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SOME FUNDAMENTAL PROPERTIES OF CONTINUOUS
FUNCTIONS AND TOPOLOGICAL ENTROPY

ROMEO F. THOMAS

The purpose of this paper is to clarify some properties and results
related to continuous functions on compact spaces and topological
entropy.

1. Definitions and Propositions. Note that in this paper we assume
that the spaces are compact metric spaces unless otherwise stated.

If α, β are open covers of X their join

aV β = {An B: A ea and B eβ}.

We define H(a) = logiV(α), where N(a) is the number of sets in a
finite subcover of a for X with smallest cardinality. Note that H(a) >
0 and H(a V β) < H(a) + H(β) [10]. Define

diam(α) = max{diam(£/): U e a}.

Let (X,φ) denote a continuous real flow [i.e., φ: X x R —> X con-
tinuous and φ(x91 + s) = φ(φ(x, t),s)] on a compact metric space X.
The topological entropy of φ is denoted by h(φ) and defined to be
h{φ) = h(φ\)9 where φt: X —• X is a homeomorphism defined by

Φt(x) = Φ(x,ή.
We recall that the flows (X9 φ) and (Y9φ) are conjugate (topologically

conjugate) if there is a homeomorphism γ from X onto Y mapping
orbits of φ onto orbits of φ with preserved orientation. For more
details see [2, 8, 9].

PROPOSITION 1.1 (cf. [5]). If(X,φ) and (Y9ψ) are conjugate flows
and they have no fixed points, then

where c is a finite positive constant

Let T: X -* X be a homeomorphism and let / : X —> i? be any
positive real valued continuous function. The suspension of T under
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/ [2, 8] is defined to be the flow φf on the space

* / = U {(x>t)-(x,fx)~(Tx,0)}
0<t<fx

defined for small non-negative time by φfs(x,t) = φ/(x,t + s) with
0<t + s <fx.

It is well known that the suspension flows (Xf,φf) and (Xg9φg) of
T: X —• X under / and # respectively are conjugate and a home-
omorphism from Xf onto X g that conjugates the flows is given by

(χ,t)->(χ,tg(χ)/f(χ)).
Let d\ and d2 be metrics defined on X. These metrics are Lipschitz-

equivalent (L-equivalent) if there exist positive constants c\ and c2

such that
Mi(*,Jθ < d2{x9y) < c2d{(x,y)

for every x, y e X. A map / from a metric space (X, d) into a metric
space (Y9σ) is Lipschitz (L-map) if there exists a positive constant c
such that

σ(fx,fy)<cd(x,y)

for every x j G I , A Lipschitz bijective map / : X —> 7 such that
Z " 1 is also Lipschitz will be called L-homeomorphism and denoted by
f: X = Y. A metric space (X9d) is L-embedded in a metric space
(Γ,σ) if there exists an injective L-map i: X —> Y such that X =
/(*) c r.

It is obvious that any compact differentiable manifold M with the
Riemannian metric is L-embedded in the Euclidean space Rm for
some positive integer m.

2. Continuous functions. In this section we will introduce our basic
proposition.

PROPOSTIION 2.1. Let f: X —• R be a positive real valued contin-
uous function on X {compact metric space). Given ε > 0, then for
every positive integer n, there exists an open cover an of X such that
diam(fU) < e/n for all U in an and

lim -H{an) = 0.
n^oo n

Proof. Let (Y = Y/,φ = φf) be the suspension flow of the identity
map /: X —• X under the given function / . Since (Y9φ) is conjugate
to the suspension flow (Xχ9 φ\) of /: X —> X under the constant 1 and
h(φ\) = h(I) = 0, Proposition 1.1 implies that h(φ) = 0. Now given
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n > 0, let tn = nsupxeχ(fx) and take En to be (^,ε/2)-sρanning
set of X x {0} with respect to φ and with minimum cardinality. For
e G En, let

Ue = {xeX: d(φsx,φse) < ε/2 for 0 < s < tn}.

Then Ue is an open neighborhood of e. Suppose άiam(fUe) = λe.
Then diam(C4) + m - λe < e for some m>n. Hence λe < ε/m < ε/n.
Let an = {Ue: e G En}. It is clear that an is an open cover of X and
card(αw) < cardiJS1/,). Since

lim — l o g c a r d ^ ) < h(φ)
n—>oo tn

and h(φ) = 0, therefore

lim -H{an) < lim f sup f(x)/tn ) logcard(^) = 0?

and the proof is finished.

C7α/m 1. Let / : X -> i? be a continuous real valued function on X.
Given β > 0, then for every positive integer n, there exists an open
cover an of X such that diam(/C7) < e/n for all U in απ and

lim -H(an) = 0.

Proof. Let g = / + α where α > | infxeχ(fx)\. Proposition 2.1 and
the fact that diam(/C/) = diam(gU) for every subset U of X finish
the proof.

C/α/m 2. Let / Z —»• i?m be a continuous function from a met-
ric space X into (i?m,doo), where d^X, Y) = max{|x/ — j>/|: / =
1,2,3,..., m}. Given ε > 0, then for every positive integer n, there
exists an open cover an of X such that diam(/C7) < e/n for all i7 in
an and

lim -/ ί (α Λ ) = 0.
n-+oo n

Proof, Let Π/: i?n —> i? be the natural projection over R (i.e.,
Π/(xi,Xι,..., xm) = JC|). For an integer n > 0 let αΠ| be an open cover
for X satisfying Claim 2 with respect to Π// for / = 1,2,..., m. Take



394 ROMEO F. THOMAS

an = \l%x anr Then an is an open cover for X and diam(/C7) < ε/n
for every U e an. Hence

1 m 1

lim -H(an) < Y* lim -//(α n ) = 0.
1

C/α/m 3. Let / : X —• i?m be a continuous function from X into
(i?m, d) where d is a metric on Rm which is L-equivalent to doo. Given
ε > 0, then for every integer n > 0, there exists an open cover an of
JSΓ such that diam(fU) < ε/n for all U in α^ and

lim -H(an) = 0.
/!->OO /2

Proof, Is an easy exercise for the reader.

From Claim 3 we obtain immediately:

THEOREM 1. Let f: X —• Y be a continuous map from a metric
space X into a metric space Y and suppose that Y is L-embedded in
the Euclidean space Rm for some positive integer m. Given e > 0. Then
for every integer n > 0, there exists an open cover an of X such that
diam(/C7) < ε/n for all U ean and

lim -H(an) = 0.
n->oo n

COROLLARY. Let f: X -> X be a continuous map from X into itself
and suppose that X is L-embedded in the Euclidean space Rm for some
m > 0. Given e > 0, then for every integer n > 0, there exists an open
cover an of X such that diam(C7) < e/n and diam(/C/) < ε/n for all
U G an and

lim -H(an) = 0.
fz-κx> n

Proof If / : X —• X is continuous and X is L-embedded in Rm

for some m > 0, then without loss of generality we can consider /
as a continuous function from X into Rm. This can be done also for
an identity map /: X -> X. Given ε > 0 and a positive integer ft,
Theorem 1 implies that there exist open covers βn and γn of X such
that diam(/C7) < ε/n for every U e βn and diam(W) < ε/n for every
JF € )>„ with

lim Itf(A,) = 0, lim ijϊ(yπ) = 0.
/2—>OO ft Λ—» CX5 n
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Let an = βn V γn. Then an is an open cover for X with

max{diam(ί7),diam(/f/)} < ε/n

for every U e an and

lim -H{an) < lim -H(βn) + lim -H(γn) = 0.
n-^oo ft n^oo ft n^oo ft

This finishes the proof.

3. Topological entropy and examples. Let / : X —• X be continuous.

For £ C I we say £ (n, ε)-spans X [1, 10], if for each x e X there is
an e e E so that d{pxjle) < ε for all 0 < i < n. We let rn(X,ε) =
rn(X, ε, f) denote the minimum cardinality of a set which (ft, ε)-sρans
X. We define

Λ(/,ε) = lim sup-logrw(X,ε).
w—> oo ft

Notice that h(f,ε) increases as ε decreases. Finally, we define the
topological entropy h{f) by

In order to show that L-embedded condition is necessary in Theo-
rem 1 we need to rewrite the corollary of Theorem 1 as follows:

PROPOSITION 3.1. Iff: X —• X is continuous and the metric space
X is L-embedded in Euclidean space Rm for some m > 0, then

lim -
n—>oo fl

Proof. By the corollary of Theorem 1 we let an be an open cover of
X with

max{diam({7),diam(/t/)} < ε/n

for every U G an and lim^oo ^H(an) = 0. Pick a point in U and
let En be the set of all such points. It is obvious that En is (l,ε/ft)-
spanning set of X and card(2sπ) < card(αn). This finishes the proof.

The following example [10] shows that L-embedded condition is
necessary in Theorem 1.

EXAMPLE 3.2. Let k be a fixed positive integer and let C = {0,1,
2,..., k - 1} with the discrete topology. Consider the product space
Σ = Π̂ °oo C wi*h ^ e product topology and the shift homeomorphism
σ: Σ —* Σ defined by σ({wn}°?oo) = {wn+\}°?oo A metric on Σ can be
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defined by d({xt}, {y, }) = l/(m + 2) if m is the largest positive integer
with Xj = yι for all \i\ < m and d({xι}, {>>;}) = 1 if XQ Φ J/Q Now it is
an easy exercise to show that ^(Σ, 1) = 1 and ̂ (Σ, £) > kn for every
positive integer n. This means that

Urn i l o g r i ( Σ , ± ) > l o g f c > 0

which contradicts Proposition 3.1 and shows that (Σ, d) is not L-
embedded in any Euclidean space.

Now we consider the following example:

EXAMPLE 3.3. One considers Smale's horseshoe [7], i.e., a diffeo-
morphism f:D —• D, where D is a 2-dimensional disk. We may
assume that f/dD is the identity map. For more details, see the book
of Nitecki [4]. This example has the property that for every positive
integer n, there is ε > 0 such that

*(/»,«) = "log 2.

Now we consider a sequence of disks Dn on the plane of radii 2~n,
disjoint and converging to a point. Let us also fix a sequence of natural
numbers {fl/}^. We define a map g: R2 —• i?2 as follows:

?'{x), if xeDh

, ifxeR>\\jDh

1=1

Here fi: A —• Z>/ is a homothetic copy of / . Obviously, g extends to
the one-point compactification S2 and we can say

Here also ε/ is a homothetic copy of ε.
The question we want to discuss here is whether it is possible to

choose a sequence of natural numbers {nt}^ and a sequence of {ε;}?^
such that Si nx> —> oo (i.e., is it possible to construct a g: S2 —• S2 with
the property that ε/Λ(^,εz) -> oc as / —• oo). Note that εz is not in-
dependent of Πi\ otherwise such a question is trivially true. In fact
the answer for this question is not true. Moreover, we show later in
Theorem 2 that ε/Λ(^,ε/) must always vanish (i.e., ε/Λ(5p,ε/) —> 0 as
i -• oo).

LEMMA 3.4. IfE is (l,ε)-spanning set of a metric space X, then for
every positive integer k, there exists a set W which is (k9 2ε)-spanning
set ofX andaιτd(W) < (card^))*.
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Proof. Special case of Lemma 2.1 in [1].

THEOREM 2. If f: X —• X is a homeomorphism on X and ifX is
L-embedded in Rn for some positive integer n, then εh(f,ε) —• 0 as
ε-^0.

Proof. Let En be any (l,ε/2ft)-spanning set of X with minimum
cardinality. Using Lemma 3.4 there exists a set Wn which (p,ε/n)-
spans X and czrd(Wn) < (card(En))p for every positive integer p.
Hence

ilogrp(X,ε/fl) < lσgn(X,ε/2n).

Therefore

This means that

lim —h(f,ε/n)< lim — logr\(X,e/2n).
n-*oo n n->oo n

Proposition 3.1 finishes the proof of this theorem.

4. Topological entropy of expansive maps. During the remainder of
this section we assume that / is an expansive homeomorphism of a
compact metric space (X, d) onto itself with expansive constant e > 0
(i.e., x Φ y implies d{fnx,fny) > e for some integer ή).

In this section we will use an adaptation of work by Reddy [6] to
show that we can find a metric compatible with the topology of X and
a positive real number A, 0 < λ < 1, such that limm-+oo ~ \ogr0(X,λm)
is the topological entropy of / (i.e., the present tells us about the past
and the future).

For an integer n > 0 define,

Wn = {(χ9y) eXxX: d{fxjiy) < e for - n < i < n}.

It is obvious that f]Wn = A where Δ = {(x, x): x e X}.

LEMMA 4.1. Vε > 0, 3N > 0, such that difx.fy) < e for all i with
\i\ < N, implies d(x,y) < ε.

Proof. Walters [11].

Take ε small enough such that 3ε < e. Choose N using the above
lemma with respect to ε. Define Vn = WnN for n — 0,1,2,3,

The following was proved by W. Reddy [6]. Because Vn is defined
slightly differently in [6] we will give another proof.
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LEMMA 4.2 (cf. [6, Lemma 2]. The sequence {Vn} is a nested se-
quence of symmetric neighborhoods of A whose intersection is A and
such that Vn+\ o Vn+\ o Vn+\ c Vn for each n>0.

Proof Let (x9y) e Vn+χ o Vn+\ °Vn+\. There exist a, b elements in
X such that (x,a) eVn+ι, (a,b) eVn+\9 and (b,y) eVn+ϊ. Hence

xtfa) <e for - (n

difa.fb) <e for - (n + l)N <i<(n+ 1)N9

and

d(Γb,fy) <e for - (n + l)N <i<(n+ l)N.

Lemma 4.1 implies that

d(fx, fa) <ε for - nN < i < nN9

d(fa, fb) <ε for - nN < i < nN,

and

d(fb9 fy) <e for - nN < i < nN.

The triangle inequality implies

d(fx, fy) < 3ε < e for - nN < i < nN.

This means that (x9y) G Vn.

The following is an immediate consequence of Lemma 4.2 and the
Metrization lemma [3].

LEMMA 4.3. There is a metric p compatible with the topology of X
such that

N{A\ 1/2W+1) C Vn C ΛΓ(Δ; 1/2W)

forn> 1.

LEMMA 4.4. There is a metric p compatible with the topology of X
and there is λ, 0 < λ < 1, such that

N(A;λm+2N) CWmC N(A;λm-N)

for all m > 0.

Proof. Suppose m = nN + j where 0 < j < N. It is obvious that

Vn+ι = W{n+X)N = WnN+N C WnN+j = WmC WnN = Vn.
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Therefore Vn+{ c Wm c Fπ. Using Lemma 4.3 we have N(A\ l/2"+ 2)
c Vn+X and FΛ c N(A; 1/2"). Take A = (1/2)1/*. It is clear that

N(A;λm+2N) C iV(Δ;Am + 2 i V^) = N(A;λnN+2N)

= ΛΓ(Δ;(l/2)"+2) C F π + 1 CWmQVn

c 7V(Δ; 1/2Λ) = N(A\{\l2)nNlN)

= N(A;λnN) = N{A\λm~j) C ^ ( Δ λ"1-^).

This finishes the proof of this lemma.

LEMMA 4.5 (cf [1, Theorem 2.4 am/ Corollary 2.5]). 3ε > 0
i logrΛ(JΓ,β)

THEOREM 3. ΓÂ re w α metric p compatible with the topology of X
and there is λ, 0 < λ < 1, such that

Proof. Let E be (2m,£)-spanning set of X with minimum cardi-
nality. It is obvious that for every x e X, there exists w e fm(E)
so that d{fix,fiw) < e for -m < i < m. So (x9w) e Wm. Using
Lemma 4.4 we can find a metric p on X and /?, 0 < /? < 1, such
that (x,tu) E N(A;βm-N). This means that there exists an F which
is (0, ̂ m~ iV)-spanning set of X (i.e., ^m~ΛΓ-net with respect to /?) and
card(F) < card(/ m ^) = card(£). Therefore ro{XJm-N) < r2m(X,e).

Now suppose F is (0, /?m+2iV)-spanning set of X with respect to
the metric p and with minimum cardinality. Thus for every x € X,
there exists w e F such that (x,w) e N(A\βm+2N). So (x,w) e
ίFm (i.e., d{fix,fiw) < e for - m < / < m). This implies that
d(fif~mx,fif~mw) < e for all 0 < i < 2m. Thus we can find E
which is (2m, £)-spanning set of X and card(is) < card(,F). Therefore
rim(X,e) < ro{X,βm+2N). Take λ = βιl2. Therefore ro(X,λ2m-2N) <
r2m(X, e) and rlm(X, e) < ro(X, λlm+*N). Using Lemma 4.5 and taking
e < ε we have

But

and

+ h(φ).
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Therefore

h(φ)= lim —\ogrQ(X,λm)
m-+oo m

and the proof is finished.
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