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HARDY INTERPOLATING SEQUENCES
OF HYPERPLANES

PASCAL J. THOMAS

A sufficient condition is given on unions of complex hyperplanes
in the unit ball of Cn so that they allow extension of functions in
the Hardy Hι space. The result is compared to Varopoulos' theorem
about zeros of Hp functions.

1. Notations and definitions. For z,w € Cn,

n

Z W = J2 ΣiWi>
i=\

Bn = {zeCn: \z\2 = z-z< 1}.

For ak e B\ ak φ 0,
k \ak\'

— p real-dimensional Lebesgue measure. For instance, on C,

L

Automorphisms of the ball

) .= φak(z) .= 1- z .a

where A(z) := f^2ak ^s the projection onto the complex line through
\ak\

dk, Qk{z) := z - Pjc{z) is the projection onto the complex hyperplane
perpendicular to a^ s% := 1 - |α^| 2 .

The map φk is an involution of the ball (see Rudin [4]). Note that

Qk{Bn) = {z: Pk(z) = 0} = {z: z • ak = 0}.

We write

This is an invariant distance: if φ is an automorphism of the ball
(i.e. any composition of unitary transformations and the above invo-
lutions), dG(φ(z),φ(w)) = dG(z,w).
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164 PASCAL J. THOMAS

We will study hyperplanes in the ball, denoted by:

The point α7 is the point in Vj closest to the origin. It is also the cen-
ter of the n - 1-complex-dimensional ball which Vj defines inside Bn.
This definition makes no sense when α, = 0, so we will not consider
that case. However, the problem we will consider is automorphism-
invariant and if there is a hyperplane going through the origin, apply-
ing to the whole sequence an automorphism φa, with \a\ small enough,
will preserve the hypotheses (at the expense of a change in the value
of δ, see below) and yield the conclusion. We define c°-k to be the
"center" of the hyperplane φk(Vj)9 i.e.

φk(V ) = φτx{Vj) = {zeBn:z ήk = \c%\2}.

We further consider the angle between φk{Vj) and Vk:

""'"•-ΐfiS
LEMMA 1.

Λ0 _ lJkcjk

\Cjk\

where

W c% = τrπτ

aϊ 'ak \

sk)-fcψ- ~ \αA) αk + sk<*j

α* - |α yp = (a* - ay) a*;

cos2 θ k - (ϊ*^A
Jk ~ \ \cjk\\αk\

|2 __

|2 _

^ \{ak-aj) aj\i + \aj\Hl
v ; (i-N 2)(i- |α*l 2)

The proofs of all lemmas are deferred until §4.
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The interpolation problem. The Hardy space Hp{Bn) is the space of
functions / holomorphic on the ball and verifying

p
HP

:=sup/ \f(rζ)\pdσ(ζ) < oo,
r<\ JdBn

where σ is In - 1-dimensional Lebesgue measure on dBn.
The Bergman space Ap{Vk) is the space of functions a holomorphic

on the hyperplane Vk and verifying

INI p

Λ P ( V k ) := fy \a(z)\p dλ2n.2(z) < oo.

DEFINITION. lp(Ap(Vk),l - \ak\
2) is the product of the Bergman

spaces on each hyperplane, endowed with the following norm: if a =
{ak}keZ+, where ak is a function defined and holomoφhic on Vk,

k

Notice that φk\ γk is just an affine map from Vk to Qk{Bn) ~ Bn~x,
so that we can rewrite

\P =

- \"k\2)n j n\<*k° Φk(w)\p dλ2n_2(w).

Given a function / e H(Bn), the space of holomoφhic functions,
we consider the following map

DEFINITION. We say that {Vj}jeZ+ is an /P-inteφolating sequence
of hypeφlanes if T maps Hp(Bn) onto lp(Ap(Vk), 1 - | ^ | 2 ) .

Equivalently, given {ak} a sequence of functions holomoφhic on
Vk, such that

Σ(l-\ak\2)j \ak(z)\p dλ2n-2(z) < oo,
k k

there exists / e Hp(Bn) such that

/I vk = *k
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This definition is the one given by Amar [1] and reduces in the case
n = 1 to that of Shapiro and Shields [5].

REMARK. With this definition, if a sequence of hyperplanes is Hp-
interpolating and we take points bk^Vk,Vk, then the sequence
is 7P-interpolating (in the sense of [2]).

Proof. If we are given a sequence of complex numbers
that

then define

such

Then

f \ak{z)\Pdλ2n

Jvk

- f IA
JOΛBnλ

- ψ[w) • bk

np

\Jψ(w)\dλ2n_2(w),

where ψ(w) — ak + ,

\JΨ{w)\ = s2

k

n-2 = {\-\ak\
2r-\ and

1 - ψ{w) φ{w') = (1 - \ak\
2)(l - w «'),

so, setting 6^ = ψ~ι(bk), we get

- | α * l 2 ) " - 1 f
Qk(B")

i - l ^
l-wb'

np

dλ2n-2(w)

< C\βk\
p{\ - \ak\

2)n-\\ - |^ | 2)" because np>n- 1,

It follows that

- \ak\
2) ί \ak

JVk

- \bk\
2)n\βk\",

and the function f EHP which we get by interpolating the ak on the
hyperplanes verifies fφk) = ak(bk) = βk. a
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Taking bk = ak, we get from [8] (for/? > 1) the following necessary
condition:

We also get that any sequence {bk} must be separated in the Gleason
distance; thus there exists δ > 0 such that if j Φ k, then

dG(Vj9 Vk) = inf{dG(z,w),ze Vj9w eVk}>δ>0.

We say that the hyperplanes are separated.

2. The main result. We are looking for a sufficient geometric condi-
tion to ensure that a sequence of hyperplanes be //^-interpolating. To
do so, we define another family of neighborhoods for the hyperplanes.

DEFINITION. Given δ a positive number, we call tube around Vk the
following open subset of Bn:

Tδ(Vk):={zeB»:\(z-ak) a*k\<δ(l-\ak\
2)}.

Those neighborhoods of the hyperplanes will be larger than those
given by separatedness in the Gleason distance. This will follow from:

LEMMA 2. (1) Given any z e Bn,

(2) Vj n Vk = 0 * cos 2 θjk > ( 1 - \c%\2).

(3) If (2) is satisfied,

\a*k-a*-\aj\\ak\\2 ~

(4)

dG(Vj, Vk)>δι>0o(l- (52)cos2 θjk > (1 - \c%\2).

From this we can prove that all points of the ball which are close
enough to Vk in the invariant distance must be within the tube. Indeed,
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by applying Lemma 2(1) and the fact that

(z - ak) • ak ak

Pkoφk(z) = ~-\-z-ak

we see that

Clearly then, if z e dTδ(Vk),

doiz, Vkγ = ^

which shows the inequality holds for z g T#(Vk).

THEOREM. There exists a number c0 = co(δ) > 0 such that if

(ii) foranyjφk, Tδ(Vj)nTδ(Vk) = 0,

then {Vk}keZ+ is an Hx (Bn)-interpolating sequence of hyperplanes.

REMARKS. (1) It was proved in [6] that (ii) together with

forms a sufficient condition for {Vk} to be an H°° inteφolating se-
quence of hyperplanes.

(2) A similar result holds for a sequence of points, but condition
(i) is enough, with any constant Co < 1 [8]. Here CQ will have to
be even smaller; therefore condition (i) by itself is enough to ensure
separatedness of the points, since in particular each term of the sum
must be less then cO

Proof of the Theorem. We will construct an approximate extension,
i.e. an operator

£:lι(Aι(Vk),l-\ak\
2)-+Hι(B»)
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such that

(El)

and

(E2)

< <χ>

\\TE-I\\OP<1.

Then TE is invertible, and one can write a true extension by letting
E = E{TE)~X. The operator TE will be the identity map on Z1 and
for a G Z1, E(a) will be a solution to the interpolation problem.

Let

kez+

where &k = ak°Φk°QkoΦk *s a n extension of ak to 2?w. Note that for
z e Vj, the jth term in the sum is exactly l2nάj(z) = α7 (z). (El) is
easily checked, for the coefficient of άk(z) is bounded and it follows
from the computations in [6] that

dσ(z)
r / 1 I O \ n

JdB" \ I - z 3* /

< C ( l - | % | 2 ) / K(z)μA 2 n -2(^

This step fails for p > I, and prevents us from proving //p results
for hyperplanes similar to those for points in [8].

The theorem reduces to:

MAIN LEMMA. For CQ small enough, there exists C\ < 1 such that for
anyθίel\A\Vk),\-\ak\

2),

k-.kφj

2n

dλln-2{z)

-\ak\
2) f \ak(z)\dλ2n_2(z).

Comparison with zero-set results. Clearly, if {Vk}keZ+ satisfy the
hypotheses of the theorem, then their union will be a subset of a zero
set for Hι functions. To see it, simply adjoin to the sequence a hyper-
plane VQ such that (i) and (ii) still hold (this can be achieved by taking
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0Q on dBn\\Jk<ι T2s{Vk) and \a$\ very close to 1); then interpolate 1
on VQ and 0 everywhere else.

This needs to be compared to the results of N. Th. Varopoulos, at
least in the special case of a divisor made up of a countable union of
complex hyperplanes [9, §8]. In that case, he showed:

PROPOSITION 8.2. There exist constants C Ί , . . . , C4 such that if

(8.18) £ (l-\aj\2)"<C2(l-\ak\
2)"

j : \\-aΓak\<Cx{\-\ak\i)

and

(8.19) CardO': VjΠKh(ζ) φ 0, Vj <£ KCιh(ζ)} < C4

where Kh(ζ) := {z e Bn: |1 - z ζ\ < h}, then there exists p > 0 such
that \Jk Vk is a zero set for Hp(Bn).

It can be shown (see e.g. [3]) that (8.18), which is a Carleson measure
condition, is equivalent to

On the other hand, if we assume separatedness in the invariant dis-
tance, (8.19) is satisfied in the following stronger form:

3C5 > 0 such that Card{;: Vj ΠKh(ζ) φ 0, Vj $ KC5h(ζ)} < 1.

Note that the above set is non-empty only when h < 2/C5.
The idea of the proof is first to use the triangle inequality for the

Koranyi distance to reduce oneself to the case where ζ e VjΓ)dBn; then
to apply an automorphism to bring Vj to φj(Vj)9 which is a hyperplane
through the center of Bn. The region Kh(ζ) is transformed into a
similar region, because <Z/, by the assumption that j is in the above
set, is far enough away from ζ. If another index k was also in the
set, the hyperplane φj(Vk) would pass through φj(Kh(ζ)), and thus its
projection onto φj(Vj) would come too close to the boundary, violating
the conclusion of Lemma 5, given below.

Varopoulos' theorem, as he pointed out, provides no control over
the value of p (which could indeed be very small, if one works out
the constants involved). This is essentially because the norm of the
Carleson measure supported by the divisor cannot be made arbitrarily
small. For this very special structure of the divisor (J7 Vj, our result
provides additional control on the exponent, although the actual zero
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set involved could be much larger than U ; P/ Namely:

PROPOSITION. If{Vk}keZ+ satisfies

and

(ii*) for any k, Card{j: Ts(Vj)nTs(Vk) ^0} < N,

where M > 0, N > 0, are integers, then there exists f φ 0, / e

Proof. An elementary combinatorial argument shows that under
(iiiv)^ the sequence can be split into TV + 1 subsequences, each of
which satisfies (ii), and of course (i^). Then Mills' Lemma [8] al-
lows us to split each such subsequence into 2M further subsequences
verifying (i). Thus we are reduced to the case M = 0, N = 0, i.e. the
assumptions of the theorem; by the argument given at the beginning
of this section, each subsequence has a nonzero Hι function vanish-
ing on it. Taking the product of the annihilating functions, we find

M

3. Proof of the main lemma. For convenience, we shall introduce
the notation Ak = ak oφk. Thus Ak is a function defined on Ak{Bn) ~

(1-tafcl2)"/ \Ak(z)\dλ2n-2(z)
JQk(B")

= {\-\ak\
2)! \ak(z)\dλ2n_2(z).

J Vu

Furthermore, ak = AkoQkoφk. With this new notation, it is enough
to bound

y - ( 1 _ , . ι 2 ) ( 1 _ , α .2)2« /

The integral in question is equal to

where Jφk\V.(z) is the Jacobian of the map φk restricted to Vj.
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LEMMA 3.

w/ίA ίAe notations from Lemma 1.

Thus the terms in the sum reduce to:

L | f l |2\ /
\ak\ ) Jφk(Vj)

LEMMA 4. G/ven α € 5", /e/ F = {z € B": z • a = \a\2}. Then

(1)

(2) In the case where a a^ Φ 0, Qk{V) is the subset ofQ^(βn) given
by the equation

where W\ is the coordinate in the Qk{a) complex direction, and w^
represents the n - 2 complex coordinates in the orthogonal directions
within Qk(Bn). β*(K) is thus an ellipsoid of radii (cos0)(l - | α | 2 ) 1 / 2

in the W\ direction, and (1 — \a\2)1/2 in each of the wι directions. In
the case where aάjc = 0, we get simply Qjc(Bn) ΠV as the projection.

(3)
max \z\ = \a\sin(9 + (1 - \a\2)ι'2cosθ.
Q(V)

We apply this lemma with a = c\ and θ = θj^. Since, under the

separatedness condition, V}- Π Vk = 0, we always have | Λ a^| =

I^HcJJcos^ > |%| |c^|(l -Icjtl2)1/2 > 0, i.e. c^ ^ ^ 0. Replacing

the Jacobian by its value (see Lemma 1(2)), we get for each term of

the sum:

f
/

JQ

\AkW (2n-i{
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We now make use of (ii):

LEMMA 5. IfTδ(Vj) Π Tδ(Vk) = 0, then there exists δx = δx(δ) > 0
such that

max{|z | :zeQ k oφ k (Vj)} <

Thus the distance to dBn from Qk o φk(Vj) is at least δ2 = 1 -

J\ - δf. By the classical theory of Bergman spaces, this implies that

Ak satisfies a uniform estimate on Qk o φk(Vj):

^ S^ϊ ί \Λk{u)\dλ2n.2{u).
δψ ZJQk(B")

It follows from Lemma 4(2), applied with a = c\, that

λln-2{Qk o φk(Vj)) = COS2 θjk(l - \ήk\
2)n-\

Thus each term in our sum is bounded by

(1 - |0/|2)(1 - | ^ | 2 ) w + 1 ( l - \c°Δ2)n-
C{δ) j—f2 ^

which Lemma 1(3) and some arithmetic reduces to:

Qk(B"\Cjk\2

We must estimate |cy/t|2 = l/^p + (1 - |tf/|2)(l - | ^ | 2 ) from be-
low. Simply writing that % £ 7 ί ( ^ ) , condition (ii) implies

f
Case 1. (1 - <J)|1 - βj άk\ < 2(1 - \aj\). Then

^ 1 1 - aj • άk\.

Case 2. (1 - <5)|1 - % αfc| > 2(1 - |α,|). Then

+ak -a*)\ > δ\\-ak-Uj\.
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In either case, \cjk\
2n > \ljk\

2n > C{δ)\\ - α,
sum is majorized by

, and our whole

ί \ak(z)\dλ2n-2(z).

It will now be enough to pick

Co < c^(* δ?n-ι\δ(\ - δ))2" * δ6"-4),

which concludes the proof of the Main Lemma.

4. Proof of the Lemmas.

Proof of Lemma 1. Since Φk = Φ^1,

ΦkiVj) = φ-k\Vj) = {ZEB": φk(z) • Uj = \aj\2}.

This equation becomes:

ak • aj - T^wβk • 3/(1 - sk) - skz • Uj = |αy |
2 ( l - z • ak),

αy|2" 1 ^ F ( 1 " S k ) ) Uk'SkQj) = ]ajl' ~Uk'Uj'
Let \aj\cjk := ((l-sk)(dj-dk/\ak\

2)-\dj\2)dk+skaj, ljk := ak a* -\aj\.
The equation now reads z cjk = ljk, or equivalently

ljkcjkhkCjk _ \hk\2 _

\cjk\
2" \Cjk\2 \cjk\2

We need to compute \Cjk\2 Note first that

\dj\cjk -ak = {\- sk)aj • ak - |α,i2 |αA:l2 + skdj • ak

= dj-ak-\dj\2\ak\
2;

and

\dj\Cjk • dj = (1 - skγ
a\'a£ - \dj\2dk • Uj + sk\dj\2.
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Thus

= \aj\cjk 3* ί (1 - S^^ΊΓ ~ \aj\) +

= (1 - sά^jjr " (1 " sk)ak • aj\aj\2 - \aj\2aj • ak + \aj\4\ak\

" 2 2i ι2 - . ?ι ι2

sk\aj\Δak cίj + s£\aj\

= |α, ak\
2 - |a/(a* άj + aj â ) + |α/(l - |^|2) + |α/|β*|2

= | α r a i k - | α / | 2 + (|α/-|flJ|
4)(l-|flik|

2)

= |α7f( |α, a) - \aj\\1 + (1 - |α ; |
2)(l - \ak\

2)).

This proves (1).
We get from the above

laj • ak - \aj\2\ak\
2\2

2 ( I W + |αyl 2 ( l-N 2 )( l- | f l * l 2 )) '

which proves (2) after cancelling |α^p|αy p from top and bottom. Fi-
nally,

Vik\2

r° I2 -cjk\ - Cjk

from which (3) follows.
\lJk\

2

Proof of Lemma 2. Since dg is automorphism-invariant, we can
compute dG{φk{Vk), z) first. But Pk(z) = ak for z € Vk, so φk(Vk) =
Qk(Bn). Now fix z € Bn. We need to find

i n f Λ (l-\z\2)(l-\w\2)\

Qk(Bn) V |1 - Z -W\2 JweQk(Bn)

( i | p ) s u p

If z w = Qk(z) • w remains fixed, the largest value is obtained
for \w\ minimal, i.e. w parallel to Qfc(z). Set w = α:Qfc(z)*, with
a € Δ = Bι c C. We have to study

max

with A = I, B = Qk(z)* ' z = \Qk(z)\ < l This function is always
diiferentiable and the gradient vanishes for a = -B/A. The maximum
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equals (\A\2 - \B\2Γι = 1/(1 - \Qk(z)\2).

l-\z\2

 = |z | 2-|Qfc(*)l 2

 = \Pk(z)\

That gives the distance from z to φk(Vk). By invariance under auto-
morphisms, do{Vk,z) = dG(φk(Vk),φk(z)), and we get (1) by substi-
tuting φk(z) into the above formula.

Now we want to minimize dG(φk(Vk),z) over z e φk(Vj), i.e. for

z-c(jk = \c°jk\
2. Recall that Pk{z) = z α£. Let

Ύ[Z) •" |z a p + 1 |zp " 1 - \z\2

z\2)l\z . α*p'

so to minimize Ψ we have to maximize l- |z | 2 / |z α£|2. We can reduce

ourselves to the case where z e Sρan(α^,Λ); otherwise, projecting

z onto it will not change z a*k and will increase 1 - |z |2. If z e

φk(Vj)n Span(ak,c%), we can write

where α is a complex number, α e Δ, and |Λ | = 1, Λ G Span(α^,

and c^ c^ = 0. With this notation,

z . a\ = c%

Note that

so that
c o s—\cjkak\ — \Cjk\ c o s

As above, the maximum of (l- |α | 2 )/ |^4+5α| 2 is ( l^p-l^l 2 )" 1 , pro-
vided that 1̂ 1 > \B\. This last condition simply means that ΦkiΫk)n

φk(Vj) = 0, i.e. ykΠVj = 0. This is equivalent to \A\2 > \B\2, which
is easily rewritten into (2).
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Getting back to 1 - inf{ί/^(z, w), z eVj,w e Vk}, we find

COS2θjk

Writing CIQ(VJ, Vk) > δf gives (4) immediately. (3) follows from sub-
stituting the values given by Lemma 1 (2) and (3).

Proof of Lemma 3. Recall from [4] that the global Jacobian of φk is

To restrict to F,, we must divide out the dilation corresponding to the
directions orthogonal to the source set, αj ± Vj, and to the target set,
Cjk -L Φk{Vj) This will be \Da*(φk(z) • cjk/\cjk\)\2, where Da* denotes
the derivative in the complex direction of a*.

-(l- sk)z • akl\ak\
2) - skz

(1"

\-zak

a*rak

W " |

[(1 - sk)ak • a* - \aj\\ak\
2 + skak • a*

α α / t l _ , _
+sk\aj\ -sk(l- sk)-h-ήr I z ak-s{z a)

•fafc a -iβyiiβifci2

- (1 - | ^ | 2 ) z a}].

Since z a^ and z αj are linear forms,

Da*(z -a*) = a* • a* = 1 and Da>(z-ak) = a* • ak.
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Thus

Da*(φk(z) cjk)

= — z—CL\ ' &k H~ "j ^~[~ljk&j ' &k ~ (1 ~ \&k\ )]•
1 — z &k \ — z - Uk

For z eVj, z - ΰj = \cij\2 and φk(z) C/jt = //it» s o t h a t a 1 1 t h a t remains
is the second term inside the square brackets:

\Cjk\
2\l - z ak\

2'

Dividing the global Jacobian by this quantity yields the result.

Proof of Lemma 4. (1) At any point of V, split the tangent space
into an orthogonal direct sum:

The projection Qk induces the identity on 2^', so it is enough to con-
sider the situation on the complex line *V n Span(α,α^) = Sρan(w),
where u:= ak - (ak a/\a\2)a. Thus

ι r - _ \Qk(u)\2

\JQk\v\- | β | 2 '

and an easy computation gives (1).
(2) If a - ak Φ 0, then Qk\ v is one-to-one. Let (Qk\ v)~ι(w) =

w + λak, where λe C.

(w +λak) a = |α | 2 ̂  λ =
lαl2 -w - a

aka

Since we want the image under the projection of those points inside
the ball,

Qk(V) = {we Qk(B»): \w\2 + M'~Z?l2\ak\
2 <

Using the w\, w2 notation, the above equation is written

Notice that w, a = wι • Qk(a), K Qk(a)\2 = |u>i|2|βfc(a)|2, and
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The equation becomes:

+ ^ + ' - ' 2

which simplifies to

(3) In the above ellipsoid, the minimum distance to the boundary
is attained when u>2 = 0, and equals

1 - \Qk(a)\ - (1 - |α | 2 ) 1 / 2 cos0 = 1 - \a\sinθ - (1 - |α | 2 ) '/ 2 cos0.

Proof of Lemma 5. First, since VjΓ\Tδ{Vk) = 0, φk(Vj)nφk(Tδ(Vk))
= 0. Although tubes have no reason to be invariant under automor-
phisms, Φk(Ts(Vk)) is not far from being a tube around Qk{Bn) =
φk(Vk). M o r e precisely, i f \Pk{z)\ < δ / ( l + δ), t h e n φ^(z) = φk(z) e
Tδ(Vk). Indeed,

1 - z •

\{φk{z)-ak)-a*k\<{\-\ak\
2)-

- \ak\i\Pk(z)\

under the above hypothesis. It follows that for z e Φk{Vj)> since
z £ Φk(Ts(Vk))9 \Pk(z)\ > δ/(l+δ) =: δu and consequently \Qk(z)\ =

•
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