COMPLEMENTATION OF CERTAIN SUBSPACES OF $L_{\infty}(G)$ OF A LOCALLY COMPACT GROUP

ANTHONY TO-MING LAU AND VIKTOR LOSERT

Let G be a locally compact group, WAP(G) be the space of continuous weakly almost periodic functions on G and $C_0(G)$ the space of continuous functions on G vanishing at infinity. We prove in this paper, among other things, that if G is infinite and X is any subspace of WAP(G) (or CB(G), the space of bounded continuous functions in case G is nondiscrete) containing $C_0(G)$, then X is uncomplemented in $L_{\infty}(G)$. If G is non-compact, then WAP(G) is uncomplemented in LUC(G). Furthermore, AP(G), the space of continuous almost periodic functions on G, is complemented in LUC(G) if and only if G/Nis compact, where N is the intersection of the kernels of all finitedimensional continuous unitary representations of G. We also prove that if A is any left translation invariant C^{*}-subalgebra of $C_0(G)$, then A is the range of a continuous projection commuting with left translations.

1. Introduction and some preliminaries. Let G be a locally compact group and CB(G) be the space of bounded continuous complex-valued functions on G with supremum norm. Let LUC(G) denote the space of bounded left uniformly continuous complex-valued functions on G, i.e. all $f \in CB(G)$ such that the map $g \to l_g f$ from G into CB(G) is continuous when CB(G) has the norm topology where $l_g f(x) = f(gx)$, $x \in G$. Let WAP(G) (respectively AP(G)) denote the space of continuous weakly almost periodic (respectively almost periodic) functions on G i.e. all $f \in CB(G)$ such that $\{l_a f; a \in G\}$ is relatively compact in the weak (resp. norm) topology of CB(G). Let $L_{\infty}(G)$ denote the Banach space of essentially bounded complex-valued functions on Gwith the essential supremum norm $\|\cdot\|_{\infty}$ as defined in [12, p. 141]. Then CB(G), LUC(G), WAP(G) and AP(G) are translation invariant subalgebras of $L_{\infty}(G)$ with $AP(G) \subseteq WAP(G) \subseteq LUC(G) \subseteq CB(G)$. Furthermore, $C_0(G) \cap AP(G) = \{0\}$ unless G is compact, where $C_0(G)$ is the closed subalgebra of CB(G) consisting of all $f \in CB(G)$ vanishing at infinity. Recall that an application of the Ryll-Nardzewski fixed point theorem ([21]) shows that WAP(G) has a unique invariant mean m_G i.e. m_G is a positive linear functional on WAP(G) of norm one and $m_G(l_a f) = m_G(r_a f) = m_G(f)$ for all $f \in WAP(G)$, where $r_a f(x) = f(xa), x \in G$. Let $W_0(G) = \{f \in WAP(G); m_G(|f|) = 0\}$. Then $WAP(G) = AP(G) \oplus W_0(G)$ (see [6] or [2]). i.e. AP(G) is always complemented in WAP(G).

B. B. Wells proved in [26] that AP(R) and WAP(R) are uncomplemented in LUC(R), where R denotes the additive group of the reals. It was also shown by I. Glicksberg [9] that if G is a compact group, A is a closed translation invariant subalgebra of C(G) (continuous complex-valued functions on G) and A is not self-adjoint, then A is uncomplemented in C(G). More recently, Y. Takahashi [23] proves that a weak*-closed non-self-adjoint translation invariant subalgebra of $L_{\infty}(G)$ is uncomplemented in $L_{\infty}(G)$ (see [14] for proof of Lemma 4 in [23]). Furthermore, [24, Theorem 1] if G is an infinite maximally almost periodic group, then WAP(G) and AP(G) are uncomplemented in $L_{\infty}(G)$. Also, as shown by Lau in [13], if G is an amenable locally compact group, then any weak*-closed self-adjoint left translation invariant subalgebra of $L_{\infty}(G)$ is the range of a continuous projection commuting with left translations.

In this paper, we prove among other things, (Corollary 3) that if Gis an infinite locally compact group and X is any closed subspace of WAP(G) containing $C_0(G)$, then X is uncomplemented in $L_{\infty}(G)$. If G is non-discrete and X is any closed subspace of CB(G) containing $C_0(G)$, then X is not complemented in $L_{\infty}(G)$ (Theorem 4). Furthermore, (Theorem 6), if G is a locally compact non-compact group, then WAP(G) is not complemented in LUC(G). We prove that (Theorem 7) if H is a closed subgroup of a locally compact group G, then CB(G/H) (when identified as a closed subspace of CB(G)) is always complemented in CB(G). This result is used to show that (Theorem 8) AP(G) is complemented in LUC(G) if and only if G/N is compact where N is the intersection of the kernels of all finite dimensional continuous unitary representations of G. In particular, if G is maximally almost periodic, then AP(G) is complemented in LUC(G)if and only if G is compact. However (Theorem 11), if A is a left translation invariant C^{*}-subalgebra of $C_0(G)$, then there exists a continuous projection P from $C_0(G)$ onto A and P commutes with left translations.

2. Uncomplemented subspaces of $L_{\infty}(G)$. In this section we show that if G is an infinite locally compact group, then any subspace X of WAP(G) containing $C_0(G)$ is uncomplemented in $L_{\infty}(G)$. We first establish the following lemma which follows directly from the corollary in Losert and Rindler [16, p. 74] when G contains a countable dense subset.

LEMMA 1. Let G be an infinite σ -compact locally compact group. Then there exists a sequence $\{\mu_n\}$ of probability measures on G such that for each $f \in WAP(G)$

$$\lim_{n\to\infty}\int r_yf\,d\mu_n=m_G(f)$$

and the convergence is uniform with respect to $y, y \in G$.

Proof. We may assume that G is nondiscrete (otherwise, G is countable, and the lemma follows directly from Losert and Rindler [16, p. 74]).

Let K be a compact normal subgroup such that G/K is metrizable separable (see Remark 14(b)). For each $x \in G$, $f \in WAP(G)$, let f^K be a function on G defined by

$$f^K(x) = m_K(f_x), \quad x \in G,$$

where $f_x(k) = f(xk)$.

Then f^K is constant on each coset of K, $f^K \in WAP(G/K)$ and $m_G(f) = m_{G/K}(f^K)$ (see Chou [4, Lemma 2.3]). By the corollary in [16, p. 74], there exists a sequence $\{\overline{x}_n\}$ in G/K such that

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} r_{\overline{y}}(f^K)(\overline{x}_n) = m_G(f)$$

holds uniformly in $\overline{y} \in G/K$.

For each *n*, let $\theta_n = (1/N) \sum_{n=1}^N \delta_{\overline{x}}$, $\overline{x} \in G/K$, where $\delta_{\overline{x}}(f) = f(\overline{x})$. Let μ_n denote the probability measure on *G* defined by the functional $\tilde{\theta}_n$ on $C_0(G)$, where $\tilde{\theta}_n(f) = \theta_n(f^K)$, $f \in C_0(G)$. If $f \in WAP(G)$, $y \in G$, then

$$m_G(f) = m_{G/K}(f^K) = \lim_n \theta_n(r_{\overline{y}}f^K) = \lim_n \theta_n((r_y f)^K) = \int r_y f \, d\mu_n$$

and the convergence is uniform in y.

THEOREM 2. Let G be a locally compact group. The following are equivalent:

(a) G is finite.

(b) There exists a continuous linear operator S from $L_{\infty}(G)$ into WAP(G) such that S(f) = f for all $f \in C_0(G)$.

Proof. (a) implies (b) is clear.

(b) implies (a). Let G_0 be an infinite open and closed subgroup of G which is σ -compact. For $f \in L_{\infty}(G)$, define $(\pi f)(x) = f(x)$ for $x \in G_0$ (restriction to G_0). Then π is a norm decreasing linear map from $L_{\infty}(G)$ onto $L_{\infty}(G_0)$.

Given $h \in L_{\infty}(G_0)$, write $h' \in L_{\infty}(G)$, where h'(x) = h(x) if $x \in G_0$ and h'(x) = 0 if $x \notin G_0$. Define $S'(g) = \pi S(h')$. Then S' is a bounded linear map from $L_{\infty}(G_0)$ into $L_{\infty}(G_0)$. Also if $x \in G_0$, then $l_x S'(h) = \pi(l_x S(h'))$. In particular, the range of S' is contained in WAP(G_0). Furthermore, if $h \in C_0(G_0)$, then $h' \in C_0(G)$, and $S'(h) = \pi(Sh') = \pi(h') = h$.

Let $\{\mu_n\}$ be a sequence of probability measures on G_0 satisfying the conclusion of Lemma 1. Let $\tilde{\mu}_n(f) = \int S'(f) d\mu_n$, $f \in L_{\infty}(G_0)$. Then for each $f \in L_{\infty}(G_0)$,

$$\lim_n \tilde{\mu}_n(f) = \lim_n \int S'(f) d\mu_n = m_{G_0}(S'(f)).$$

Let $\tilde{m}_{G_0}(f) = m_{G_0}(S'(f)), f \in L_{\infty}(G)$. Since $f \in L_{\infty}(G_0)$ is an abelian W^* -algebra, its spectrum Ω is Stonean (see [22, p. 46] or [25, p. 109]). Since $C(\Omega)$ and $L_{\infty}(G_0)$ are isometrically isomorphic via the Gelfand transform, it follows from Theorem 9 [121, p. 168] that weak* convergence of a sequence in $L_{\infty}(G_0)^*$ implies weak convergence. Consequently \tilde{m}_{G_0} is the weak limit of the sequence $\tilde{\mu}_n$. Let K be the convex hull of $\{\tilde{\mu}_n; n = 1, 2, ...\}$ in the Banach space $L_{\infty}(G_0)^*$; then there exists a sequence ψ_n in K such that $\|\psi_n - \tilde{m}_{G_0}\| \to 0$. For $\psi \in L_{\infty}(G_0)^*$, let ψ' denote the restriction of ψ to $C_0(G_0)$. Since S' is the identity on $C_0(G_0)$, it follows that for $\psi \in L_{\infty}(G_0)^*$, $f \in C_0(G_0)$, we have $\tilde{\psi}(f) = \psi(S'(f)) = \psi(f)$ i.e. $\tilde{\psi}' = \psi'$. In particular if G_0 is non-compact, then $\tilde{m}'_{G_0} = 0$. Now for each *n*, there exists a continuous function f on G with compact support, $0 \le f \le 1$, f(x) = 1, if $x \in \text{supp } \mu_i$, i = 1, ..., n. Since $\tilde{\mu}'_i = \mu'_i$ (as shown above), it follows (by linearity) that if $\varphi = \sum_{i=1}^{n} \lambda_i \tilde{\mu}'_i$, $\lambda_i \ge 0$, $\sum_{i=1}^{n} \lambda_i = 1$, then $\varphi(f) = 1$. Hence $\|\varphi\| = 1$. Consequently, each φ in $K' = \{\psi'; \psi \in K\}$ has norm one. But this is impossible. Hence G_0 is again finite. This implies that G is discrete (otherwise take $G_0 = \bigcup_{n=1}^{\infty} U^n$ where U is a compact symmetric neighbourhood of the identity) and then that G is finite.

If G_0 is compact and infinite (hence not discrete), we may assume that the measures μ_n are singular with respect to the Haar measure m_{G_0} . Then for each *n*, there exists $f \in C_0(G_0)$ with $0 \le f \le 1$, $\int f(x) d\mu_i(x) = 0$ for i = 1, ..., n and $\int f(x) dm_{G_0}(x) > m_{G_0}(G_0)/2$. It follows that $\|\varphi - m'_{G_0}\| > m_{G_0}(G_0)/2$ for each $\varphi \in K$, which is impossible. So G_0 must again be finite.

The following is a generalization of Theorem 1 (i) \leftrightarrow (ii) in [24]:

COROLLARY 3. Let G be a locally compact group. The following are equivalent:

(a) G is finite.

(b) There exists a closed subspace X of WAP(G), $X \supseteq C_0(G)$ and X is complemented in $L_{\infty}(G)$.

When G is non-discrete, we have a much stronger result:

THEOREM 4. Let G be a locally compact group. The following are equivalent:

(a) G is discrete.

(b) There exists a closed subspace X of CB(G), $X \supseteq C_0(G)$, and X is complemented in $L_{\infty}(G)$.

Proof. (a) implies (b) is clear.

(b) implies (a). If G is not discrete, let U be a compact symmetric neighbourhood of the identity of G and $G_0 = \bigcup_{n=1}^{\infty} U^n$. Then G_0 is an infinite open and closed compactly generated subgroup of G. Let K be a compact normal subgroup of G_0 such that G_0/K is metrizable and not discrete (see [12, p. 71]). Then G_0/K is open in G/K. In particular, H = G/K is also metrizable. By Corollary 3, G is noncompact. Since H is locally compact and not discrete, there exists an infinite compact subset L of H. By the Borsuk-Dugundji Theorem [7, Theorem 5.1], there exists a continuous linear extension operator $S_0: CB(L) \to CB(H)$. Let f be a continuous real-valued function on H with compact support satisfying f(x) = 1 for all $x \in L$ and let $\pi: G \to H$ be the canonical mapping. Then $S(g) = [f \cdot S_0(g)] \circ \pi$ defines a continuous linear mapping from CB(L) into $C_0(G)$. Let λ be the normalized Haar measure of K. If $g \in CB(G)$, let R(g) denote the restriction of g^K to L, where $g^K(x) = m_K(f_x), x \in G$. Observe that $R \circ S$ is the identity on CB(L); hence $S \circ R: X \to X$ is a continuous projection on Y = Im S, i.e., Y is a complemented subspace of X. Now if X is complemented in $L_{\infty}(G)$, then the same is true for Y. Since L is infinite and metrizable, CB(L) is infinite dimensional and separable. Hence Y (being isomorphic to CB(L)) is also infinite dimensional and separable. However, as in the proof of Theorem 1, $L_{\infty}(G)$, being an abelian von Neumann algebra, is isometrically isomorphic to $C(\Omega)$

of a Stonean space Ω . This is impossible by Corollary 2 in [11, p. 169].

3. Uncomplemented subspaces in LUC(G). B. B. Wells proved in [26] that if $G = \mathbf{R}$, then the space WAP(\mathbf{R}) is not complemented in $LUC(\mathbf{R})$ using Phillips' lemma [21] (or [25, p. 117]). We now show that this result also holds for all locally compact non-compact groups.

LEMMA 5. Let G be a non-compact group, $\{F_n; n = 1, 2, ...\}$ be a family of compact subsets of G and U be a compact neighbourhood of the identity e of G. There exists a sequence $\{y_n\}$ in G and a sequence g_n of continuous functions on G with compact support, $0 \le g_n \le 1$ such that

(a) $\{UF_ny_n\}$ is pairwise disjoint,

(b) $g_n(x) = 1$ for each $x \in F_n y_n$ and $g_n(x) = 0$ for each $x \notin UF_n y$.

(c) For any subset E of $N = \{1, 2, ...\}$, the function $g_E(x) = \sum \{g_n(x); n \in E\}$ is left uniformly continuous.

Proof. By induction, we can construct a sequence $\{y_n\}$ in G such that $\{UF_ny_n\}$ is pairwise disjoint. Let V be a compact symmetric neighbourhood of e such that $V^3 \subseteq U$. By Urysohn's Lemma, there exists a continuous function $f: G \to [0,1]$ such that f(e) = 1 and $f(G \sim V) = \{0\}$. Define a pseudometric d on G by

$$d(x, y) = ||l_x f - l_y f||, \quad x, y \in G.$$

Also for each $n = 1, 2, \ldots$, define

$$g_n(x) = 1 - d(x, F_n y_n).$$

Clearly, each g_n is continuous, $0 \le g_n \le 1$ and $g_n(x) = 1$ for all $x \in F_n y_n$. Furthermore, if $g_n(x) > 0$, then $x \in V^2 F_n y_n$. (Indeed, in this case, d(x, y) < 1 for some $y \in F_n y_n$, and hence $Vx \cap Vy \ne \emptyset$. For otherwise $(l_x f)(x^{-1}) = 1$ and $(l_y f)(x^{-1}) = 0$ and d(x, y) = 1 i.e. (b) holds.)

Finally, since $\{UF_ny_n\}$ is pairwise disjoint, the function g_E , $E \subseteq \mathbb{N}$ is well defined. To see that g_E is left uniformly continuous, let $x \in V$, $t \in G$ be such that $|g_E(xt) - g_E(t)| > 0$. If $g_E(xt) \neq 0$, then $xt \in V^2F_ny_n$ for some unique $n, n \in E$, and this gives $t \in V^3F_ny_n$. Similarly, if $g_E(t) \neq 0$, then both xt and t are in UF_ny_n for some unique $n, n \in E$. Thus

$$|g_E(xt) - g_E(t)| = |g_n(xt) - g_n(t)| = |d(xt, F_n y_n) - d(t, F_n y_n)|$$

$$\leq d(xt, t) = ||l_x f - f||.$$

Consequently $||l_x g_E - g_E|| \le ||l_x f - f||$. Hence $g_E \in LUC(G)$ since $f \in LUC(G)$.

THEOREM 6. Let G be a non-compact group. Then WAP(G) is not complemented in LUC(G).

Proof. We first assume that G is σ -compact. Let $\{\mu_n\}$ be the sequence of probability measures on G constructed in Lemma 1. Let $F_n = \text{supp } \mu_n$. Let $\{y_n\}$ be a sequence of elements in G and $0 \le g_n \le 1$ be a sequence of continuous functions of G satisfying the conditions in Lemma 5. Define for each $f \in WAP(G)$

$$\psi_n(f) = m_G(f) - \int r_{y_n} f \, d\mu_n.$$

Then, by Lemma 1, $\lim_{n\to\infty} \psi_n(f) = 0$ for each $f \in WAP(G)$. Assume that P is a continuous projection of LUC(G) onto WAP(G) and define for each subset $E \subset \mathbb{N}$

$$\nu_n(E) = \psi_n(P(g_E)).$$

Then ν_n is a finitely additive function on the algebra of subsets of N and

$$\lim_n \nu_n(E) = 0 \quad \text{for all } E \subseteq \mathbf{N}.$$

But if $n \in \mathbb{N}$, $g_n \in WAP(G)$ and hence

$$\nu_n(\lbrace n\rbrace) = \psi_n(Pg_n) = \psi_n(g_n) = \int r_{y_n} g_n \, d\mu_n = 1$$

since $0 \le r_{y_n} g_n \le 1$, and $r_{y_n} g_n(x) = 1$ for each $x \in F_n = \operatorname{supp} \mu_n$. This contradicts Phillips' Lemma [20].

If G is not σ -compact, let H be an open σ -compact but non-compact subgroup of G. For each $f \in LUC(H)$, let f' be the continuous function on G which agrees with f on H and is zero outside H. Then $f' \in LUC(G)$. Also, if $f \in WAP(H)$, then $f' \in WAP(G)$ (see Chou [3, Lemma 2.4] or Milnes [17, Theorem 2]).

Assume once more that P is a continuous projection of LUC(G) onto WAP(G). Define for each $f \in LUC(H)$

$$Qf = P(f')|_{H}$$

Since $h|_H \in WAP(H)$ for each $h \in WAP(G)$, it follows that Q is a continuous projection of LUC(H) onto WAP(H). By the first part, this is impossible.

B. B. Wells [26, Theorem 3.2] also proved that if $G = \mathbf{R}$, then AP(G), the space of almost periodic functions on G, is uncomplemented in LUC(G). Of course, if AP(G) is finite dimensional (e.g. $G = SL(2, \mathbf{R})$), then AP(G) is complemented in LUC(G). It also follows from Takahashi [24, Theorem 2] that if G is a discrete group, then AP(G) is complemented in $l_{\infty}(G)$ if and only if AP(G) is finite dimensional. We shall prove an extension of these results. First we establish the following theorem that we need:

THEOREM 7. Let G be a locally compact group, H a closed subgroup of G. Then there exists a contractive linear projection P from CB(G)onto CB(G/H). In particular, CB(G/H) is complemented in CB(G).

Proof. Let $\pi: G \to G/H$ be the canonical mapping. We consider CB(G/H) as a subspace of CB(G) by identifying $f \in CB(G/H)$ and $f \circ \pi \in CB(G)$. First we show that it is sufficient to prove the theorem for almost connected groups. Indeed, assume that G_1 is an open, almost connected subgroup of G. Then for $x \in G$, we have $\pi(G_1x) = G_1xH/H$ and this is homeomorphic to $G_1/(G_1 \cap xHx^{-1})$. Now let R be a set of representatives for the $G_1 - H$ -double cosets in G and assume that for each $x \in R$, we have a linear contractive projection P_x : $CB(G_1) \to CB(G_1/G_1 \cap xHx^{-1})$ (i.e. $P_x(f \circ \pi_x) = f$ for $f \in CB(G_1/(G_1 \cap xHx^{-1}))$, if again $\pi_x: G_1 \to G_1/(G_1 \cap xHx^{-1})$ denotes the canonical mapping). P_x gives rise to a continuous projection P'_x : $CB(G_1x) \to CB(\pi(G_1x))$: for $f \in CB(G_1x)$, $y \in G_1x$, we put

$$P'_{x}(f)(\pi(y)) = P_{x}(r_{x}f)(yx^{-1}(G_{1} \cap xHx^{-1})).$$

If $f \in CB(\pi(G_1x))$, then $r_x(f \circ \pi)$ is right- $G_1 \cap xHx^{-1}$ periodic (i.e. $r_k(r_x(f \circ \pi)) = r_x(f \circ \pi)$ for all $k \in G_1 \cap xHx^{-1}$). Hence $P'_x(f \circ \pi) = f$. Observe also that $G/H = \bigcup \{\pi(G_1x); x \in R\}$. For $y \in G_1x$, $f \in CB(G)$, put

$$P(f)(yH) = P_x(f|_{G_1x})(yH).$$

Then P is a contractive linear projection onto CB(G/H).

If G is almost connected, let K be a compact normal subgroup of G such that G/K is a Lie group. By convolution with the normalized Haar measure of $K \cap H$, we get a contractive linear projection from CB(G) to $CB(G/(K \cap H))$ (compare with proof of Lemma 1). Hence, it is sufficient to construct a contractive linear projective from $CB(G/(K \cap H))$ to CB(G/H).

Let $\pi_K: G \to G/K$ be the canonical mapping, similarly π_H and $\pi_{K\cap H}$ are defined. Let v_1, \ldots, v_n be a basis for the Lie algebra of G/K such that v_{k+1}, \ldots, v_n span the Lie algebra of $\pi_K(H) = HK/K$ for some k. Let $\dot{x}_i(t)$ $(1 \le i \le n)$ be the corresponding one parameter subgroups of G/K. By [19], 4.15, Theorem 1, there are continuous one-parameter subgroups $x_i(t)$ in G $(1 \le i \le n)$ such that $\pi_K(x_i(t)) = \dot{x}_i(t)$. For $k < i \le n$, we can even accomplish that $x_i(t) \in H$. There exists $\varepsilon > 0$ such that $(t_1, \ldots, t_n) \to \dot{x}_1(t_1) \cdots \dot{x}_n(t_n)$ is a homeomorphism of the cube C

$$\{(t_1,\ldots,t_n)\in\mathbf{R}^n\colon |t_1|\leq\varepsilon \text{ for } i=1,\ldots,n\}$$

onto a neighbourhood V of \dot{e} (= K) in G/K and $V \cap (HK)/K$ corresponds to $\{(t_1, \ldots, t_n) \in C : t_1 = \cdots = t_k = 0\}$. Put

$$M_1 = \{x_1(t_1) \cdots x_k(t_k) : |t_i| \le \varepsilon \text{ for } i = 1, \dots, k\}$$

and

$$M_2 = \{x_{k+1}(t_{k+1}) \cdots x_n(t_n) \colon |t_i| \le \varepsilon \text{ for } i = k+1, \dots, n\}.$$

(If n = 0, i.e. K is open in G, we put $M_1 = M_2 = \{e\}$, $V = \{\dot{e}\}$. Similarly if k = 0 or k = n.) Then $(x, y) \to xy$ maps $M_1 \times M_2$ homeomorphically to M_1M_2 , the restriction of π_K to M_1M_2 is a homeomorphism onto V and the restriction of π_{HK} to M_1 is a homeomorphism onto $\pi_{HK}(V)$. Put $W = \pi_K^{-1}(V)$, $U = \pi_H(W)$. Then

$$W = \{abc \colon a \in M_1, b \in K, c \in M_2\}$$

and the elements *a*, *b*, *c* are uniquely determined by x = abc. Assume that $x, x' \in W$ are decomposed as above: x = abc, x' = a'b'c', and that $\pi_H(x) = \pi_H(x')$. Then $\pi_{HK}(x) = \pi_{HK}(x')$ and, since $\pi_{HK}(x) = \pi_{HK}(a)$, $\pi_{HK}(x') = \pi_{HK}(a')$, it follows that a = a'. Hence $\pi_H(bc) = \pi_H(b'c')$ and this gives $\pi_{H\cap K}(b) = \pi_{H\cap K}(b')$ (recall that $M_2 \subseteq H$). Given $\pi_H(x) \in U$ with $x = abc \in W$, we put $\psi(\pi_H(x)) = \pi_{K\cap H}(ab)$. It follows from the above argument that $\psi: U \to G/K \cap H$ is well defined. Also ψ is continuous. This follows easily from the compactness of M_1, M_2 and K and from the fact that a, b, c depend continuously on x = abc. Furthermore, $\psi \circ \pi_H = \pi_{K\cap H}$ on M_1K and the canonical mapping $\pi_{H,K\cap H}: G/K \cap H \to G/H$ maps $\psi(\pi_H(ab)) = \pi_{K\cap H}(ab)$ to $\pi_H(ab)$. Since $\pi_H(M_1K) = U$, we conclude that $\pi_{H,K\cap H} \circ \psi$ is the identity on U. The covering $\{xU; x \in G\}$ of G/H has a locally finite refinement. Let $\{\varphi_x : x \in G\}$ be a partition of unity, subordinate to this covering, i.e. $\varphi_x \in C_0(G/H), 0 \le \varphi_x \le 1$,

supp $\varphi_x \subseteq xU$ for each $x \in G$ and $\sum_{x \in G} \varphi_x(y) = 1$ for all $y \in G/H$, where the sum is finite on each compact subset of G/H.

For $f \in CB(G/(K \cap H))$ define

$$Pf = \sum_{x \in G} \varphi_x \cdot l_{x^{-1}}((l_x f) \circ \psi).$$

(The sum is actually finite on each compact subset of G/H.) Then it is easy to see that P is a contractive linear projection from $CB(G/(K \cap H))$ to CB(G/H).

If G is a locally compact group, the von Neumann-kernel is defined as the intersection of the kernels of all finite-dimensional (continuous, unitary) representations of G. It coincides with the kernel of the canonical mapping of G into its Bohr compactification bG. The quotient group G/N is maximally almost periodic (for short: $G/N \in MAP$).

THEOREM 8. Let G be a locally compact group. The following statements are equivalent:

(a) AP(G) is complemented in LUC(G).

(b) G/N is compact, where N denotes the von Neumann kernel of G.

(c) The canonical mapping of G into its Bohr compactification bG is surjective.

Proof. The equivalence of (b) and (c) is almost immediate.

If (b) holds, then (a) follows from Theorem 7, since AP(G) = AP(G/N) = CB(G/N) (we get a contractive linear projection even from CB(G) to AP(G)).

For the proof of $(a) \rightarrow (b)$ assume that AP(G) is complemented in LUC(G). We start with three observations:

If G_1 is a subgroup of G with finite index, and $f \in AP(G_1)$ is extended to G by putting f(x) = 0 for $x \notin G_1$, then $f \in AP(G)$. In this way, $AP(G_1)$ becomes a subspace of AP(G) and it follows now as in the proof Theorem 2 that $AP(G_1)$ is complemented in $LUC(G_1) \subseteq$ LUC(G).

For the second observation assume that G = H + K is the direct sum of closed subgroups H and K. Let $\pi: G \to H$ be the corresponding projection. If $P: LUC(G) \to AP(G)$ is a projection, then $Qf = P[(f \circ \pi)]|_H$ (where $f \in LUC(H)$) defines a projection from LUC(H) to AP(H).

For the third observation, assume that G_1 is an open subgroup of G that is also closed for the Bohr topology, i.e. the topology induced by bG (in particular $N \subseteq G_1$). We claim that (under the assumption that AP(G) is complemented in LUC(G)) G_1 has finite index in G. Let L be the closure of the image of G_1 in bG. Then the isomorphism between AP(G) and CB(bG) maps AP(G) \cap CB(G₁\G) onto $CB(L \setminus bG)$ (where $G_1 \setminus G$ resp. $L \setminus bG$ denote the spaces of right cosets). As in the proof of Theorem 7, $CB(L \setminus bG)$ is complemented in CB(bG) = AP(G). It follows that $CB(L \setminus bG)$ is complemented in LUC(G). Since AP(G) \cap CB($G_1 \setminus G$) \subseteq CB($G_1 \setminus G$) \subseteq LUC(G) and $G_1 \setminus G$ is discrete (hence $CB(G_1 \setminus G) = l^{\infty}(G_1 \setminus G)$), there exists a bounded linear projection from $l^{\infty}(G_1 \setminus G)$ to $CB(L \setminus bG)$ and also to $CB((KL) \setminus bG)$ if K is any compact normal subgroup of bG. If $(KL) \setminus bG$ is metrizable, it follows from Corollary 2, p. 169 of [11] that $CB((KL)\setminus bG)$ can be complemented in $l^{\infty}(G_1 \setminus G)$ only if it is reflexive, hence, only if $(KL) \setminus bG$ is finite. Now if $L \setminus bG$ would happen to be infinite, there would exist $f \in CB(L \setminus bG) \subseteq CB(bG)$ such that $f(L \setminus bG)$ is infinite. Then, by the Kakutani-Kodaira theorem, there would exist a closed normal subgroup K of G such that bG/K is metrizable and f is K-periodic i.e. $f \in CB(bG/K)$. This would imply that $f \in CB((KL) \setminus bG)$. But by the argument above, this is impossible. This shows that $L \setminus bG$ is finite, and since G_1 is the preimage of L in G, it follows that $G_1 \setminus G$ is finite too.

To prove (b), we can assume that $G \in MAP$ (otherwise replace G by G/N and observe that $AP(G) = AP(G/N) \subseteq LUC(G/N) \subseteq LUC(G)$). We want to show that G is compact.

Let *H* be an open, almost connected subgroup of *G*. Then $H \in$ MAP; hence by Theorem 2.9 of [10], it has an open subgroup of finite index which is a direct sum V + L of a compact group *L* and a vector group *V* (i.e. $V \simeq \mathbb{R}^n$ for some $n \ge 0$). Replacing *H* by this open subgroup, we may assume that H = V + L.

Let V_1 be the closure of V in G with respect to the Bohr topology. Then (by continuity) L centralizes V_1 ; hence V_1L is an open subgroup of G which is closed for the relative topology of bG. From the third observation above, it follows that V_1L has finite index in G and, by the first observation above, we can assume that $G = V_1L$ (The Bohr topology induces on a subgroup of finite index again the Bohr topology). This implies that L is normal in G.

Let $\pi: G \to G/L$ be the canonical projection. Since L is compact, $\pi(V)$ is closed in G/L and, since $\pi(V_1) = G/L$, it follows that G/L is abelian. Assume that $\pi(V) \neq G/L$. Take $\dot{x} \notin \pi(V)$. Then there exists a continuous character $\chi \in (G/L)^{\wedge}$ such that $\chi(\dot{x}) \neq 1$ and $\chi(\pi(V)) = \{1\}$. Then $\chi \circ \pi \in AP(G)$ and if $x \in V_1$ satisfies $\pi(x) = \dot{x}$, then $\chi(\pi(x)) \neq 1$. But this would imply that x does not belong to the closure of V with respect to the Bohr topology, which is a contradiction. Thus $\pi(V) = G/L$ and hence $G = V \oplus L$. If it would happen that n > 0, then we could write G as a direct sum of two groups, one of them being isomorphic to **R**. By the second observation above, this would imply that $AP(\mathbf{R})$ is complemented in LUC(**R**), contradicting Theorem 3.2 of Wells [26]. Hence n = 0, i.e. G = L is compact.

COROLLARY 9. If G is a locally compact, maximally almost periodic group, then AP(G) is complemented in LUC(G) if and only if G is compact.

REMARK. In general, the conditions of Theorem 8 do not imply that N is minimally almost periodic group (i.e. that AP(N) contains only the constant functions). Take e.g. $G = \mathbb{C} \times_{\sigma} T$ (semidirect product), where $T = \mathbb{R}/\mathbb{Z}$ and the multiplication is defined by $(z,s)(w,t) = (z + e^{2\pi i s}w, s + t)$. Then $N = \mathbb{C}$ and $G/N \simeq T$ is compact (see also Theorem 2.3 in [18]).

4. Subspaces of WAP(G). Let G be a locally compact group. For each $m, n \in WAP(G)^*$, define a multiplication

$$\langle m \odot n, f \rangle = \langle m, n_l(f) \rangle, \qquad f \in WAP(G),$$

where $n_l(f)(g) = \langle n, l_g f \rangle$, $g \in G$. Then $n_l(f) \in WAP(G)$ (see [2, p. 36]) and, as readily checked, $WAP(G)^*$ with \odot is a Banach algebra. Furthermore, for each $g \in G$, let δ_g denote the point evaluation at g. Then the map $g \to \delta_g$ is a natural embedding of G into $WAP(G)^*$.

Let X be a Banach space and $\mathscr{B}(X)$ be the space of bounded linear operators from X into X. Let $\{U_g; g \in G\}$ be continuous representation of G on X i.e. for each $g \in G$, $U_g \in \mathscr{B}(X)$, $U_{g_1}U_{g_2} = U_{g_1g_2}$, $g_1, g_2 \in G$, and for each $x \in X$, the map $g \to U_g(x)$ from G into X is continuous. We say that $\{U_g; g \in G\}$ is weakly almost periodic if for each $x \in X$, $\{U_g x, g \in G\}$ is a relatively weakly compact subset of X.

LEMMA 10. Let G be a locally compact group and $\{U_g; g \in G\}$ be a weakly almost periodic continuous representation of G. Then there exists a representation $\{U(m); m \in WAP(G)^*\} \subseteq \mathscr{B}(X)$ of the Banach algebra $WAP(G)^*$ on X such that:

(i) $||U(m)|| \leq K||m||$ for each $m \in WAP(G)^*$ and some fixed K > 0.

(ii) $U(\delta_g) = U_g$ for each $g \in G$.

(iii) $P = U(m_G)$ is a projection of X onto the closed subspace $F_X = \{x \in X; U_g x = x \text{ for all } g \in G\}.$

(iv) P commutes with any continuous linear operator T from X into X which commutes with $\{U_g, g \in G\}$.

Proof. Since $\{U_g; g \in G\}$ is weakly almost periodic, it follows from the principle of uniform boundedness that there exists K > 0 such that $||U_g|| \leq K$ for all $g \in G$. For each $x \in X$, $\varphi \in X^*$, define $h_{x,\varphi}(g) = \langle U_g x, \varphi \rangle$, $g \in G$. Then, it is well known [2, p. 36] that $h_{x,\varphi} \in WAP(G)$. Given $m \in WAP(G)^*$, let $\langle U(m)x, \varphi \rangle = \langle m, h_{x,\varphi} \rangle$. Then, it is readily checked that U(m) is a continuous linear operator on X, and $||U(m)|| \leq K||m||$. Furthermore $U(m \odot n) = U(m) \circ U(n)$, $m, n \in WAP(G)^*$, and $U(\delta_g) = U_g$ for each $g \in G$.

Now if $x \in X$, $g \in G$, then

$$U_g P(x) = U(\delta_g) \circ U(m_G)(x) = U(\delta_g \odot m_G)(x)$$

= $U(m_G)(x) = P(x)$

i.e. $P(x) \in F_X$. Also if $x \in F_X$, $\varphi \in X^*$

$$\langle P(x), \varphi \rangle = \langle m_G, h_{x,\varphi} \rangle = \langle x, \varphi \rangle.$$

Hence P is a projection from X onto F_X .

Finally if $T \in \mathscr{B}(X)$ and $TU_g = U_g T$, let $m_\alpha = \sum_{i=1}^{n_\alpha} \lambda_i^\alpha \delta_{g_i}^\alpha$ denote a convex combination of point evaluations such that m_α converges to m_G in the weak*-topology of WAP(G)*, then for each $x \in X$, and $\varphi \in X^*$, $\langle U(m_\alpha)x, \varphi \rangle \rightarrow \langle U(m_G)x, \varphi \rangle$, i.e. $U(m_\alpha)$ converges to $U(m_G)$ in the weak operator topology of $\mathscr{B}(X)$. Replacing by a different net if necessary, we may assume that $U(m_\alpha)$ even converges to $U(m_G)$ in the strong operator topology of (X). Hence for each $x \in X$,

$$T \circ P(x) = \lim_{\alpha} TU(m_{\alpha})(x) = \lim_{\alpha} U(m_{\alpha})T(x) = PT(x).$$

THEOREM 11. Let G be a locally compact group and X be a closed translation invariant subspace of WAP(G). Let N be a closed subgroup of G and

$$A = \{ f \in X; r_g f = f \text{ for all } g \in N \}.$$

There exists a projection P from X onto A and P commutes with any continuous linear operator from X into X which commutes with right translations. In particular, P commutes with any left translations.

Proof. This follows directly from Lemma 10 with the observation that left translation always commutes with right translation. \Box

Parts of the following Lemma were proved in [5, Theorem 5.1] for G abelian.

LEMMA 12. Let G be a locally compact group. Then A is a non-zero left translation invariant C*-subalgebra of $C_0(G)$ if and only if there exists a unique compact subgroup N_A of G such that

$$A = \{ f \in C_0(G); r_g f = f \text{ for all } g \in N_A \}.$$

Furthermore, A is translation invariant if and only if N_A is normal.

Proof. Let N be a compact subgroup of G, it is easy to see that

$$A = \{ f \in C_0(G); r_g f = f \text{ for each } g \in N \}$$

is a left translation invariant C^{*}-subalgebra of $C_0(G)$. Also, since $C_0(G/N) \simeq A$ (using the identification $f \leftrightarrow f \circ \pi$, where π is the canonical mapping of G onto G/N), $A \neq \{0\}$.

Conversely, if A is a left translation invariant C^* -algebra of $C_0(A)$ let

$$N = N_A = \{g \in G; r_g f = f \text{ for all } f \in A\}.$$

Then N is a closed subgroup of G. Also, if $f \in A$, and $f \neq 0$, let $g_0 \in G$ such that $f(g_0) = \lambda \neq 0$. Then for each $g \in N$, $f(g_0g) = f(g_0) = \lambda$. Consequently N is compact.

Let $B = \{f \in C_0(G); r_g f = f \text{ for each } g \in N\}$. Clearly $B \supseteq A$. To prove equality, we observe that each $f \in B$ may be regarded as a function \overline{f} in $C_0(G/N)$. Let $\mathscr{A} = \{\overline{f}; f \in A\}$ and $\mathscr{B} = \{\overline{f}; f \in B\}$. Clearly $\mathscr{B} \supseteq \mathscr{A}$. However as in the proof of Theorem 5.1 in [5], an application of the Stone-Weierstrass theorem shows that $\mathscr{A} = \mathscr{B}$.

Suppose N_0 is another compact subgroup of G such that $A = \{f \in C_0(G); r_g f = f \text{ for each } g \in N_0\}$ then $N_0 \subseteq N$. If $a \in N$, $a \notin N_0$, there exists $h \in C_{00}(G/N_0)$ such that $h(aN_0) \neq h(N_0)$. Let $f \in C_{00}(G)$ such that

$$\tilde{f}(x) = \int_{N_0} f(x\xi) \, d\xi = h(x).$$

Then $\tilde{f} \in A$ and $r_a \tilde{f} \neq \tilde{f}$, which is impossible. Hence $N_0 = N$. Finally if A is translation invariant, $g \in G$, $a \in N$, then

$$r_{g^{-1}ag}(f) = r_{g^{-1}}r_a(r_g f) = r_{g^{-1}}r_g f = f$$

since $r_g f \in A$. Hence N is normal. Conversely, if N is normal, $f \in A$ and $g \in G$, then for each $a \in N$, $r_a(r_g f) = r_{ag} f = r_{gb} f = r_g f$ where $b = g^{-1}ag \in N$. In particular, $r_g f \in A$.

The following is an analogue of Theorem 3.3 in [13]:

THEOREM 13. Let G be any locally compact group and A be a left translation invariant C*-subalgebra of $C_0(G)$. Then there exists a continuous projection P from $C_0(G)$ onto A and P commutes with any continuous linear operator from $C_0(G)$ into $C_0(G)$ which commutes with right translations. In particular, P commutes with any left translations.

REMARK 14. (a) Let $N = N_A$, then the projection P in Theorem 13 corresponds to the mapping $T_N(f)(x) = \int_N f(x\xi) d\xi$, $x \in G$, which maps $C_0(G)$ onto $C_0(G/N)$ [8, p. 261] and $C_0(G/N) \simeq A$.

(b) Lemma 12 can be applied to obtain a well-known result of Kakutani-Kodaira: If G is a σ -compact group, there exists a compact normal subgroup N of G such that G/N is metrizable. Let $f \in C_0(G)$, $f \neq 0$. Since G is σ -compact, the translation invariant C^* -subalgebra A of $C_0(G)$ generated by f is separable. Let $N = N_A$. Then $C_0(G/N) \simeq A$ is also separable. In particular, G/N is metrizable.

References

- [1] B. Brainerd and R. E. Edwards, *Linear operators which commute with translations* I. Representation theorems, J. Australian Math. Soc., 6 (1966), 289-327.
- [2] R. B. Burkel, *Weakly Almost Periodic Functions on Semigroups*, Gordon and Breach (1970), New York.
- [3] C. Chou, Weakly almost periodic functions and almost convergent functions on a group, Trans. Amer. Math. Soc., **206** (1975), 175–200.
- [4] ____, Minimally weakly almost periodic groups, J. Funct. Anal., 36 (1980), 1– 17.
- [5] K. deLeeuw and H. Mirkil, *Translation-invariant function algebras on abelian groups*, Bull. Soc. Math. France, **88** (1960), 345–370.
- [6] K. deLeeuw and I. Glicksberg, Applications to almost periodic compactifications, Acta Math., **105** (1961), 63–97.
- J. Dugundji, An extension of Tietze's Theorem, Pacific J. Math., 1 (1951), 353– 367.
- [8] S. A. Gaal, *Linear Analysis and Representation Theory*, Springer-Verlag (1973), Berlin Heidelberg New York.

- [9] I. Glicksberg, Some uncomplemented function algebras, Trans. Amer. Math. Soc., 11 (1964), 121–137.
- S. Grosser and M. Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math., 246 (1971), 1-40.
- [11] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math., 5 (1953), 129–173.
- [12] E. Hewitt and K. Ross, Abstract Harmonic Analysis I, Springer-Verlag, 1963.
- [13] A. T. Lau, Invariantly complemented subspaces of $L_{\infty}(G)$ and amenable locally compact groups, Illinois J. Math., 26 (1982), 226–235.
- [14] A. T. Lau and V. Losert, Weak*-closed complemented invariant subspaces of $L_{\infty}(G)$ and amenable locally compact group, Pacific J. Math., **123** (1986), 149–159.
- [15] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag (1971), Berlin Heidelberg New York.
- [16] V. Losert and H. Rindler, Uniform distribution and the mean ergodic theorem, Invent. Math., 50 (1978), 65–74.
- [17] P. Milnes, On the extension of continuous and almost periodic functions, Pacific J. Math., 56 (1975), 187–193.
- [18] ____, Almost periodic compactifications of direct and semidirect products, Colloquium Mathematicum, XLIV (1981), 125–136.
- [19] D. Montogomery and L. Zippin, Topological Transformation Groups, Interscience, New York 1955.
- [20] R. S. Philips, On linear transformations, Trans. Amer. Math. Soc., 48 (1940), 516-541.
- [21] C. Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, in Proceedings of the Fifth Berkeley Symposium on Math. Statistics, and Probability, vol. II, part I. Theory of Probability, Univ. of California, Berkeley 1966.
- [22] S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer-Verlag (1971), Berlin Heidelberg New York.
- [23] Y. Takahashi, A characterization of certain weak*-closed subalgebras of $L_{\infty}(G)$, Hokkaido Math. J., 11 (1982), 116–124.
- [24] ____, Remarks on certain complemented subspaces on groups, Hokkaido Math. J., 13 (1984), 260–270.
- [25] M. Takesaki, *Theory of Operator Algebras* 1, Springer-Verlag (1979), New York, Heidelberg Berlin.
- [26] B. B. Wells, Uncomplemented function algebras, Studia Math., T XXXII (1969), 41-46.

Received September 29, 1987 and in revised form September 18, 1988. The first author is supported by an NSERC grant.

University of Alberta Edmonton, Alberta Canada T6G 2G1

AND

UNIVERSITAT WIEN Strudlhofgasse 4 A-1090 Wien, Austria