HYPERBOLICITY OF SURFACES MODULO RATIONAL AND ELLIPTIC CURVES

Caroline Galt Grant

Abstract

Let X be a smooth compact complex surface of general type and let D be the union of all rational and elliptic curves in X. If there exist a complex torus T of dimension ≥ 2 and a nontrivial holomorphic map $X \rightarrow T$ whose image contains no elliptic curves then X is hyperbolic modulo D. In particular, if X has irregularity $h^{0}\left(X, \Omega_{X}^{1}\right) \geq 2$ and its Albanese variety is not isogenous to a product of elliptic curves then X is hyperbolic modulo D.

Introduction. A complex space X is called hyperbolic if the Kobayashi pseudo-distance d_{X} on X is a distance, i.e. if $d_{X}\left(x, x^{\prime}\right)>0$ for $x \neq x^{\prime}[\mathbf{K}]$. If D is a subset of X and $d_{X}\left(x, x^{\prime}\right)>0$ unless $x=x^{\prime}$ or $x, x^{\prime} \in D$, we say that X is hyperbolic modulo D. Let X be a surface of general type. M. Green has made the following conjectures:

Conjecture A. The image of every nonconstant holomorphic map $\mathbf{C} \rightarrow X$ lies in a rational or elliptic curve in X, and

Conjecture B. X is hyperbolic modulo the union of all its rational and elliptic curves.

Conjecture A is known to be true for surfaces with irregularity $h^{0}\left(X, \Omega_{X}^{1}\right)>2$ [GG, OC] and surfaces with irregularity 2 and simple Albanese variety [G]. We use these facts together with Brody's theorem (1.2 below) to prove the following:

Theorem. Let X be a smooth compact complex surface of general type and let D be the union of all rational and elliptic curves in X. If there exist a complex torus T of dimension ≥ 2 and a nontrivial holomorphic map $X \rightarrow T$ whose image contains no elliptic curves then X is hyperbolic modulo D.

Corollary. If X is a smooth compact complex surface of general type with irregularity ≥ 2 whose Albanese variety is not isogenous to a product of elliptic curves then X is hyperbolic modulo its rational and elliptic curves.

We also prove the weaker statement that $X-D$ is hyperbolic in a few additional cases.

I would like to thank Mark Green for suggesting to me this application of Brody's theorem. I am also grateful to R. Treger and F. Catanese for helpful conversations concerning curves in surfaces and the Albanese map.

1. Preliminaries. First we recall some properties of the Kobayashi pseudo-distance and the Albanese map.
(1.1) Distance-decreasing property. A holomorphic map $\tau: U \rightarrow X$ between complex spaces U and X is always distance-decreasing with respect to d_{U} and d_{X}, i.e.

$$
d_{U}\left(u, u^{\prime}\right) \geq d_{X}\left(\tau(u), \tau\left(u^{\prime}\right)\right)
$$

for all $u, u^{\prime} \in U$.
Let D be a closed analytic subspace of X. Applying (1.1) to the inclusion map $X-D \hookrightarrow X$ shows that $X-D$ is hyperbolic whenever X is hyperbolic modulo D. It also follows from (1.1) that there are no nonconstant holomorphic maps of \mathbf{C} to a hyperbolic space. For compact complex spaces the converse is true:
(1.2) Brody's Theorem ([BR], [L, III.2.1]). A compact complex space X is hyperbolic if and only if every holomorphic map $\mathbf{C} \rightarrow X$ is constant.

Nevertheless, a noncompact complex space may fail to be hyperbolic even if every holomorphic map of \mathbf{C} into the space is constant. Green has constructed an example of a Zariski-open subset of \mathbf{P}^{2} with this property [L, p. 79].

Recall also that for every smooth projective variety X there exist an abelian variety $A=\operatorname{Alb}(X)$, the Albanese variety of X, and a holomorphic map $\alpha: X \rightarrow A$, the Albanese map, having the universal property that any other holomorphic map of X to a complex torus factors uniquely through α. The dimension of A is equal to the irregularity $q=h^{0}\left(X, \Omega_{X}^{1}\right)$ of X. By Poincare's Complete Reducibility Theorem [SD, pp. 56-59], A is isogenous to a product of simple abelian varieties, i.e. there is a finite surjective holomorphic map $A \rightarrow A_{1} \times \cdots \times A_{m}$, where A_{1}, \ldots, A_{m} are abelian varieties, each containing no nontrivial complex subtori. The factors are unique up to isogeny. Let X be a smooth surface of general type. (Such a surface is always projective [BPV, p. 189].) Suppose, as in the hypothesis of
the corollary, that $q \geq 2$ and $A=\operatorname{Alb}(X)$ is not isogenous to a product of elliptic curves. Then $\operatorname{dim}\left(A_{i}\right) \geq 2$ for at least one factor A_{i}. Projecting to A_{i} gives a map $X \rightarrow A_{i}$ satisfying the hypothesis of the theorem.
2. Generically finite maps to complex tori. Throughout this paper a curve is a compact complex space of dimension 1 and a surface is a reduced irreducible compact complex space of dimension 2. By the genus of a curve we always mean its geometric genus, i.e. the genus of its desingularization.
(2.1) Proposition. Let X be a smooth surface and D the union of reduced irreducible curves C_{1}, \ldots, C_{n} in X. Suppose that the intersection matrix $\left(C_{i} C_{j}\right)$ is negative definite and the image of every nonconstant holomorphic map $\mathbf{C} \rightarrow X$ lies in D. Then X is hyperbolic modulo D.

Proof. By Grauert's criterion [BPV, III.2.1] there is a holomorphic bimeromorphic map $\psi: X \rightarrow Y$ to a surface Y such that D is exceptional for ψ; more precisely, for each connected component C of D there are an open neighbourhood U of C in X, a point y in Y, and a neighbourhood V of y in Y, such that ψ is a biholomorphism of $U-C$ to $V-\{y\}$ and $\psi(C)=y$. Every holomorphic map C $\rightarrow Y$ must be constant; otherwise there would be a nonconstant lifting $\mathbf{C} \rightarrow X$ which did not lie in D. By Brody's theorem, Y is hyperbolic. This means that $d_{Y}\left(y, y^{\prime}\right)>0$ whenever $y, y^{\prime} \in Y$ and $y \neq y^{\prime}$. But $d_{X}\left(x, x^{\prime}\right) \geq d_{Y}\left(\psi(x), \psi\left(x^{\prime}\right)\right)$, by the distance-decreasing property (1.1), so $d_{X}\left(x, x^{\prime}\right)>0$ unless $x=x^{\prime}$ or $x, x^{\prime} \in D$.
(2.2) Proposition. Let X be a smooth surface of general type, T a complex torus of dimension ≥ 2, and $\varphi: X \rightarrow T$ a holomorphic map which is generically finite-to-one and such that $\varphi(X)$ contains no elliptic curves. Let D be the union of all rational and elliptic curves in X. Then X is hyperbolic modulo D.

Proof. A torus contains no rational curves and by assumption $\varphi(X)$ contains no elliptic curves so every rational and elliptic curve in X must be contracted to a point by φ. The map φ has a Stein factorization

$$
X \xrightarrow{\rho} X^{\prime} \xrightarrow{\mu} T
$$

where X^{\prime} is a reduced normal surface, ρ is a holomorphic map with connected fibres, μ is a holomorphic finite-to-one map, and $\mu \circ \rho=\varphi$.

Then ρ is bimeromorphic and the exceptional locus E of ρ is a finite collection of curves which contains D. By Grauert's criterion, the intersection matrix of E is negative definite. The submatrix corresponding to D must also be negative definite.
Next we check that the image of every nonconstant holomorphic map $f: \mathbf{C} \rightarrow X$ lies in D. Since rational and elliptic curves are the only irreducible curves admitting nonconstant holomorphic maps of \mathbf{C}, it is enough to show that f is algebraically degenerate, i.e. that $f(\mathbf{C})$ is contained in a proper algebraic subvariety of X. Let $\alpha: X \rightarrow A=$ $\operatorname{Alb}(X)$ be the Albanese map. By the universal property of α there is a holomorphic map $\gamma: A \rightarrow T$ such that $\varphi=\gamma \circ \alpha$. Then $q=\operatorname{dim}(A) \geq 2$ since φ is generically finite. If $q>2$ then f is algebraically degenerate [GG]. Suppose that $q=2$. Then $\alpha(X)=A$ and $\varphi(X)=\gamma(A)$ is a 2dimensional complex subtorus of T which contains no elliptic curves. It follows that A itself contains no elliptic curves, so A is simple. By [G] f is algebraically degenerate. Now apply Proposition (2.1).

Remark. The union of all rational and elliptic curves in a surface of general type does not always have negative definite intersection matrix. See Example (5.4).

3. Fibrations over curves of genus ≥ 2.

(3.1) Proposition. Let X be a smooth surface of general type, C a smooth curve of genus ≥ 2, and $\pi: X \rightarrow C$ a surjective holomorphic map with connected fibres. Let D be the union of all rational and elliptic curves in X. Then X is hyperbolic modulo D.

Before proving Proposition (3.1) we state a result of Zariski which will allow us to apply Grauert's criterion to some of the rational and elliptic curves in X :
(3.2) Lemma [BPV, III.8.2]. Let X be a smooth surface, C a smooth curve, and $\pi: X \rightarrow C$ a surjective holomorphic map with connected fibres. Let $F=\sum n_{i} F_{i}$ be a fibre of π, where $n_{i}>0$ and the curves F_{i} are the distinct, reduced, irreducible components of F. Then the intersection matrix $\left(F_{i} F_{j}\right)$ is negative semi-definite and $F^{2}=0$, but the intersection matrix of any proper subset of the collection $\left\{F_{i}\right\}$ is negative definite.

Proof of Proposition (3.1). The generic fibre of π is a smooth curve of genus ≥ 2 because X is of general type. All rational and elliptic curves
in X lie in fibres of π since there are no nonconstant holomorphic maps of rational or elliptic curves to C. Let S be the set of all points z of C such that $\pi^{-1}(z)=X_{z}$ consists entirely of rational and elliptic curves and let R be the set of all remaining points z of C whose fibres contain rational or elliptic curves. Both S and R are finite. Let $\Gamma=$ $D \cap \pi^{-1}(R)$. The intersection matrix of Γ is negative definite by (3.2) so by Grauert's criterion there exist a surface Y and a holomorphic bimeromorphic map $\psi: X \rightarrow Y$ which is a biholomorphism off Γ and contracts each connected component of Γ to a point of Y. The union Δ of all rational and elliptic curves in Y is contained in $\psi(D)$. Let $\tau: Y \rightarrow C$ be the fibration induced by $\pi: X \rightarrow C$. Then $\Delta=$ $\tau^{-1}(S)$. By the distance-decreasing property (1.1) we have $d_{X}\left(x, x^{\prime}\right) \geq$ $d_{Y}\left(\psi(x), \psi\left(x^{\prime}\right)\right)$, so to show that X is hyperbolic modulo D it is enough to show that Y is hyperbolic modulo Δ. We use an argument similar to that of [L, I.2.7]. Notice that C and all fibres of τ except those in Δ are hyperbolic since curves of genus ≥ 2 are hyperbolic. If y, y^{\prime} are points of Y such that $\tau(y) \neq \tau\left(y^{\prime}\right)$ then $d_{Y}\left(y, y^{\prime}\right) \geq d_{C}\left(\tau(y), \tau\left(y^{\prime}\right)\right)>0$. Now assume that $y \neq y^{\prime}$ and $\tau(y)=\tau\left(y^{\prime}\right)=z$ and $z \notin S$. Then $\tau^{-1}(z)$ is hyperbolic, so by [L, III.3.1] there is a neighbourhood U of z in C such that $\tau^{-1}(U)$ is hyperbolic. Choose $\varepsilon>0$ small enough that U contains the ball $B(z, 2 \varepsilon)$ with centre z and radius 2ε in the metric d_{C}. The set $V=\tau^{-1}(B(z, 2 \varepsilon))$ is hyperbolic since it is contained in $\tau^{-1}(U)$. By [L, I.2.5] there is a constant $k>0$ such that $d_{Y}\left(y, y^{\prime}\right) \geq$ $\min \left\{\varepsilon, k d_{V}\left(y, y^{\prime}\right)\right\}$. But $d_{V}\left(y, y^{\prime}\right)>0$ since V is hyperbolic.
4. Proof of theorem. Let X be a smooth surface of general type and let D be the union of all rational and elliptic curves in X. Assume that there exist a complex torus T of dimension ≥ 2 and a nontrivial holomorphic map $\varphi: X \rightarrow T$ such that $\varphi(X)$ contains no elliptic curves. If φ is generically finite-to-one then X is hyperbolic modulo D by Proposition (2.2). Otherwise $\varphi(X)$ is a curve whose normalization C is a smooth curve of genus ≥ 2. If the fibres of the lifting $X \rightarrow C$ of φ are not connected we may use Stein factorization to obtain a fibration of X over a smooth curve of genus ≥ 2 with connected fibres. Now by Proposition (3.1) X is hyperbolic modulo D.
5. Additional cases and examples. We show here how the methods of the previous sections and a theorem of Green can be used to study the Kobayashi pseudo-distance on a surface of general type in a few of the remaining cases. Propositions (5.1) and (5.3) are concerned with fibrations of surfaces over elliptic curves, particularly those which
occur when the Albanese variety of a surface is isogenous to a product of elliptic curves. Proposition (5.5) is an application of [GR, Theorem $2]$.
(5.1) Proposition. Let X be a smooth surface of general type and D the union of all rational and elliptic curves in X. Assume that
(i) there is a surjective holomorphic map $\pi: X \rightarrow E$ where E is a nonsingular elliptic curve and π has connected fibres,
(ii) no fibre of π consists entirely of rational and elliptic curves,
(iii) every elliptic curve in X lies in a fibre of π, and
(iv) the image of every nonconstant holomorphic map $\mathbf{C} \rightarrow X$ lies in D.

Then X is hyperbolic modulo D.
Proof. Since X is of general type, the generic fibre of π is a smooth curve of genus ≥ 2. Every elliptic and rational curve in X must lie in a fibre of π by (iii) and because there are no nonconstant holomorphic maps of rational curves to E. Then D consists of a finite number of curves and the intersection matrix of D is negative definite by (ii) and Lemma (3.2). By Proposition (2.1) X is hyperbolic modulo D.
(5.2) Remark. Conditions (i) and (iv) are satisfied whenever X has irregularity $q \geq 3$ and the Albanese variety of X is isogenous to a product of elliptic curves.
(5.3) Proposition. Let X be a smooth surface of general type and D the union of all rational and elliptic curves in X. Assume that condition (i) of (5.1) holds and
(ii') at least one fibre of π consists entirely of rational and elliptic curves.

Then $X-D$ is hyperbolic.

Proof. As in (5.1), only a finite number of fibres of π contain curves of D. In addition there may be elliptic curves in X mapping surjectively to E. Let S be the set of all points z in E such that $\pi^{-1}(z)$ consists entirely of curves of D and let R be the set of all remaining points of E whose fibres contain curves of D. Let Γ be the union of all curves of D in $\pi^{-1}(R)$. By (3.2) and Grauert's criterion, there exist a surface Y and a holomorphic bimeromorphic map $\psi: X \rightarrow Y$ contracting Γ. Let $\tau: Y \rightarrow E$ be the fibration induced by $\pi: X \rightarrow E$. By
construction, $\tau^{-1}(S)$ consists entirely of rational and elliptic curves, while for every $z \in E-S$ the fibre $\tau^{-1}(z)$ is hyperbolic. By assumption (ii') S is not empty, so $E-S$ is hyperbolic. Therefore $Y-\tau^{-1}(S)$ is hyperbolic [L, III.3.1] and hence so are $X-\pi^{-1}(S)-\Gamma$ and the subset $X-D$.
(5.4) Example. Let $\pi: X \rightarrow E$ be a pencil of curves of genus 2, i.e. X is a smooth minimal algebraic surface, E is a smooth curve, and π is a surjective holomorphic map whose generic fibre is a smooth curve of genus 2. Ogg [OG] has shown that the singular fibres of such a pencil consist entirely of rational and elliptic curves. If X is of general type and E is an elliptic curve then at least one fibre of π must be singular [BPV, V. 14 and V.6]. Construction of such a surface is described in [XI, pp. 24-28 and 72-73]. This also provides an example in which the union of all rational and elliptic curves does not have negative definite intersection matrix, by Lemma (3.2).
(5.5) Proposition. Let X be a smooth minimal surface of general type which contains no singular elliptic curves. Let D be the union of all rational and elliptic curves in X. Assume that
(i) $D=D_{1}+D_{2}$ where D_{1} and D_{2} are disjoint effective divisors,
(ii) D_{1} has negative definite intersection matrix,
(iii) every rational curve in D_{2} intersects the other curves in D_{2} in at least 3 distinct points, and
(iv) the image of every nonconstant holomorphic map $\mathbf{C} \rightarrow X$ lies in D.

Then $X-D$ is hyperbolic.
Proof. First note that if E is a nonsingular elliptic curve in X then $E^{2}<0$ since $K_{X} \cdot E+E^{2}=\operatorname{deg} K_{E}=0$ (adjunction formula) and $K_{X} \cdot E>0$ [BPV, VII.2.3]. If E does not intersect any other rational or elliptic curve in X then we may assume that E is in D_{1}. By Grauert's criterion, there exist a surface Y and a holomorphic bimeromorphic map $\psi: X \rightarrow Y$ contracting D_{1}. The image Δ of D_{2} in Y consists of rational and elliptic curves C_{1}, \ldots, C_{n} with the property that C_{i} intersects the other curves in Δ in at least 3 distinct points if C_{i} is rational and in at least one point if C_{i} is elliptic. Then there is no nonconstant holomorphic map

$$
\mathbf{C} \rightarrow C_{i}-\left(\bigcup_{j \neq i} C_{j}\right)
$$

for any i. By Green's theorem [GR, Theorem 2], which is also true for singular spaces [L, III.3.6], $Y-\Delta$ is hyperbolic. Hence so is $X-D$.
(5.6) Corollary. Let X be a smooth surface of general type which is embedded in an abelian variety. Let D be the union of all elliptic curves in X. Then $X-D$ is hyperbolic.

Proof. There are no rational or singular elliptic curves in X since X is contained in an abelian variety. As in (5.5), every elliptic curve in X has negative self-intersection. By a result of Bogomolov [DE, 3.4.6], there are only finitely many elliptic curves in X. Let D_{1} be the union of all isolated elliptic curves in X and let D_{2} be the union of all remaining elliptic curves in X. Since X is embedded in an abelian variety, the irregularity of X is at least 3 , so every nonconstant holomorphic map $\mathbf{C} \rightarrow X$ lies in D by [GG]. Now use (5.5).

References

[BPV] W. Barth, C. Peters, and A. Van de Ven, Compact Complex Surfaces, SpringerVerlag, Berlin, Heidelberg, 1984.
[BR] R. Brody, Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., 235 (1978), 213-219.
[DE] M. Deschamps, Courbes de genre géométrique borné sur une surface de type général, Sém. Bourbaki, 519 (1977/78).
[G] C. Grant, Entire holomorphic curves in surfaces, Duke Math. J., 53 (1986), 345-358.
[GR] M. Green, The hyperbolicity of the complement of $2 n+1$ hyperplanes in general position in \mathbf{P}_{n}, and related results, Proc. Amer. Math. Soc., 66 (1977), 109113.
[GG] M. Green and P. Griffiths, Two Applications of Algebraic Geometry to Entire Holomorphic Mappings, The Chern Symposium 1979, Springer-Verlag, New York, 1980, 41-74.
[K] S. Kobayashi, Intrinsic distances, measures and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416.
[L] S. Lang, Introduction to Complex Hyperbolic Spaces, Springer-Verlag, New York, 1987.
[OC] T. Ochiai, On holomorphic curves in algebraic varieties with ample irregularity, Inventiones Math., 43 (1977), 83-96.
[OG] A. P. Ogg, On pencils of curves of genus two, Topology, 5 (1966), 355-362.
[SD] H. P. F. Swinnerton-Dyer, Analytic Theory of Abelian Varieties, London Math. Soc. Lecture Notes 14, Cambridge, 1974.
[XI] G. Xiao, Surfaces Fibrées en Courbes de Genre Deux, Lect. Notes Math. 1137, Springer-Verlag, Berlin, Heidelberg, 1985.

Received January 21, 1988. The preparation of this paper was assisted by a grant from NSERC.

University of Toronto
Toronto, Ontario M5S 1A1
Canada

