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COMMUTATIVE SUBALGEBRAS OF THE RING
OF DIFFERENTIAL OPERATORS ON A CURVE

P. PERKINS

Let X denote an irreducible affine algebraic curve over the complex
numbers. Let &Z(X) be the ring of regular functions on X. Denote
by & (X) the ring of differential operators on .X. We wish to charac-
terize 7 (X) as a ring theoretic invariant of & (X). It is proved that
@(X) equals the set of all locally ad-nilpotent elements of & (X) if
and only if X is not simply connected. However, for most simply
connected curves, we show there exists a maximal commutative sub-
algebra of Z(X), consisting of locally ad-nilpotent elements, which
is not isomorphic to &7 (X).

0. Introduction. Let X be a curve, that is, an irreducible affine al-
gebraic curve over C. Write @(X) for the ring of regular functions on
X and Z(X) for the ring of differential operators on X. See [8] for
the basic definitions and facts about rings of differential operators on
curves. This paper is motivated by the following question. If X and ¥
are curves with (X) = (Y), is X = Y? Write X for the normaliza-
tion of X. Stafford [9] considers this question for X with X = Al, the
affine line. He shows that 2 (X) = 2(X) if and only if X = X. He also
shows that if X is the cubic cusp y2 = x3 and Y = Al, then X = Y
if and only if Z(X) = 2(Y). Higher dimensional non-isomorphic
varieties can have isomorphic rings of differential operators, see
Levasseur, Smith and Stafford [2].

If u € Z(X), define ad(u) € Endc(Z(X)) by ad(u)(v) = [u,v] =
uv — vu. We say u is locally ad-nilpotent if for every v € & (X) there
exists n € N with ad(«)"(v) = 0. Write

N(X) = {u e Z(X)|u is locally ad-nilpotent}.

Note that if 9: Z(Y) — Z(X) is an isomorphism then §(/(Y)) =
A (X). It follows from the definition of Z(X) that #(X) is a maximal
commutative subalgebra of Z(X) and that #(X) is contained in .#"(X).
If genus (X) > 0 then Makar-Limanov [3] shows that #(X) = ./ (X).
Hence if (X) = 2(Y) with genus(X) > 0 then X = Y.

This paper expands on Makar-Limanov’s result to prove the follow-
ing theorem. Let 7: X — X denote the canonical surjection.
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THEOREM. Let X be a curve. Then 4 (X) = @(X) if and only if
either

(i) X #A! or

(ii) X = Al and n: X — X is not injective.

COROLLARY 1. Let X and Y be curves with 2(X) = 2(Y). If either
(i) X #A' or (ii) X =A! and n: X — X is not injective, then X =Y.

The condition that X = A! and n: X — X is injective is equivalent
to the condition that X is simply connected. This observation is due
to S. P. Smith and will be proved in §5. We obtain the following
connection between algebra and topology.

COROLLARY 2. Let X be a curve. Then @(X) = #(X) if and only if
X is not simply connected. Thus if 2 (X) = 2(Y) and X is not simply
connected then X =Y.

If 7(X) # #(X) then X = Al and n: X — X is injective. In [8] it is
shown, for such X, that & (X) is Morita equivalent to 2 (A!). Thus if
X and Y are curves with @(X) # #(X) and @(Y) # #(Y) then Z(X)
is Morita equivalent to 2 (Y). The results of [8] also show that Z/(X)
and 2(Y) are simple, hereditary C-algebras with the same Krull and
GK dimensions. Hence it will be difficult to distinguish between them.
Nevertheless, distinguishing between such “small” non-commutative
algebras is an important problem in ring theory.

We will always write Z(A!) = C[t,0] where 8 = d/dt. Dixmier [1]
shows that all maximal commutative subalgebras of Z(Al), contained
in .~ (Al), are conjugate under Aut 2 (A!). Thus if p: Z(X) — Z(A!)
is an isomorphism, there exists 4 € AutZ(A!) such that ug restricts
to an isomorphism between #(X) and C[t] = #(A!). This leads one
to ask, for an arbitrary curve X, if every maximal commutative sub-
algebra of Z/(X) which is contained in .#"(X) is isomorphic to Z(X).

Let X be a curve with X = A! and n: X — X injective. In §§3
and 4, we consider such curves with the additional hypothesis that X
has unique singularity at n(0). It is shown that for all but one such
curve, there are maximal commutative subalgebras of & (X) contained
in .7 (X) but not isomorphic to #(X). The one “well behaved” curve
is the cubic cusp ¥2 = x3. Thus maximal commutative subalgebras of
Z(X) consisting of locally ad-nilpotent elements are not alone sufhi-
cient to distinguish these rings from one another.
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These results will appear in the author’s Ph.D. thesis. I would like to
thank my advisor, S. Paul Smith, for interesting me in these questions
and for his many helpful comments and suggestions.

1. Curves with #(X) = .#(X). In this section it is proved that if
@(X) # #/(X) then X = A! and the canonical surjection 7: X — X
is injective. The rest of the paper considers the case with X = A! and
7 injective; these are the only curves whose differential operator rings
are hard to distinguish from one another. Theorem 1.1 and Corollary
1.2 are results of L. Makar-Limanov. We thank him for allowing us to
present them here. The proofs will appear in [3]. Most of this section
is based on his methods.

THEOREM 1.1 (Makar-Limanov). If X is a curve and @ (X) # ¥ (X)
then @(X) C C[b] for some b transcendental over C.

COROLLARY 1.2 (Makar-Limanov). If X is a curve with genus greater
than zero then 7(X) = ¥ (X).

Using Theorem 1.1, we now show that if #(X) # .#'(X) then #(X)
= C[¢] for some ¢ transcendental over C. Proposition 1.3 is probably
well known but we could find no reference for it.

PrROPOSITION 1.3. Let X be a curve with @(X) C C[b] for some b
transcendental over C. Then there exists t € Fract@(X) with 7(X) =
C[t].

Proof. Recall that X is an affine nonsingular curve. By Luroth’s
theorem, X is rational, since Fract@(X) = Fract@(X) c C(b). Thus
@(X) is a UFD and every nonzero prime ideal of #(X) is principal.
Since #(X) c C[b] and C[b] is integrally closed in C(b), #(X) c C[b].
Choose ¢t € @(X) \ C of minimal degree in . Then for all a € C,
t — a generates a maximal ideal of #(X). Indeed, if (1 — o) were not
maximal then ¢ — a = xy with x,y € #(X) nonunits, since #(X) is a
UFD. But then deg,(x) < deg,(¢), a contradiction.

Let m be the ideal generated by 7. If m’ is another maximal ideal
and ¢: #(X) — @(X)/w', then ¢(t) = o € C. Thus m’ contains the
maximal ideal (¢ — o) and hence equals it. If w is an irreducible
element of @(X) then 0 # (w) is prime and hence maximal since
dim@(X) = 1. Thus (w) = (¢ — B) for some g € C and so uw =t — 8
for some unit of #(X). But the only units of #(X) are in C since
@(X) c C[b]. Hence, by unique factorization, any element of #(X) is
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of the form A(t—o) - -+ (t—ay) for A, ay,...,a € C. Thus@(X) c C[t]
and hence there is equality. O

COROLLARY 1.4. If X is a curve with &(X) # /' (X) then X = AL,
Thus if X # A! then ©(X) = ¥ (X).

Proof. By Theorem 1.1, #(X) C C[b]. Proposition 1.3 implies
@(X) = C[t] and this yields the result. o

COROLLARY 1.5. Let X and Y be curves such that X # Al If
FX)=ZD(Y) then X =Y. O

If X = Al it is still possible to have #(X) = .#(X). Proposition 1.8
clarifies the situation. First are some technical lemmas. If #(X) = C[¢]
then 2(X) C C(¢)[8] and hence inherits the filtration by order of
differential operator. We form the associated graded ring, denoted
gry Z(X) to avoid confusion with another graded ring considered later
in this paper. Write gry Z(A!) = C[t,¢]. If X = A! then gry, Z(X) C
C[t,&] by [8, 3.11]. Throughout the paper we use {f, g} to denote the
Poisson bracket

(0f/0¢6)(0g/01) — (0.1/01)(08/0¢)

with f, g € C(¢)[¢]. For u,v € C(¢)[d], it is straightforward to check
that gry[u, v] = {gry(u), gry(v)} if the latter is nonzero. Thus {gr,(u), -}
€ Endc(gry 2 (X)) for all u € Z(X).

LEMMA 1.6. Let p&" € C[t,&] where p € C[t] is of degree r and
n > 0. Let q € C[t] be of degree s > 0. If 6 = {p&",-} is nilpotent on
q&™ then, for some i >0, rm = ns + i(r — n).

Proof. Assume rm # ns+i(r—n) for all i > 0 and let ¢” be the leading
term of p. We show by induction on i that §/(gé™) = g;gm+in=1)
where g; has leading term o;#°t{"~1) with 0 # o; € C. This contradicts
the hypothesis that J is nilpotent on ¢g&” and hence proves the lemma.
Of course the result is true for i = 0. Note that, if & € C[t], §(h&!) =
(nph' — [hp')é'+"~1 where f' denotes df/dt. By induction, suppose
di(gEm) = q;Em+i(n=1) where the leading term of ¢; is a;5t/("~1 with
0 # a; € C. Then

6i+l(q¢'m) - Qi+lém+(i+l)(n—l)
and the leading term of g, is
ai(n(s+i(r—1)) = (m+i(n — 1))+,
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Since (n(s+i(r—1))—(m+i(n—1))r) =ns+i(r—n)—rm # 0 by
hypothesis, this completes the proof. O

LEMMA 1.7. If X is a curve with X = A' and u € /' (X)\@(X) then
gry(u) = AL" for some positive integer n and A € C.

Proof. By way of contradiction, assume gry(#) = p" with deg(p) =
r > 0 and let anng(x)(C[t]/@ (X)) = qC[¢]. Then ¢C[t,0] C Z(X) and
q has order zero, whence qCl[t,£] C gry Z(X). Let deg(qg) = s > 0 and
assume r > n. Since {gry(u),-} is nilpotent on g, Lemma 1.6 implies
0=r-0=ns+i(r—n)>s,acontradiction. Thus r < n. Hence
if {gry(u), -} is nilpotent on ¢&™, rm = ns + i(r — n) < ns. Choose
m such that rm > ns. Then ¢&™ € gry Z(X) but {gry(u),-} is not
nilpotent on it. This contradiction implies » = 0. O

PROPOSITION 1.8. If X is a curve with X = Al and 7(X) # ' (X)
then dim(C[t,£&]/ gry Z(X)) < oo. In particular, n: X — X is injective.

Proof. The second assertion follows from the first by [8, 3.12].
Choose u € #(X) \ £(X). By Lemma 1.7 we may assume that
gry(u) = &" with n > 0. As in the proof of Lemma 1.7, pick g €
Cl[t] such that ¢C[t,{] C gry Z(X) and let +* be the leading term
of g. We claim &~UC[1,¢] C gry 2(X). Assuming the claim, let
v € C[t,¢&]\ gry Z(X). Since qCl[t,&] C gry Z(X), we may assume
t — deg(v) < s — 1. Since E~DC[t,&] C gry 2(X), we may assume
¢ —deg(v) < s(n—1)— 1. Thus v is in the finite dimensional vector
space spanned by {/¢/|0 <i<s—-1,0<j <s(n—1)—1} and this
proves the result.

To prove the claim, we show t'&/ € gry Z(X) for all j > s(n — 1)
by induction on i. By the remarks before Lemma 1.6, 6 = {¢",—} €
End(gr, 2 (X)). Note that 6(f¢™) = nf'ém+(n=1) for f € C[¢]. For all
m >0, g™ € gry, Z(X). Hence so is 6°(gE™) = a&™+5("=1 for some
0 # a € C. It follows that for all j > s(n — 1), &/ € gry 2(X) and we
can start the induction. Assume that i > 0 and fork < i, j >s(n—1)
implies that t*&/ € gr, 2 (X). If i < s then

6*7(g¢") = Bt € gr, Z(X)

for all / > 0, where ¢*~9 denotes the s — ith derivative of ¢ and
0 # B € C. The leading term of ¢~ is a nonzero constant times
so our induction hypothesis implies that #/¢/+(=)("=1) € gr, I (X) for
all / > i(n—1). If i > s then t'~¢/q € gr, Z(X) for all [ > 0. Since
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the leading term of ¢/~5¢/q is t’¢! and the induction hypothesis again
applies, this completes the induction and the proof. o

COROLLARY 1.9. If X is a curve such that either
(i) X #A! or
(i) X = A! but n: X — X is not injective

then @(X) = ¥ (X).

Proof. Combine Corollary 1.4 and Proposition 1.8. o

CoroLLARY 1.10. Let X and Y be curves with @ (X) = 2(Y). If
either X # A! or n: X — X is not injective then X = Y. 0

2. Locally Ad-nilpotent elements not in #(X). In §1 we saw that if
either X # A! or n: X — X is not injective then #(X) = .#(X). Thus
in either of these two cases, #(X) is the unique maximal commutative
subalgebra of Z(X) contained in .#'(X). In this section we show, con-
versely, that if X = A! and n: X — X is injective then .#"(X) properly
contains #(X). Indeed, Z(X) contains a maximal commutative sub-
algebra ;j(X), consisting of locally ad-nilpotent elements, such that
Z{(X)n@(X) = C. Several of the results will be proved in a generality
that will prove useful later.

When X = Al, @/(X) is just C[9] and in the general case F}(X)
should be thought of as analogous to C[0]. However, in general there is
no derivation ¢ € D(X) with C[d] a maximal commutative subalgebra
of Z(X) contained in .#'(X). Thus finding the correct analogy of C[9]
is complicated.

Throughout §2, let X be a curve with X = Al.

DEefrINITION. Let R be a subalgebra of C(¢)[0]. A commutative
subalgebra S of R is ad-nilpotent if, for every u € R, there exists n € N
with [so, [s1,...[Sn,u]]] = O for all sp,...,5, € S. An ad-nilpotent
subalgebra of Z/(X) is always contained in .#’(X). By the definition
of Z(X), #(X) is an ad-nilpotent subalgebra of Z(X).

Let K = C(¢) and consider 2 (K) = C(¢)[?]. An element u € Z(K)
can be uniquely expressed u = 5. f,0% where k ranges over a finite
subset of N and f; € C(¢). Since X = A!, we may identify & (X) with
a subalgebra of Z(K). Set deg(f/g) = deg(f) —deg(g) for f, g € C[t].

DEfFINITION. If u = Y 0% € @(K) define the t-degree of u
to be ¢ — deg(u) = max{deg(fy)}. Set YUK) = {u € D(K)|t -
deg(u) < k} for k € Z. It is clear that 9/(K) - 2/(K) C 2/ ;(K)
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so we obtain the filtration Z(K) = U,z Z/(K). Form the graded
ring @, c7(ZL(K)/2}_,(K)) in the usual way and denote this ring
gr, Z(K). Define the t-filtration on 2 (X) by D[(X) = D(X)NZL(K).
Then gr, Z(X) embeds in gr, Z(K).

LEmMmA 2.1. For all n,m € 7, [Z}(K),2}(K)] ¢ 2}, ,,_,(K) and
hence gr, 2 (K) is commutative.

Proof. Let h, f,p,q € C[t], with deg(h/f) = n and deg(p/q) = m.
If k,1 € N, it suffices to prove [(h/f)0%,(p/q)0'1 € 2! _,,_,(K). Now

[(h/)O%, (p/9)0"1 = (h] f)[0%,p/910" + (/q)lh/ 1, 8" 10"

But
[h/f,0'1=- > 0'[a,h/f10'!
0<i<i-1
- _ Z ai(fhl _ hfl)f-Zal—i—l
0<i<i-1
so t—deglh/f,0'] < deg(fh'—h[")f~2 < n—1. Thus (h/f)[0%,p/q]0’

and (p/q)[h/f,d']0* are in Z! (K) and the result follows. o

n+m-—1
LEMMA 2.2. gr, Z(K) = C[s, s~ '][€].

Proof. Since gr, Z(K) is commutative and gr,(¢) gr,(¢~!) = 1, there
exists an algebra homomorphism

¢: Cls,s™'1i] — gr, Z(K)

given by ¢(s) = gr,(t), ¢(s7!) = gr,(t7!) and ¢(¢) = gr,(9). If
o(>_ fi(€)s') = 0 then Y gr,(fi(9)t') = 0, whence f;(d) = 0 for all
i. Thus ¢ is injective. If f € K then f = g/h with g,h € C[t].
Write g = at” + p and h = Bt™ + q where a, f # 0, deg(p) < n and
deg(q) < m. Now f,aB~'t""" e 2!_, (K) and
f=ap 1 = (g = af )
=@ -ap 't""q)/he 2, _,_,(K).
Thus gr,(f) = gr,(af~1¢""™) € Im(p). If u € Z(K) write u = Y f;0°
with f; € K and set ¢t — deg(u) = k. If a,b € 2(K) such that t —
deg(a + b) = t — deg(a) = t — deg(b) then gr,(a + b) = gr,(a) + gr,(b).
It follows that
gr () = gr, (_{fi0'| deg(f}) = k}) = 3 {er,(/id")| deg(f) = k)

and each gr,(f;0") = gr,(f;) gr,(9)" € Im(p). Thus ¢ is surjective. O
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If R is any subalgebra of Z(K), define the ¢-filtration on R any
R! = RNZ/(K). We now prove the basic results about R,

LEMMA 2.3. Let R be a subalgebra of 2 (K) such that gr,(R) C
Cls,¢] and let v € R). Let k > 0 and u € (K). Ifv ¢ C then
[v,u] € Z[_,(K) implies u € Z/(K).

Proof. Assume there exists n > k with u € Z}(K)\ 2/!_,(K). Write
u=1t"f(0)+x with x € Z}_,(K). Write v = g(9) + y € Z;(K) with
y € 2L ,(K). Since v ¢ C,deg(g) > 0 because gr,(R) C C[s,¢]. Hence

[v,u] = [g(0),t" f(0)] + [y, ul + [g(9), x]
= nt""1 f(8)g'(d) + (something in Z!_,(K)).

Thus [v,u] ¢ 2/ _,(K). a

By [8, 3.11], gry 2(X) C gr, 2(X) = C[t,£] so we may take R =
Z(X) in the following result.

PROPOSITION 2.4. Let R be a subalgebra of 2 (K) such that gry(R) C
C[t,&). Then

(a) gr(R) C Cs, &

(b) R}, is a commutative ad-nilpotent subalgebra of R.

(c) R} = gr,(R) N C[¢] as C-algebras.

(d) If R}, # C then it is a maximal commutative subalgebra of R.

Proof. (a) If u € R with ¢ — deg(u) < 0 then u = Y £,8F with
deg(fx) < O for all k, whence gry(u) ¢ C[t,£]. Hence, if u € R then
t —deg(u) =n >0. Write u = t"h(0) + v withv e Z!_ (K)and h a
polynomial. Then gr,(u) = s"h(¢) € C[s, £].

(b) Since elements of R have non-negative ¢-degrees, R” | = (0). By
Lemma 2.1, [R{, R;] C R! _,. Thus R} is ad-nilpotent. It is commu-
tative because [R{, Rj] C R., = (0).

(c) Note that gr, RN C[¢£] is the image of R{, under the map R —
gr;(R). But this image is isomorphic to gr,(R}) under the induced
filtration. Since R’ | = (0),

gr,(R) N C[¢] = gr,(Rp) = Ry/RL; = Ry

as C-algebras.
(d) Let v € R\ {C} and u € R. By (a), gr,(R) C C[s,¢]. Thus if
[v,u] =0 € R., then u € R, by Lemma 2.3. o
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By Proposition 2.4 and the remark before it, gr, 2(X) c Cls,&].
Thus if Z{(X) # C, Lemma 2.3 implies that the ¢-filtration on & (X)
can be defined by the degree of ad-nilpotence of ZJ(X) on Z(X).
That is

Z5(X)
= {u € 2(X)|[lvo, [vy,...[Vn,u]...]] = O for all vy,...,v, € Z{X)}.

This is analogous to the way the order of operator filtration is defined,
with Z(X) playing the role of #(X).

Our next goal is to prove Z(X) # C, whence it is a maximal com-
mutative ad-nilpotent subalgebra. This will be achieved in Theorem
2.7. Note that gr, Z(A!) = C[s,¢] and let M C N be distinct nonzero
gr, 2 (A')-submodules of gr, 2 (K). The l-length of N/M is defined,
as in [8, 3.10], to be the largest integer n such that there exists a
chain of gr, 2(Al)-modules M = My C M; C --- C M, = N with
dimc(M;/M;_,) = oo for each i.

LEMMA 2.5. Let ¢ € C[t). (i) If P is a left 2(A')-module and
2(AYHYg~1 > P> Z(A!) then
1-length(gr, P/ gr, 7 (A!)) = length,n,\(P/2 (A')).
(ii) If P is a right 2 (A')-module and 2 (A!) > P > q2 (A') then
1-length(gr, 2 (R")/ gr, P) = lengthg a1\ (Z (A!)/P).

Proof. Let the leading term of g be t*. We claim

1'length(gr19(Al)/ grt(qg('ql)))
= lengthg(a) (Z(A") /92 (A1)

and

1-length(gr,(Z(Al)g™")/ gr, 2 (A1)
= lengthg a1y (2 (A)g ™! /2 (AY)).

To prove the claim, note that
lengthg, a1 (2(A') /g2 (A1)
= lengthy a1 (2 (A~ /2(A)) = k.
If u = qv € ¢z (A!) then
g1, (u) = (g1,(9))(81,(v)) = s* (gr,(v)) € s*C[s,&].
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Thus to see s¥C[s,&] = gr,(¢Z(AY)), it suffices to note
s = gr,(qt'd) € gr,(¢2 (AY))
for all i, j € N. The first part of the claim follows from
k = 1-length(C[s, £1/s*Cls, &]).
A similar proof, using gr,(¢g~!) = s7%, shows
gr,(2(Ahg™!) = s7*C[s, €.

Since k = deg(q) = l-length(s~*C[s, &]/C[s, £]), the second part also
follows.
Note that if L O N are right 2(A!)-submodules of Z'(K) then

(%) lengthg a1y (L/N) < 1-length(gr, L/ gr, N).

The result now follows just as in [8, 3.10]. By the above paragraph
and the inequality (x) we have

lengthg a1 (2 (A1) /g2 (A'))
= I-length(gr, Z(A")/ gr,(¢2 (A1)))
= 1-length(gr, Z(A')/ gr, P) + 1-length(gr, P/ gr,(¢Z (A")))
> lengthg, 01y (Z(A")/P) + lengthy, a1 (P/q2 (A'))
= lengthg, a1y (2 (R') /92 (A")).
Thus
1-length(gr, Z(A')/ gr, P) + 1-length(gr, P/ gr,(¢Z (A')))
= lengthg a1 (Z(A")/P) + lengthg, ai (P/gZ (A')).
By (%),
1-length(gr, 2 (A')/ gr, P) > lengthg a1y (Z(A!)/P)

1-length(gr, P/ gr,(¢2 (A'))) > lengthg a (P/q¢2 (A1)

so 1-length(gr, 2 (A')/gr, P) = lengthg(A.)(Q’(Al)/P), proving (ii).
The proof of (i) is similar. a

LEMMA 2.6. Let R be a subalgebra of Z(K) with gry R C C[t,&].
Assume there exist a left Z(A')-module P, a right 2 (A')-module Q,
and q € C[t] with the following properties.

(i) 2(AYYg~' > P> 2(A") > Q> q2(AY),
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(ii) length(P/2 (A!)) = length(2 (A)/Q),
(iii) QP C R.
Then gr, R C C[s,¢] and dim¢(C[s, <]/ gr, R) < oo.

Proof. Proposition 2.4 implies gr; R C C[s,£]. The rest of the proof
is very similar to the proof of [8, 3.12]. We have

Cls,¢1 D er, R D gr,(QP) D gr,(Q) gr,(P).
By Lemma 2.5,
(*#+x)  1-length(gr, P/ gr, Z(A!)) = length(P/2Z (A!))
= length(Z(A')/Q) = 1-length(gr, Z(A')/ gr, Q).
Set this common length equal to m. Note that if I; C I, and J are
nonzero ideals of C[s, ] with dime (1,/1;) = oo, then dime(J 1/ J 1) =
oo also. Thus, if C[s,&] =1y c I, C --- C I, = gr, P is a maximal
chain for which dimc¢(Z;/1;_;) = oo for all j, then
gr,Q = (gr, Q)o C --- C (gr, Q) = (gr, Q)(gr, P)

is also a chain for which each factor is infinite dimensional. Hence

I-length((gr, Q)(gr, P)/ gr, Q) > 1-length(gr, P/C[s,<])
But

I-length(gr, P/C[s, ) = 1-length(C[s,¢]/ gr, Q)
> 1-length((gr, Q)(gr, P)/ gr, Q)

by (x*), whence

1-length(C[s, <]/ gr, Q) = 1-length((gr, Q)(er, P)/ gr, Q).
Thus dim¢(C[s, &]/(gr; Q)(gr, P)) < oo and this proves the result. O

If X and Y are any pair of birationally equivalent curves then let
K =Fract@(X) = Fract&(Y) and define

DX, Y)={DeD(K)D+feeo(Y)foral feca(X)},

where D x f denotes the action of D on f. If X and Y are curves such
that #(X) c #(Y) c (X) then Z(Y, X) is a left ideal of Z(X) and a
right ideal of 2(Y). Note that 1 € (X, Y) and Z(Y, X)N&Z(Y) equals
the conductor of #(Y) in #(X), whence both Z(X,Y) and Z(Y, X)
are nonzero. If n: X — X is injective then Z(X, X)2 (X, X) = Z(X)
since it is a nonzero 2-sided ideal of a simple ring, by [8, 3.4]. Similarly
22X, X)2(X,X)=2(X).
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THEOREM 2.7. Let X = A! and n: X — X be injective. Then

(@) Z{(X) is a maximal commutative ad-nilpotent subalgebra of
2(X).

(b) Z{(X)ne(X) =C.

(€) Z{(X) is a finitely generated C-domain of dimension 1 with in-
tegral closure isomorphic to C[&].

Proof. As remarked earlier, gry 2(X) C C[t,£] by [8, 3.11]. Thus
Proposition 2.4 applies and (X ) is a commutative ad-nilpotent sub-
algebra of Z(X) intersecting #(X) in C. Furthermore, to see that it
is a maximal commutative subalgebra of Z'(X), it is enough to show
2{(X) # C. Thus it suffices to prove (c).

We do this by applying Lemma 2.6 to P = 2(X,X) and P* =
(X, X). Note that gr, Z(X) > (gr,(P))(gr,(P*)). Let g € C[¢] gen-
erate the conductor of #(X) = C[¢] in #(X). Then ¢2Z(A') c P and
P* c 2(AY)gq~!. Since Z(X) is a Noetherian domain, we can identify
Homg (P, 2 (A1) with P* = {u € Z(K)|uP c Z(A!)}. Thus, since
2(Al) is a hereditary domain,

length(P* /2 (A')) = length(Z (A')/P).

By Lemma 2.6, dim¢(C[s,¢]/ gr, Z(X)) < oo.
By Proposition 2.4, Z/}(X) = gr, (X) N C[£]. Thus
dim(C[¢]/Z;(X)) = dim(C[¢] + (gr, Z(X))/ gr; Z (X)) < 00
and Z}(X) is a domain of dimension 1 with integral closure isomor-

phic to C[¢]. That Z/(X) is a finitely generated C-algebra follows from
Eakin’s Theorem [5, §3.5]. This proves (c) and the theorem. O

Combining Theorem 2.7 with Corollary 1.9 yields the theorem
stated in the introduction.

THEOREM 2.8. Let X be a curve. Then #'(X) = &(X) if and only if
either (i) X # Al or (ii) X = Al and n: X — X is not injective. O

Let X be a curve with X = A! and n: X — X injective. By Theo-
rem 2.7 there exists a curve Y with ¥ = A! such that Z{(X)=o(Y).
Moreover #(Y) = Z}(X) is a maximal commutative ad-nilpotent sub-
algebra of Z(X). It would be interesting to know if there exists a C-
algebra isomorphism ¢: 2(X) = Z(Y) such that ¢(Z{(X)) = &(Y).
If this were true then ¢(@(X)) ¢ #(Y)\&(Y), whence n: ¥ — Y
is injective by Theorem 2.8. In [7] we compute an example where
O(Y) 2 #(X) and n: ¥ — Y is injective. However, it is unknown if
(X)) = 2(Y) for this example.
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3. Non-monomial curves. The remainder of this paper is concerned
with those curves X for which #(X) # @(X). Theorem 2.8 tells us
precisely which curves these are. Thus, for the rest of §3 fix a curve
X such that X =A! and n: X — X is injective. We make the further
restriction that X has a unique singularity, which for convenience we
take to be n(0). Hence if #(A!) = C[1], it follows that C[f] D #(X) D
t"C[t] for some r. Our goal is Theorem 3.8 which says that for “most”
such X, Z}(X) # 0(X).

DEFINITION. A subalgebra R of C[¢] is called a monomial algebra
if it has a basis consisting of monomials in ¢ and dim¢(C[¢]/R) < oc.
A curve X is a monomial curve if #(X) is a monomial algebra. If
R C C[f] is a monomial algebra, then A = {k € N|tk € R} is a
submonoid of the natural numbers and R = Y, ., Ctt. If R = #(X),
call A the monoid associated to X .

The ring of differential operators on a monomial curve has been
studied in [6]. Of course C[¢] is a monomial algebra with basis {1, ¢,
t2,...} and thus A! is a monomial curve. A more interesting example
is the planar curve Z given by the equation y™ = x" where (m, n) = 1.
Then #(Z) = C[t™,t"]. Note that a monomial curve X has X = Al
and, if X # Al, unique singularity at #(0).

With the above restrictions on X, we will show #(X) # Z}(X) if
X is not a monomial curve. Let (') be the conductor #(X) = C[¢] in
@(X). Thus 2(X)t" c 2(X) = C[t,8] so D(X) c C[t,t!,8]. The
element 9 € C[¢t,t~!,0] is ad-semisimple so C[z,¢~!,8] decomposes
into a direct sum of ad(¢0)-eigenspaces, C[t,t™!,8] = @z tkC[1d].
Thus ¥ € Z(X) has a unique expression

u= Y *f withk e, fi € C[td], and f, fm # 0.

m<k<lI

Call this the standard form for u. Give Z(X) the t-filtration
{Z}(X)}nen and consider the associated graded ring gr, Z(X). We
will usually apply the following lemma in the case n = 0.

LEMMA 3.1. If u € D(X), write u = %, <, t* fi in standard form.
Then u € Z}(X) if and only if | < n and deg,y(f;) < n — k for all
m<k<lI.

Proof. If deg,,(fi) < n—k for all m < k <[ then t-deg(t* f;) < n
and u € Z}(X). Let u € Z}(X) and assume, by way of contradiction,
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that {k|k + deg(fx) > n} # &. Choose j with s = j + deg(f;) > n
maximal. Note # has a unique expression

u=y t'g; with g, €C[d]land i€z,

since u € C[t,t71,0], and g; = 0 for i > n because t-deg(u) < n. Set
n(k) = deg(f;) and note

t* £, = atktF)gnk) 4 (terms of lower degree in both ¢ and 9)
where 0 # oy € C. Since k + n(k) < s for all k,
0="rge =) {atFRo"®k + n(k) = s}.

Therefore, since j+ n(j) = s, there exists i # j with i +n(i) = j+n(Jj)
and n(i) = n(j). But then i = j, a contradiction. Thus deg(f;) <n—k
for m < k <. Since deg(f;) >0,n—12>0. m

DEFINITION. If p € C[f] write p = aot’ + o'+ + -+ + a;t'*/ with
ag,a; # 0. Define A(p) = a;t"*/ and u(p) = aot’. For any curve Z
with Z = A!, write @#(Z) = C[t] and define

I(Z) = {i eN|3g € #(Z) with A(q) = t'},
Q(Z) = {i eN[3g € #(Z) with u(q) = t'}.

These are both submonoids of N. We write I' for I'(Z) and Q for
Q(Z) if it is clear what curve we mean. If Z is a monomial curve
then I'(Z) and Q(Z) both equal the monoid associated to Z. We
have the following converse.

LemMA 3.2. If X is not a monomial curve then I'(X) \ Q(X) # &.

Proof. Since X is not a monomial curve and ¢'C[t] C &(X), we
may choose j € I'(X) maximal such that ¢/ ¢ @(X). We show j €
I'(X)\ Q(X). If j € Q(X) choose g € &(X) of minimal degree such
that u(q) = /. Then A(q) = at/*' with i > 0 and 0 # a € C. But
i+j e T(X)so tit/ € @(X) by hypothesis. Hence p = g—at't/ € 6(X)
with u(p) = ¢/, contradicting the minimality of deg(q). O

There is an algebra isomorphism ¢: Z}(X) = C[¢] N gr, Z(X) by
Proposition 2.4. By Theorem 2.7, there exists a curve Y with ¥ = Al
such that ¢(Z{(X)) = @(Y) c C[¢] = @(¥). The purpose of the next
few results is to compare I'(Y) with Q(X) and Q(Y) with I'(X). This
is done in Proposition 3.7.
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LEMMA 3.3. Let | <0 and u = Y, ;< t* fi € 2(X) in standard
Jorm. Then [];err—,(10 — i) divides f; and [];cq\q-m(t0 — i) divides
fon in C[20].

Proof. If i e I" and (t0 — i) does not divide f;, choose ¢ € @(X) with
A(q) =t Then i e ' - because u*q € @(X) and A(u*q) = f;(i)t'*.
Thus ;e -, (10 — §) divides f;.

Similarly, if i € Q and (¢0 — i) does not divide f,,, choose g € @ (X)
with u(q) = ¢/. Then i € Q — m since u*q € @(X) and u(u * q) =
Sm(D)tF™. Thus [T;cq\q-n(t8 — i) divides fin. O

LEMMA 3.4. Let A be a submonoid of N containing r + N for some
r e N. Ifk € Z, set n(k) equal to the cardinality of the finite set
A\ (A —k). Then n(—k) = n(k) + k.

Proof. By symmetry it is enough to prove the result for £k € N.
Suppose k > 0. Partition N into the disjoint union N = [[..\N;,
where N; = {j € N|ik < j < (i + 1)k}, and set A; = ANN;. Note
A\(A-k)=((A+k)\A)— k. We have

A\NA+k) =TJAN A +k)
ieN
and
A+I\A=JJAim1 +k)\ A
ieN
where A_; + k = &. Because r + N C A, there exists N € N such that
i > N implies A;_; + k = A; =N;. Now
n(—k) —n(k) = [A\ (A+ k)| - [A\ (A - k)|
= A\ (A+ k)| = |(A+k)\ Al

= 3 AN Ao+ 0= Y (Ao + k) \ A

0<i<N 1<i<N
=Aol+ D (AN At + k)| = [(Air + k) \ Agl}
1<i<N
= Aol + D {IAil = |(Aimr + K}
1<i<N
=|Aol+ D {IAil = |Ai-1]} = |An| = INy| = k.
1<i<N

Note that we have used the fact that if 4 and B are finite sets then
|4\ B| - |B\ 4| = |4| - |B|. O
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LeEmMMA 3.5. Let m,l < 0 and set g = [];er\r—,(t0 — i) and hy =
[Tica\@-m(t0 — §). Then

(a) deg,5(g;) > —I with equality if and only if -1 € T’

(b) deg,s(hm) > —m with equality if and only if —m € Q.

Proof. Recall that I' and Q are both submonoids of N. Thus, by
Lemma 3.4, deg(g)) = IT\(T'=10)| = =1+ |I'\(T'+/)| > —I with equality
if and only if [T'\(I'+/)| = 0. If =/ € " then |[I'\(T'+/)| = |(T-)\I'| =0
since I' — / c I'. Conversely, |(I' = /) \I'| = 0 implies —/ € I" because
0 € I'. This proves the assertion for g;. The proof for 4,, is identi-
cal. m|

PROPOSITION 3.6. If u € D(X) write u =Y., ;< t* fi in standard
form. Then f, € Ch,, and f; € Cg. Moreover, —| € I'(X) and
-m € Q(X).

Proof. By Lemma 3.1, / < 0 and deg(f;) < —k for all k. By Lemma
3.3, g; divides f;. By Lemma 3.5, deg(g;) > —/. Thus —/ > deg(f;) >
deg(g;) > —I, whence f; € Cg;\ {0} and —/ € T since deg(g;) = —/[. A
similar argument works for f,. O

ProPosITION 3.7. Write p(D{(X)) = ¢(Y) C C[¢]. Then I'(Y) C
Q(X) and Q(Y) c T'(X).

Proof. Choose u € Z§(X). Writeu =3, 1<, t* £, in standard form
with / < 0 and deg(f;) < —k. Then

o(u) = {gr,(* fi)|deg(fy) = —k} € #(Y) C C[¢].

Thus u(u) = gr,(f' f}) = a;¢~, for some 0 # o; € C. By Proposition
3.6, -/ € I'(X). Thus Q(Y) c I'(X). A similar argument shows
I'(Y) c Q(X). O

THEOREM 3.8. Let X be a curve with X = Al, n: X — X injective
and unique singularity at n(0). If X is not a monomial curve then
2§(X) is a maximal commutative ad-nilpotent subalgebra of 2 (X)
which is not isomorphic to @(X).

Proof. Assume X is not a monomial curve. By Theorem 2.7, Z{(X)
is a maximal commutative ad-nilpotent subalgebra of Z/(X) and is
isomorphic to #(Y) for some curve Y with ¥ = Al. If there ex-
ists 9: @(X) = #(Y) then, since C[¢] is the integral closure of both
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@(X) and £(Y), 9 extends to an automorphism of C[¢]. Thus 9(¢) =
at + p for some a,f € C with a # 0. By Lemma 3.2, there exists
i € T(X)\ Q(X). Choose ¢ € @(X) with A(q) = ¢'. Then Ad(q) =
a't!, whence i € I'(Y). But I'(Y) ¢ Q(X) by Proposition 3.7, a
contradiction. O

The results in this section were motivated by the explicit computa-
tion, given in [7], of 2 (X) when #(X) = C®C(2+3) ®*C[¢t]. In this
case Zj(X) is isomorphic to the ring of regular functions on a curve
with two singularities, while X has only one.

4. Monomial curves. Recall that Z (Al) = C[8] and that there ex-
ists an automorphism of 2 (A!) which interchanges ¢ and —8. For a
monomial curve X we will see, in this section, that Z}(X) = #(X).
In general, however, there is no automorphism of 2(X) interchang-
ing #(X) and Z}(X) when X is a monomial curve. This is proved
in [7]. Also in this section it is proved that for all but two monomial
curves X there exists a maximal commutative ad-nilpotent subalgebra
of Z(X) which is not isomorphic to #(X). Indeed, this subalgebra is
not isomorphic to any monomial algebra.

Throughout §4, let X be a monomial curve. Hence Z(X) C
C[t,t~!,8] and, since #(X) is spanned by monomials, td € 2(X).
Thus 2 (X) is an ad(z9)-stable subspace of C[¢,¢~!,9], whence Z(X) =
Dz {tFC[tO]INZ(X)}. If u € Z(X) and f € &(X), recall that u = f
denotes the action of u on f. The following lemma is implicit in [6].

LEMMA 4.1. If X is a monomial curve with associated monoid A,
then 2 (X) = @z t* /i Cl28] with fi, =T1{t0 — j|j € A\ (A-k)} €
C[z9]

Proof. By the above paragraph, Z(X) = @kez{tkC[ta] NZ((X)}.
But 2(X)NtkC[td] is a C[td]-submodule of tKC[td]. Since t*C[td] =
C[td] as C[td]-module and C[td] is a PID, t*C[t0]1NZ (X) = t* £, C[t0]
for some f; € C[td]. Set hy = II{td — jlj €e A\(A-k)}. If g €
C[td] then tkg « t" = g(n)t"**. Using this it is easy to check that
tkh, *+ ©(X) c &(X), whence tkh, € 2(X). Let t*g € Z(X) and
jeA If g(j) # 0 then g(j)tkt/ =thkg+«t/ € #(X) so k + j € A. This
implies 4, divides g in C[t9] and thus f; = Ay. 0

THEOREM 4.2. If X is a monomial curve with associated monoid A
and D (X) = @z t* /i Clt0] then LX) =3 ;ep Ct~' f-;. In particu-
lar, D{(X) = (X).
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Proof. Letu = 3 t*p;, € 94(X), with p; € C[t9]. Note A =T(X) =
Q(X) so, in the notation of Proposition 3.5, f, = A, = gi. Since X is
a monomial curve, t*p, € Z(X) for all k. Thus ¢-deg(¢*p;) > 0. But,
by Lemma 3.1, t-deg(t*p;) < 0. Thus ¢-deg(t*py) = 0 so, if py # 0,
—k € A and p;, = g, = f; by Proposition 3.6. Of course, if —k € A
then t=% 1, =17 g_; € E(X).

By Proposition 2.4, FJ(X) = gr, Z§(X) as C-algebras. Combining
this with the observation that gr,(t K f_;) = & for k € A gives the
second statement from the first. O

Combining Theorems 4.2 and 3.8 yields the following.

COROLLARY 4.3. Let X be a curve with X = A!, n: X — X injective
and unique singularity at n(0). Then Z§(X) = &(X) if and only if X
is a monomial curve. a

The next results show that, for all but two monomial curves, there
exists a maximal commutative ad-nilpotent subalgebra of 2 (X) not
isomorphic to #(X). For v € Z(K), define ord(v) to be the order of v
as a differential operator, the “9-degree”. If R is any ring and u € R is
locally ad-nilpotent we may consider, as in [1], exp(ad(«)) € Aut(R).

LEMMA 4.4. Set ® = exp(ad(At¥)) € Aut(C[t,1~",8]) where A € C
and k € 7. Let X be a curve with X = A!, n: X — X injective and
unique singularity at n(0). If R = ®Z(X) then gry R = gry D (X).

Proof. If u € 2(X), let ord(u) = n and write u = f0" + v with
fecC[\ {0}, v e C[t,t1,8] and ord(v) < n. Since ord([AF, w]) <
ord(w) for all w € Z(K), ord ®(v) < ord ®(f9") and

O(u) = ©(f0") + ©(v)

= fo" + (Z(i!)-lad(,uk)f(fa")) +OW) = f8" +
i>1
where y € C[t,t71,8] and ord(y) < n. Thus gry(®(u)) = f&" =
gry (). O

PROPOSITION 4.5. Set @ = exp(ad(irk)) € Aut(C[t,t~!,3]), where
AeCandk € N. Let X be a curve with X = Al, n: X — X injec-
tive and unique singularity at n(0). Set Ry equal to the Oth part of
the t-filtration on R = ®2(X) c C[t,t7!,8). Then Ry is a maximal
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commutative ad-nilpotent subalgebra of R. Moreover, R is a finitely
generated domain with integral closure isomorphic to C[&].

Proof. Lemma 4.4 implies gry R C C[¢,£]. Thus, by Proposition
2.4, gr, R C Cl[s,¢] and Ry is isomorphic to (gr, R) N C[{]. Moreover,
R, is a maximal commutative ad-nilpotent subalgebra of R if R, # C.
Set P = ®2 (X, X), Q = ®Z(X,X) and let ¢ € C[t] generate the
conductor of C[¢] in #(X). Then length(P/C[t,3]) = length(C[¢,8]/Q)
as C[¢, 9]-modules because ® € Aut(C[¢,3]). Furthermore

QP =®(2(X,X)2(X,X)) =®2(X) =R.
Since @ fixes C(¢) and
C[t,01g7' > 2(X,X) > C[t,0] > 2(X, X) D qCl[t, 0],

we have
Cl[t,01g7! > P> C[t,8] > Q D qCJ[t,d].

Thus by Lemma 2.6, dim¢(C[s, £]/ gr; R) < oo and (gr, R)NC[E] = Ry
is of finite codimension in C[£]. The rest follows as in the proof of
Theorem 2.7. O

Let X be a monomial curve with associated monoid A. Write
D(X) = Bz t* /i Cl10] with f; € C[#8]. If AU {1} # N, we show
2 (X) contains a maximal commutative ad-nilpotent subalgebra which
is not isomorphic to any monomial algebra. Given m € N\ (AU {1}),
set ® = exp(ad(m~'¢")) and R = ®(Z (X)) c C[t,t71,0]. Then
Ry, the Oth part of the t-filtration on R, is a maximal commutative

ad-nilpotent subalgebra of R by Proposition 4.5. Moreover, Ry =
C[¢] N gr,(R). Note that ®~! = exp(ad(—m~1t™)).

LEMMA 4.6. Let ¥ = exp(ad(—k~1tK)) € AutC[t,t~1,8] with 0 #
keN. Ifnelanda,...,ar € C then there exist hy,...,h, € C[td]
such that

¥ (t” IT o —a,-)) =1" Y thkh;.

1<i<r 0<j<r

Moreover, the leading term of h; is (;)(ta)"f and hy = [1<;<,(t0 — ).
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Proof.

¥ (z” IT @ - a,))

1<i<r

=¥P(")¥ ( IT @o - a,-)) =" [] ((t0 — o) + %)

1<i<lr 1<i<r

The result follows by expanding the product using (18 — o)t/ =
t(td — a; + ). For example,

t*hy =0 —ay)---(t0 —a_ )tk + -+ Kt — ) --- (18 — a,). O
LemMA 4.7. If0# neNand f € C[td]\ {0} then t™" f ¢ R,.

Proof. Assume t~" f € Ry and note deg(f) = n. Then ®~!(t " f) =
1" Y 0<j<n t/™h; with hy = f, by Lemma 4.6. Since X is a monomial
curve, t™" f = t7"hy € Z§(X) and so f = f_, with n € A. Thus write

fon=J[{t0-jlieA\(A+n)}= ] (10 -e;) witha,=0.

1<i<n
Now t"~"h; € 2 (X) and

"y =[(10 — 1) -+ (10 — ap-1)t"]
+[(20 — 1) -+ (10 — ap-2)t" (10 — an)]
+ 4 [1"(t0 — az) - (10 — an)]
=t"{[(td —a; + m)--- (10 — ap_| + m)]
+[(td —ay+m)--- (10 — apn—y + m)(td —ay)] +...
+1(10 = az) -+ (10 — an)l}.
Since an = 0, {I],<;jcp—1(~a;i + m)}t"" =" "h + 1 € #(X). Since

mé¢ A, Ilicicpi(~0i+m) #0. Thusm—n € Aandn ¢ A, a
contradiction. O

LEMMA 4.8. Let u =Y o <, t %8 € Ry be in standard form. Then
V=Y 50" " 8u_1m € Ry also.

Proof. Let r(k) = deg(g;). By Lemma 4.6, set

Ol (tRg) =17k Y iy
0<i<r(k)
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for each k. Then

)= Y. > i Eh = Y kg
0<k<n0<i<r(k) s>—n  im—k=s
ByLemmad4.1,£°),, ,_ h; € 2(X)foreachs. Fork <n,im—k =
jm — n if and only if k = n — Im for some / € N. Thus

O (v) =) S {hyjlim — k = jm — n} € D(X).

j20
Thus v € ®Z(X) = R and the result follows. m]

LEMMA 4.9. If R is isomorphic to 2 (X) then for every n € A there
exists u € Ry such that u = } o, t~ig;, in standard form, with
& # 0.

Proof. Consider both Ry and #(X) as subalgebras of C[¢(] of finite
co-dimension. If §: #(X) = R then 9 extends to an automorphism
of C[¢]. Thus 9(&") = (aé + b)" and there exists u € Ry such that
gr,(u) = a"&" + (lower degree terms). Write u = Y, .;;¢”'g;, in stan-
dard form, with g, # 0. Then / > n and to prove that / = n it suffices
to show that ¢ — deg(t~'g;) = 0. By Lemma 3.1, t — deg(¢~!g;) < 0 for
all i. In particular k£ > 0. As in the proof of Lemma 4.8, if we write

O lw)= > Y My
s>—1  im—k=s
then t='g; = 7' ¥, ke hr.i € D(X). By Proposition 2.4, gr, 2 (X)
C C[t,¢&], from which it follows that ¢ — deg(¢~'g;) > 0. 0

THEOREM 4.10. Let X be a monomial curve with associated monoid
A such that AU{1} # N. Then 2/ (X) contains a maximal commutative
ad-nilpotent subalgebra which is not isomorphic to &(X).

Proof. Assume there exists an isomorphism §: #(X) — Ry. Sup-
pose there exists 0 # n € A such that » < m. By Lemma 4.9 there
exists Y g<;<,? '8 € Ry, in standard form, with g, # 0. Since
Im—n > 0 for all / € N, Lemma 4.8 implies t™"g, € Ry, contra-
dicting Lemma 4.7. Thus we may assume A = {0} U (N + r) for some
r > 3 and take m = r — 1. By Lemma 4.9, there exists u € R, such
that u = Y .;<,¢ ‘g in standard form with g, # 0. By Lemma 4.8,
take u = t7"g, + t~! g, where deg(g;) < 1.

Make the identification Ry = gr,(Rp) and consider Ry and &(X) as
subalgebras of C[¢]. As in the proof of Lemma 4.9, ¥ extends to an
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automorphism of C[{]. If deg(gy) = 1 then gr,(u) = ¢&" + d& with
c,d € C\{0}. If v = 9 (u) € #(X) then v = e&" + f for some
e, f € C, since 3(&") = (a€ + b)". But r > 2 so,

Hv)=e(aé+b) + f#c& +d& =gr,(u).
Thus deg(g;) =0 and u = t7"g, + at~! for some o« € C.

We have t7"g, € Z(X), as in the proof of Lemma 4.9, and hence
g =II{td—j|j € A\(A+r)} by Lemma 4.2. Note that 2m = 2(r—1)
A\ (A +r). As in the proof of Lemma 4.6,

O lu) =07 (t7"g) + D at™!)
=t7®d (g)+at!
=t"TI{td — j+ t"|j e A\ (A+ 1)} +at™}
=t > 1"hi+at™!
0<i<r
for some h; € C[td]. Factor g = (t0 —ay)--- (10 — o) With @, = 0
and a; = 2m and note t'~2hy = t~"*2"h, € Z(X). Now
t"hy = (10 —ay) - (10 — a,_y)t*™
+ (0 —ay) - (t0 — a,_3)t"(t0 — a,_)t™
+ 21D —ay) - (10 — o)
= 12"[(t8 — ay + 2m) - - (18 — ap_n + 2m)
+(t0 —a;+2m)---(t0 — a,_3+ 2m)(t0 — a,_; + m)
+ -+ (10 —an) -+ (10 — ay)).
The only summand of /4, which does not have a factor of ¢9, in the
form of td —a, or td — a; + 2m, is (t0 —az + m)--- (18 — ap—1 + m).
Thus

(—ar+m)-- (= + M) 2 =2+ 1 €O(X).

Since m¢ Aand a; € Aforall i, (—ay +m)---(—a,—1 + m) # 0. But
r—2 ¢ A, a contradiction. O

The only monomial curves with AU{1} = Nand A! and y? = x3. In
[1], it is shown that all maximal commutative subalgebras of Z/(Al),
contained in .#(A!), are isomorphic to #(A!) = C[¢]. Mimicking this
proof, the same is shown for 2 = x3 in [7]. Hence y? = x3 is the
only curve with normalization equal to A!, n injective and unique
singularity at n(0) such that all maximal commutative ad-nilpotent
subalgebras of its ring of differential operators are isomorphic.
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5. Simply connected curves. This section is devoted to proving the
following proposition, referred to in the introduction.

ProOPOSITION 5.1. Let X be a curve. Then ny(X) = 0 if and only if
X =A' and n: X — X is injective.

Proof. Note that n;(A!) = 0 and = is continuous in the usual topol-
ogy. Assume X = A! and n: X — X is injective, hence bijective.
Thus 7 is a homomorphism and induces an isomorphism between
n1(X) and 7 (A!). Therefore n;(X) = 0.

Assume 7m;(X) = 0. We first show = is injective and n;(X) = 0.
Recall 7 identifies at most a finite number of points. Factor z into a
sequence of maps

X=Yy=Y - =Y, =X

where X — Y, is injective and Y; — Y;,, identifies just two points.
Thus consider the map 4 — B where A4 equals some Y; and B is 4
modulo the identification of two points x,y € A. Without affecting
the homotopy of 4, we may draw out two thin “whiskers” at points
x and y and, since A4 is path connected, assume they both originate
at the same point. Thus B is homotopically equivalent to 4 v S,
the one point union of 4 with a circle. By a standard application of
Van Kampen’s Theorem [4], it follows that 7, (B) = my(A4) *Z, the free
product. By induction, 7{(X) = n;(X) *Z % - - - « Z, where there are n
copies of Z. Thus 7;(X) = 0 and n = 0, whence = is injective.

To see X = Al, we first show genus(X) = 0. Let Z be the non-
singular projective model for X. Then Z is a complex nonsingular
projective curve and hence is homeomorphic to a compact Riemann
surface. It is enough to see that genus(Z) = 0. Since X equals Z less
a finite number of points, there exists a series of inclusions

X—“—Y()CY]C"'CY”:Z

where Y; is Y;,,, less one point. Another easy application of
Van Kampen’s theorem implies that 7;(Y;, ;) is a homomorphic image
of m;(Y;). Since n;(X) = 0 we have n;(Z) = 0, by induction. Hence
Z = P! and genus(Z) = 0. Thus genus(X) = 0, whence X equals Al
less a finite number of points. But 7;(X) =0, so X = Al i
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