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APERY BASIS AND POLAR INVARIANTS
OF PLANE CURVE SINGULARITIES

ANGEL GRANJA

Let C be an irreducible plane algebroid curve singularity over an
algebraically closed field K, defined by a power series / G K[[X, Y]].
In this paper, we study those power series h e K[[X, Y]] for which
the intersection multiplicity (/•*) = άimκ(K[[X, Y]]/(f,y)) is an
element of the Apery basis of the value semigroup for C We prove
a factorization theorem for these power series, obtaining strong prop-
erties of their irreducible factors. In particular we show that some
results by M. Merle and R. Ephraim are a special case of this theo-
rem.

Introduction. In this paper we denote by K an algebraically closed
field of arbitrary characteristic.

Let C be an irreducible plane algebroid curve over K (i.e. C —
Spec(iί), where R = K[[X, Y]]/(f), with / irreducible). We will sup-
pose / £ YK[[X, Y]] and we will write n = Ordx(f(X, 0)).

We will denote by S(C) the semigroup of values of C (see [2],
11.0.1 and [3], 4.3.1), by An = {0 = α0 < ax < < an.x} =
{min{S(C)n{k + nZ+)\ 0 < k < n - 1} the Apery basis of S(C) rela-
tive to n (see [2], 1.1.1) and by {vo,...,vr} the n-sequence in S(C),
where v0 = n, and vt = min{t; € S{C)\ gcd(^o>^i>--->^/-i) >
gcdivct;,,. . . ,«/_!,!;)}, 1 < Ϊ < r (see [1], 6.6, [2], 1.3.2 and [6]).
(Note that gcd(τ;o>..., vr) = 1.)

The main objective of this work is the proof of the following theo-
rem.

FACTORIZATION THEOREM. Let h e K[[X, Y]] be such that 0<k =
Ordx(h(X,0)) < n - 1. Then (/• Λ) < ak. Suppose (/• h) = ak. Ifk =
Σo<q<rsq(nldq-\)> where dg = gcd(υ0,...,vg), (do = vo = n,dr= 1),
0 < sq < r and 0 < sq < dq-\jdqi then

h = Π hi and hi = Π Λy,

with hij either irreducible or unit in K[[X, Y]], 1 < j < mif \ < i < r,
and
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(2) (/ hij(X,0)) = di-tVi/n ifs) φ 0 and hi} is a unit in K[[X, Y]]
if si = 0, 1 < j < m, 1 < / < r.

Here (/• h) denotes, for two power series / and h, the intersection
multiplicity of the algebroid cycles defined, respectively, by / and h.

In the fourth section we see that the polars of an irreducible complex
analytic germ of a plane curve singularity satisfy the hypotheses of the
above theorem for k = n -1. Thus, the Theorem 3.1 of [5] and Lemma
1.6 of [4] follow from the above Factorization Theorem.

1. Apery basis and the «-sequence. In this section we will summarize
some properties of the Apery basis. For other properties you can see
[2] and [6].

PROPOSITION 1. If Mj = K[[Y]] + K[[Y]]X + + K[[Y]]XJ, 0 <
j < n - 1, then:

(1) {aj} = v(Mj.{ + XJ) - v{Mj.x\ 1 < j < n - 1,

(2) v(Mj) = Uo</<y(β/ + nZΛ 0<j<n-l,
( 3 ) αz + aj < cii+j, 0<i + j<n-l,

whereυ(Mi) = {(f g); g e M, -{0}}, 0 < i < n-\ andv^M^+X1) =
{(f ig + X*)); geλfi^l 1 < i < π - 1.

Proof. See [2], Satz 3 and [6], Proposition 2.

REMARK 2. Note that in the above proposition aj > (f-(g+Xj)) for
each g e M^u 1 < j < n - 1. (If (f (g + χj)) > aj, then there exists
gj-ι € My.! such that (/ (gj^ + XJ)) = aj, so aj = (/ (g - gj-ι))
and we get a contradiction.)

PROPOSITION 3. One has

&sx(dldύ+.-+sj{dldJ-X) = S\Vι + + SjVj,

and Vj+γ > (dj-ι/dj)υjf 0 < j < r - 1, with 0 < st < (έ//-i/έ//),
1 < / < r.

Proof. See [2], Satz 2 and [6], Proposition 1.

REMARK 4. Note that Vj = ad/dj, 1 < j <r and

An = {*Sι(dido)+.»+sr{didr-x)\ 0 < Si < (rf/-i/rf/), 1 < i < r}.

EXAMPLE 5. Here we give some examples of different possibili-
ties for the Apery basis and π-sequences. Let us consider the curves
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d = Spec(^[[X? Y]]/(J}))9 1 < i < 3, where fx = X 2 + 7 5 , /2 -
(y + X 2 ) 2 + X5 and /3 = r 2 + X5. It is easy to check that

S(d) = S(C2) = S(C3) = {0,2,4, 5, 6,7,8,... },

and one has fi £ YK[[X,Y]], 1 < / < 3, and Ord;K/i(X,0)) - 2,
Ord^(/2(X,0)) - 4 and Ord x(/ 3(X ?0)) = 5. So Λ2 = {0 - α0,
αi = 5}. The 2-sequence is {v0 = 2,v{ = 5}, a\ = {f\ X),
d0 = d = 2 and rfj = 1. ^ 4 = {0 = a^a\ — 2,α2 = 5,α3 = 7}.
The 4-sequence is {v0 = 4,V\ = 2,^3 = 5}, αi = (/2 X), a2 =
(/2 (7 + X2)), α3 - (/2 (Γ + X2)X), d0 = d = 4, dx - 2 and
rf2 = 1. And ^5 = {0 = ao, d\ = 2, α2 = 4, ^ 3 = 6, #4 = 8}. The
5-sequence is {v0 = 5,V\ = 2 } , α, = (/ 3 X 1 ) , \<i<4, do = d = 5
a n d d\ = \.

2. π-sequences and Hamburger-Noether expansions. Let x and y
be, respectively, the residue classes of X and Y in i?. Assume that
no = (f - X) < (f - Y) = n, that is, X is a generic coordinate (or x
is a transversal parameter of C, see [3]) and Y could be generic, or
have maximal contact with /, or any thing in between. In this form,
we can study all of these possibilities for Y simultaneously. This is
the point of taking the Apery basis with respect to a general n, rather
than n — no- If n = no then Y should be generic.

Let
y = aO\x + ••> + aohox

h° + xh°zu

l _ ! = aSχkχz
k

s\

be the Hamburger-Noether expansion of C in the basis (x,y) (see
[3], 2.2.2 and 3.3.4), and let m = Ordz^(z/), 0 < i < sg (z0 = x),
(l=nSg< nSg-ι < ..<no<n = OτdZsg{y), see [3], 2.2.5).

Note that the Hamburger-Noether expansion is nothing but an ex-
plicit description of the minimal resolution of singularities C of C by
a sequence of point blowing-ups, z/, z/_i are the regular parameters
of the ambient plane at the h0 H h Λ/th blowing up. zSg is a regular
parameter of C. In particular, for any h e K[[X9 Y]] such that / does
not divide h

(f.h) = OτdZs(h).
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The following proposition is an easy consequence of the Hamburger-
Noether expansion and the formula for Zariski exponents of a plane
curve (see [3] 4.2.7 and 4.3.10).

PROPOSITION 6. With the above notations one has:
(l)/io = min(5(C)-{O»,
(2) ΠQ < n = v0 < hoπo + ni,
(3)(i) Ifv0 < vχ9 then r = g,υo = no and

0 < / < r - 1, (SQ = 0). Moreover OQ\ Φ 0.
(ii) Ifv0 > vx andd\ = Vχ> then r = g+l,υo = kovχ, k0 >2,v{=

and

0 < / < r - 1, (SQ = 0). Moreover aOj = 0, 1 < j < k0 and aιko Φ 0.
(iii) I/VQ > Vx and dx < vx, then r = g, vλ = ΠQ, υ0 = hφ^ + nx and

0 < / < r - 1, (so = 0). Moreover aOj = 0, 1 < j < h0.

Proof. (1) and (2) are obvious from the Hamburger-Noether expan-
sions. We must only prove (3).

For this, if one writes β0 = no and

0 < / < g - 1, then one has
(I) £ 0 = minίSίCMO}) a n d ^ = min{^ e

> gcd(βθ9...9β^l9β)}9 l<i<g (see [3], 4.2.7 a n d 4.3.10).
On the other hand, note that one has the equalities
(II) VQ - n and V( = min{^ G S(C);gcd(^o, ,^/-i) >

gcd(vo,...9Vi-i9v)}9 1 < i < r.
We distinguish the following three possibilities:
(i) no = n < hono + n\. In that case aoχ φθ,vo = no and it follows

from (I) and (II) that r = g and V; = βh \ <i< g.
( i i ) n o < n = k o n o < h o n o + n x . T h e n a O j = 0 9 l < j < / c 0 , a Q k o φ 0 ,

υ0 — kono, v\ = n0 and it follows from (I) and (II) that r = g + 1 and
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(iii) n0 < n = hono + n\. Now aOj = 0, 1 < j < fι0, v0 = hono + n\,

V\ = no and it follows from (I) and (II) that r = g and vι = βi9

2<i<r.

3. Infinitely near points and intersection multiplicity. Now consider
another irreducible plane algebroid curve over K, C = Spec(H'), with
R' = K[[X, Y]]/(f), C φ C and /' £ YK[[X, Y]]. Let x' and / be
the residue classes of X and Y, respectively, in R'. We denote by

k' H's' h's'
Z i _ i = CL IUI Z 5j + + dsιuι Zst + Z i Z i

/ _ al Z

f 8' A . . .
Sg'~l Sg'kg' Sgf

the Hamburger-Noether expansion of C in the basis (x'5y') We also
put n\ = Ordz/; (zj), 0 < / < sf,, (xf = zf

0) and n1 =

Let N be the number of infinitely near points that C and C have
in common (i.e. N = ho + h\ H h Λ5-i + / - 1, $ being the largest
integer for which hq = h'q,0 < q < s - \, and α ^ = α^, i <k < hj,
0 < j < s — l9 and / being the least index such that asi Φ a'si (i <
hs + lj<h's+l)) (see [3] 2.3.2).

PROPOSITION 7. If

1 < i < g, (so = 0), then (f • f) < n'dj^Vj/n, where j = / ifv0 < v\
or VQ > V\, d\ < V\, and j = / + 1 ifv0 > υh d\ = V\. Furthermore, if
(/ /') < n'dj-iVj/n, then dHX divides (f • f).

Proof. One has n = hq+xnq+x + nq+2, sj < q < sJ+ι - 2, nSj+ι_ι =

kj+ιnSj+ι, 0<j<g-\,andn'p = h'p+ln'p+l + n'p+2, ή<p< s'j+ι - 2,
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So nSi divides niy and n's, divides n'k for / < Sj and k < s'j. On the

other hand, since

then hq = hq, 0 < q < 57-1 - 1 and fc/_i = k\_v so
( I I I ) n / n S i _ l 9 n q / n S i _ { = n'q/n's._ι9 0 < q < s ^ { .
From Proposition 5 we see that
(TV) dj-X = nSi_r

Thus, one can compute (/•/') in terms of the possible values of iV
(see [3], 2.3.2 and 2.3.3). Namely, one has the following possibilities:

(A) N = Σo<*<5/_,-i hQ + fc/-i> w i t h fc/-i < k

In that case one has

so dj-ι divides (/•/) by (IV), and a = n'dj-iVj/n, by (III), (IV) and
Proposition 6.

(B) TV = Eo<<7<* h«> w i t h ^i-i ^ ^ < τnin(si9s[) and A5 < Λ;.
Now one has

hqnqriq + ns+xn's
0<q<s

(Note that A5 < ΛJ, so ns-\nf

s = hsnsn
f

s + ns+\n's < (hs + \)nsn's <
h'snsn' < h'snsn's + nsn's+x.) By (III), (IV) and Proposition 6, it follows
that

hqnqn'q + ns^+ins.^ =n'dj^xvjln, or

^ ^ < + ^ / - i < _ ι + i < β = n'dj-j

and dj-\ divides (/ f).

The other cases can be proved in a similar way:

(BO TV = Σo<q<s-\ K + K> w i t h si-ι < s < min(j/, jj) and h's < hs.
(C.I) N = Σo<q<Si-\ hq + ki-\9 with Si < ή and kt < h's..
(C.2) TV = Σ o ^ ^ - i K + h'si> w i t h ΐ̂ < s'i a n d ^ < ki
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(CM) N = Σo<ϊ<5ί-i hq + k<-l, with s't < Si and k\ < hή.

(C.2) N = Eθ<<?<s''-1 hd + \'» w i t h S'i < Si a n d Λ ί ' < k'i
(D) ΛΓ = Σo<q<Si-'\ hg + ki-ί, with ί, = ή and fc, < fcί.
( D ; ) N = Σo<g<Si-ι hg + ki-l, w i th st = s't a n d k\ < kf.

(E) JV = Σo<ί<s,-i hi + ki ~ !> w i t h si = s'i> ki = k'i a n d aΦi + a'Sikr

COROLLARY 8. For each nonnegative integer j , 1 < j < r, the fol-
lowing statements are equivalent:

(1) (f-f)>n'dj_ιvj/n,

(2) N=

wherei = j ifv0 < V\ orυ$ > vx andd\ < v\, andi = j-l, ko = VQ/V\
ifvo > v\ and d\ — V\. In particular, if either (I) or (2) is true then
nf = n's.n/dj.

Proof. (1) => (2). If VQ > vu d{ = v{ and (/ /') > n'v{ then
TV > ko - 1. Indeed, suppose N < ko - I. Then a§q = af

Qq, for

q < N and aON+ι φ ^ + 1 - I f a0N+ι Φ ° t h e n (N + ι)no = n' a n d

if af

0N+ι = 0 then N + 1 = k0 and (N + l)n'o < nf, so in any case
(/. /') = (jV + l)πo«ό - n'v\ a n d w e S e t a contradiction.

Now suppose (f JΓ) > n'dj-\Vj/n and

0<q<Si-l

with y > 1 if t>0 < ^i or v0 > V\ and d\ <Vχ, and with j > 2 if v0 > υ\
and d\ =V\. Then we can assume

with 1 < / < p. It follows from Proposition 7 that (/•/') < n'ds-ιvs/n,
with s < j and ̂ 5 _ i ^ < dj-\Vj (see [2], Satz 2) which is a contradic-
tion.

(2)=> (1). Ifv0 >vudx =vx and # > * b - l , then (/•/') > konon'o,
and «' = Λb/î , (α0^ = α ^ ) , so one has (/•/') > n'vx (/i0 = Vi).

Now if

J^ ^ + hi - 1 < N
0<q<Si-l



92 ANGEL GRANJA

with / > 1 then n/nSi = n'/n's.9 nq/nSi = n'g/n'Si, 0 < q < Si and

(/ * /') = Σ hqϊiqπ'q + kiΠSin's. = γ.
0<q<Si-\

By Proposition 6

V j + nSi_ι+xnSi_x

\0<*<*ί-i

Now

γ= Σ hqnqriq + kinSin
f

s. = [nSi_x /nS

0<^<5/_,

Thus we have to show that

But this follows by repeated application of the identities nq-\ — hqnq +
nq+x, since fc/zi,. = ^ . - 1 .

COROLLARY 9. For 1 < 7 < r, if(f-f') < n'dj-iVj/n, then dj-\
divides (f - f).

Proof. If i>o > v\9 d\ = v\ and (/ f) < n'vx then N < k0 - 1
(Corollary 8). Thus, if aOq = af

Oq, 1 < q < TV, and <zO;v+i 7̂  ^OAΓ+I
 t h e n

Λ^+l = k0 and (f - f) = (N + l)non'o = n'oυo. (For if 7V+1 < ̂ 0 then
(/./ ' ) = ft'^ which is a contradiction.)

Now we can assume (/ /') < n'dj-xVj/n, with j > 1 if t>o < V\ or
^o > ̂ 1 and d\ < vu and j > 2 if v0 > v\ and ^i = vx. By Corollary
8 one has

with / = j if v0 < V\ or ̂ 0 > ^1 and d\ < v 1? and with / = j - 1 if
t>o > v\ and ί/j = v\. So, by Proposition 7, ί/7_! divides (/ / ' ) .

4. Proof of the Factorization Theorem. As Ordx(h(X,0)) = k we
can write A = uhf, with A' e Mk_x + X^ and w e K[[X, Y]] being a
unit. So (/•*) = (/•*')< a*.

Also, we can write αk = Σ o < ^ < ^ ^ ^ a n d ^ = 12o<q<rs«(d/d<i)>
with 0 < ^ < dq-\/dq (see Remark 4). Let # be the greatest index
such that sq^0 and let

h= Π ^
0</<m
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be the factorization of A as a product of irreducible elements in

K[[X9Y]].
If for any j

(f'hj)/Ordx(hj(X,0))>dq-ιvq/n

then, by Corollary 8, Ordx(hj(X,0)) = an/dq {a Φ 0), but k < n/dq

which is a contradiction. (Note that sp = 0 for p > q and

k < Σ iίdp-xldp) ~ 1) = (d/dq) - 1 < d/dq = n/dq.)

On the other hand, if for 1 < j < m

(f hj)/Ordx(hj(X,0))<dg-lvq/n

then dq-\ divides (/• h) by Corollary 9. So dq-\/dq divides sq, and
hence sq = 0 since 0 < sq < dq-\/dq, and we get a contradiction.

Thus, there exists hJo such that

(f hj0)/Ordx(hjo(X90)) = dq-lυq/n.

Moreover, if q > 2 then Oτdx{hjQ(X,ϋ)) = an/dq-\ by Corollary 8,
as dq-\Vq > dqvq-\ (see Proposition 3). If q = 1 then (/ hjQ) =
Ordx(ΛΛ(JΓ,0)) = anjdq-x. In any case Ord x (^ 0 (Z,0)) = α/i/^_!
with 0 < a < sq.

(Note that k < Σι<p<q-ι((dp-ι ~ 1) - \){dIdp-{) + sqdIdq-X <
d d / d ( )d/d /d)

So h! = h/hjo satisfies Ordx(h'(X90)) = k' = k - an/dq-ι and
{f'h') = a^-a{njdq-\)dq-\vqjn — a^-avq = α^; hence the Theorem
follows by iterating the above reasoning using h1 instead of h in the
next step.

5. The complex analytic case. In this section, C is assumed to be
an irreducible complex analytic germ at 0 e C2 of a plane curve sin-
gularity.

Let n be the multiplicity of C and let P(C) be a general polar of C
(i.e. />(C) is defined by a reduced element h = λ(df/dX)-μ(df/dY)
of C{X, Y}9 and A2 - 1 is the multiplicity of P(C)). M. Merle in [5]
has proved that P(C) descomposes into g curves Γ ( 1 ),.. ., Γ ^ , where
Γ(£) (1 < q < g) is such that

(1) its multiplicity is {nleq.x){{eq.xleq) - 1),
(2) every irreducible component of Γ ^ , Γ^)/ has a contact of order

βq with C and (Γ(q)i C)/m(Γ{q)i) = ~βq/(n/e).
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Here {β0,..., βg} is the minimal system of generators of S(C), eq =

gcdQ ô,•..>/?<?)> 0 < q < g, β0 < β\ < < βg are the Puiseux
exponents and m(Γ^i) denotes the multiplicity of Γ^), .

Without loss of generality, we may assume that n — Ordx(f(X, 0)),
and therefore n - 1 = Oτάx{h(X9Ό)).

On the other hand,

(/•*)= Σ {{eq-xleq)-\)βq.
0<q<g

and hence (/• Λ) = an-\, since {β0,..., jff̂ } is the /^-sequence in S(C)
(see [2], Satz 2 and [5], Prop. 1.1).

Thus, h satisfies the hypotheses of the Factorization Theorem for
k = n - 1, and the above Theorem 3.1 of [5] is a special case of
ours. (Note that T^ has a contact of order βq with C if and only if
(Γ(q)r C)/m(r{q)i)=^q/(n/eq^)y see [5], Prop. 2.4.)

In general, if M is a smooth germ of a plane curve singularity de-
fined by z e C{X, Y}, then the polar of C with respect to M is the
(possibly nonreduced) germ whose defining ideal is generated by the
Jacobian / ( / , z) = <?(/, z)/d(X, Y) (see [4]). In particular, a general
polar P(C) of C is defined by h = J(f,λX + μY) with (λ,μ) general.

Thus, without loss of generality, we may assume that z = Y (since
M is smooth) and / ( / , z) = df/dX.

PROPOSITION 10. Keeping the above notations, one has
(a) Ordx((df/dX)(X,0)) = Ordx(f(X,0)) - 1 = n - 1.

Proof, (a) It is obvious.
(b) If n = Ordx(f(X,0)) > Oτdγ(f(0,y)) = m then one has a

Puiseux type parametrization of C

X = tm, Y = Ψ(ί)

and we can write (up to multiplication by a unit)

0<q<m

Thus,

(f-(df/dX)) = Ord,((df/dX)(tm,Ψ(t)))

+ Ord? I [ | (Ψ(/)
\<q<m-l

where Ψ 1 ^ 1 / " 1 ) = d/ΘX(Ψ(Xιίm)).
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On the other hand, we can write

aOjX
jn/m

where m = βo < β\ < < βg are the Puiseux exponents of C and
e/ = g c d ( A ) , . . . , # ) , 1 < ί < S -

Then we have Ord, Ψι(Xι/n) = n-m, and

Ord (
\<q<m-\

(Note that Ord,(Ψ(ί) - Ψ(w«t)) = βJ9 if

q e {k(ej-2/ej-ι); \<k< ej.x} - {k(ej-ι/ej); \<k< ej}9

l<j<g (e-\ =eo =

Now

where c is the conductor of S(C) (i.e. c = min{d e S(C)\d + Z+ c
S(C)}, see [3], 4.4) and c + n - 1 = aw_1? since

An = (min(5(C) n (7 + πZ+); 0 < j < n - 1}.

Finally, a similar argument shows that (/ df/dX) = c + n - 1, if
)) < Ordy(/(0, Y)).

REMARK 11. Proposition 10 shows that if h defines the polar of C
with respect to M then h satisfies the hypotheses in the Factorization
Theorem for k = n - 1, so Lemma 1.6 of [4] is also a special case of
(2) in the Factorization Theorem.
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