ - k). Then n(-k) = n(k) + k.

Proof. By symmetry it is enough to prove the result for k e N.
Suppose k > 0. Partition N into the disjoint union N = IJ / €N Nz,
where Nz = {j e N\ik < j < (i + l)k}, and set Λ, = Λ Π N,. Note
Λ \ (Λ - k) = ((A + k) \ Λ) - k. We have

i€N

and

i€N

where Λ_! + k = 0. Because r + N c Λ , there exists N e N such that
/ > TV implies Λ/_j + fc = Λ, = N, . Now

Λ ( _ * ) . Π ( Λ ) = |A \ (A + fc)| - |Λ \ (Λ - k)\

0<i<N

= |Λ0| +

= |Λo| +

= |Λo| + 2^ {l-̂  'l ~ |A/-i|} = |ΛJV| = |NJV| = k.
\<i<N

Note that we have used the fact that if A and B are finite sets then
\A\B\-\B\A\ = \A\-\B\. Ώ
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LEMMA 3.5. Let mj < 0 and set gt = Π/er\r-/(^ - i) and hm =

Πι€ Ω\Ω-m(^-O- Then
(a) dcgtd(gι) > —/ VVJΪ/Z equality if and only if-leT
(b) dcgtd(hm) > -m with equality if and only if -m e Ω.

Proof. Recall that Γ and Ω are both submonoids of N. Thus, by
Lemma 3.4, deg(a) = |Γ\(Γ-/)| = -/ + |Γ\(Γ+/)| > -/ with equality
if and only if |Γ\(Γ+/)| = 0. If-/ G Γthen |Γ\(Γ+/)| = |(Γ-/)\Γ| = 0
since Γ - / c Γ. Conversely, |(Γ - /) \ Γ| = 0 implies —/ G Γ because
0 G Γ. This proves the assertion for glm The proof for hm is identi-
cal. D

PROPOSITION 3.6. Ifu e 3f^{X) write u = Σm<k<ι tkfk in standard
form. Then fm G Chm and jfj e C&. Moreover, -/ e T(X) and
-m e Ω(X).

Proof. By Lemma 3.1,1 < 0 and deg(^) < —fc for all k. By Lemma
3.3, gt divides //. By Lemma 3.5, deg(#) > -/. Thus -/ > deg(//) >
deg(g/) > -/, whence // e Cgi \ {0} and -/ e Γ since deg(&) = -/. A
similar argument works for fm. D

PROPOSITION 3.7. Write φ{β^{X)) = (9{J) c C[^]. Then Γ(Y) c
Ω{X)andΩ(Y)cΓ(X).

Proof. Choose u £ &Q(X). Write u = Σm<k<ι tkfk in standard form
with / < 0 and deg(A) < ~k. Then

Ψ(u) = Σi&t{tkfk)\ dcg(Λ) = -k} e <f(Y) c C[ξ].

Thus μ(ύ) = gvt(tιfι) = oίiξ~ι, for some 0 Φ on G C. By Proposition
3.6, -/ G Γ(JΓ). Thus Ω(Y) c Γ(X). A similar argument shows

c Ω(X). α

THEOREM 3.8. L ί̂ X be a curve with X = A1, π: X -^ X injective
and unique singularity at π(0). If X is not a monomial curve then
&Q(X) is a maximal commutative ad-nilpotent subalgebra of 3f{X)
which is not isomorphic to <9{X).

Proof. Assume X is not a monomial curve. By Theorem 2 .7 ,^
is a maximal commutative ad-nilpotent subalgebra of 3f{X) and is
isomorphic to 0{Y) for some curve Y with Ϋ = A1. If there ex-
ists ϋ: &{X) = &{Y) then, since C[t] is the integral closure of both
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0(X) and 0(Y)9 ϋ extends to an automorphism of C[t]. Thus ϋ(t) =
at + β for some α, /? e C with a / 0 . By Lemma 3.2, there exists
/ e Γ(X) \ Ω(X). Choose q e 0(X) with λ(q) = tιΓ. Then λϋ(q) =
α ¥ , whence i e Γ(7). But Γ(Y) C Ω(X) by Proposition 3.7, a
contradiction. D

The results in this section were motivated by the explicit computa-
tion, given in [7], of 3f{X) when 0(X) = CθC(t2 + t3)®t4C[t]. In this
case 3t$(X) is isomorphic to the ring of regular functions on a curve
with two singularities, while X has only one.

4. Monomial curves- Recall that ^ ( A 1 ) = C[d] and that there ex-
ists an automorphism of ^(A1) which interchanges t and -d. For a
monomial curve X we will see, in this section, that 3f^{X) = 0{X)
In general, however, there is no automorphism of 9f(X) interchang-
ing 0{X) and 3§{X) when X is a monomial curve. This is proved
in [7]. Also in this section it is proved that for all but two monomial
curves X there exists a maximal commutative ad-nilpotent subalgebra
of 3f{X) which is not isomorphic to (9{X). Indeed, this subalgebra is
not isomorphic to any monomial algebra.

Throughout §4, let X be a monomial curve. Hence 3f(X) C
C[t,t~~ι

9d] and, since &{X) is spanned by monomials, td e 2{X).
Thus^(Z) is an ad(£<9)-stable subspace of C[t, Γι,d], whence^(Z) =
®k€2{tkC[td] n3f(X)}. If u e 3f(X) and / e 0{X\ recall that u * /
denotes the action of u on / . The following lemma is implicit in [6].

LEMMA 4.1. If X is a monomial curve with associated monoid Λ,
then 2${X) = ®keI tkfkC[td] with fk = U{td - j\j eA\{A-k)}e
C[td].

Proof By the above paragraph, 3{X) = ®keτ{tkQtd] n3f(X)}.
But 3f(X) n tkC[td] is a C[^]-submodule of tkC[td]. Since tkC[td] =
C[td] as C[ί0]-module and C[td] is a PID, tkC[td]n&(X) = tkfkC[td]
for some fk e C[td]. Set hk = U{td - j\j € Λ \ (Λ - k)}. If g e
C[td] then tkg * tn = g(n)tn+k. Using this it is easy to check that
tkhk * 0{X) c 0{X)9 whence tkhk e 3f{X). Let tkg e 2{X) and
j e Λ. If g(j) φ 0 then g(j)tk+j = tkg * ϋ e @{X) S O H J G Λ . This
implies hk divides g in C[td] and thus fk = hk. D

THEOREM 4.2. IfX is a monomial curve with associated monoid Λ
andS{X) = φkeI tkfkC[td] then %{X) = Σ/ € A C r ' ' / - / • /
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Proof. Let u = £ tkpk e %{X\ with pk e C[td]. Note Λ = Γ(X) =
Ω(X) so, in the notation of Proposition 3.5, fk = hk = gk. Since X is
a monomial curve, ί*/?*. e @{X) for all /:. Thus t-deg(tkpk) > 0. But,
by Lemma 3.1, t-deg(tkpk) < 0. Thus t-ds%{tkpk) = 0 so, if pk Φ 0,
—k G Λ and Pk = gk = fk by Proposition 3.6. Of course, if —k G Λ

By Proposition 2.4, Sg(JΓ) = gr,Sg(Λ0 as C-algebras. Combining
this with the observation that grt{t~kf_k) = ξk for k G A gives the
second statement from the first. D

Combining Theorems 4.2 and 3.8 yields the following.

COROLLARY 4.3. Let X be a curve with X = A1, π: X -* X injective
and unique singularity at π(0). Then %{X) = ̂ (X) if and only ifX
is a monomial curve. Π

The next results show that, for all but two monomial curves, there
exists a maximal commutative ad-nilpotent subalgebra of 3f{X) not
isomorphic to &{X). For v e 3f{K)9 define ord(ι ) to be the order of v
as a differential operator, the "<9-degree". If R is any ring and u e R is
locally ad-nilpotent we may consider, as in [1], exp(ad(w)) e Aut(i?).

LEMMA 4.4. Set Φ = exρ(ad(Λ/*)) e Aut ίCI^r 1 ,^]) where λ eC
and k e l . Let X be a curve with X = A1, π: X -• X injective and
unique singularity at π(0). If R = Φ9f(X) then gτd R = gra 9f{X).

Proof. If u e 9f{X\ let ord(w) = n and write u = fdn + v with
/ 6 C[ί] \ {0}, v G C ^ r 1 , ^ ] and oτd(v) < n. Since oτά([λtk

9w]) <
ovd(w) for all w e&{K), ordΦ(ΐ ) < ordΦ(/9 w ) and

Φ(v) =

where y e C[t,Γι

9d] and ord(y) < n. Thus grd(Φ(w)) = fξn =

PROPOSITION 4.5. Set Φ = exp(ad(λί*)) e Aut(C[t9Γ
ι,d]), where

λ e C W A: G N. L ^ X be a curve with X = A1, π: X -> X //yec-
tive and unique singularity at π(0). Set Ro equal to the Oth part of
the t-filtration on R = Φ3f(X) c C[t9Γ

ι

9d]. Then Ro is a maximal
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commutative ad-nilpotent subalgebra of R. Moreover, Ro is a finitely
generated domain with integral closure isomorphic to C[ξ],

Proof. Lemma 4.4 implies gvdR C C[ί,^]. Thus, by Proposition
2.4, gr,i? c C[s,<!;] and i?o is isomorphic to (gr,i?) Π C[ξ]. Moreover,
Ro is a maximal commutative ad-nilpotent subalgebra of R if RQ Φ C.
Set P = Φ&(X,X), Q = ΦSf{X,X) and let q e C[t] generate the
conductor of C[t] in &(X). Thenlength(P/C[/,<9]) = length(C[ί,<9]/<2)
as C[£,d]-modules because Φ e Aut(C[t,d]). Furthermore

QP = Φ(3r{X,X)&(X,X)) = Φ3f(X) = R.

Since Φ fixes C(ί) and

C[t,d]q-1 D&(X,Jt) D C[t,d]D&(Jt,X) D qC[t,d],

we have
1 DPD C [ ί , β ] DQD qC[t,d].

Thus by Lemma 2.6, dimc(C[s, ξ]/ gr, R) < oo and (gr, R) n C[^] = Ro

is of finite codimension in C[^]. The rest follows as in the proof of
Theorem 2.7. D

Let X be a monomial curve with associated monoid Λ. Write
3{X) = 0 £ G Z t

kfkC[td] with Λ G C[ί0]. If Λ U {1} φ N, we show
3{X) contains a maximal commutative ad-nilpotent subalgebra which
is not isomorphic to any monomial algebra. Given m G N \ ( Λ u { l } ) ,
set Φ = expίadίm" 1 ^)) and R = Φ{β(X)) c C[t9Γ

ι,d]. Then
RQ, the Oth part of the ί-filtration on R, is a maximal commutative
ad-nilpotent subalgebra of R by Proposition 4.5. Moreover, i?0 =

ngr,(Λ). Note that Φ " 1 = 1

LEMMA 4.6. Let Ψ = exp(zd(-k~ιtk)) e A u t C ^ r 1 , ^ ] with 0 φ
k e N. Ifnel and a\,..., ar e C then there exist h0,..., hr e C[td]
such that

ψ(t» Π (td-aA =t* Σ tjkhj.
V J

Moreover, the leading term ofhj is (rMtd)r~J and ho = Y[\<i<r{td-ai).
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Proof.

ψ('" Π

= Ψ(tn)Ψ I H (td- α,) = tn [[ ((td - α,) + tk).
l</<r ) \<i<r

The result follows by expanding the product using (td - a.i)tι =
tι(td - at + /). For example,

tkhχ =(td-aι) (td- ar.x)tk + •-• + tk(td - α2) (td - ar). •

LEMMA 4.7. IfO^neNandfe C[td] \ {0} then Γnf £ Ro.

Proof, Assume Γnf e Ro and note deg(/) = n. Then φ-{(Γnf) =
t~n Σo<j<n tjmhj with ho = /, by Lemma 4.6. Since X is a monomial
curve, Γ Λ / = Γnh0 e%(X) and so / = /_„ with « G Λ . Thus write

f_n=l[{td-j\jeA\(A + n)}= Y[(td-ai) with αΛ = 0.

Now tm~nh\ e 3{X) and

+ [(td -aχ)---(td- an.2)tm(td - an)]

+ --- + [tm(td-a2)---(td-an)]

= tm{[(td -aλ+m)- -(td- α n _! + m)]

+ [(td -<xx+m) (td- an-2 + m)(td - an)] + ...

+ [(td-a2)---(td-an)]}.

Since an = 0, {Πi<(<«-i(-α/ + m)}tm~n = tm~nhx * 1 e <?(X). Since
m £ Λ, Πκ/<Λ-i(~αi + m) Φ 0 Thus m - n G A and « ^ Λ, a
contradiction." D

LEMMA 4.8. L^ί M = Σ0<fc<« ^S'fc e -̂ o o e in standard form. Then

Proof. Let r(fc) = deg(g^)- By Lemma 4.6, set
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for each k. Then

*-» = Σ Σ '"""***,/= Σ ** Σ Ki
0<k<n0<i<r(k) s>-n im-k=s

By Lemma 4.1, ̂  Σim-k=s hki e 3{X) for each s. For k < n, im-k =
jm - n if and only if k = n - Im for some / e N. Thus

^ l/m -k = jm-n}e 3{X).

Thus υ € Φ3f(X) = R and the result follows. D

LEMMA 4.9. IfRo is isomorphic to 3f{X) then for every n € Λ there
exists u e RQ such that u = Σo<i<n ^Sh in standard form, with
gnϊO.

Proof Consider both Ro and &{X) as subalgebras of C[ζ] of finite
co-dimension. If ϋ: <9{X) = Ro then ϋ extends to an automorphism
of C[£]. Thus ϋ(ζn) = (aξ + b)n and there exists u e Ro such that
gΓf(w) = anξn + (lower degree terms). Write u = Σk<i<ι rigi> i n s t a n "
dard form, with gι Φ 0. Then I >n and to prove that / = n it suffices
to show that t - deg(Γιgι) = 0. By Lemma 3.1, t - deg(rz>/) < 0 for
all /. In particular k > 0. As in the proof of Lemma 4.8, if we write

s>—l im—k=s

then Γιgι = Γι Σim-k=-i Ki e ^ ( ^ ) . By Proposition 2.4, gjrt&(X)
C C[ί,ί], from which it follows that t - deg(Γιgι) > 0. D

THEOREM 4.10. Let X be a monomial curve with associated monoid
Λ such that Λu {1} Φ N. ΓAeft 3f{X) contains a maximal commutative
ad-nilpotent subalgebra which is not isomorphic to (9{X).

Proof. Assume there exists an isomorphism ϋ: @{X) —• i?o Sup-
pose there exists 0 Φ n e A such that n < m. By Lemma 4.9 there
exists Σo<i<n tlSi £ ô> *n standard form, with gn Φ 0. Since
Im - n > 0 for all / e N, Lemma 4.8 implies t~ngn E l?o> contra-
dicting Lemma 4.7. Thus we may assume Λ = {0} U (N + r) for some
r > 3 and take m = r - 1. By Lemma 4.9, there exists u e i?o such
that w = Σ0</<r '"'ft ^n standard form with gr Φ 0. By Lemma 4.8,
take u = r r ^ r + Z " 1 ^ where deg(#i) < 1.

Make the identification Ro = grf(i?o) and consider i?o and ^(X) as
subalgebras of C[ξ]. As in the proof of Lemma 4.9, ϋ extends to an
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automorphism of C[ξ]. If deg(gi) = 1 then grt(u) = cξr + dξ with
c,d e C \ {0}. If v = d " 1 ^ ) G ^ W t h e n v = eξr + f for some
e,feC, since #(£") = (α<* + ft)Λ. But r > 2 so,

d(ι ) = e ( ^ + b)r + fφ cζr + dξ = gr,(κ).

Thus deg(gi) = 0 and w = t~rgr + at~ι for some a G C.
We have i~r£"r € ^(ΛQ, as in the proof of Lemma 4.9, and hence

gr = Π{td-j\j eA\(A+r)} by Lemma 4.2. Note that 2m = 2(r- l ) e
Λ \ (Λ + r). As in the proof of Lemma 4.6,

= rrτi{td - j + tm\j e A \ (Λ + r)} + α r 1

= r Γ J ^ timhi + arι

0<i<r

for some A/ e C[ί9]. Factor gr = (td - a\) (id - αΓ) with ar = 0
and αi = 2m and note ίr"2Λ2 = Γr+2mh2 e3f(X). Now

= (/a - α θ (td - α r _ 2 ) / 2 m

+ (td - ax) (td - α Γ . 3 )ί l f I (ίa - α Γ . i ) ί w

= ί2/w[(ίS - αi + 2m) (td - α r _ 2 + 2m)

+ (td - a{ + 2m) --(td - ar^ + 2m)(td - α r _ ! + m)

+ . ' + (td-a2)' (td- ar)].

The only summand of A2 which does not have a factor of td, in the
form of td - ar or td — a\+ 2m, is (td - a2 4- m) (id - α r_i + m).
Thus

(-a2 + m) (-a r_! + m)^~ 2 = tr~2h2 * 1 G 0{X).

Since m ^ Λ and αf G Λ for all /, (-α 2 + m) (-α r -i + m) ̂  0. But
r - 2 ^ Λ, a contradiction. D

The only monomial curves with Λu{ 1} = N and A1 and y1 — x3. In
[1], it is shown that all maximal commutative subalgebras of ^(A 1 ) ,
contained in JV(A1), are isomorphic to ̂ (A1) = C[t], Mimicking this
proof, the same is shown for y2 = x3 in [7], Hence y2 = x 3 is the
only curve with normalization equal to A1, π injective and unique
singularity at π(0) such that all maximal commutative ad-nilpotent
subalgebras of its ring of differential operators are isomorphic.
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5. Simply connected curves. This section is devoted to proving the
following proposition, referred to in the introduction.

PROPOSITION 5.1. Let X be a curve. Then n\(X) = 0 if and only if
X = A1 and π: X -• X is injective.

Proof. Note that %\ (A1) = 0 and π is continuous in the usual topol-
ogy. Assume X = A1 and π: X —> X is injective, hence bijective.
Thus π is a homomorphism and induces an isomorphism between
πx(X) and π^A 1). Therefore πx{X) = 0.

Assume n\{X) = 0. We first show π is injective and π\(X) = 0.
Recall π identifies at most a finite number of points. Factor π into a
sequence of maps

where X -+ YQ is injective and Y/ —> F/+i identifies just two points.
Thus consider the map A -> B where A equals some Y, and B is A
modulo the identification of two points x,y e A. Without affecting
the homotopy of A, we may draw out two thin "whiskers" at points
x and y and, since A is path connected, assume they both originate
at the same point. Thus B is homotopically equivalent to A V Sι

9

the one point union of A with a circle. By a standard application of
Van Kampen's Theorem [4], it follows that πλ(B) = π\(A)*Z9 the free
product. By induction, π\(X) = π\{X) * Z * * Z, where there are n
copies of Z. Thus π\ (X) = 0 and n = 0, whence π is injective.

To see X = A1, we first show genus(Z) = 0. Let Z be the non-
singular projective model for X. Then Z is a complex nonsingular
projective curve and hence is homeomorphic to a compact Riemann
surface. It is enough to see that genus(Z) = 0. Since X equals Z less
a finite number of points, there exists a series of inclusions

X = YocYιc cYn = Z

where 7/ is Y}+1, less one point. Another easy application of
Van Kampen's theorem implies that π\ (F/+1) is a homomorphic image
of π\(Yi). Since π\{X) = 0 we have π{(Z) = 0, by induction. Hence
Z = P 1 and genus(Z) = 0. Thus genus(Z) = 0, whence X equals A1

less a finite number of points. But π\(X) = 0, so X = A1. D
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