HARDY INTERPOLATING SEQUENCES OF HYPERPLANES

Pascal J. Thomas

A sufficient condition is given on unions of complex hyperplanes in the unit ball of C^n so that they allow extension of functions in the Hardy H^1 space. The result is compared to Varopoulos' theorem about zeros of H^p functions.

1. Notations and definitions. For $z, w \in C^n$,

$$z \cdot \bar{w} = \sum_{i=1}^{n} z_i \bar{w}_i,$$
$$B^n = \{ z \in C^n \colon |z|^2 = z \cdot \bar{z} < 1 \}.$$

For $a_k \in B^n$, $a_k \neq 0$,

$$a_k^* = \frac{a_k}{|a_k|}.$$

 $\lambda_p = p$ real-dimensional Lebesgue measure. For instance, on C, $-\frac{i}{2} dz \wedge d\overline{z} = d\lambda_2$.

Automorphisms of the ball.

$$\phi_k(z) := \phi_{a_k}(z) := \frac{a_k - P_k(z) - s_k Q_k(z)}{1 - z \cdot \bar{a}_k}$$

where $P_k(z) := \frac{z \cdot \bar{a}_k}{|a_k|^2} a_k$ is the projection onto the complex line through $a_k, Q_k(z) := z - P_k(z)$ is the projection onto the complex hyperplane perpendicular to $a_k, s_k^2 := 1 - |a_k|^2$.

The map ϕ_k is an involution of the ball (see Rudin [4]). Note that

$$Q_k(B^n) = \{z \colon P_k(z) = 0\} = \{z \colon z \cdot \bar{a}_k = 0\}.$$

We write

$$d_G(z,w)^2 := |\phi_w(z)|^2 = 1 - \frac{(1-|z|^2)(1-|w|^2)}{|1-z\cdot\bar{w}|^2}$$

This is an *invariant* distance: if ϕ is an automorphism of the ball (i.e. any composition of unitary transformations and the above involutions), $d_G(\phi(z), \phi(w)) = d_G(z, w)$.

We will study hyperplanes in the ball, denoted by:

$$V_j := \{z \in B^n \colon z \cdot \bar{a}_j = |a_j|^2\}.$$

The point a_j is the point in V_j closest to the origin. It is also the center of the n-1-complex-dimensional ball which V_j defines inside B^n . This definition makes no sense when $a_j = 0$, so we will not consider that case. However, the problem we will consider is automorphism-invariant and if there is a hyperplane going through the origin, applying to the whole sequence an automorphism ϕ_a , with |a| small enough, will preserve the hypotheses (at the expense of a change in the value of δ , see below) and yield the conclusion. We define c_{jk}^0 to be the "center" of the hyperplane $\phi_k(V_j)$, i.e.

$$\phi_k(V_j) = \phi_k^{-1}(V_j) = \{ z \in B^n \colon z \cdot \bar{c}_{jk}^0 = |c_{jk}^0|^2 \}.$$

We further consider the angle between $\phi_k(V_i)$ and V_k :

$$\cos\theta_{jk} := \frac{|c_{jk}^0 \cdot \bar{a}_k|}{|c_{jk}^0||a_k|}.$$

Lemma 1.

(1)
$$c_{jk}^{0} = \frac{l_{jk}c_{jk}}{|c_{jk}|^2}$$

where

$$c_{jk} := \left((1 - s_k) \frac{a_j^* \cdot \bar{a}_k}{|a_k|^2} - |a_j| \right) a_k + s_k a_j^*,$$

$$l_{jk} := a_k \cdot \bar{a}_j^* - |a_j|^2 = (a_k - a_j) \cdot \bar{a}_j^*;$$

$$|c_{jk}|^2 = |l_{jk}|^2 + (1 - |a_j|^2)(1 - |a_k|^2).$$

(2)
$$\cos^2 \theta_{jk} = \left(\frac{|c_{jk} \cdot \bar{a}_k|}{|c_{jk}||a_k|}\right)^2 = \frac{|a_k^* \cdot \bar{a}_j^* - |a_j||a_k||^2}{|l_{jk}|^2 + (1 - |a_j|^2)(1 - |a_k|^2)},$$

(3)

$$|c_{jk}^{0}|^{2} = \frac{|(a_{k} - a_{j}) \cdot \bar{a}_{j}|^{2}}{|(a_{k} - a_{j}) \cdot \bar{a}_{j}|^{2} + |a_{j}|^{2}(1 - |a_{j}|^{2})(1 - |a_{k}|^{2})},$$

$$1 - |c_{jk}^{0}|^{2} = \frac{(1 - |a_{j}|^{2})(1 - |a_{k}|^{2})}{|l_{jk}|^{2} + (1 - |a_{j}|^{2})(1 - |a_{k}|^{2})}.$$

The proofs of all lemmas are deferred until §4.

The interpolation problem. The Hardy space $H^p(B^n)$ is the space of functions f holomorphic on the ball and verifying

$$\|f\|_{H^p}^p := \sup_{r<1} \int_{\partial B^n} |f(r\zeta)|^p \, d\sigma(\zeta) < \infty,$$

where σ is 2n - 1-dimensional Lebesgue measure on ∂B^n .

The Bergman space $A^p(V_k)$ is the space of functions α holomorphic on the hyperplane V_k and verifying

$$\|\alpha\|_{A^p(V_k)}^p := \int_{V_k} |\alpha(z)|^p \, d\lambda_{2n-2}(z) < \infty.$$

DEFINITION. $l^p(A^p(V_k), 1 - |a_k|^2)$ is the product of the Bergman spaces on each hyperplane, endowed with the following norm: if $\alpha = \{\alpha_k\}_{k \in \mathbb{Z}_+}$, where α_k is a function defined and holomorphic on V_k ,

$$\|\alpha\|_{B}^{p} := \|\alpha\|_{l^{p}(A^{p}(V_{k}), 1-|a_{k}|^{2})}^{p} = \sum_{k} (1-|a_{k}|^{2}) \|\alpha_{k}\|_{A^{p}(V_{k})}^{p}.$$

Notice that $\phi_k|_{V_k}$ is just an affine map from V_k to $Q_k(B^n) \simeq B^{n-1}$, so that we can rewrite

$$\begin{aligned} \|\alpha\|_{B}^{p} &= \|\alpha\|_{l^{p}(A^{p}(B^{n-1}),(1-|a_{k}|^{2})^{n})}^{p} \\ &= \sum_{k} (1-|a_{k}|^{2})^{n} \int_{\mathcal{Q}_{k}(B^{n})} |\alpha_{k} \circ \phi_{k}(w)|^{p} \, d\lambda_{2n-2}(w). \end{aligned}$$

Given a function $f \in H(B^n)$, the space of holomorphic functions, we consider the following map

$$T: H(B^n) \to \prod_{i=1}^{\infty} H(V_i),$$
$$f \mapsto \{f|_{V_i}\}_{i \ge 1}$$

DEFINITION. We say that $\{V_j\}_{j \in \mathbb{Z}_+}$ is an H^p -interpolating sequence of hyperplanes if T maps $H^p(B^n)$ onto $l^p(A^p(V_k), 1 - |a_k|^2)$.

Equivalently, given $\{\alpha_k\}$ a sequence of functions holomorphic on V_k , such that

$$\sum_{k}(1-|a_k|^2)\int_{V_k}|\alpha_k(z)|^p\,d\lambda_{2n-2}(z)<\infty,$$

there exists $f \in H^p(B^n)$ such that

$$f|_{V_k} = \alpha_k.$$

This definition is the one given by Amar [1] and reduces in the case n = 1 to that of Shapiro and Shields [5].

REMARK. With this definition, if a sequence of hyperplanes is H^p -interpolating and we take points $b_k \in V_k$, $\forall k$, then the sequence $\{b_k\}$ is H^p -interpolating (in the sense of [2]).

Proof. If we are given a sequence of complex numbers $\{\beta_k\}$ such that

$$\sum_{k}(1-|b_k|^2)^n|\beta_k|^p<\infty,$$

then define

$$\alpha_k(z) = \left(\frac{1-|b_k|^2}{1-z\cdot\bar{b}_k}\right)^n \beta_k.$$

Then

$$\int_{V_k} |\alpha_k(z)|^p d\lambda_{2n-2}(z) = \int_{Q_k(B^n)} |\beta_k|^p \left| \frac{1 - |b_k|^2}{1 - \psi(w) \cdot \bar{b}_k} \right|^{np} |J_{\psi}(w)| d\lambda_{2n-2}(w),$$

where $\psi(w) = a_k + s_k w$.

$$|J_{\psi}(w)| = s_k^{2n-2} = (1 - |a_k|^2)^{n-1}$$
, and
 $1 - \psi(w) \cdot \bar{\psi}(w') = (1 - |a_k|^2)(1 - w \cdot \bar{w}')$,

so, setting $b'_k = \psi^{-1}(b_k)$, we get

$$\begin{split} &\int_{V_k} |\alpha_k(z)|^p \, d\lambda_{2n-2}(z) \\ &= |\beta_k|^p (1-|a_k|^2)^{n-1} \int_{Q_k(B^n)} \left| \frac{1-|b_k'|^2}{1-w \cdot \bar{b}_k'} \right|^{np} \, d\lambda_{2n-2}(w) \\ &\leq C |\beta_k|^p (1-|a_k|^2)^{n-1} (1-|b_k'|^2)^n \quad \text{because } np > n-1, \\ &= C |\beta_k|^p \frac{(1-|b_k|^2)^n}{1-|a_k|^2}. \end{split}$$

It follows that

$$\sum_{k} (1 - |a_k|^2) \int_{V_k} |\alpha_k(z)|^p \, d\lambda_{2n-2}(z) \le C \sum_{k} (1 - |b_k|^2)^n |\beta_k|^p,$$

and the function $f \in H^p$ which we get by interpolating the α_k on the hyperplanes verifies $f(b_k) = \alpha_k(b_k) = \beta_k$.

Taking $b_k = a_k$, we get from [8] (for $p \ge 1$) the following necessary condition:

$$\sup_{k} \sum_{j} \left(\frac{(1-|a_{k}|^{2})(1-|a_{j}|^{2})}{|1-a_{k} \cdot \overline{a_{j}}|^{2}} \right)^{n} < \infty.$$

We also get that any sequence $\{b_k\}$ must be separated in the Gleason distance; thus there exists $\delta > 0$ such that if $j \neq k$, then

$$d_G(V_j, V_k) = \inf\{d_G(z, w), z \in V_j, w \in V_k\} \ge \delta > 0.$$

We say that the hyperplanes are separated.

2. The main result. We are looking for a sufficient geometric condition to ensure that a sequence of hyperplanes be H^1 -interpolating. To do so, we define another family of neighborhoods for the hyperplanes.

DEFINITION. Given δ a positive number, we call *tube* around V_k the following open subset of B^n :

$$T_{\delta}(V_k) := \{ z \in B^n : |(z - a_k) \cdot \bar{a}_k^*| < \delta(1 - |a_k|^2) \}.$$

Those neighborhoods of the hyperplanes will be larger than those given by separatedness in the Gleason distance. This will follow from:

LEMMA 2. (1) Given any $z \in B^n$,

$$d_G(z, V_k)^2 = \frac{|P_k \circ \phi_k(z)|^2}{|P_k \circ \phi_k(z)|^2 + (1 - |\phi_k(z)|^2)}$$

(2) $\overline{V}_j \cap \overline{V}_k = \emptyset \Leftrightarrow \cos^2 \theta_{jk} > (1 - |c_{jk}^0|^2).$ (3) If (2) is satisfied,

$$1 - d_G^2(V_j, V_k) = \frac{(1 - |a_j|^2)(1 - |a_k|^2)}{|a_k^* \cdot \bar{a}_j^* - |a_j||a_k||^2} = \frac{(1 - |c_{jk}^0|^2)}{\cos^2 \theta_{jk}}.$$

(4)

$$d_G(V_j, V_k) \ge \delta_1 > 0 \Leftrightarrow (1 - \delta_1^2) \cos^2 \theta_{jk} \ge (1 - |c_{jk}^0|^2).$$

From this we can prove that all points of the ball which are close enough to V_k in the invariant distance must be within the tube. Indeed, by applying Lemma 2(1) and the fact that

$$P_k \circ \phi_k(z) = -\frac{(z-a_k) \cdot \bar{a}_k}{1-z \cdot \bar{a}_k} \frac{a_k}{|a_k|^2},$$

we see that

$$d_G(z, V_k)^2 = \frac{|(z - a_k) \cdot \bar{a}_k|^2}{|(z - a_k) \cdot \bar{a}_k|^2 + |a_k|^2(1 - |a_k|^2)(1 - |z|^2)}.$$

Clearly then, if $z \in \partial T_{\delta}(V_k)$,

$$d_G(z, V_k)^2 = \frac{\delta^2}{\delta^2 + |a_k|^2 \frac{1-|z|^2}{1-|a_k|^2}} > \frac{\delta^2}{\delta^2 + 2(1+\delta)},$$

which shows the inequality holds for $z \notin T_{\delta}(V_k)$.

THEOREM. There exists a number $c_0 = c_0(\delta) > 0$ such that if

(i)
$$\sup_{k} \sum_{j: j \neq k} \left(\frac{(1 - |a_k|^2)(1 - |a_j|^2)}{|1 - a_k \cdot \overline{a_j}|^2} \right)^n < c_0$$

and

(ii) for any
$$j \neq k$$
, $T_{\delta}(V_j) \cap T_{\delta}(V_k) = \emptyset$,

then $\{V_k\}_{k \in \mathbb{Z}_+}$ is an $H^1(\mathbb{B}^n)$ -interpolating sequence of hyperplanes.

REMARKS. (1) It was proved in [6] that (ii) together with

(B)
$$\sup_{k} \sum_{j} \frac{(1-|a_{k}|^{2})(1-|a_{j}|^{2})}{|1-a_{k}\cdot\overline{a_{j}}|^{2}} < \infty$$

forms a sufficient condition for $\{V_k\}$ to be an H^{∞} interpolating sequence of hyperplanes.

(2) A similar result holds for a sequence of points, but condition (i) is enough, with any constant $c_0 < 1$ [8]. Here c_0 will have to be even smaller; therefore condition (i) by itself is enough to ensure separatedness of the points, since in particular each term of the sum must be less then c_0 .

Proof of the Theorem. We will construct an approximate extension, i.e. an operator

$$\tilde{E}: l^1(A^1(V_k), 1 - |a_k|^2) \to H^1(B^n)$$

such that

$$(E1) ||E||_{op} < \infty$$

and

$$||T\tilde{E} - I||_{\text{op}} < 1.$$

Then $T\tilde{E}$ is invertible, and one can write a true extension by letting $E = \tilde{E}(T\tilde{E})^{-1}$. The operator TE will be the identity map on l^1 and for $\alpha \in l^1$, $E(\alpha)$ will be a solution to the interpolation problem. Let

$$\tilde{E}(\alpha)(z) = \sum_{k \in \mathbb{Z}_+} \left(\frac{1 - |a_k|^2}{1 - z \cdot \bar{a}_k} \right)^{2n} \tilde{\alpha}_k(z),$$

where $\tilde{\alpha}_k = \alpha_k \circ \phi_k \circ Q_k \circ \phi_k$ is an extension of α_k to B^n . Note that for $z \in V_j$, the *j*th term in the sum is exactly $1^{2n} \tilde{\alpha}_j(z) = \alpha_j(z)$. (E1) is easily checked, for the coefficient of $\tilde{\alpha}_k(z)$ is bounded and it follows from the computations in [6] that

$$\begin{split} \int_{\partial B^n} \left| \left(\frac{1 - |a_k|^2}{1 - z \cdot \bar{a}_k} \right)^n \tilde{\alpha}_k(z) \right| \, d\sigma(z) \\ &\leq C(1 - |a_k|^2) \int_{V_k} |\alpha_k(z)| \, d\lambda_{2n-2}(z). \end{split}$$

This step fails for p > 1, and prevents us from proving H^p results for hyperplanes similar to those for points in [8].

The theorem reduces to:

MAIN LEMMA. For c_0 small enough, there exists $c_1 < 1$ such that for any $\alpha \in l^1(A^1(V_k), 1 - |a_k|^2)$,

$$\sum_{j} (1 - |a_{j}|^{2}) \int_{V_{j}} \left| \sum_{k: k \neq j} \left(\frac{1 - |a_{k}|^{2}}{1 - z \cdot \bar{a}_{k}} \right)^{2n} \tilde{\alpha}_{k}(z) \right| d\lambda_{2n-2}(z)$$

$$\leq c_{1} \sum_{k} (1 - |a_{k}|^{2}) \int_{V_{k}} |\alpha_{k}(z)| d\lambda_{2n-2}(z).$$

Comparison with zero-set results. Clearly, if $\{V_k\}_{k \in \mathbb{Z}_+}$ satisfy the hypotheses of the theorem, then their union will be a subset of a zero set for H^1 functions. To see it, simply adjoin to the sequence a hyperplane V_0 such that (i) and (ii) still hold (this can be achieved by taking a_0^* on $\partial B^n \setminus \bigcup_{k \le 1} T_{2\delta}(V_k)$ and $|a_0|$ very close to 1); then interpolate 1 on V_0 and 0 everywhere else.

This needs to be compared to the results of N. Th. Varopoulos, at least in the special case of a divisor made up of a countable union of complex hyperplanes [9, \S 8]. In that case, he showed:

PROPOSITION 8.2. There exist constants C_1, \ldots, C_4 such that if

(8.18)
$$\sum_{j: |1-a_j \cdot \bar{a}_k| \le C_1 (1-|a_k|^2)} (1-|a_j|^2)^n \le C_2 (1-|a_k|^2)^n$$

and

(8.19)
$$\operatorname{Card}\{j: V_j \cap K_h(\zeta) \neq \emptyset, V_j \notin K_{C_3h}(\zeta)\} \leq C_4$$

where $K_h(\zeta) := \{z \in B^n : |1 - z \cdot \overline{\zeta}| < h\}$, then there exists p > 0 such that $\bigcup_k V_k$ is a zero set for $H^p(B^n)$.

It can be shown (see e.g. [3]) that (8.18), which is a Carleson measure condition, is equivalent to

$$\sup_{k} \sum_{j} \left(\frac{(1-|a_{k}|^{2})(1-|a_{j}|^{2})}{|1-a_{k} \cdot \overline{a_{j}}|^{2}} \right)^{n} < \infty.$$

On the other hand, if we assume separatedness in the invariant distance, (8.19) is satisfied in the following stronger form:

 $\exists C_5 > 0$ such that $\operatorname{Card}\{j: V_j \cap K_h(\zeta) \neq \emptyset, V_j \notin K_{C,h}(\zeta)\} \leq 1$.

Note that the above set is non-empty only when $h \leq 2/C_5$.

The idea of the proof is first to use the triangle inequality for the Koranyi distance to reduce oneself to the case where $\zeta \in V_j \cap \partial B^n$; then to apply an automorphism to bring V_j to $\phi_j(V_j)$, which is a hyperplane through the center of B^n . The region $K_h(\zeta)$ is transformed into a similar region, because a_j , by the assumption that j is in the above set, is far enough away from ζ . If another index k was also in the set, the hyperplane $\phi_j(V_k)$ would pass through $\phi_j(K_h(\zeta))$, and thus its projection onto $\phi_j(V_j)$ would come too close to the boundary, violating the conclusion of Lemma 5, given below.

Varopoulos' theorem, as he pointed out, provides no control over the value of p (which could indeed be very small, if one works out the constants involved). This is essentially because the norm of the Carleson measure supported by the divisor *cannot* be made arbitrarily small. For this very special structure of the divisor $\bigcup_j V_j$, our result provides additional control on the exponent, although the actual zero

set involved could be much larger than $\bigcup_i V_j$. Namely:

PROPOSITION. If $\{V_k\}_{k \in \mathbb{Z}_+}$ satisfies

(i_M)
$$\sup_{k} \sum_{j: j \neq k} \left(\frac{(1 - |a_k|^2)(1 - |a_j|^2)}{|1 - a_k \cdot \overline{a_j}|^2} \right)^n < 2^M c_0$$

and

(ii_N) for any k, Card{
$$j: T_{\delta}(V_j) \cap T_{\delta}(V_k) \neq \emptyset$$
} $\leq N$,

where $M \ge 0$, $N \ge 0$, are integers, then there exists $f \ne 0$, $f \in H^{1/2^{M}(N+1)}(B^{n})$, such that $f|_{V_{k}} \equiv 0$ for all k.

Proof. An elementary combinatorial argument shows that under (ii_N) , the sequence can be split into N + 1 subsequences, each of which satisfies (ii), and of course (i_M) . Then Mills' Lemma [8] allows us to split each such subsequence into 2^M further subsequences verifying (i). Thus we are reduced to the case M = 0, N = 0, i.e. the assumptions of the theorem; by the argument given at the beginning of this section, each subsequence has a nonzero H^1 function vanishing on it. Taking the product of the annihilating functions, we find $f \in H^{1/2^M(N+1)}(B^n)$.

3. Proof of the main lemma. For convenience, we shall introduce the notation $A_k = \alpha_k \circ \phi_k$. Thus A_k is a function defined on $A_k(B^n) \simeq B^{n-1}$, and

$$(1 - |a_k|^2)^n \int_{Q_k(B^n)} |A_k(z)| \, d\lambda_{2n-2}(z)$$

= $(1 - |a_k|^2) \int_{V_k} |\alpha_k(z)| \, d\lambda_{2n-2}(z)$

Furthermore, $\tilde{\alpha}_k = A_k \circ Q_k \circ \phi_k$. With this new notation, it is enough to bound

$$\sum_{k} \sum_{j: \ j \neq k} (1 - |a_j|^2) (1 - |a_k|^2)^{2n} \int_{V_j} \frac{|A_k \circ Q_k \circ \phi_k(z)|}{|1 - z \cdot \bar{a}_k|^{2n}} \, d\lambda_{2n-2}(z).$$

The integral in question is equal to

$$\int_{\phi_k(V_j)} \frac{|A_k \circ Q_k(w)|}{|1-z \cdot \bar{a}_k|^{2n}} |J_{\phi_k|V_j}(z)|^{-1} d\lambda_{2n-2}(w),$$

where $J_{\phi_k|V_i}(z)$ is the Jacobian of the map ϕ_k restricted to V_j .

LEMMA 3.

$$\begin{aligned} |J_{\phi_k|V_j}(z)| &= \frac{(1-|a_k|^2)^{n-1}}{|1-z\cdot\bar{a}_k|^{2n}} [|(a_k-a_j)\cdot\bar{a}_j^*|^2 + (1-|a_j|^2)(1-|a_k|^2)] \\ &= \frac{(1-|a_k|^2)^{n-1}}{|1-z\cdot\bar{a}_k|^{2n}} |c_{jk}|^2, \end{aligned}$$

with the notations from Lemma 1.

Thus the terms in the sum reduce to:

$$\frac{(1-|a_j|^2)(1-|a_k|^2)^{n+1}}{|l_{jk}|^2+(1-|a_j|^2)(1-|a_k|^2)}\int_{\phi_k(V_j)}|A_k\circ Q_k(w)|\,d\lambda_{2n-2}(w)$$

= $\frac{(1-|a_j|^2)(1-|a_k|^2)^{n+1}}{|c_{jk}|^2}\int_{Q_k\circ\phi_k(V_j)}|A_k(u)||J_{Q_k|_{\phi_k(V_j)}}(w)|^{-1}\,d\lambda_{2n-2}(u).$

LEMMA 4. Given $a \in B^n$, let $V = \{z \in B^n : z \cdot \overline{a} = |a|^2\}$. Then (1)

$$|J_{Q_k|_{\mathcal{V}}}| = \left(\frac{|a \cdot \bar{a}_k|}{|a||a_k|}\right)^2 =: \cos^2 \theta.$$

(2) In the case where $a \cdot \bar{a}_k \neq 0$, $Q_k(V)$ is the subset of $Q_k(B^n)$ given by the equation

$$\left(\frac{|a \cdot \bar{a}_k|}{|a||a_k|}\right)^{-2} |w_1 - Q_k(a)|^2 + |w_2|^2 < 1 - |a|^2,$$

where w_1 is the coordinate in the $Q_k(a)$ complex direction, and w_2 represents the n-2 complex coordinates in the orthogonal directions within $Q_k(B^n)$. $Q_k(V)$ is thus an ellipsoid of radii $(\cos \theta)(1 - |a|^2)^{1/2}$ in the w_1 direction, and $(1 - |a|^2)^{1/2}$ in each of the w_2 directions. In the case where $a \cdot \bar{a}_k = 0$, we get simply $Q_k(B^n) \cap V$ as the projection. (3)

$$\max_{Q_k(V)} |z| = |a| \sin \theta + (1 - |a|^2)^{1/2} \cos \theta.$$

We apply this lemma with $a = c_{jk}^0$ and $\theta = \theta_{jk}$. Since, under the separatedness condition, $V_j \cap V_k = \emptyset$, we always have $|c_{jk}^0 \cdot \bar{a}_k| = |a_k||c_{jk}^0|\cos\theta_{jk} > |a_k||c_{jk}^0|(1-|c_{jk}^0|^2)^{1/2} > 0$, i.e. $c_{jk}^0 \cdot \bar{a}_k \neq 0$. Replacing the Jacobian by its value (see Lemma 1(2)), we get for each term of the sum:

$$=\frac{(1-|a_j|^2)(1-|a_k|^2)^{n+1}|a_k|^2}{|a_k\cdot\bar{c}_{jk}|^2}\int_{Q_k\circ\phi_k(V_j)}|A_k(u)|\,d\lambda_{2n-2}(u).$$

We now make use of (ii):

LEMMA 5. If $T_{\delta}(V_j) \cap T_{\delta}(V_k) = \emptyset$, then there exists $\delta_1 = \delta_1(\delta) > 0$ such that

$$\max\{|z|: z \in Q_k \circ \phi_k(V_j)\} \le \sqrt{1-\delta_1^2} < 1.$$

Thus the distance to ∂B^n from $Q_k \circ \phi_k(V_j)$ is at least $\delta_2 = 1 - \sqrt{1 - \delta_1^2}$. By the classical theory of Bergman spaces, this implies that A_k satisfies a uniform estimate on $Q_k \circ \phi_k(V_j)$:

$$|A_k(u)| \leq \frac{C}{\delta_2^{2n-2}} \int_{Q_k(B^n)} |A_k(u)| \, d\lambda_{2n-2}(u).$$

It follows from Lemma 4(2), applied with $a = c_{ik}^0$, that

$$\lambda_{2n-2}(Q_k \circ \phi_k(V_j)) = \cos^2 \theta_{jk} (1 - |c_{jk}^0|^2)^{n-1}.$$

Thus each term in our sum is bounded by

$$C(\delta) \frac{(1-|a_j|^2)(1-|a_k|^2)^{n+1}(1-|c_{jk}^0|^2)^{n-1}}{|c_{jk}|^2} \int_{Q_k(B^n)} |A_k(u)| \, d\lambda_{2n-2}(u)$$

which Lemma 1(3) and some arithmetic reduces to:

$$= C(\delta) \frac{(1-|a_j|^2)^n (1-|a_k|^2)^{2n}}{|c_{jk}|^{2n}} \int_{Q_k(B^n)} |A_k(u)| \, d\lambda_{2n-2}(u).$$

We must estimate $|c_{jk}|^2 = |l_{jk}|^2 + (1 - |a_j|^2)(1 - |a_k|^2)$ from below. Simply writing that $a_k \notin T_{\delta}(V_j)$, condition (ii) implies $|l_{jk}| > \delta(1 - |a_j|^2)$.

Case 1. $(1 - \delta)|1 - a_j \cdot \bar{\alpha}_k| \le 2(1 - |a_j|)$. Then

$$|l_{jk}| > \delta(1-|a_j|^2) \geq \frac{\delta(1-\delta)}{2}|1-a_j \cdot \bar{\alpha}_k|.$$

Case 2. $(1 - \delta)|1 - a_j \cdot \bar{a}_k| > 2(1 - |a_j|)$. Then

$$\begin{aligned} |l_{jk}| &= |a_k \cdot \bar{a}_j^* - |a_j|| \\ &= |1 - a_k \cdot \bar{a}_j - (1 - |a_j|)(1 + a_k \cdot \bar{a}_j^*)| \ge \delta |1 - a_k \cdot \bar{a}_j|. \end{aligned}$$

In either case, $|c_{jk}|^{2n} > |l_{jk}|^{2n} \ge C(\delta)|1 - a_j \cdot \bar{a}_k|^{2n}$, and our whole sum is majorized by

$$C(\delta) \sum_{k} (1 - |a_{k}|^{2})^{n} \\ \times \left(\sum_{j: j \neq k} \left[\frac{(1 - |a_{j}|^{2})(1 - |a_{k}|^{2})}{|1 - a_{j} \cdot \overline{a_{k}}|^{2}} \right]^{n} \right) \int_{Q_{k}(B^{n})} |A_{k}(u)| \, d\lambda_{2n-2}(u) \\ \le c_{0}C(\delta) \sum_{k} (1 - |a_{k}|^{2}) \int_{V_{k}} |\alpha_{k}(z)| \, d\lambda_{2n-2}(z).$$

It will now be enough to pick

$$c_0 < \frac{1}{C(\delta)} (\approx \delta_2^{2(n-1)} (\delta(1-\delta))^{2n} \approx \delta^{6n-4}),$$

which concludes the proof of the Main Lemma.

4. Proof of the Lemmas.

Proof of Lemma 1. Since $\phi_k = \phi_k^{-1}$,

$$\phi_k(V_j) = \phi_k^{-1}(V_j) = \{ z \in B^n \colon \phi_k(z) \cdot \bar{a}_j = |a_j|^2 \}.$$

This equation becomes:

$$a_k \cdot \bar{a}_j - \frac{z \cdot \bar{a}_k}{|a_k|^2} a_k \cdot \bar{a}_j (1 - s_k) - s_k z \cdot \bar{a}_j = |a_j|^2 (1 - z \cdot \bar{a}_k),$$

$$z \cdot \left(\left(|a_j|^2 - \frac{a_k \cdot \bar{a}_j}{|a_k|^2} (1 - s_k) \right) \bar{a}_k - s_k \bar{a}_j \right) = |a_j|^2 - a_k \cdot \bar{a}_j.$$

Let $|a_j|c_{jk} := ((1-s_k)(a_j \cdot \bar{a}_k/|a_k|^2) - |a_j|^2)a_k + s_k a_j$, $l_{jk} := a_k \cdot \bar{a}_j^* - |a_j|$. The equation now reads $z \cdot \bar{c}_{jk} = l_{jk}$, or equivalently

$$z \cdot \frac{\bar{l}_{jk}\bar{c}_{jk}}{|c_{jk}|^2} = \frac{|l_{jk}|^2}{|c_{jk}|^2} = \left|\frac{l_{jk}c_{jk}}{|c_{jk}|^2}\right|^2.$$

We need to compute $|c_{jk}|^2$. Note first that

$$|a_j|c_{jk} \cdot \bar{a}_k = (1 - s_k)a_j \cdot \bar{a}_k - |a_j|^2 |a_k|^2 + s_k a_j \cdot \bar{a}_k$$

= $a_j \cdot \bar{a}_k - |a_j|^2 |a_k|^2$;

and

$$|a_j|c_{jk} \cdot \bar{a}_j = (1 - s_k) \frac{|a_j \cdot \bar{a}_k|^2}{|a_k|^2} - |a_j|^2 a_k \cdot \bar{a}_j + s_k |a_j|^2.$$

Thus

$$\begin{split} a_{j}|^{2}|c_{jk}|^{2} &= |a_{j}|c_{jk} \cdot |a_{j}|\bar{c}_{jk} \\ &= |a_{j}|c_{jk} \cdot \bar{a}_{k} \left((1-s_{k})\frac{a_{j} \cdot \bar{a}_{k}}{|a_{k}|^{2}} - |a_{j}|^{2} \right) + (|a_{j}|c_{jk} \cdot \bar{a}_{j})s_{k} \\ &= (1-s_{k})\frac{|a_{j} \cdot \bar{a}_{k}|^{2}}{|a_{k}|^{2}} - (1-s_{k})a_{k} \cdot \bar{a}_{j}|a_{j}|^{2} - |a_{j}|^{2}a_{j} \cdot \bar{a}_{k} + |a_{j}|^{4}|a_{k}|^{2} \\ &+ s_{k}(1-s_{k})\frac{|a_{j} \cdot \bar{a}_{k}|^{2}}{|a_{k}|^{2}} - s_{k}|a_{j}|^{2}a_{k} \cdot \bar{a}_{j} + s_{k}^{2}|a_{j}|^{2} \\ &= |a_{j} \cdot \bar{a}_{k}|^{2} - |a_{j}|^{2}(a_{k} \cdot \bar{a}_{j} + a_{j} \cdot \bar{a}_{k}) + |a_{j}|^{2}(1-|a_{k}|^{2}) + |a_{j}|^{4}|a_{k}|^{2} \\ &= |a_{j} \cdot \bar{a}_{k} - |a_{j}|^{2}|^{2} + (|a_{j}|^{2} - |a_{j}|^{4})(1-|a_{k}|^{2}) \\ &= |a_{j}|^{2}(|a_{k} \cdot \bar{a}_{j}^{*} - |a_{j}||^{2} + (1-|a_{j}|^{2})(1-|a_{k}|^{2})). \end{split}$$

This proves (1).

We get from the above

$$\cos^2 \theta_{jk} = \frac{|a_j \cdot \bar{a}_k - |a_j|^2 |a_k|^2|^2}{|a_k|^2 |a_j|^2 (|l_{jk}|^2 + |a_j|^2 (1 - |a_j|^2)(1 - |a_k|^2))},$$

which proves (2) after cancelling $|a_k|^2 |a_j|^2$ from top and bottom. Finally,

$$|c_{jk}^{0}|^{2} = \left|\frac{l_{jk}}{c_{jk}}\right|^{2} = \frac{|l_{jk}|^{2}}{|l_{jk}|^{2} + (1 - |a_{j}|^{2})(1 - |a_{k}|^{2})},$$

from which (3) follows.

Proof of Lemma 2. Since d_G is automorphism-invariant, we can compute $d_G(\phi_k(V_k), z)$ first. But $P_k(z) = a_k$ for $z \in V_k$, so $\phi_k(V_k) = Q_k(B^n)$. Now fix $z \in B^n$. We need to find

$$\inf_{w \in Q_k(B^n)} \left(1 - \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - z \cdot \bar{w}|^2} \right) \\
= 1 - (1 - |z|^2) \sup_{w \in Q_k(B^n)} \frac{1 - |w|^2}{|1 - z \cdot \bar{w}|^2}.$$

If $z \cdot \overline{w} = Q_k(z) \cdot \overline{w}$ remains fixed, the largest value is obtained for |w| minimal, i.e. w parallel to $Q_k(z)$. Set $w = \alpha Q_k(z)^*$, with $\alpha \in \Delta = B^1 \subset C$. We have to study

$$\max_{\alpha\in\Delta}\frac{1-|\alpha|^2}{|A+B\alpha|^2},$$

with A = 1, $B = Q_k(z)^* \cdot \overline{z} = |Q_k(z)| < 1$. This function is always differentiable and the gradient vanishes for $\alpha = -\overline{B}/\overline{A}$. The maximum

equals $(|A|^2 - |B|^2)^{-1} = 1/(1 - |Q_k(z)|^2)$.

$$1 - \frac{1 - |z|^2}{1 - |Q_k(z)|^2} = \frac{|z|^2 - |Q_k(z)|^2}{1 - |Q_k(z)|^2} = \frac{|P_k(z)|^2}{1 - |z|^2 + |P_k(z)|^2}.$$

That gives the distance from z to $\phi_k(V_k)$. By invariance under automorphisms, $d_G(V_k, z) = d_G(\phi_k(V_k), \phi_k(z))$, and we get (1) by substituting $\phi_k(z)$ into the above formula.

Now we want to minimize $d_G(\phi_k(V_k), z)$ over $z \in \phi_k(V_j)$, i.e. for $z \cdot \overline{c_{jk}^0} = |c_{jk}^0|^2$. Recall that $P_k(z) = z \cdot \overline{a}_k^*$. Let

$$\Psi(z) := \frac{|z \cdot \bar{a}_k^*|^2}{|z \cdot \bar{a}_k^*|^2 + 1 - |z|^2} = \frac{1}{1 + (1 - |z|^2)/|z \cdot \bar{a}_k^*|^2},$$

so to minimize Ψ we have to maximize $1-|z|^2/|z \cdot \bar{a}_k^*|^2$. We can reduce ourselves to the case where $z \in \text{Span}(a_k, c_{jk}^0)$; otherwise, projecting z onto it will not change $z \cdot \bar{a}_k^*$ and will increase $1-|z|^2$. If $z \in \phi_k(V_j) \cap \text{Span}(a_k, c_{ik}^0)$, we can write

$$z = c_{jk}^0 + (1 - |c_{jk}^0|^2)^{1/2} \widetilde{c_{jk}^0} \alpha,$$

where α is a complex number, $\alpha \in \Delta$, and $|\widetilde{c_{jk}^0}| = 1$, $\widetilde{c_{jk}^0} \in \text{Span}(a_k, c_{jk}^0)$, and $\widetilde{c_{jk}^0} \cdot \overline{c_{jk}^0} = 0$. With this notation,

$$1 - |z|^2 = (1 - |c_{jk}^0|^2)(1 - |\alpha|^2),$$

$$z \cdot \bar{a}_k^* = c_{jk}^0 \cdot \bar{a}_k^* + (1 - |c_{jk}^0|^2)^{1/2} \alpha \widetilde{c_{jk}^0} \cdot \bar{a}_k^* =: A + B\alpha.$$

Note that

$$\frac{|c_{jk}^0 \cdot \bar{a}_k^*|^2}{|c_{jk}^0|^2} + |\widetilde{c_{jk}^0} \cdot \bar{a}_k^*|^2 = 1,$$

so that

$$|A|^{2} = |c_{jk}^{0} \cdot \bar{a}_{k}^{*}|^{2} = |c_{jk}^{0}|^{2} \cos^{2} \theta_{jk},$$

$$|B|^{2} = (1 - |c_{jk}^{0}|^{2}) \left(1 - \frac{|c_{jk}^{0} \cdot \bar{a}_{k}^{*}|^{2}}{|c_{jk}^{0}|^{2}}\right)$$

$$= (1 - |c_{jk}^{0}|^{2})(1 - \cos^{2} \theta_{jk}).$$

As above, the maximum of $(1-|\alpha|^2)/|A+B\alpha|^2$ is $(|A|^2-|B|^2)^{-1}$, provided that |A| > |B|. This last condition simply means that $\phi_k(\overline{V}_k) \cap \phi_k(\overline{V}_j) = \emptyset$, i.e. $\overline{V}_k \cap \overline{V}_j = \emptyset$. This is equivalent to $|A|^2 > |B|^2$, which is easily rewritten into (2).

Getting back to $1 - \inf\{d_G^2(z, w), z \in V_j, w \in V_k\}$, we find

$$\frac{1}{1 + (1 - |c_{jk}^0|^2)/(|A|^2 - |B|^2)} = \frac{1 - |c_{jk}^0|^2}{|A|^2 - |B|^2 + (1 - |c_{jk}^0|^2)}$$
$$= \frac{1 - |c_{jk}^0|^2}{\cos^2 \theta_{jk}}.$$

Writing $d_G^2(V_j, V_k) \ge \delta_1^2$ gives (4) immediately. (3) follows from substituting the values given by Lemma 1 (2) and (3).

Proof of Lemma 3. Recall from [4] that the global Jacobian of ϕ_k is

$$J_{\phi_k} = \left(\frac{1 - |a_k|^2}{|1 - z \cdot \bar{a}_k|^2}\right)^{n+1}$$

To restrict to V_j , we must divide out the dilation corresponding to the directions orthogonal to the source set, $a_j^* \perp V_j$, and to the target set, $c_{jk} \perp \phi_k(V_j)$. This will be $|D_{a_j^*}(\phi_k(z) \cdot \bar{c}_{jk}/|\bar{c}_{jk}|)|^2$, where $D_{a_j^*}$ denotes the derivative in the complex direction of a_j^* .

$$\begin{split} \phi_{k}(z) \cdot \bar{c}_{jk} &= \frac{a_{k}(1 - (1 - s_{k})z \cdot \bar{a}_{k}/|a_{k}|^{2}) - s_{k}z}{1 - z \cdot \bar{a}_{k}} \\ \cdot \left[\left((1 - s_{k}) \frac{a_{j}^{*} \cdot \bar{a}_{k}}{|a_{k}|^{2}} - |a_{j}| \right) a_{k} + s_{k}a_{j}^{*} \right] \\ &= \frac{1}{1 - z \cdot \bar{a}_{k}} \left[(1 - s_{k})a_{k} \cdot \bar{a}_{j}^{*} - |a_{j}||a_{k}|^{2} + s_{k}a_{k} \cdot \bar{a}_{j}^{*} \right. \\ &+ \left[(1 - s_{k})^{2} \frac{a_{j}^{*} \cdot \bar{a}_{k}}{|a_{k}|^{2}} - (1 - s_{k})|a_{j}| - s_{k}(1 - s_{k}) \frac{a_{j}^{*} \cdot \bar{a}_{k}}{|a_{k}|^{2}} \right] \\ &+ s_{k}|a_{j}| - s_{k}(1 - s_{k}) \frac{a_{j}^{*} \cdot \bar{a}_{k}}{|a_{k}|^{2}} \right] z \cdot \bar{a}_{k} - s_{k}^{2} z \cdot \bar{a}_{j}^{*} \right] \\ &= \frac{1}{1 - z \cdot \bar{a}_{k}} [a_{k} \cdot \bar{a}_{j}^{*} - |a_{j}||a_{k}|^{2} \\ &+ (a_{j} - a_{k}) \cdot \bar{a}_{j}^{*}(z \cdot \bar{a}_{k}) - (1 - |a_{k}|^{2})z \cdot \bar{a}_{j}^{*}]. \end{split}$$

Since $z \cdot \bar{a}_k$ and $z \cdot \bar{a}_i^*$ are linear forms,

 $D_{a_j^*}(z \cdot \bar{a}_j^*) = a_j^* \cdot \bar{a}_j^* = 1$ and $D_{a_j^*}(z \cdot \bar{a}_k) = a_j^* \cdot \bar{a}_k$.

Thus

$$\begin{aligned} D_{a_{j}^{*}}(\phi_{k}(z) \cdot \bar{c}_{jk}) \\ &= \frac{\phi_{k}(z) \cdot \bar{c}_{jk}}{1 - z \cdot \bar{a}_{k}} a_{j}^{*} \cdot \bar{a}_{k} + \frac{1}{1 - z \cdot \bar{a}_{k}} [-l_{jk} a_{j}^{*} \cdot \bar{a}_{k} - (1 - |a_{k}|^{2})]. \end{aligned}$$

For $z \in V_j$, $z \cdot \bar{a}_j = |a_j|^2$ and $\phi_k(z) \cdot \bar{c}_{jk} = l_{jk}$, so that all that remains is the second term inside the square brackets:

$$\left| D_{a_j^*} \left(\phi_k(z) \cdot \frac{\bar{c}_{jk}}{|\bar{c}_{jk}|} \right) \right|^2 = \frac{(1 - |a_k|^2)^2}{|c_{jk}|^2 |1 - z \cdot \bar{a}_k|^2}$$

Dividing the global Jacobian by this quantity yields the result.

Proof of Lemma 4. (1) At any point of V, split the tangent space \mathcal{V} into an orthogonal direct sum:

$$\mathscr{V} = \mathscr{V} \cap \operatorname{Span}(a, a_k) \oplus \mathscr{V}'.$$

The projection Q_k induces the identity on \mathcal{V}' , so it is enough to consider the situation on the complex line $\mathcal{V} \cap \text{Span}(a, a_k) = \text{Span}(\vec{u})$, where $\vec{u} := a_k - (a_k \cdot \bar{a}/|a|^2)a$. Thus

$$|J_{Q_k|_V}| = \frac{|Q_k(\vec{u})|^2}{|\vec{u}|^2},$$

and an easy computation gives (1).

(2) If $a \cdot \bar{a}_k \neq 0$, then $Q_k|_V$ is one-to-one. Let $(Q_k|_V)^{-1}(w) = w + \lambda a_k$, where $\lambda \in C$.

$$(w + \lambda a_k) \cdot \bar{a} = |a|^2 \Rightarrow \lambda = \frac{|a|^2 - w \cdot \bar{a}}{a_k \cdot \bar{a}}.$$

Since we want the image under the projection of those points inside the ball,

$$Q_k(V) = \left\{ w \in Q_k(B^n) \colon |w|^2 + \frac{||a|^2 - w \cdot \bar{a}|^2}{|a_k \cdot \bar{a}|^2} |a_k|^2 < 1 \right\}.$$

Using the w_1 , w_2 notation, the above equation is written

$$|w_1|^2 + |w_2|^2 + \frac{||a|^2 - w_1 \cdot \bar{a}|^2}{|a_k \cdot \bar{a}|^2} |a_k|^2 < 1$$

Notice that $w_1 \cdot \bar{a} = w_1 \cdot \overline{Q_k(a)}, |w_1 \cdot \overline{Q_k(a)}|^2 = |w_1|^2 |Q_k(a)|^2$, and $|a|^2 = |Q_k(a)|^2 + \frac{|a \cdot \bar{a}_k|^2}{|a_k|^2}.$

The equation becomes:

$$|w_{1}|^{2} \left(1 + \frac{|a_{k}|^{2}}{|a_{k} \cdot \bar{a}|^{2}}\right) - \frac{|a_{k}|^{2}|a|^{2}}{|a_{k} \cdot \bar{a}|^{2}} (w_{1} \cdot \overline{Q_{k}(a)} + \bar{w}_{1} \cdot Q_{k}(a)) + \frac{|a_{k}|^{2}|a|^{4}}{|a_{k} \cdot \bar{a}|^{2}} + |w_{2}|^{2} < 1$$

which simplifies to

$$\frac{|a_k|^2|a|^2}{|a_k \cdot \bar{a}|^2}|w_1 - Q_k(a)|^2 + |w_2|^2 < 1 - |a|^2.$$

(3) In the above ellipsoid, the minimum distance to the boundary is attained when $w_2 = 0$, and equals

$$1 - |Q_k(a)| - (1 - |a|^2)^{1/2} \cos \theta = 1 - |a| \sin \theta - (1 - |a|^2)^{1/2} \cos \theta.$$

Proof of Lemma 5. First, since $V_j \cap T_{\delta}(V_k) = \emptyset$, $\phi_k(V_j) \cap \phi_k(T_{\delta}(V_k)) = \emptyset$. Although tubes have no reason to be invariant under automorphisms, $\phi_k(T_{\delta}(V_k))$ is not far from being a tube around $Q_k(B^n) = \phi_k(V_k)$. More precisely, if $|P_k(z)| < \delta/(1+\delta)$, then $\phi_k^{-1}(z) = \phi_k(z) \in T_{\delta}(V_k)$. Indeed,

$$(\phi_k(z) - a_k) \cdot \bar{a}_k^* = \frac{-(1 - |a_k|^2)P_k(z)}{1 - z \cdot \bar{a}_k},$$

$$\begin{aligned} |(\phi_k(z) - a_k) \cdot \bar{a}_k^*| &\leq (1 - |a_k|^2) \frac{|P_k(z)|}{1 - |a_k|^2 |P_k(z)|} \\ &\leq (1 - |a_k|^2) \frac{|P_k(z)|}{1 - |P_k(z)|} < \delta(1 - |a_k|^2) \end{aligned}$$

under the above hypothesis. It follows that for $z \in \phi_k(V_j)$, since $z \notin \phi_k(T_{\delta}(V_k)), |P_k(z)| \ge \delta/(1+\delta) =: \delta_1$, and consequently $|Q_k(z)| = (1 - |P_k(z)|^2)^{1/2} \le \sqrt{1 - \delta_1^2}$.

Acknowledgments. This paper was written and typed while in the employ of Occidental College, under the roof of the University of California at Los Angeles, which I would like to thank for its hospitality. Once again, I must thank John Garnett for useful conversations and his unflagging interest in my work. I also would like to thank the referee for his useful comments.

PASCAL J. THOMAS

References

- [1] E. Amar, Extension de fonctions analytiques avec estimation, Ark. Mat., 17 No. 1 (1979), 123–138.
- [2] _____, Suites d'interpolation pour les classes de Bergman de la boule et du polydisque de Cⁿ, Canad. J. Math., XXX No. 4 (1978), 711-737.
- [3] A. M. Mantero, Sur la condition de Carleson dans la boule unité de C^m, Boll. Un. Mat. Ital., A. 6 2 (1983), 163-169.
- [4] W. Rudin, Function Theory in the Unit Ball of Cⁿ, Springer Verlag, New York, 1980.
- [5] H. Shapiro and A. L. Shields, On some interpolation problems for analytic functions, Amer. J. Math., 83 (1961), 513-532.
- [6] P. J. Thomas, Interpolating Sequences of Complex Hyperplanes in the Unit Ball of Cⁿ, Ann. Inst. Fourier Grenoble, 36 No. 3 (1986), 167–181.
- [7] _____, Properties of Interpolating Sequences in the Unit Ball, Ph.D. dissertation, University of California, Los Angeles, 1986.
- [8] _____, Hardy space interpolation in the unit ball, Nederl. Akad. Wetensch. Indag. Math., 90 No. 3 (1987), 325-351.
- [9] N. Th. Varopoulos, Zeros of H^p functions in several complex variables, Pacific J. Math., 88 No. 8 (1980), 189-246.

Received August 7, 1987 and in revised form January 29, 1989.

Université Paul Sabatier Uer M.I.G. 31062 Toulouse Cedex, France