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HOMOTOPY COMPLEX PROJECTIVE SPACES
WITH DIVISIBLE SPLITTING INVARIANTS

ROBERT D. LITTLE

A PL homotopy complex projective 4-space with integral splitting
invariant σ2 is smoothable if and only if σ2 Ξ 0 or 6 (mod 14). A
smooth homotopy complex projective 4-space with σι φ 0 does not
admit a smooth Z3 action with a codimension 2 fixed submanifold.

1. Introduction. Let Xm be a closed, simply connected PL m-mani-
fold, where m > 6. The manifold Xm is said to be smooth if its
PL structure is compatible with a differentiable structure and almost
smooth if it is smooth in the complement of a point. The purpose
of this paper is to study these ideas in the special case where Xm is
a PL homotopy complex projective «-space, that is, m = 2n, n > 3,
and X2n is homotopy equivalent to CPn, complex projective «-space.
The PL homeomorphism type of these manifolds can be described
precisely in terms of numerical invariants. Let P2t denote the simply-
connected surgery obstruction group for closed 2/:-manifolds, k > 2,
that is, Pik = Z if k is even and P2k = Z2if k is odd, [8]. A theorem
of Sullivan, [8], asserts that the PL homeomorphism type of X2n is
determined by an (n - 2)-tuple (cτ2, a$,..., σn_i) in Π/[=2 ̂ 2k- Sullivan
suggested the problem of characterizing the smoothability or almost
smoothability of these manifolds in terms of these splitting invariants.
Every PL homotopy complex projective 3-space is smoothable, [10],
We obtain a complete answer in the case n = 4 and in the cases n = 5
or 6, a complete answer modulo the value of the mod 2 invariant σ^.

THEOREM 1.1. Every PL homotopy complex projective 4-space is al-
most smooth. A PL homotopy complex projective 4-space is smooth if
and only ifσ2 = 0or6 (mod 14).

THEOREM 1.2. A PL homotopy complex projective 5-space is almost
smooth if and only ifσ4 - Aσ\ + 10σ2 = 0 (mod 28). There exists a
smooth homotopy complex projective 5-space with splitting invariants
σ2 and σ4 if and only ifσ2 is even and σ4 - 4σ | + \0σ2 = 0 (mod 28).
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THEOREM 1.3. There exists an almost smooth homotopy complex
projective 6-space with splitting invariants σ2 and σ4 if and only ifσ2

is even and σ4 - 4σ | + 10σ2 = 0 (mod 28). There exists a smooth
homotopy complex projective 6-space with splitting invariants σ2 and
σ4 if and only ifσ2 is even, σ4 - 4σ2 + 10σ2 = 0 (mod 28), and

-Sσ4σ2 + ^ σ 2

3 - 4σ4 + 20σ2

2 - ^-σ2 = 0 (mod496).

We investigate certain finite group actions on homotopy complex
projective spaces. Let X2n be a 2n-manifold having the same integral
cohomology ring as CPn and let p be an odd prime. Suppose Zp acts
on X2n in such a way that the fixed point set of the action, F(X2n),
contains a codimension 2 submanifold Fo. It follows that F(X2n) =
FQ LI point, ([3], p. 487). In [3], Dovermann has made a detailed study
of the algebraic properties of such actions and has shown that they are
often algebraically standard in a certain precise sense (see Definition
5.1). In particular, if X2n admits an algebraically standard action, then
the Pontrjagin class of X2n must correspond to the Pontrjagin class
of CPn. Dovermann, ([3], p. 490), raised the question of whether
every Z3 action is algebraically standard in the case n = 4, and we
answer this question in the affirmative if X 8 is a PL homotopy complex
projective 4-space.

THEOREM 1.4. If X2n is a PL homotopy complex projective n-space
with n = 4 or 5, then every locally linear PL Z3 action on X2n with a
codimension 2 fixed submanifold is algebraically standard.

This theorem settles the single open case of Dovermann fs Theorem
A(ii), ([3], p. 488), and so the two results together imply that every
smooth 2jp action of this type on a smooth homotopy complex projective
A-space is algebraically standard. If σ2 ψ 0, the Pontrjagin class of Xs

is not standard (Theorem 3.1), and so it follows that the exotic smooth
homotopy complex projective 4-spaces of Theorem 1.1 with σ2 Φ 0 do
not admit smooth Zp actions with a codimension 2 fixed submanifold.
Theorem 1.4 implies that Dovermann's Proposition 0.3 ([3], p. 489),
is sharp at the prime/? = 3, and, if d{p) {d'(p)) is the smallest integer n
such that there exists a smooth (locally linear PL) non-standard action
of this type on some smooth (PL) homotopy complex projective n-
space, then Theorem 1.4, together with Dovermann's Proposition 0.3
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and Theorem 0.3 ([3], p. 489), imply that d'(3) = 6, and 6 < d(3) <
15.

The paper is organized as follows. In §2, we introduce notation and
outline our general method of attack. Sections 3 and 4 contain the
technical information necessary to implement the program outlined
in §2. Section 3 contains a formula which relates the Pontrjagin class
of a PL homotopy complex projective space to its integral splitting
invariants. Section 4 contains a review of the results of Adams and
Walker, [1], and Brumfiel, [2], on fibre homotopically trivial vector
bundles over CPn and the proofs of Theorems 1.1, 1.2, and 1.3. Sec-
tion 5 contains the proof of Theorem 1.4.

2. Surgery problems and smoothability. Let hPL(CZ™) and hS(CPn)
be the sets of equivalence classes of homotopy triangulations and ho-
motopy smoothings of CPn, respectively ([8], p. 19). If an: hS(GPΛ)
-• hPL(CP") is the natural map and if h: X2n -+ CPn represents an el-
ement of hPL(CPw), then X2n is smooth if and only if the equivalence
class of h is in the image of an. If 1IS(GPQ ) is the set of equivalence
classes of homotopy almost smoothings of CPn ([2], p. 381), there is
a natural map βn: hS(CP0

Λ) -> hPL(CP") ([8], p. 46) defined by the
coning construction, and a general position argument at the singular
point shows that if h: X2n -* CPn represents an element of hPL(Ci>A7),
thenX2" is almost smooth if, and only if, the equivalence class of h is
in the image of βn.

We study the mappings an and βn by studying the homomorphism
γn: [CPn,F/O] -> [Ci™;F/PL], which sends a smooth surgery prob-
lem with range CPn into the corresponding PL surgery problem. These
maps are in a commutative diagram with exact rows ([8], p. 45).

[CP«;F/PL] > P 2 n > 0

Ίn

[CPn;F/O]

The maps βn and yn-\ are related because there is a bijection
hPL(Xm) = [Xm - point; Fj PL] ([8], p. 21), and, if Xm is almost
smooth, there is a bijection hS(Xo

m) = [X0

m;F/O] ([2], p. 382). If
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χm = CPn, we have the commutative diagram below:

hPL(CPΛ) —=-> [ C P ^ F/PL]

(2.2)

hS(GP0

Λ) —^-> [CP Λ " 1 ;F/O]

The group [GPΛ;F/PL] can be described in terms of the splitting
invariants. If / : X2n —• CPΛ is a PL surgery problem and, if k < n,
assume that / is in general position with respect CPk c CPn. If
Y2k = f~ι(CPk), then the splitting invariant σk in Plk is defined to
be the simply connected surgery obstruction to making f\ Y2k normally
cobordant to a homotopy equivalence. Sullivan's theorem asserts that
[CPn;F/ PL] = Π L 2 p2k> that is, a PL surgery problem is determined
by an (n -1 )-tuple (cτ2, σ 3,..., σn). The map [CPn;F/ PL] -+ P2« sends
a surgery problem into its obstruction, σn.

The homomorphism γn is related to the homomorphism
ζn: [CPn;F/O] —• k(n)9 where k(n) is the kernel of the /-homomor-
phism, / : KO(CPn) -> J(CPn). This map is defined by Spivak unique-
ness ([9], p. 105), which states that if / : X2n -> CPn is a smooth
surgery problem, then, in KO(X2*), the tangent bundle of X2n, τ(X2n),
satisfies the equation τ(X2n) = f*τ(CPn) + f*ξ, where ζ is in k(n).
An element ξ in k(n) determines a smooth surgery problem, but not
uniquely. In §4, we review the results of Adams and Walker, [1], and
Brumfiel, [2], concerning k(n), make some inferences concerning the
image of γn (and the images of an and βn via (2.1) and (2.2)), and
prove Theorems 1.1, 1.2, and 1.3. In the next section, §3, we estab-
lish a formula relating the rational Pontrjagin class of a PL homotopy
complex projective w-space and its integral splitting invariants. We
will use this formula in the proof of Theorem 1.4 in §5.

3. The Pontrjagin class of a homotopy complex projective space. If
n > 3, let h: X2n —> CPn be a homotopy equivalence with splitting
invariants (cτ2,cr3,.. .,σw_i). The theorem below concerns the rela-
tionship between the Pontrjagin class Pi{X2n) in H4ί(X2n;Q) and the
integral splitting invariants. Let y in H2(CPn;Q) be the generator of
the cohomology algebra and let Q[x\,X2,...9JCZ ], / > 0, be the rational
polynomial algebra on abstract generators, x^, 1 < k < i, with the
convention that if / = 0, the symbol denotes Q.

THEOREM 3.1. There exist universal polynomials α, in

Q[xi,X2,...,Xi], i>09
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such that a0 = 1, tf/(0,0,...,0) = 0, and i > 1, and, if\<i< [n/2],
then

i / , 1 7 \

I 7 )ak{σ2> σ4> J σ2k)h*y l.
\ ι-k J κκ KJ

k=0 V 7

LEMMA 3.3. Suppose that for fixed i, 1 < / < [n/2], h is in general
position with respect to CP2i, and that formula (3.2) is valid for Pj(X2n)
ifl<j<i-l. Then Pj(Y4i) = /*j(h\Y4i)*y2J, 1 < j < i - 1, wλerέ?

(3.4) x ^ / 2 / + ! ~ k

k=0

Proof of Lemma 3.3. Let ζ denote the canonical complex line bundle
over CPm, CPm c CPn, if m < n. Let ε0C be the real 2-plane bundle
underlying ζ, where βo is the operator which assigns to a complex
bundle the underlying real bundle ([5], p. 191). Since h is in general
position with respect to GP 2 / , there is a direct sum decomposition of
block bundles,

(3.5) τ(X2n)\Y4i = τ(Y4i) θ (/! - 2ι)Λ*(c0C),

where τ(Z 2 w ) and τ(y 4 / ) denote the tangent block bundles of X2n and
Y4i, respectively.

Formula (3.5) and an inductive argument can be used to establish
formula (3.4). The initial step, j = I: the hypothesis concerning
formula (3.2) and formula (3.5) imply that

(„ + i + ax(σ2))(h\Y4iγy2 = Px(Y4i) + (n - 2/)(λ|r4/)V

since the Whitney sum formula holds over Q. Therefore, P\(Y4t) —
/t\(h\Y4ι)*y2, where /ι\ = 2i+ 1 +tfi(cr2). The inductive step: assume
that (3.4) holds for all j such that 1 < j < j 0 < i - 1. To establish
(3.4) at level JQ, note that the hypothesis about (3.2), (3.5), and the
inductive hypothesis imply that Pj0{Y4i) = /*jo{h\Y4i)*y2j\ where

If cu is the coefficient of au in (3.6), 1 < u < j$9 it follows that (3.4)
at levels below j 0 implies that

f2i + 1 -
Cu = .

Jo-u
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To see this, note that the identity

1=0

can be used to show that the coefficient of au in the second summation
of (3.6) is

\ Jo-u J \ Jo-u J

Proof of Theorem 3.1. The proof is by induction and Lemma 3.3
will be used in the inductive step. Before starting the arguments, we
remark that if one wishes to compute Pt(X2n) as a rational multiple
of h*y21 and h is in general position with respect to CP2\ it is enough
to compute Pi(X2n)\Y41 as a rational multiple of the cofundamental
class of Γ4 z, since h\Y41 has degree +1.

The initial step, / = 1: put h into general position with respect to
CP2 c CPn and note that it follows from (3.5) at level / = 1 that

Px{X2n)\Y4 = PX{Y4) + [n - 2){h\Y4)*y2.

Since Sσ2 = L{(P{{Y4))[Y4] - 1, where Lx is the Hirzebruch L-class
([9], p. 162, [7], p. 225), and (h\Y4)*y2 is the cofundamental class of
Y4, it is clear that (3.2) holds at level i = 1 with a\(σ2) = 24σ2. In
particular, Pχ(X2n) is integral and determined by a2. The inductive
step: assume that (3.2) holds for Pj(X2n) for all j such that 1 < j <
i — 1 and that h is in general position with respect to CP21. Invoking
Lemma 3.3 and using the definition of σ2i, we conclude that Pi(Y4ϊ) =
?i(h\Y4ιYy2\ where <?/ is the rational polynomial expression in σ2k,
1 <k < /, determined by (3.4) together with

(3.7) 8<72/ = Li(Px(Y4i), P2(Y4i),..., Pi(Y4i))[Y4i] - 1,

where L/ is the Hirzebruch L-class. The polynomial αz is defined by

(3.8) ^ / = ^ -

Since h is in general position with respect to CP 2 / , we use (3.5) and
conclude that

(3.9) Pi(X2») = ΛV'
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It follows from (3.4) and the identity

ι=0

that if cu is the coefficient of au in the summation in (3.9), 1 < u <
ί- 1, then

(n + \-u\ (2i + 1 - u\

H t - u ) - { i - u )•
and so (3.2) holds a level / in view of (3.8).

We complete the proof of Theorem 3.1 by noting that <Z/(0,0,..., 0)
= 0, / > 1, follows since a,\ (0) = 0 and, if c ^ = 0, 1 < j < /, then

by formula (3.4), if it is assumed, inductively, that 0/(0,0,..., 0) = 0,
1 < j < i - 1. This implies that ^ = (2ι*1) by naturality of the degree
+ 1 map h\Y4i and the fact Lz[Ci>2/] = 1. Thus αf (0,0,...,0) = 0
follows from (3.8).

We remark that if n is even in Theorem 3.1, n = 2z, then a^i = 0
in formula (3.2). It follows easily from this remark and Theorem 3.1
that the Pontrjagin class of X2n corresponds to the Pontrjagin class of
CPn, that is, P*(X2n) = (1 + h*y2)n+ι if and only if all the integral
splitting invariants of X2n vanish.

We conclude this section with some examples of the polynomials

0/ 01(02) = 2402, 02(02* CΓ4) = (360cr4 + 576σ2 - 432σ2)/7,

and

03(02,04> 0ό) = (3780/31)σ6 + (56160σ2σ4 - 6912σ2

3

- 39420σ4 - 57888σ2

2 + 13284σ2)/217.

4. The kernel of the /-homomorphism. The reduced K-thcory of
CPn, KO(CPn), is a free abelian group with generators ωk, k > 1,
where ω = βo{ζ - 1), ζ is the canonical complex line bundle, and εo
is the realification operator ([1], Theorem 2.2). There are relations
which depend on n (mod 4): KO(CP2/) is free abelian with generators
ωk, 1 < k < 1, KO(CP 4 / + 3) is free abelian with generators ωk, 1 <
k < 2i + 1, and KO(CP 4 / + 1) is free abelian with generators ωk,\ <
k < 2/ + 1, modulo the relation 2ω 2 / + 1 = 0.

Let k(n) = kernel{/: KO{CPn) -• J(CPn)}. Brumfiel ([2], pp.
400-401) has computed k(n) for n < 7, and, if u e [CPn\F/O], n<Ί,
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expressed the integral splitting invariants of u in terms oϊξn(u) £ k{ή).
We present BrumfieΓs results with three very minor modifications.
First, the integral splitting invariants as defined by formula (3.7) differ
in sign from the splitting invariants in BrumfieΓs paper. Secondly,
note that it is not hard to see that if ξn(u) = 24aω (mod higher powers
of ω), then a = σ2. To see this, let / : X2n -> CPn represent u, put /
into general position with respect to CP2 (where higher powers of ω
are zero), and then compute σ2 using the Hirzebruch index formula.
Finally, we have done a little arithmetic with BrumfieΓs formulas ([2],
Lemma 1.5), so that the formula for a given integral splitting invariant
reflects the formulas for integral invariants of smaller subscript.

LEMMA 4Λ(Brumfiel, [2], Lemmas 1.4 and 1.5). Let ψ\ = 24ω +
98ω2 + l l l ω 3 , ψ2 = 240ω2 + 380ω3, and ψ3 = 504ω3. Ifn<Ί,
then k(n) is generated by ψt restricted to CPn, i — 1,2, and 3, and if
u e [CPn;F/O] with ξn(u) = aψ\ + bψ2 + cψ3, then

(4.2) σ2 = α,

(4.3) σ4 = 4σ 2

2 -10<τ 2 -286,

(4.4) σ6 = Sσ4σ2 - y a\ + 4σ4 - 20σ2

2 + ^-σ2 + 496(6 + c).

COROLLARY 4.5. Suppose that n < 1 and that υ e [CPn\F/PL]
is determined by splitting invariants (σ2,a^,...,σn). There exists an
element v' e [CPn\F/PL] such that v and v' have the same integral
splitting invariants and v' G image γn if and only if the integral splitting
invariants ofv satisfy the congruences,

(4.6) σ4 - 4σ2

2 + 10σ2 = 0 (mod 28),

(4.7) σ 6 - 8 σ 4 σ 2 + y σ 2

3 - 4 σ 4 + 2 0 σ 2

2 - ^ - σ 2 Ξ 0 (mod 496).

Proof. Suppose that υ and vf have the same integral splitting in-
variants and v' = γn(u). If ζn(u) = aψ\ + bψ2 + cψi, then formulas
(4.2), (4.3), and (4.4) relate the integral splitting invariants of v to
α, 6, and c, and so the congruences (4.6) and (4.7) hold. Conversely,
suppose that the integral splitting invariants of υ satisfy the equations
σ4 - 4σ2 + 10σ2 = 28ύf and

σβ - 8σ4σ2 + ~^~σ

2 ~~ 4σ4 + 20σ2 —σ2 =
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Let u G [CPn;F/O] be an element such that ξn(u) = σιψ\ -
(e + d)ψi. It follows from Lemma 4.1 that the integral splitting in-
variants of u are σ2, 04> and σ^ and so we may set v' = γn(u).

Proof of Theorem 1.1. The space PL/O is 6-connected ([7], p. 250),
and so the tangent bundle of X8-point lifts in the fibration PL/O —•
BSO —> BSPL. Therefore, every PL homotopy complex projective
4-space is almost smooth. To verify the second statement in the the-
orem, note that it follows from Corollary 4.5 that if v = (σ2,

 σ3> σ4) Ξ
[CP 4 ;F/PL], then there exists σ'3 G Z 2 such that v' = (σ2,σ

f

3,σ4) e
images if and only if σ4 - 4σ | + 10σ2 = 0 (mod28). Sullivan has
remarked ([8], p. 45) that (0,1,0) € [CP4;F/PL] is in the image of
γ4. It follows from the properties of the universal F/ PL characteristic
classes ([6], p. 80) that if (02, σ3> 04) and (σ2, σ3, σ4) are two elements
in the group [CP 4;iΓ/PL], then the group theoretic sum of the two
elements is given by

(σ 2 , cr3, σ4) + (CΓ2, σ'3, o\) = (σ 2 + σ 2 , σ 3 + σ'3, σ4 + σ'4 + %a1a
1

1).

In particular,

(σ2, σ3, σ4) + (0,1,0) = (σ2, σ3 + 1, σ4).

It follows that if (σ2, σ ,̂ σ4) G image y4, then (σ2, σ̂  + 1 , σ4) G image y4,
and hence (σ2,σ3,σ4) G image γ4 if and only if σ4 - 4σ | + 10cr2 =
0 (mod 28). It follows that (σ2, σ3,0) G image α 4 if and only if σ2 = 0
or 6 (mod 14).

Proof of Theorem 1.2. The argument in the proof of Theorem 1.1
shows that if (σ2, σ3, σ4,0) G hPL(CP5), then (σ2, σ3, σ4,0) G image γ4

if and only if σ4 - 4σ | + 10σ2 = 0 (mod28). This establishes the
first assertion. To establish the second assertion, note that it follows
from Corollary 4.5 and the fact that σ2 (mod 2) determines the Arf
invariant in the case n = 5 ([2], p. 401, [4], p. 16) that there exists
an element in [CP5;F/O] with splitting invariants σ2 and σ4, and
with Arf invariant zero (i.e., σ5 = 0), if, and only if, σ2 is even and
σ4 - 4σ | + 10σ2 = 0 (mod 28). In this situation, we have no control
over σ3 G Z 2 because it is not clear that (0,1,0,0) G image 75.

Proof of Theorem 1.3. Theorem 1.3 follows from Corollary 4.5 in the
same fashion as Theorems 1.1 and 1.2. We remark that smoothability
or almost smoothability forces σ$ = 0 ([8], p. 45), and hence cr2 is even
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in the statements in the theorem. We are unable to decide the value
of 03 in this case just as in the case n = 5.

5. Actions of Z 3 with codimension two fixed point component. Let

X2n be a closed 2«-manifold with cohomology ring Z[y]/(yΛ+1), where
y is a generator of H2(X2n\Z). Let p be an odd prime and suppose
that ΊJP acts locally smoothly on X2n in such a way that the fixed point
set, F(X2n), contains a codimension 2 submanifold, FQ. It follows that
F(X2n) = FQU Point and, if j : Fo c X2n and y0 = y*y, then /f *(F0; Z)
contains the polynomial ring Z[yo]/(yβ) ([3], Corollary 0.1). We use
the notation τ for tangent bundle, v for normal bundle, c for Chern
class, and P* for total Pontrjagin class. For an abelian group H, let
Hf = Hj torsion denote its free part, and if x e H, its image in Hf is
denoted by f(x).

DEFINITION 5.1 (Dovermann, [3]). An action on X2n with codimen-
sion 2 fixed point component is algebraically standard if

f
(iii) /(Λ(/b)) = (1 +f(yo)2)n,
(iv)f(φ(F0,X

2n))) = l±f(y0),
(v) as a real representation, τpt(X2n) = A?^(FO,X 2 A Z ), where pt is

the isolated fixed point and x e Fo.

THEOREM 5.2. IfX2n is a PL homotopy complex projective n-space
with n = 4 or 5, then every locally linear PL Z$ action on X2n with a
codimension 2 fixed submanifold is algebraically standard.

Proof. If n = 4, FQ is a 6-manifold and the normal block bundle, v,
is a real 2-plane bundle ([3], p. 492). If 7,: Hk(F0;Z) -> Hk+2(X2n;Z)
is the Gysin map, then C\{y) = J*J\(IF0) ([3], p. 503), and so there
exists an integer, r, such that f(c\(v)) = rf(y0). The block bundle
equation X(X*)\FQ = T(FQ) Θ V together with formula (3.2) in the case
n = 4, / = 1 (recall that aχ(σ2) = 24σ2) yield the fact that P\(F0) is
integral and f(Pι(F0)) + f{Px{v)) = (5 + 24σ2)f(yQ)2. Since v is a
real, orientable 2-ρlane bundle, P\{y) = C\{y)2 ([7], p. 179), and so
f{Pχ{v)) = r2f(y0)

2. It follows that f(Px(F0)) = sf(y0)
2, where

(5.3) r 2 + s = 5 + 24σ2.

Since the action is tame ([3], Theorem 1.1), we may apply the Atiyah-
Singer (/-Signature Theorem. If the above formulas for the charac-
teristic classes and the formula f(yo)3[Fo] = r ([3], Lemma 3.1) are
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put into the signature formula for G = Z 3, ([3], p. 504), the resulting
equation is

(5.4) r2{2r2-s) = ±2.

Equations (5.3) and (5.4) imply that r = ±1, s — 4, and σ2 = 0.
Conditions (iii) and (iv) follow immediately and formula (3.2) implies
(i) since σ2 = 0. Since r = ± 1 , f{cx(v)γ = f{y0)

3 generates H6(F0\Z)
and so f(yo) generates H*(FQ;Z)/torsion ([3], Lemma 3.1), and this
is (ii). We remark that (v) holds automatically in the case p — 3 ([3],
formula (1.4), p. 492).

The case n = 5 is similar. The block bundle equation τ(Xιo)\Fo =
τ(F0) θ v plus the equations Px(v) = Cγ(v)2, P^v) = 0, / > 2 ([7],
p. 174), together with formula (3.2) in the case n = 5, / = 1,2 (see
the remarks at the end of the proof of Theorem 3.1 for a\{σ2) and

> 04)) imply that there are integers r, s and t such that f(c\(y)) =
), f(Pι (Fo)) = sf(y0)

2, and /(7P2(F0)) = tf(yo)
4 These integers

satisfy the equations

(5.5) r2 + s = 6 + 24σ2,

(5.6) t + Ίr2s = 105 + 360σ4 + 576σ2

2 + 408σ2.

If the above formulas for the characteristic classes and the formula
f(yo)4[Fo] = r ([3], Lemma 3.1), are put into the signature formula
for G = Z 3 ([3], p. 505), the resulting equation is

(5.7) r(60r4 - 20r2s + t - s2) = ±5.

Formulas (5.5), (5.6), and (5.7) plus some elementary number the-
ory show that r = ±5 is impossible. Therefore, r = ±1 and hence
(iv) holds. We conclude also that (ii) holds, that is, HUF0;Z) =

Z[/(yo)]/(/(>;o))5 ([3], Lemma 3.1). In particular, the index of the
8-manifold Fo is 1. It follows from the Hirzebruch Index Theorem
and formulas (5.5) and (5.6) that (ί - s2)/45 = 1 + 8σ4 = 1, that is,
04 = 0. If the information that r = ±1 and σ4 = 0 is put into (5.7),
the only possible conclusion is σ2 = 0. Condition (i) now follows eas-
ily from formula (3.2). Since s = 5 and σ2 = σ4 = 0, t = 70 and
(iii) holds. As we remarked above, (v) holds automatically in the case
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