PACIFIC JOURNAL OF MATHEMATICS
Vol. 141, No. 2, 1990

SOME FUNDAMENTAL PROPERTIES OF CONTINUOUS
FUNCTIONS AND TOPOLOGICAL ENTROPY

RoMEo F. THOMAS

The purpose of this paper is to clarify some properties and results
related to continuous functions on compact spaces and topological
entropy.

1. Definitions and Propositions. Note that in this paper we assume
that the spaces are compact metric spaces unless otherwise stated.
If a, B are open covers of X their join

aVpf={ANB: A€ aand B € #}.

We define H(a) = log N(a), where N(a) is the number of sets in a
finite subcover of a for X with smallest cardinality. Note that H(«) >
0 and H(a V ) < H(a) + H(B) [10]. Define

diam(a) = max{diam(U): U € a}.

Let (X, ¢) denote a continuous real flow [i.e., ¢: X x R — X con-
tinuous and ¢(x,t + s) = ¢(P(x,),s)] on a compact metric space X.
The topological entropy of ¢ is denoted by 4(¢) and defined to be
h(¢) = h(¢;), where ¢;: X — X is a homeomorphism defined by
¢u(x) = (x,1).

We recall that the flows (X, ¢) and (Y, ¢) are conjugate (topologically
conjugate) if there is a homeomorphism y from X onto Y mapping
orbits of ¢ onto orbits of ¢ with preserved orientation. For more
details see [2, 8, 9].

ProrosITION 1.1 (¢f. [5)). If (X, ) and (Y, ) are conjugate flows
and they have no fixed points, then

h(¢) = ch(y),

Where c is a finite positive constant.

Let T: X — X be a homeomorphism and let f: X — R be any
positive real valued continuous function. The suspension of T under
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S [2, 8] is defined to be the flow ¢, on the space
Xr= U {0: (x, fx) ~ (Tx,0)}

0<t<fx
defined for small non-negative time by ¢, (x,t) = ¢,(x,t + s) with
0<t+s<fx.

It is well known that the suspension flows (X, ¢ () and (X, ¢¢) of
T: X — X under f and g respectively are conjugate and a home-
omorphism from X, onto X, that conjugates the flows is given by
(x,8) — (x,18(x)/ f(x)).

Let d; and d, be metrics defined on X. These metrics are Lipschitz-
equivalent (L-equivalent) if there exist positive constants ¢; and c¢;
such that

c1di(x,y) < dy(x,y) < c2di(x, )

for every x, y € X. A map f from a metric space (X, d) into a metric
space (Y, o) is Lipschitz (L-map) if there exists a positive constant ¢
such that

a(fx,fy) <cd(x,y)

for every x, y € X. A Lipschitz bijective map f: X — Y such that
f~!is also Lipschitz will be called L-homeomorphism and denoted by
f: X =Y. A metric space (X,d) is L-embedded in a metric space
(Y,0) if there exists an injective L-map i: X — Y such that X =
i(X)CY.

It is obvious that any compact differentiable manifold A with the
Riemannian metric is L-embedded in the Euclidean space R™ for
some positive integer m.

2. Continuous functions. In this section we will introduce our basic
proposition.

ProposTiION 2.1. Let f: X — R be a positive real valued contin-
uous function on X (compact metric space). Given ¢ > 0, then for
every positive integer n, there exists an open cover a, of X such that
diam(fU) < ¢/n for all U in a, and

.1
nh—>n<;10 —};H(an) =0.

Proof. Let (Y = Yy, ¢ = ¢) be the suspension flow of the identity
map /: X — X under the given function f. Since (Y, ¢) is conjugate
to the suspension flow (X}, #;) of I: X — X under the constant 1 and
h(¢1) = h(I) = 0, Proposition 1.1 implies that 4(¢) = 0. Now given
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n >0, let t, = nsup,cx(fx) and take E, to be (¢,,¢&/2)-spanning
set of X x {0} with respect to ¢ and with minimum cardinality. For
eecE,, let

U, ={x€X:d(¢sx,pse) < e/2 for 0<s <t}

Then U, is an open neighborhood of e. Suppose diam(fU,) = 2.
Then diam(U,) + m - A, < ¢ for some m > n. Hence 1, < &¢/m < ¢/n.
Let o, = {U,: e € E,}. It is clear that o, is an open cover of X and
card(a,) < card(E,). Since

lim —1— logcard(En) < h(9)

n—»oo

and A(¢) = 0, therefore

n—oo N

lim 1H(a,,) < 11m (sup f(x)/t,,) logcard(E,) =0,
ex
and the proof is finished.

Claim 1. Let f: X — R be a continuous real valued function on X.
Given ¢ > 0, then for every positive integer n, there exists an open
cover a, of X such that diam(fU) < ¢/n for all U in «a, and

lim lH(oz,,) =

n—oo N

Proof. Let g = f + a where a > |inf,cx(fx)|. Proposition 2.1 and
the fact that diam(fU) = diam(gU) for every subset U of X finish
the proof.

Claim 2. Let fX — R™ be a continuous function from a met-
ric space X into (R™,dy), where do(X,Y) = max{|x; — yi|: i =
1,2,3,...,m}. Given ¢ > 0, then for every positive integer n, there
exists an open cover a, of X such that diam(fU) < ¢/n for all U in
ap, and

.1
fim, () =0

Proof. Let Il;: R* — R be the natural projection over R (i.e.,
IT;(xy, X2,...,Xm) = x;). For an integer n > 0 let o, be an open cover
for X satisfying Claim 2 with respect to Il; f for i = 1,2,...,m. Take



394 ROMEO F. THOMAS

an = \/%, ay,. Then a, is an open cover for X and diam(fU) < ¢/n
for every U € a,. Hence

m
lim lH(a,,) <M Jlim %H(ani) =0.
i=1

n—oo N

Claim 3. Let f: X — R™ be a continuous function from X into
(R™,d) where d is a metric on R™ which is L-equivalent to d,. Given
¢ > 0, then for every integer n > 0, there exists an open cover «, of
X such that diam(fU) < ¢/n for all U in a, and

.1

Proof. Is an easy exercise for the reader.
From Claim 3 we obtain immediately:

THEOREM 1. Let f: X — Y be a continuous map from a metric
space X into a metric space Y and suppose that Y is L-embedded in
the Euclidean space R™ for some positive integer m. Given e > 0. Then
for every integer n > 0, there exists an open cover o, of X such that
diam(fU) < ¢/n for all U € a, and

.1
'}Lngo EH(O!n) =0.

COROLLARY. Let f: X — X be a continuous map from X into itself
and suppose that X is L-embedded in the Euclidean space R™ for some
m > 0. Given ¢ > 0, then for every integer n > 0, there exists an open
cover ay, of X such that diam(U) < ¢/n and diam(fU) < ¢/n for all
Ue€a,and

.1
nl-l—»rg) EH(a,,) =0.

Proof. If f: X — X is continuous and X is L-embedded in R™
for some m > 0, then without loss of generality we can consider f
as a continuous function from X into R™. This can be done also for
an identity map I: X — X. Given ¢ > 0 and a positive integer n,
Theorem 1 implies that there exist open covers 8, and y, of X such
that diam(fU) < ¢/n for every U € B, and diam(W) < ¢/n for every
W €y, with

.1 .1
S ) =0 Jim LHGw =0
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Let ay, = B,V y». Then «,, is an open cover for X with
max{diam(U),diam(fU)} < e¢/n

for every U € a,, and

lim ~H(an) < lim ~H(By)+ lim ~H(y,) = 0.

n—oo N n—oo N n—oo N
This finishes the proof.

3. Topological entropy and examples. Let f: X — X be continuous.
For E C X we say E (n,é¢)-spans X [1, 10], if for each x € X there is
an e € E so that d(f'x, fle) < ¢ forall 0 <i < n. Welet r,(X,¢) =
rn(X, ¢, f) denote the minimum cardinality of a set which (n, €)-spans
X. We define

H(f,2) = fim sup - logr(X,)

Notice that A(f,¢) increases as ¢ decreases. Finally, we define the
topological entropy 4(f) by

h(f) =limh(fe).

In order to show that L-embedded condition is necessary in Theo-
rem 1 we need to rewrite the corollary of Theorem 1 as follows:

ProrosiTiON 3.1. If f: X — X is continuous and the metric space
X is L-embedded in Euclidean space R™ for some m > 0, then

.1
'}ergo—ﬁlogrl()(,e/n) = 0.

Proof. By the corollary of Theorem 1 we let «,, be an open cover of
X with
max{diam(U),diam(fU)} < ¢/n

for every U € a, and lim,_o 1 H(a,) = 0. Pick a point in U and
let E, be the set of all such points. It is obvious that E, is (1,&/n)-
spanning set of X and card(E,) < card(ay). This finishes the proof.

The following example [10] shows that L-embedded condition is
necessary in Theorem 1.

ExAMPLE 3.2. Let k be a fixed positive integer and let C = {0, 1,
2,...,k — 1} with the discrete topology. Consider the product space
X = [IZ,, C with the product topology and the shift homeomorphism
0: X — X defined by o({w,}2,) = {w,;1}*,. A metric on X can be
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defined by d({x;}, {yi}) = 1/(m+2) if m is the largest positive integer
with x; = y; for all |i| < m and d({x;},{y;}) = 1 if Xy # yo. Now it is
an easy exercise to show that r;(Z,1) = 1 and r| (%, %) > k" for every
positive integer n. This means that

.1 )
nh_)rglozlogrl(z, ») >logk >0

which contradicts Proposition 3.1 and shows that (Z,d) is not L-
embedded in any Euclidean space.
Now we consider the following example:

ExAMPLE 3.3. One considers Smale’s horseshoe [7], i.e., a diffeo-
morphism f: D — D, where D is a 2-dimensional disk. We may
assume that f/9D is the identity map. For more details, see the book
of Nitecki [4]. This example has the property that for every positive
integer n, there is € > 0 such that

h(f",e) =nlog2.

Now we consider a sequence of disks D, on the plane of radii 27",
disjoint and converging to a point. Let us also fix a sequence of natural
numbers {n;}9,. We define a map g: R? - R? as follows:

fr(x), if xeD;,

X)= . >
€)=V x  ifxer\|JD.
i=1
Here f;: D; — D; is a homothetic copy of f. Obviously, g extends to
the one-point compactification S% and we can say

h(g,e:) > h(f", &) > n;log2.

Here also ¢; is a homothetic copy of e.

The question we want to discuss here is whether it is possible to
choose a sequence of natural numbers {n;}?°, and a sequence of {¢;}2,
such that ¢;-n; — oo (i.e., is it possible to construct a g: S* — S? with
the property that ¢;h(g,¢;) — oo as i — oo). Note that ¢g; is not in-
dependent of n;; otherwise such a question is trivially true. In fact
the answer for this question is not true. Moreover, we show later in
Theorem 2 that ¢;h(g, &;) must always vanish (i.e., &;h(g,¢;) — 0 as
I — 00).

LemMA 3.4. If E is (1, ¢)-spanning set of a metric space X, then for
every positive integer k, there exists a set W which is (k,2¢)-spanning
set of X and card(W) < (card(E))*.
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Proof. Special case of Lemma 2.1 in [1].

THEOREM 2. If f: X — X is a homeomorphism on X and if X is
L-embedded in R" for some positive integer n, then ¢h(f,¢) — 0 as
e — 0.

Proof. Let E, be any (1,¢/2n)-spanning set of X with minimum
cardinality. Using Lemma 3.4 there exists a set W, which (p,e/n)-
spans X and card(W,) < (card(E,))? for every positive integer p.
Hence

3 logr,(X,e/n) < logri(X,e/2n).
Therefore
h(f,e/n) <logr (X,e/2n).

This means that

lim ;lz-h(f,a/n) < nl_i_)ngo—nl—logrl(X,e/Zn).

h—00

Proposition 3.1 finishes the proof of this theorem.

4. Topological entropy of expansive maps. During the remainder of
this section we assume that f is an expansive homeomorphism of a
compact metric space (X, d) onto itself with expansive constant ¢ > 0
(i.e., x # y implies d(f"x, f"y) > e for some integer n).

In this section we will use an adaptation of work by Reddy [6] to
show that we can find a metric compatible with the topology of X and
a positive real number 4, 0 < A < 1, such that lim,, 757 logro(X, A™)
is the topological entropy of f (i.e., the present tells us about the past
and the future).

For an integer n > 0 define,

W,={(x,y)e X x X:d(f'x, f'y) <efor —n<i<n}.
It is obvious that (W, = A where A = {(x, x): x € X}.

LEMMA 4.1. Ve > 0, 3N > 0, such that d(f'x, fiy) < e for all i with
li| < N, implies d(x,y) < e.

Proof. Walters [11].

Take ¢ small enough such that 3¢ < e. Choose N using the above
lemma with respect to €. Define V,, = W,y forn=0,1,2,3,....

The following was proved by W. Reddy [6]. Because V}, is defined
slightly differently in [6] we will give another proof.
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LEMMA 4.2 (c¢f. [6, Lemma 2]. The sequence {V,} is a nested se-
quence of symmetric neighborhoods of A whose intersection is A and
such that V10 Vy10 Va1 CV, for each n > 0.

Proof. Let (x,y) € Vy41 0 Vyy1 0 Vyy 1. There exist a, b elements in
X such that (x,a) € V41, (a,b) € V41, and (b,y) € V1. Hence

d(fix, fla)<e for —(n+ 1)N<i<(n+1)N,
d(fa, fib)<e for —(n+1)N<i<(n+1)N,

and
d(f'b, f'y)<e for —(n+1)N<i<(n+1)N.

Lemma 4.1 implies that
d(f'x, fla) <e for —nN <i<nN,
d(f'a, f'b)<e for —nN <i<nN,

and
d(f'b, f'y)<e for —nN <i<nN.

The triangle inequality implies
d(fix, fly)<3e<e for —nN <i<nN.

This means that (x,y) € V},.
The following is an immediate consequence of Lemma 4.2 and the
Metrization lemma [3].

LEMMA 4.3. There is a metric p compatible with the topology of X
such that
N(A;1/2"+1) C V, C N(A;1/27)

forn > 1.

LEMMA 4.4. There is a metric p compatible with the topology of X
and there is A, 0 < A < 1, such that

N(A; ANy € W, € N(A; 2N

for all m > 0.

Proof. Suppose m = nN + j where 0 < j < N. It is obvious that

Var1 = Winsyn = Wanen S Wanyj = Wi S Wyn = Vi
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Therefore V,,; C W,, C V,. Using Lemma 4.3 we have N(A;1/2"+2)
C V,41 and V, C N(A;1/2"). Take A = (1/2)!/V. It is clear that

N(A;ﬂm"'ZN) C N(A; Am+2N—j) — N(A;).nN+2N)
=N@A;(1/2)") C Vo SWi SV,
C N(A;1/2") = N(4;(1/2)"NV)
= N(A;A™) = N(A; 7)) € N(A; A7),

This finishes the proof of this lemma.

LeEMMA 4.5 (¢f. [1, Theorem 2.4 and Corollary 2.5]). 3¢ > 0 such
that h(f) = h(f, &) and Llogr,(X,e) — h(f).

THEOREM 3. There is a metric p compatible with the topology of X
and there is A, 0 < A < 1, such that

H(@) = Jim, — logro(X, A").

Proof. Let E be (2m,e)-spanning set of X with minimum cardi-
nality. It is obvious that for every x € X, there exists w € f™(E)
so that d(fix, fiw) < e for —-m < i < m. So (x,w) € W,,. Using
Lemma 4.4 we can find a metric p on X and 8, 0 < 8 < 1, such
that (x,w) € N(A; Bm~N). This means that there exists an F which
is (0, B~N)-spanning set of X (i.e., B~ V-net with respect to p) and
card(F) < card(f™E) = card(E). Therefore ro(X, B7 V) < (X, e).

Now suppose F is (0, #”+2V)-spanning set of X with respect to
the metric p and with minimum cardinality. Thus for every x € X,
there exists w € F such that (x,w) € N(A; 7*2N). So (x,w) €
Wy (ie., d(f'x, fiw) < e for —m < i < m). This implies that
d(fif~"x, fif~mw) < e for all 0 < i < 2m. Thus we can find E
which is (2m, e)-spanning set of X and card(E) < card(F). Therefore
ram(X,e) < ro(X, Bmt2N), Take A = B1/2, Therefore ro(X,A2m~2NV) <
ram(X,e) and ry, (X, e) < ro(X, A¥™+4N). Using Lemma 4.5 and taking
e < ¢ we have

K@) = lim o logry(X, 12"
But

1 log ro(X, A2™*1) >

2m N
T logro(X, 22) — h(g),

1
2m+1
and

1 2m—1 1 2m N
2m_llogr0(XaA )S 2’,"_110gr0(X’:'1 ) h(¢)
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Therefore

K@) = lim —logro(X,4")

and the proof is finished.
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