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UNITARY COBORDISM OF CLASSIFYING
SPACES OF QUATERNION GROUPS

ABDESLAM MESNAOUI

The main purpose of this article is to prove that the complex cobor-
dism ring of classifying spaces of quaternion groups Γfc(|Γfc| = 2k) is
a quotient of the graded ring U*(pt)[[X, Y,Z]] (dimZ = dim 7 =
2, dim = Z = 4) by a graded ideal generated by six homogeneous
formal power series.

0. Introduction. Let Γk be the generalized quaternion group. Γ^
is generated by u,v, subject to the relations uι = v2, uvu = v9 t =
2k~2. In order to calculate U*(BΓk) we first consider the case k = 3,
i.e. Γ 3 = Γ. We recall that Γ = {±l9±i9±j9±k} with the relations
i2 = j 2 = k2 = — 1, ij = k, jk = i9 ki = j . We shall define
A e U2{BT\ B e U2(BΓ), D e U\BT) as Euler classes of complex
vector bundles over BT corresponding to unitary irreducible represen-
tations of Γ. Let Λ* be the graded £/*(/?0-algebra U*(pt)[[X, Y,Z]]
with dimX = d i m 7 = 2, dimZ = 4, Ω* = U*(pt)[[Z]] c Λ* and
U*(pt)[[D]] = {P(D)9P e Ω*}. Then by using the Atiyah-Hirzebruch
spectral sequence we obtain the following results where T(Z) G Ω4,
J(Z) e ΩQ are well defined formal power series.

THEOREM 2.18. (a) As graded U*(pt)-algebras we have:

(b) As graded U*(pή[[D]]-modules we have: U*(BΓ) - U*(pt)[[D]]
®U*(pt)[[D]] A θ U*(pt)[[D]] B and A, B have the same annihilator
(2 + J(D)).U*(pt)[[D]].

THEOREM 2.17. The graded U*{pt)-algebra U*(BΓ) is isomorphic to
Λ*//* where /* is a graded ideal generated by six homogeneous formal
power series.

The method used for Γ is extended to Γ^, k > 4. As before we
shall define Bk e U2(BΓK), Ck e U2{BTk), Dk e U4(BΓk) as Eu-
ler classes of complex vector bundles over BTk corresponding to uni-
tary irreducible representations of Γ^ and elements G'{Z) e Ω2,
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Tk{Z) e Ω4. If B'k = Bk + G'k{Dk), q = Ck + G'k{Dh) then we
get:

THEOREM 3.14. (a) U*(pt)[[Dk]] ^ Ω*/(Tk) as graded U*(pt)-alge-
bras.

(b) As graded U*(pt)[[Dk]]-modules we have:

U*{BTk) ~ U*(pt)[[Dk]] Θ U*(pt)[[Dk]] B'k Θ U*(pt)[[Dk]] Ck

and B'k, C'k have the same annihilator (2 + J(Dk)) U*(pt)[[Dk]].

THEOREM 3.12. The graded U*{pt)-algebra U*(BΓk) is isomorphic
to A*//* where /* is a graded ideal o/Λ* generated by six homogeneous
formal power series.

In the appendix, part A, we give a new method of calculating
U*(B2m). Let A; be the graded algebra U*(pt)[[Z]]9 dimZ = 2.

THEOREM A.I. U*(Blm) ~ A'J([m](Z)) as graded U*(pt)-algebras.

In part B we show that:

THEOREM B.2.

U2M(BSU(n)) ~ U2i+2(BU(n))/e(Anγ(n)) U2i{BU{n))

andU2i+l(BSU(n)) = 0, iel.
In this theorem e(Anγ(n)) is the Euler class ofAnγ(n) where γ(n)

denotes the universal bundle over BU{ή).

In part C we calculate H*(BTk), k>4.

THEOREM C. Ifk > 4 then we have H*(BΓk) = Z[xk,yk,zk] with
dim.Xfc = dimyk = 2, dimz^ = 4, subject to the relations:

2xk = 2yk = xkyk = 2kzk = 0, x2

k=y2

k = 2k~ιzk.

Theorem C is certainly known to workers in the field.
The layout is as follows:

I Preliminaries and notations.
II Calculation of U*(BΓ).

III Calculation of U*(BΓk), k>4.
IV Appendix.
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In the course of the computations we have determined the leading
coefficients of some formal power series with the purpose of using
them in a subsequent paper where the bordism groups U*(BΓk) are
calculated.

We shall use the same notation for unitary irreducible representa-
tions of Γ^ and corresponding complex vector bundles over BT^. The
notation γ(n) will be used for the universal complex vector bundle
over BU(n). The notation Z will be for the ring of integers and C for
the complex number field.

The results of this paper have been obtained in 1983 under the
supervision of Dr. L. Hodgkin, University of London. I thank him
sincerely for having proposed the subject, for his advice and encour-
agement. I would like to express my deep thanks to the referee who
made many useful suggestions; they helped to improve the exposition
of this paper and the statement of some results, particularly Theorems
2.18 and 3.14.

I. Preliminaries and notations. 1. Let X be a CW-complex; we de-
fine a filtration on Un{X) by the subgroups

J™ = Ker(/*: Un(X) -> Un(Xp^))9

Xp being the p-skeleton of X, i: Xp-\ c X, p + q = n; Un(X) is a
topological group, the subgroups JPΆ being a fundamental system of
neighbourhoods of 0; we denote this topology by T. If the £/*-Atiyah-
Hirzebruch spectral sequence (denoted by £/*-AHSS) for X collapses
then T is complete and Hausdorff (see [3]). The edge homomorphism
μ: Un{X) - Hn(X) is defined by μ = 0 if n < 0 and if n > 0 it is
the projection Un(X) = J^n = Jn$ -+ Jn>°/Jn+ι>-1 - ££° c E%° =
Hn{X). By easy arguments involving spectral sequences we have the
following basic result:

THEOREM 1.1. Let X be a CW-complex such that:
(a) The U*-AHSSfor X collapses.
(b) For each n > 0 there are elements ain generating the 2-module

Hn{X).
Then for each n>0 there are elements Ain e Un(X) such that:
(a) μ(Ain) = ain.
(b) If E denotes the U*(pt)-submodule ofU*(X) generated by the

system (Ain) and ifEn is the n-component ofE then En = Un(X), En

being the closure ofEn for T.
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Moreover (b) is valid of we take any system (Af

in), A!in e Un(X) such
that μ(A'in) = ain for each (i, n). π

(See Theorem 2.5 for a proof of this result in a special case.)

2. Let X be a skeleton-finite CW-complex, which is the case we
are interested in. There is a ring spectra map / : MU —• H (see [1]);
by naturality of AHSS the map f*{X): U*(X) -* H*(X) induced by
/ is identical to the edge-homomorphism described above. Let ξ be
a complex vector bundle over X of dimension n\ the Conner-Floyd
characteristic classes of ξ will be denoted by cfi(ζ); the Euler class
e{ξ) of £ for MU is C/Λ(£) and the Euler class β\(ζ) for H is the
Chern class cn(ζ). As /^(JΓ) maps Euler classes on Euler classes we

3. Consider the formal power series ring E* = U*(pt)[[c\ , C2> > cr]]
graded by taking dimci = ri\ > 0, . . . ,dimc r = nr > 0. Given
P(cu...,cr)eEn

we define v{P) = {inf(«iWi + ••• + nrur),au φ 0} and i/(0) = +oc.
Let / p be {P € ^ ^ ( P ) > p}\ we have ^ = Jo D Jx D ••-, and
since Π/?>o -^ = 0, £ w = Lim En/Jp, it follows that En is complete and
Hausdorff for the topology defined by the filtration (Jp).

Suppose that B is a CW complex such that the associated U*
AHSS collapses; if A\ e UΆι{B), i = 1,2,..., r, then there is a unique
continuous homomorphism ψ: E* —• C/*(5) such that ^(c, ) = ̂ 4/,
/ = 1,2,...,r.

Now in a different situation consider the case where B\ is a CW-
complex such that U*(B\) = E*. There are two topologies on U*(B\)
defined respectively by the filtration (Jp) on J?* and by the filtration
(/f5*) deduced from the (7*-AHSS for Bλ. If B is a CW-complex such
that the t/*-AHSS for 5 collapses, ( Z ^ ) the corresponding filtration
on U*(B) (see §1) and g a continuous map: B -^ B{ then from Jp c
Zf'*, sVf ' * ) C J™ it follows that g*:En -+ Un(B) is continuous
for the topologies defined by v on En and (/p'^) on U*(B). As a
consequence if (Pw) is a sequence of polynomials such that (Pm) —• P
in £M and if ^*(c/) = At then P w ( ^ l 5 . . . ,Ar) -+ g*{P) in U*(B); so if
^ = Σ ^cj*1 cψ e En we can write g*(P) = £ α ^ * 1 Au

r

r.
In the sequel we shall also be concerned with Λ* = U*(pt)[[X, Y, Z]],

dimX = d i m 7 = 2, dimZ = 4; Λ* has the topology defined by IΛ
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The following assertions are clear:
(a) In A2n: (Rp) -> 0 iff u(Rp) -> oo.
(b) If P(X, Y9 Z) e A2m+2n, Q{X, Y, Z) e A2n and (Rp) a sequence

in A2m such that Rp -+ R and v(P - RPQ) -> oo then i?β = ^.
(c) If î (-Rp) —• oo then the sequence (Mp) defined by Mp = i?0 +

h i?p converges to a unique limit denoted by Σp>0 Rp.

In Sections II and III we shall define three elements Ak e U2(BΓk),
Bk e U2(BΓk), Dk e U4(BΓk); as the ί/*-AHSS for BTk collapses
there is a unique continuous homomorphism φ of graded U*(pt)-
algebras: Λ* -> U*(BΓk) such that φ(X) = Ak, φ(Y) = Bk, φ(Z) =
Dk.

The next well known result will be useful:

PROPOSITION 1.2. Suppose X a CW-complex such that H*(X) =
Z[α]. Then there is an element A e U*(X) such that μ(A) = a and
U*(X) = H*(X)®U*(pt) = U*(pt)[[A]]. Moreover for any A' e U*(X)
such that μ(Af) = a we have U*(X) = U*(pt)[[A']± π

II. Computation of U*(BΓ). We recall that the quaternion group Γ
consists of {I9±i,±j9±k} subject to the relations ij — k, jk = i,
ki = j , i2 — k2 = - 1 . The irreducible unitary representations of Γ are

1: /-+ 1, j -+ 1, ξr. /-> 1, j -+ - 1 , ξj: ί -+ - 1 , j -> 1, ξk: /-• - 1 ,

j -• - 1 , η: / ̂  ( j ^ . ) , jΓ -• (J "^ ); the character table of Γ is:

(Conjugacy classes)

1

ίy

n

1

1

1

1

1

2

-1

1

1

1

1

-2

±z

1

1

- 1

- 1

0

±j

1

- 1

1

- 1

0

±k

1

-1

-1

1

0

We have the following relations in the representation ring R{T):

η2=l+ ξk (see [6], [2]).
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We have H°(BT) = Z, H4n(BΓ) = Z8, i > 1, H4n+2(BT) = Z2 Θ Z2,
/i > 0, /f2Λ+1(2?Γ) = 0. Moreover if d is a generator of H4(BΓ) and
if α, 6 are generators of H2(BΓ) then dn is a generator of H4n(BT),
n > 1, and αέ/Λ, W 1 are generators of // 4 w + 2 (5Γ), Λ > 0 (see [5]).

Since Hm(BΓ) = 0, m odd we have:

PROPOSITION 2.1. Γλe U*-AHSSfor BT collapses. u

There are four important complex vector-bundles ζi.ζj.ζ^: ET x Γ

C -> i?Γ and T/: ET XpC2 -^ i?Γ where the actions of Γ on C and
C2 are induced by the representations £/, ξj, ξ^ and //. We have a
canonical inclusion q: 22 C Γ obtained by identifying {1, ί2} with Z2;
let p be the unitary representation of Z2 given by/>(l) = l,/>(/2) = - l ;
the restriction map: R(T) -> i?(Z2) sends ^ , ξ7, ^ to 1 and η to 2p;
so:

PROPOSITION 2.2. (Bq)*(ζh),h = i9j,k, are trivial and (Bq)*(η) =
2p. π

1. Chern Classes ofζu ζj> rl- The canonical isomorphism

is given by δ —• Ci(g(<5)) where ^ denotes the canonical map: R(T) —•
and ci the first Chern class (Sec. [2]). Since Hom(Γ, C/(l)) =

and i/ 2(5Γ) = Z 2 θ / 2 we have:

PROPOSITION 2.3. H2(BT) is generated by {c{ (ί/), ci (£/)}. D

Now we consider the topological group Sp(l) of quaternions of ab-
solute value 1; Sp(l) is homeomoφhic to S3 and H*(BS3) = 1\u\
dim u = 4, u being the first symplectic Pontrjagin class of the univer-
sal Sp(l)-vector bundle θ. If we consider θ as a £/(2)-vector bundle,
then u = c2(θ) (see [12], page 179). Let p: Γ c Sp(l) = S 3 be the
natural inclusion; then it is easily seen that (Bp)*(θ) = η, θ being
regarded as a C/(2)-vector bundle.

PROPOSITION 2.4. Wί? Aαve ci(^) = 0 and H4{BT) is generated by

Proof. Since detf/ = 1 we have C\(η) = 0. From the transgression

exact sequence of the fibration: 5 3/Γ —• BT -+ BS3 we get the exact
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sequence: H4(BS3) {B$' H4{BΓ) -> H4(S3/T) = 0 and the result
follows (see [11], page 519). D

From 2.3, 2.4 we may take the Euler classes e\ (η) = d as a generator
of H4(BΓ) and {a = ex(ξi),b = ex(ξj)} as a system of generators of
H2(BT). Moreover eλ{n • η) = ex{η)n = dn and {ex{ξi + n η) = adn,
ex(ξj + n η) = bdn) are generators of H4n(BΓ), n > 1 and H4n+2{BT),
n > 0, respectively.

2. Computation ofU*(BΓ). Let Λ, 5, D be the Euler classes for
MU of fc, <,-, >/: e(&) = Λ e C/2(5Γ), ί ( ^ ) = B e U2{BT), e(η) =
D € U4(BΓ). We recall that Λ» = U*(pt)[[X,Y,Z]] is graded by
taking dim X = dim Y = 2, dim Z = 4; there is a unique continuous
homomorphism φ: Λ* -> C/*(5Γ) of graded C/*(pί)-algebras such that
p(ΛΓ) = ^, ί»(y) = 5, p(Z) = I>. In particular if P{Z) = ao + avZ +
• + atZ1 + - eA2n then φ{P) = P{D) = Lim^ooiαo + + an Dn)
in U2n(BΓ). If U*(pt)[[D]] = {R(D),R(Z) e Ω*}, then U*(pt)[[D]] is
a sub-C/*(/?ί)-algebra of U*(BΓ).

THEOREM 2.5. U*(BT) is concentrated in even dimensions and as a
U*(pt)[[D]]-module U*(BΓ) is generated by 1, A, B.

Proof. We have U2n+ι(BΓ) = 0 because JVΛ = JP+IJ-I if p + q =
2n + 1 and then l/ 2"+ 1(£Γ) = J°>2n+ί = Γ\p+q=2n+\ JP'q = ° ( s e e

Section I).

Suppose 2n = 4m + 2>0.Ifxe U4m+2{BT) = J^4m+2 = j4m+2,o
then/ί(x) = amadm+βmbdm = μ(amADm+βmBDm), am € U°(pt) =
2, βm e C/°(pO = Z. It follows that //(* - {amADm + βmBDm)) = 0
andxi = x-(amADm+βmBDm) e y4m+3,-i = ^4^+4-2 L e t 5 i b e t h e

quotient map: / 4 w + 4 " 2 -> j*m+*-2/j4m+5-3 = //4m+4(5 Γ ) t/
= U-2(pή®H4m+4(BΓ). Ίhensdxi) = 7m+l®dm+1, γm+ι € C/
From the following commutative diagram where ^ is induced by the
U* (pί)-module-structure:

U~2{pt) ® C/4'M+4 (5Γ) = U~2(pt) ® / 4 w+ 4-° Λ /4/n+4,-2

> H4m+4(BΓ) - ^ ^ 4 w i + 4 ( 5 Γ , U~2(pt))

it follows that 5i(xi) = S\{ym+xD
m+x) and then 5 1 (x 1 -7 w + 1 Z) w + 1 ) = 0;

so (xι - γm+ι)Dm+ι e J4m+5~i = /4(m+i)+2,-4_ W e h a v e ^ 2 = Xι _

γm+ιD
m+ι =x-(A-amDm + B• βmDm + γm+ιD

m+ι) e
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By using again the products χ we see that after a finite number of
steps there are three polynomials in Z:

Pq(Z) = amZm + am+ιZ
m+ι +••• +

Qq(Z) = βmZm + βm+ιZ
m+ι +••• +

R q { Z ) = γm+ιZ
m+i + ••• + γm+qZ

m+o, w i t h

degP9 = m + (q- 1), deg(?9 = m + (q - 1),

degi?9 = m + q such that

(1) JC - (Λ Pff(2>) + 5(2^(i)) + Rq(D)) €

Furthermore

Rq+ί(Z) = i?,(Z) + γm+q+ιZ
m+<+ι.

If

ι—m
00

oo

i=m+l

then by using (1) and Section I we have x = ̂ P(Z>) + BQ(D) + i?(Z)).
The cases In = 4m + 2 < 0 and 2n = 4m are similar. D

The next two propositions will be used later on.

PROPOSITION 2.6. If

1=0

that H(D) = 0, then αo = 0 and ifap is the leading coefficient,
we have ap e 8 U*(pt).

Proof Since D e U*(BΓ) we have
oo

then α 0 1 € &*(5Γ) Π C *̂(pί) = {0} and α 0 1 = 0. If i denotes
the inclusion {*} c BΓ we have /*(α0 1) = αo = 0 Then H(Z) =
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apZP + ••• + amZm + ' , a p φ 0 , p > l . F r o m agD« e J^2n~^ c

/4p+4,2«-(4p+4)> q > p + 1 ? i t f o u o w s t h a t ίβ = αp +iZ>^+2 + + aqiy €
j4p+4,2n-{4p+4)t ήr > p + 1. Since /4p+4,2«-(4p+4) j s d o s e d f o f t h e t o p o l .

ogy T of U2n(BΓ) we have

y α

Let 5 be the quotient map

τ4p,2n—4p ^ τ4p,2n—4p ι τ4p+\,2n

= H4p(BΓ, U2n-4p(pή) = H4p(BΓ) <8) U2n~Ap{pt)

= Z8 ® C/2"-4p(pί) = U2n-4p{pt)/S • U2n-4p{pή.

Then:

0 = s(H(D)) = s{apD
p) + s

since ί/p is a generator of H4p(BΓ) we have α p e (p0

Let F be the formal group law and [2]{Y) = F(Y, Y); if p is the
nontrivial unitary irreducible representation for Z2 then we get (see
[9]):

PROPOSITION 2.7. U*{B12) = U*{pt)[[Y]]/([2]{Y)) and the image
ofY by the quotient map: U*(pt)[[Y]] -> U*(B12) is the Euler class
e{p). Ώ

We have adopted the following graduation in 2.7: if

F(X,Y) = X+Y + anXY+ Σ aUχiγJ>
ί>lj>l

then \au\ = 2( 1 - / - ; ) , \X\ = | Y\ = 2; so F(X, Y) e Λ2. We shall often
make use of the coefficient a\ \. We know that there is a unique formal
power series [-ί](Y) e U*(pt)[[Y]](c Λ2) such that: F(Y,[-l](Y))
= 0.

PROPOSITION 2.8. There is P0(Z) € Ω2 ) P0(Z) = bxZ + ̂ j i f Z '
such that cfχ(η) = PQ(D). The coefficients bt, i > 1, are determined by
therelation Σi>ι bi(Y [-l](Y)y = F + [ - l ] F ; in particular bx = -an.

Proof. We have seen that if θ is the universal /Sp(l)-bundle over
Sp(l) = BS* considered as a C/(2)-vector bundle then η = (Bp)*(θ),
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p: Γ c Sp(l). As H*(BS3) = Z[u], u = c2(θ), we have U*(BS3) =
U*(pt)[[V]], V = e(θ), the Euler class of θ for MU. Hence there is
Po(Z) = Σί>i btZ1 e Ω2 such that P0(V) = c/i(0); it follows that

The relation Σ, >i W [ - W = ^ + [-l](ϊ") is proved in the Ap-
pendix part B and gives b\ = -flu. D

We recall that A = cfx{ξj) e U2(BΓ), B = cfx{ξj) e U2(BT), D =
cf2(η) € U4(BΓ); let C € U2(BΓ) be cfλ{ξk).

PROPOSITION 2.9. (a) There are P{Z) G Ω2, β(Z) € Ω4, P(Z) =
-4anZ + Σ/>2«/-Z'. Q(Z) = 4Z + Σi>2βiZr> βi t 2U*{pt), such
that cfx (η2) = P(D) = A + B + C, cf2{η2) = Q(D) = AB + BC + CA.

(b) cMη2) = ABC = 0,
(c) A3 = -ΛQ(£>) + Λ2P(£>), B* = -BQ(D)

Proof, (a) Let £: i?Γ —• BU(2) be a map classifying ?/; then ^2 is

classified by the composite: BΓ A BΓ x BY s^g BU(2) x BU(2) %
BU(4), where m is a map classifying )>(2) ® γ(2) and Δ the diago-
nal map. We have U*(BU(2) x BU{2)) = U*(pt)[[cι,c2,c'lίc'2]], cx,
c2, c[, c'2 being respectively the images of cf\(γ(2)) ® 1, cf2{y{2)) ®
1, 1 ® c/i(y(2)), 1 ® c/2(y(2)) by the canonical map: U*(BU(2)) ®
L/*(5C/(2)) ^ U*(BU(2)xBU(2)). Since the following diagram com-
mutes:

U*{BU(4)) ̂  U*(BU(2) x 5(7(2)) ( ^ C/*(5Γ x

x T T / U
U*(BU(2))®B*{BU{2)) $ U*{BΓ)®U*{BΓ)

we must substitute c/i(f/) for q, c'j, cf2{η) for c2, c2 in m*(cf\(γ(4))),
m*(cf2(γ(4))), m*(c/3(y(4))) in order to calculate cf\{η2), cf2(η2),
ch{η2) (see Sec. I).

We have m*{cfxy{4)) = Σ^v^cψc'^c^, u = (uuu2), v =
(v\,v2), U\ > 0, u2 > 0, V\ > 0, v2 > 0. It is important to calculate
a{u,v) when «i = u2 = 0, or v\ = v2 = 0.

Suppose U\ = u2 = 0. We denote by 0 the pair (0,0). Then the
coefficients Λ(o)W) are given by i* o m*(c/i(y(4))), i being the natural
inclusion:

{*} x BU{2) Λ 5(7(2) x 5(7(2).
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Since i* o m*{y{4)) = γ(2) + γ(2) we have /* o m*{cfι{y{4))) = 2c\.
Similarly Λ(M)o) = 2c\. Hence

\W\\>1

Nl>i

where | |u| | = Mi + «2, IMI = Wi + V2
W e recal l t h a t cf{{η) = P0{D), P0{Z) e Ω 2 , u'(P0) =l,u' = \v (see

Sec. I). Consider

P(Z) = 2(P0(Z) + P0(Z)) +

ί>i being the first coefficient Φ 0 of PQ{Z) because
when ||M|| > 1, ||v|| > 1. Hence cfx{η2) = P{D). We remark that
P(Z) € Ω2.

There are unique elements b^V) e U*(pή such that m*(cf2(γ(4))) =
Σ^(Mt))c"'c22<:'Γ'c2ί'2 T h e n t h e coefficients 6(w0) and b(pV) are given
by c/2(γ(2) + γ(2)) = c/;2(7(2)) + 2c/2(y(2)). Hence

m*(cf2(γ(4)) = cl + c\ + 2(c2 + c\)+

Consider

Q(Z) =
\\u\\>l,\\υ\\>l

Then cf2(η2) = Q(D),Q(Z)eΩ4.
Let q be the inclusion Z2 C Γ; since (Bq)*(ξ/,), h = i,j,k, are

trivial by 2.2 we have (Bq)*(A) = (Bq)*{B) = (5^)*(C) = 0 and since
<2(I>) = cf2(η2) = AB+BC+CA we have (fiήf)*(β(D)) - 0. It follows
by 2.7 that (Bq)*(D) = d2, d being the image of Y by the quotient
map:

u*(pt)[[Y]] -> tf

Thus:

= (27 + a,, Y2 + α 3 7 3 + )(ε0Y + ε, Y2 + δ 2 ^ 3 + ) and
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+an); so

2α3;
since a\x £ 2U*(pt) (because U*(pt) = [x\,x2,...], an = ~xχ) it
follows that β2 i 2U*{pt). The relations P{D) =A + B + C, Q(D) =
AB+BC+CA are easy consequences of the relation η2 = l+ζi+ξj+ξk.

(b) The above relation gives cfτ,(η2) = ABC; in order to show
that ABC = 0 we consider the Boardman map Bd: U*(BΓ) ->
K*(BΓ)<S>2[aι,a2,...] (see [8], page 358). This map is a ring-homomor-
phism which is injective because BΓ has a periodic cohomology; fur-
thermore if τ is a line complex vector bundle over BΓ we have:

Bd(e(τ)) = (τ - 1) + (τ - I)2 ® ax + (τ - I)3 ® a2 + • • •

as (ί, - 1)(£; - 1)(4 - 1) = 0 we get Bd(ABC) = 0 and ABC = 0.
(c) We have Q(D) = Λ ( 5 + C ) + £ C = A{P{D)-A)+BC; as ABC =

0 we obtain A3 = -AQ{D) + A2P(D); similarly B3 = -AQ(D) +
A2P(D). •

PROPOSITION 2.10. There is S(Z) = -αnZ + £ / > 2 57 Z' e Ω2 such
that A2 = AS(D), B2 = BS(D). Moreover.

AB = (A + B)(P(D) - S(D)) - Q(D),

P{Z), Q(Z) being as in 2.9.

Proof. Consider the relation ηξi = η. If the vector bundle y(2)®y(l)
over BU(2) xBU(l) is classified by mx: BU(2) x B 1/(1) -»BU(2) and
if £ : 5 —• BU(2), h: B —• 51/(1) are classifying maps for // and ί, ,
then ηξi is classified by:

x 5Γ ^ Λ £1/(2) x £1/(1) ^ £C/(2).

We have the following commutative diagram:

U*(BU(2)) "$ U*(BU(2)) x £C/(1) ( ^ } t/*(£Γ x £Γ) ^ C/ (£Γ)
X T ^ ϊ / cup-product

U*(BU(2)) ® C/(£t/(l)) **-̂ A* ί/*(£Γ) ® C/*(£Γ)

Moreover U*{BU(2) x £t/(l)) = C/*(pί)[[ci,c2,cΊ]] where cu c2, c\
are the images respectively of cf\γ{2) ® 1, cf2γ{2) <8> 1, 1 ® c/iy(l) by

the canonical map: U*(BU{2)) x l/ (£C/(l)) £ U*{BU(2) x £ί/(l)).
Then
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If i and are the natural inclusions: BU{2) x {*} -> BU(2) x 5 ί / ( l )
and {*} x BU{\) —• BU(2) x BU{\), then the coefficients e^Q) and
e(oυ) are given respectively by i* o m*(cf2{γ(2))) = c/2(γ(2)) = c2 and

* o m*(c/2(y(2))) = cf2(γ(l) + y(l)) = c'2. Hence

IMI
v>\

To calculate cf2{η-ζi) we substitute cf\{η),cf2(η),cf\(£,), respectively
for ci, c2, c\. We recall that c/i(ί/) = P0(D), v'(P0) = 1 (*/' = |i/; see
Sec. I). We can substitute Po(Z) f° r c i a n d Z for ci i n Nm(c\,c2) to
obtain Mm{Z) e Ω», v'{Mm) > 1, m > 1. We need to calculate the
leading coefficient of Mχ{Z). To this purpose consider Γ = BU{\) x
517(1) and r: T -> 5i/(2) a map classifying π*(y(l)) + π^(y(l)), π,,
π2 being respectively the first and second projections T -+ BU(l);
we have U*(T x BU(l)) = U*{pt)[[eufue\]] with (r x 1) *(cθ =
e\ + f\, (r x 1)*(C2) = £i/i> ( r x 1)*(CΊ) = e[\ it is easily seen that
(r x l)*(mjc/2(y(2))) = ̂ ( e i . e ' J F ί / l , ^ ) where F denotes the formal
group law. It follows that £((i,o),i) = 1> e((0,i) i) = 2αn and M\{Z) =

Now from the relation A3 = -AQ(D) + A2P{D) we deduce that
A" = AQn(D) + A2Pn(D), n > 3, with Qn(Z) e Ω2 n_2, Pn{Z) €
Ω2n_4, β 3 (Z) = - β ( Z ) , />3(Z) = P(Z), β Λ + 1 ( Z ) = - β ( Z ) P Λ ( Z ) ,
P Λ + i(Z) = P(Z)PΛ(Z) + β Λ (Z). Then v'{Pn+x) > mΐ{v'{Pn)y{Pn_{))
and v'{Pn+\) > (/i + l)/2; so:

Lim f'(-P«) = Lim ̂ ' (β n ) = +oo.

Consider

i l/ Λ (JΓ, Z ) = Z + X 2 [ l + M 2 ( Z ) + P(Z)M3(Z) + ••• + Pn(Z)Mn(Z)]

+ X[MX(Z) + β 3(Z)iί/ 3(Z) + + β B (Z)M Λ (Z)] € Λ4.

As
Lim u(PnMn) = Lim u{QnMn) = +oo
«—>oo n—>oo

it follows that Limn_>ooΛfw(X,Z) exists (see Sec. I) and may be writ-
ten as: Z + X2[\ + H(Z)] + XH{{Z) with H(Z) e Ωo, u'(H) > 1.
We remark that the leading coefficient of Hχ{Z) is that of Mχ(Z);
so: HX{Z) = anZ + Σi>2dizi e Ω 2 Thus: cf2(ηξi) = D+
A2[\ + H(D)] + AH{{D) = cf2(η) = D and A2[l + H(D)] =
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-AHι(D). Let E(Z) € Ωo be such that E(Z){\ + H(Z)) = 1; hence
A2 = AS(D) with S(Z) = -Hι(Z)E(Z) = -anZ + Σi>2sizi e Ω2.
Similarly B2 = BS{D). Now

AB = AB + BC + CA- C{A + B)

= Q(D) - [P(D) -(A + B)] -(A + B)

= Q(D) - P(D) -(A + B) + 2AB + (A + B)S(D)

= 2AB + Q(D) + (A + B)(S(D) - P(D)).

Then:
AB = (A + B)[P(D) - S(D)] - Q(D). D

LEMMA 2.11. There is T{Z) = 8Z + 2A2Z
2 + £/>3 λ,Z' € Ω4, λ2 i

2U*{pt) and T(D) = 0.

Proof. From η2 = 1 + & + £; + 4 we get >/3 = 4η. Let ^i: BY -•
BU(4) and ^: 5Γ —»• BU(2) be classifying maps (respectively) for

/2 and >/; then ^ 3 is classified by: BΓ A 5Γ x £Γ ^ g 51/(4) x
5*7(2) 2* 51/(8), m2 being a map classifying y(4) ® γ(2). Then we get
w5(c/2(y(8))) = ΣAu^cψcψc^c'^c'^, with u = (uι,u2,u3,u4),
υ = (^1,^2)- The coefficients f(U>o) and y(o>υ) are given respectively by
c/2(y(4) + 7(4)) = c2 + 2c2 and c/2(4y(2))'= 6c'2 + 4c2. Thus

= c\ + 2c2 + 6c\2 + 4c2

In order to calculate cf2(η3) we must substitute cf\{η2) = P(D),
cfi{η2) = Q(D), cf3(η2) = 0, cf4(η2) = 0, c/,(>/) = P0(D), cf2(η) = D
respectively for C\, c2, c^, c$, c\, c2. Consider

E(Z) = P2(Z) + 2Q(Z) + 6P$(Z) + 4Z

+ Σ f(u

u = («i,M2,0,0), υ = (vχ,v2). Hence E(D) = cf2(η3); but as the
leading coefficients of P(Z) and β(Z) belong to 4C/*(pί)» ^ ( z ) n a s

the form: 2β(Z) + 6P0

2(Z) + 4Z + 4τZ2 + E, >3 τ(Z''. So:
2β(Z>) + 6P2(D) + 4D + 4τD2 + Σ / ^ 3 ^ 1 ' = ^C'/3) =
6cf?(η) + 4cf2(η) = 6P$(D) + 4D. Hence if T(Z) = 2β(Z) + 4τZ2 +
Σ ^ τ Z' € Ω4) then Γ(Z>) = 0. As β(Z) = 4Z + Σli>2βiZ

i, β2 £
2U*(pt), we have: T{D) = 8Z + 2λ2Z2 + E^jΛ/Z1', λ2 ^ 2U*(pt). Ώ
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THEOREM 2.12. IfM(Z) e Ω, is such that M(D) = 0, then M(Z) e
Ω,Γ(Z).

Proof. We may suppose M(Z) € Ω2/J, n e Z. If Λf(Z) = ωo +
Σi>i ω ι Z ' , then by 2.6 we have ωo = 0 and the first coefficient ω, Φ 0,
say~ct>/>0, is such that Po > 1, o>Po € W*{pt). Thus Aί(Z) = 8ω^0Z

p° +
Σ , >/»0 ω/Z1". Consider Λ/Ί(Z) = Λ/(Z) - ω'Po Z ^ " 1 T{Z) € Ω 2 n .
We have v{Mx{Z)) > v{M{Z)) and Afi(Z>)° = 0. Then MX{Z) =
$ω'PιZ

p> + Σi>Pl θi • Z\ Λ > Po. We form

M2(Z) = Afi(Z) - ω'PιZ
Pl~ι T(Z)

and then v{Mi) > u(Mχ), Mι{D) = 0. After a finite number of steps
we get Mr+ι(Z) = M(Z) - (ω^Z^- 1 + + ω'PZ^-')Γ(Z) such that
P r > PΓ_! > > Pi > PQ, v{Mn) > v{Mr) > > v{Mx) > v{M)
and Mr+\{D) = 0. Since Limr_>oo^(M-) = oo it follows that M(Z) =
(Σk>o ω'pk • Zpk~l) • T{Z) (see Sec. I). D

LEMMA 2.13. There is J(Z) = μ i Z + Σ ^ / ί / Z ' € Ωo, μx $ 2U*(pt),
such that A[2 + J{D)] - B[2 + J(D)] = 0."

Proof. We have [2](7) = 2Y + anY
2 + £ ; > 3 α ; r ; . As ̂ 2 is trivial

we have [2](A) = 0 and from A2 = AS(D) {S(Z) € Ω2) we get A" =
ASn~ι{D). C o n s i d e r Hn{X,Z) = X[2 + anS(Z) + ••• + anS"-l(Z)].
Since Limn_>0O^(5'") = oo it follows that Liτan^ooHn(X, Z) exists and
has the form X[2 + J(Z)], with

J{Z) = anS(Z) + ΣanS
n-\Z) = -a\xZ

lfμx = -a2

n we see that μx φ 2U*(pt). ΊhmA(2+J(D)) = [2](A) = 0.
Similarly B(2 + J(D)) = 0. D

LEMMA 2.14. Suppose XM{Z) + YN(Z) + E{Z) e Ω, is such that
AM(D) + BN(D) + E(D) = 0. Then the first coefficient φ 0 ofM(Z)
and the first coefficient Φ 0 ofN(Z) belong to 2U*{pt).

Proof. We may suppose XM(Z) € Ω 2 Λ , YN(Z) e Ω2«, E(Z) € Ω2/J,
n e 2. We shall give a proof in the case: 0 Φ M(Z) = apZ

p +
ap+ιZP+ι +...,apφ0,0φ N(Z) = bqZ« + bg+lZ«+l + ,bqφ0
and p < q. We observe that if s > p then A(apD

p -\ 1- ap+sD
p+s) e

j4P+2,2n-4p-2 m d consequently AM{D) e /^+2,2«-4P-2 b e c a u s e t h e

subgroups /** are closed in U*(BΓ). Similarly

A ( a p + ι D p + ι +••• + a r D r + •••)
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and consequently

+ arD
r + )e

There are similar remarks concerning BN(D). Since by hypothesis
p<qwt have 4p + 2 < 4q + 2 and /4/,+2,2/i-4p-2 D /4^+2,2«-4^-2 W e

shall denote by g the quotient map:

j4/?+2,2«-4p-2 _^ τ4p+2,2n-4p-2 / j4p+3,2n-4p-3

= [Uh(pt)/2Uh(pή] © [Uh(pt)/2Uh(pt)],

with h = 2n - 4p - 2. Then g(ΛM(Z))) = Op, αp being the image of
αp by the quotient map

Uh{pt) - Uh{pt)l2U\pt),

Uh(pt)/2Uh(pt) being the first summand.
(a) Suppose E(D) = 0.
(i) £ = #. We have g{AM{D)) = ap and g(BM(D)) = bp respec-

tively in the first and second summand of the sum [Uh(pt)/2Uh(pt)]®
[Uh(pt)/2Uh(pή]. Since AM(D)+BN(D) = 0 we have ap = 0,bp = 0
and thus ap e 2U*(pt), bp e 2U*(ρt).

(iΐ) p < q. From /4p+2,2«-4p-2 D j4p+i,2n-4P-i D j4q+2,2n-4q-2 j t

follows that g(BN(D)) = 0 and consequently ap = 0 which means
that αp e2U*(pt).

(b) Suppose E{D) φ 0.

Take £ ( Z ) = </0 + Σ/>i ^ z ' A s E(D) = -(AM(D) + BN(D)) €
U*(BΓ) we have d0 = 0. Hence:

)YdiZ\ drφQ, r>\.
i>r

If βfr = 8er,, we form

Ex{Z)=E(Z)-erχZ
r-χT{Z)

rf>r, d!

r,φ0or
i>r*

If d'r, = 8^r2 we form £ 2 (Z) = ^ i (Z) - eriZ
r'-χT{Z) and so on.

But after a finite number of steps we have EPo(Z) = Σ ί > Λ ί/Z1 and
ίΛ ^ 8U*(pt) because, if not, we would have E(Z) e £Ϊ*T{Z) and
thus E(D) = 0 which contradicts the hypothesis (b): E(D) Φ 0 (see
the proof of 2.12). Hence there is a formal power series F(Z) e Ω2^
such that F(D) = E{D) and F{Z) = Σi>h>\ UZ\ th £ SU*(pή. This
means that E(D) e J^,2n-4h a n d E ^ ^ j4h+\,2n-4h-\t
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(i) p = g9 Ah < Ap + 2 = Aq + 2.
Then: J^,2n-4h D /4Λ+1,2Λ-4Λ-1 D j4p+2,2n-4p-2 ̂  § i n c e £ ( ΰ ) =

-(AM(D)+BN(D)) we have £(£>) G /4Λ+I,2/I-4Λ-I which is impossi-
ble.

(ii) /? = #, 4/? + 2 = 4# + 2 < 4λ.
Then /4/7+2,2«-4p-2 D j4p+3,2n-4p-3 -> j4h,2n-4h a n ( j ^ j | / ( £ ) ) +

£7V(Z>) = -£(2)) G /4p+3,2π-4p-3 Consequently S, = 0, bp = 0
and thus ap e 2U*(pt), bp e 2U*(pt).

(in) p < q, Ah < Ap + 2 < Aq + 2.
T h e n J^2n~4h D j4p+2,2n-4p-2 D jAq+292n-Aq-2m F r o m E(D) =

-(^M(Z)) + BN(D)) it follows that

β(£)\ £ j4p+2,2n~4p-2 ^ τ4h+l,2n-4h-l /^- τ4h,2h-4h\

which is impossible.
(iv) /? < ^? 4/7 + 2 < 4/z < 4^ + 2 or 4/? + 2 < 4# + 2 < Ah.
We have either

τ4p+2,2n-4p-2 -^ j4p+3,2n-4p-3 -^ τ4h,2n-4h -, τ4q+2,2n-4q-2

or

τ4p+2,2n-4p-2 -. r4/?+3,2«-4/?-3 -. τ4q+2,2n-4q-2 -. j4h,2n-4h

It follows in both cases that α^ = 0 and αp e 2U*(pt). Hence
we have proved that if p < q we have ap e 2U*(pt) in both cases
E{D) = 0, E(D) φ 0. SoM(Z) = apZ*+ap+xZ?+x + - . ,ap = 2epφ0.
By 2.13 if K(X,Z) = X{2 + J(Z)) then K(A,D) = 0. We form
XM(Z)-epZPK(X,Z) = XMX(Z\ MX{Z) = ePιZ* + •-., px > p,
and we get: AMX(D) + BN(D) + E(D) = 0. If px < q we carry on the
same process and after a finite number of steps there is Mr(Z) e Λ2«_2
such that AMr(D)+BN(D)+E(D) = 0 and q < pr, pr being such that
Mr{Z) = ωPrZ

Pr + ωPr+xZ
Pr+ι + , ωPr Φ 0. Thus the argument used

is the case p < q (above) shows that bq G 2U*(pt). π

Let II the graded ideal of Λ* generated by K(X, Z) = X(2 + J(Z)) G
Λ2> K(Y,Z) = 7 (2 + /(Z)) G Λ2 and T{Z) G Ω4 (see 2.13, 2.12).

LEMMA 2.15. Let M(Z), N(Z), E(Z) be elements ofΩ* such that
AM(D) + BN(D) + E{D) = 0. Then: XM(Z) + YN(Z) + J?(Z) G

Z)Ω* + ίΓ(y?Z)Ω* + Γ(Z)Ω* c II and AM(D) =
= 0.

Proof. Suppose XM(Z) G A2n, YN{Z) G Λ2^? £(Z) G Λ2 A 2 ? Π G Z.
We shall give a proof in the case M(Z) Φ 0, N{Z) Φ 0, the other cases
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being simpler. Take P{X, Y, Z) = XM{Z) + YN(Z)+E(Z), M(Z) =
aPoZP» + aPo+ιZP<>+ι + - -,aPoφO, N(Z) = bqoZ«° + bgoZ«°+ι + •••,
bgo φ 0. By 2.14 we have aPo = 2a'Po, bgo = 2b'qo and then: P(X, Y, Z) -
(a'PΰZP°K(X,Z) + b'qaZ«>K(Y,Z)) = X[M(Z) - a'p^{2 + J(Z))] +
Y[N(Z) - b'goZ«>(2 + /(Z))] + E(Z) = XMλ{Z) + YN^Z) + E(Z)
with u(M) < v{Mχ), u(N) < u(Nχ). Moreover we have AM\{D) +
BNi (D)+E(D) = P(A, B, D) = 0. The same process can be carried out
for XM\ (Z) + YNi (Z)+E(Z) and after a finite number of operations
we get Mι(Z),M2(Z),...,Mr+ι(Z),Nι(Z),N2(Z),...,Nr+ι(Z),

P(X,Y,Z)- \(J2a'PizAκ(X,Z)+ (XXZ*)K(Y,Z)
L V

= XMr+ι(Z) + YNr+ι(Z)

with PQ = v'{M) < pi = v'{M{) < < pr+ι = v'{Mr+x), q0 =
v'(N) <qx= u'{Nx) < <qr+x= v'(Nr+ι). Take

OO CX)

ί=0 (=0

Since Limr^oou(Mr) = Limr->oou(Nr) = +oo we have Limr_>00XΛ/r(Z)
= Lim^ooYNr{Z) = 0 and there are H^Z) e Ω.*, H2(Z) e Ω* such
that: P(X, Y,Z) - [HX{Z)K(X,Z) + H2(Z)K(Y,Z)] = E{Z). Since
P(A,B,D) = K{A,D) = K{B,D) = 0 we have: E{D) = 0 and then
by 2.12 there is #3(Z) € Ω* such that E{Z) = H^Z) • T{Z). Finally
wehaveP(X, Y,Z) = Hί{Z)K(X,Z)+H2(Z)K(Y,Z) + H3{Z)T(Z) e
K(X,Z)Ω*+K(Y,Z)Ω*+T(Z)Ω* c /J andXM(Z) = HX{Z)K(X,Z),
YN{Z) = H2(Z) • K(Y,Z), E(Z) = H3(Z) • T(Z). Consequently:
AM(D) = BN{D) = E{D) = 0. D

ConsiderS(X,Z) = X2-XS(Z) e Λ4, S(Y,Z) = Y2-YS(Z) e Λ4,
R(X, Y,Z) = XY - (X + Y)(P(Z) - S{Z)) + Q(Z) € Λ4. By 2.10 we
have: S(A,D) = S(B,D) = R{A,B,D) = 0. Let ΓJ be the grade ideal
of Λ* generated by S(X, Z), S(Y, Z), R(X, Y, Z).

LEMMA 2.16. For any P{X,Y,Z) e Λ* there are M(Z), N{Z),
E{Z), elements of Ω* such that P(X,Y,Z) - [XM{Z) + YN{Z) +

Proof. From X2-XS(Z) = S{X, Z) we see that there is Mn{X, Z) e
Λ*suchthatXn-XSn-ι(Z) = S(X,Z)Mn(X,Z),n > 2,withM2(X,Z)
= 1 and Mn+ι(X,Z) = Sn-ι(Z) + XMn(X,Z), n>2.lt is easily seen
that Umn^ooviS") = Utrin^uiMn) = +00. If P(X, Y,Z) e A2m we
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can write P(X, Y,Z) = Σ%oχipi(γ>z) w i t h dimP' = 2 ( m - O W e

have XlPi{Y, Z) = XSi~l(Z)Pi(Y, Z) + S(X, Z)Mt(X,Z)Pi(Y,Z), ί >
2. From Section I and the fact that the multiplication by an element
of Λ* is continuous we see that there are H(Y,Z), H\(X, Y,Z) such
that: P(X, Y, Z) = XH{Y, Z) + S(X, Z)HX(X, Y,Z) + P0{Y, Z). Simi-
larly there are F0(Z), FX{Z), F2(Y,Z) such that H(Y,Z) = YFX{Z) +
S(Y,Z)F2(Y,Z) + F0(Z) and G0(Z), GX{Z), G2(Y,Z) such that
P0(Y,Z) = YGX{Z) + S(Y,Z)G2{Y,Z) + G0(Z). Then a straightfor-
ward calculation shows that with M{Z) = F0(Z) + FX{Z) • (P{Z) -
S(Z)), N(Z) = Gi(Z) + Fi(Z) • (P(Z) - S(Z)), E{Z) = G0(Z) -
Q{Z) • FX{Z) we get P(X, Y,Z) - [XM(Z) + YN(Z) + E(Z)] e ΓJ. D

Let /* be /£ + ΓJ.

THEOREM 2.17. The graded U*(pt)-algebra U*(BΓ) is isomorphic to
Λ*//* where I* is a graded ideal generated by six homogeneous formal
power series.

Proof. Consider the map φ: Λ* —• U*{BT) of graded U*{pt)-dλgebτa.s
such that φ{X) = A, φ(Y) = B, φ{Z) = D. By Theorem 2.5 φ is sur-
jective and by Lemmas 2.15, 2.16 φ is injective. D

REMARKS. (1) Consider the involution h: Λ* —• Λ* such that h (Y) —
X, h(X) = Y,_H{Z) = Z. We have h(h) = h and thus there is an
isomorphism Έ of graded U*(pt)-algebras: U*(BΓ) -* U*(BΓ) such

Έ(A) = B, h(B) = A, h(D) = D. Consequently Ϋ = Id.
(2) If q: Έ2 c Γ denotes the canonical inclusion, then (Bq)*: U*{BT)

—• U*(B12) is neither injective nor surjective.
An important and easy consequences of Theorem 2.12 and Lemma

2.15 is the following theorem which gives the structure of U*(pt)[[D]]-
module of U*(BΓ).

THEOREM 2.18. (a) As graded U*(pt)-algebras we have.

U*(pt)[[D]]~Ω*/(T(Z)).

(b) As graded U*{pt)[[D]]-modules we have. U*(BΓ) ~ U*(pt)[[D]]
®U*(pt)[[D]]A θ U*(pt)[[D]]. B and: A and B have the same annihi-
lator

(2 + J(D))U*(pt)[[D]]. a

III. Computation of U*(BΓk), k>4. The group Γj., k > 4, is gener-
ated by u, v, subject to the following relations uι = v2, uvu = v,
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t = 2k-\ \Tk\ = 2k. We have H°(BΓk) = Z, H^{BTk) = Z2*,
/? > 0, /J 4^+ 2 = Z2 Θ I2,p > 0, H2P+ι{BTk) = 0, /? > 0. Furthermore
if di, {fli,&i} are generators of respectively H4(BΓk) and H2(BΓk),
then rff, {aid^bidf} are generators of respectively H4p(BΓk) and
H4p+2(BΓk),p > 0 (see [5]). The irreducible unitary representations
of Γ* are 1: u -+ 1, t> -+ 1, &: w -> 1, v -> - 1 , ζ2: u -* - 1 ? i; -> 1,

and ω a primitive l ^ ' ^ h root of unity (see [6]).
The relations between the irreducible unitary representations of Γ^

are as follows: ξ\ = ξ\ = ξ\ = 1, ζx ξ2 = ^ 3 ? 6^3 = £i, ^3 ί i =
ξι\ if we introduce ηo = 1 + ί i , /̂2it-2 = £2 + ^3, then we can define
7/5,s G Z, by the relations η2k-i+r = r\jk-i_r,r\r = f7_r and we have:
ηr. ηs = ηr+s + A/r_5? r el, s el (see [10]). As in Section II we shall
be working with Ak = cfifa) e U2(BΓk), Bk = cfx(ζ2) e U2{BYkl
Ck = cfι(ξ3) e U2(BΓk), Dk = cf2(m) e U\BTk). We have as in 2.5
with U*(pt)[[Dk]] = {R(Dk),R e Ω*}:

THEOREM 3.1. U*(BΓk) is concentrated in even dimensions and as
a module over U*(pt)[[Dk]], U*{BTk) is generated by 1, Bki Ck. Ώ

The following proposition is proved in the same way as 2.8 and 2.6,
Po{Z) being the formal power series of 2.8:

PROPOSITION 3.2. (a) We have cf\{r\\) = P0(Dk).

(b) IfH(Z) = Σi>o aiZ1 e Ω2n is such that H(Dk) = 0, then a0 = 0

and the leading coefficient ofH(Z) belongs to 2kU*(pt). π

LEMMA 3.3. For each n el there is a polynomial P2n+\(X) e 1[X]
such that P2n+ι(0) = 0, P 2 π + 1(2) = 2, P2n+ι(m) = ηln+ι.

Proof. Since r\-r = ηr, we may suppose n > 0. Then the as-
sertion is evidently true if n = 0 with P\{X) = X. Suppose that
there are polynomials P2i+χ(X) e 1[X], 0 < / < n - 1? such that
Pii+dm) = nn+u PIM(0) = 0 and ^21+1(2) = 2. Then ηjP2n-ι(m) =
n\nin-\ = (m+m)i2n-\ = ^2«+i+2^/2n-i+^2n-3. Hence if P2n+ι(X) =
(X2 - 2)P2n-χ{X) - P2n-i{X) we have P2n+x{X) e 1\X\ P2n+ι(0) = 0,
P2n+i(2) = 2 and P2n+i(m) =
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In the sequel we shall consider the sequence P2n+\, n > 0, deter-
mined by Pi(X) = X, P3{X) = X3-3X and the relation

(X2 - 2)P2n-ι{X) - Pm

If P(X) e 1[X] we shall denote by P the derivatives of P.

PROPOSITION 3.4. Ifζ is a complex vector bundle over BTk such that
ζ = P(ηχ) where P e T[X], P(0) = 0, then there is a formal power series
P(2)Z + Σ/>2 δiZ1 e Ω4 such that cf2(ξ) = P(2)Dk + £ z >2 ̂ [

Proof. For each q > 1 the complex bundle η\ is classified by the

composite: Γ* A (BTkγ
 X-^g {BU{2)Y Ώ 5t/(2«) where Δ is the di-

agonal map, # a map classifying r\\ and m^ a map classifying ®^ y(2).

We have U*(BU(2)«) = ̂ ( p ί ) ^ ! 0 , 4 ^ ' c!2 ) ' 42 ) ' - ί ]> 4^11 w h e r e

c^ , A: = 1 or A: = 2, is the image of a\ ® a2- - ® aq, a\ — a2 —
• = fl/-i = 1, a, = c/^(y(2)) (fc = 1 or Λ: = 2), α/+1 = = aq =
1, by the canonical product ®qU*(BU(2)) -• U*(BU(2«)). Then
m*(c/2K2^)) = E fluM0)^ ( c ^ ) ^ • ( c i * ^ (c¥Y;\ If we sub-
stitute Z for c^ and Po(^) f°Γ c[ι\ / = 1,2,..., ̂ , we have a formal
power series Rq{Z) e Ω4 such that Rq(Dk) = cf2(tf). If {p/} denotes
the base point of BU{2) and fc, the inclusion:

x {p, +1> x - x W c (BU{2)f,

we see that k* o wj(c/2(y(2«))) = c/2(2«-1y(2)) = 2«-1c/2(y(2)) +
2«-2(2«-i - l)c/,2(y(2)). Consequently Rq(Z) = q2«-ιZ + Σi>2εizi

Similarly there are formal powers series Hi (Z) e Ω2, HS{Z) e Ω25, ί >
3, such that H\(Dk) = cf\{η\) and Hs{Dk) = cfs{η\), s > 3; we have
v'[Hx) > 1, i/'(/ζ) > 2, 5 > 3. (We recall that v'(P(Z)) = \vP{Z).) It
follows that if ζ = Σw=i m/'/{> mi ^ 0, there is a formal power series
J/(Z) € Ω4 such that ^(D fe) = cf2(ζ) and i/(Z) = (Σr

i=ι imi2
ί-χ)Z +

Σi>2 ε'jZ'. Now suppose that ζ is a complex vector bundle such that
ζ = Σr

i=ι mrf\ - Σ / = 1 n,7/j, m, > 0, n, > 0. The above remarks show
that

with d = 2/=i m ' 7/i ' 2̂ = Σ/=i «i'/ί. Mu M2, M[, M'2 being elements
of Ω* such that v'{Mx) > 1, v'{M[) > 1, i/'(Af2) > 2, i/'(Af̂ ) >
2. It follows that cf2(ζ) = M(Dk), with M(Z) € Ω4 and Af(Z) =
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t if P(X) = X)J=1 rm
/ w e s e e t h a t M(z) = p'(2)z + Σi>2δizi>

being the derivative of P{X). •

LEMMA 3.5. There is a formal power series

Qγ{Z) = (1 + 22n(n + 1))Z + £ # Z < € Ω4

= cf2(η2n+\)

Proof. Since ^2«+i = Pm+iiηi) with P2«+i € 2[X], P2n+ι(0) = 0,
then by 3.4 it is enough to prove that i2n+i(2) = ι + 2 2 " ( " + L)
This assertion is true when n = 0 because Pi(X) = X. Suppose that
i»/ + 1(2) = l+2 2 /(i+l), 0 < i < n-1. Wehavei»2B+i = {X2-2)P2n.x-
P 2 n_ 3 and then P'2n+λ{2) = 22P2n-ι{2) + 2P'ln_γ{2) - P'2n_^2) = 2 3 +
2 [ l + 2 2 ( n - l ) r t ] - [ l + 2 2 ( n - 2 ) ( n - l ) ] = l + 2 2 n ( n + l ) (P2«-i(2) = 2
by 3.3). Hence the lemma has been proved. D

In Lemma 3.5 the coefficients β\ depend on n; however we have
chosen not to complicate the notation.

PROPOSITION 3.6. There is a formal power series

Tk(Z) = 2kZ + 2k-2λ'2Z
2 + 2*-3Λ'3Z

3

+ + 2λ'k_ιZ
k-1 + Σλ'iZ* € Ω4,

with λ'2 $ 2U*(pή, such thai Tk(Dk) = 0. Moreover ifR(Z) € Ω* and
R{Dk) = 0 then R(Z) e Tk(Z)Ω*.

Proof. From 3.5 there is a formal power series

β,(Z) = [1+ 22(2*-3 - 2)(2*-3 -

such that Qx{Dk) = c/ 2 (^-2- 3 ) We have 1 +2 2 (2*- 3 -2 )(2 f c - 3 -1 ) =
- 3 2*-1. Now

and consequently if P(X) = (X2-3)iJ

2*-2_1, we have P e 1[X], P(0) =
0 and P(vi) = >/2*-2-3 Then from 3.4 there is a formal power series
β 2(Z) = P'(2)+Σi>2 βfZ1 € Ω4 such that Q2(Dk) = c/ 2 (^- 2 _ 3 ) . We
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have P'{2) = 2 2 P 2 ^_i(2) + /^_2_,(2) = 2 3 + \+22{2k~3 -

- 2 * - 1 . Hence

0 = & ( £ * ) - & ( * > * )
= [9 + 2 2*- 4 - 2*-1 - (9 + 22k~4 - 3 2fc

Then if Tk(Z) = 2kZ + £\> 2 μ\Zι e Ω4 then we have 0 = Tk(Dk). By
3.2 and a proof similar to that of 2.12, Section II, if R{Z) e Ω* is such
that R{Dk) = 0 then R{Z) e Tk(Z)Ω*. Now we want to show that
μf

2 = 2k~2λ2, λ2 φ. 2U*(pt), μ'3 = 2k~3λf

3,.. ^μ'k_x = 2A^_r Instead of
T$(Z) we take the formal power series T(Z) defined in Section II (see
2.11). We recall that T(Z) = 2 3 Z + 2λ2Z

2 + £/> 3 λ{Z\ λ2 £ 2U*(pt).
Hence if k = 3 the assertion concerning the coefficients of Tk(Z) is
true. Suppose that

Tk(Z) = 2kZ + 2k-2λf

2Z
2 + 2k-3λ'3Z

3

+ + 2λ'k_xZ
k-χ +Σλ'iZ

i

9 λ'2 φ 2l/*(pί).

Consider the inclusion

ik+i: ^ = {{u2)mv\ n = 0,1, 0 < m < 2k~ι - 1} c Γ^+1

= {umυn, n = 0,1, 0 < m < 2k - 1}.

It is easily seen that {Bik+ι)*(Dk+ι) = Dk. We have: Tk+\{Z) =
2k+ιZ + Σi>2μ"Zi and Tk+x(Dk+ι) = 0. It follows that Tk+ι(Dk) = 0
and consequently there is an element af

0 + a\Z + a!2Z
2 -\ GΩQ such

that:

Σ α ' Z

Then α'o = 2; μ'{ = 2ka\ + 2k-2λ'2ά0 = 2k-ι[2a\ + λ'2] - 2k-χλ2',X2

l £
2U*(pt); if2<i<kwe have:

μ'l = 2ka'i_ι + 2k-2λ'2a'i_2 + 2k^λ'ia'i^ + ••• + l^λ'^Q = 2{ k+x^iλ"i.

Hence the proposition has been proved. D
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Suppose k > 4; the inclusions ik: Tk-\ C Γk and j ^ Γ c Γk are
given respectively by {{u2)mvn, 0 < m < 2k~2 - 1, n = 0,1} c
{umvn, 0 < m < 2k~ι - 1, n = 0,1} and j k = ik o • • • o i4; Γk is
normal in Γk+ι and Γ^/Γ^. = {1,17} ~ Z2; if qk: Tk -> Γλ is the
conjugation by u e Γk+i - Γk then qk{u2) = u2, qk(υ) = ^ ( M 2 ) " 1 . Let
fk: BTk - BΓjfc.j, &: BT -> 5 ^ , ΛΛ: 5 ^ - , 5 ^ be respectively

fc, Bjk and

LEMMA 3.7. Suppose k>4.
(a) # ( 4 t ) = Ak.lt fi{Bk) = 0, /*(Q) = Ak-t, fi(Dk) = Dk_x.
(b) g*k(Ak) = A, g*k{Bk) = 0, g*k{Ck) = Λ g*k{Dk) = D.
(c) Λ J ( ^ ) = Ak, h*k(Bk) = Ck, h*k{Ck) = Bk.

Proof. The proof is easy; for example fk{Ak) = Ak_ι because ik :
-R(Γjt) —»• i?(Γfc_i) maps ξ\ to the similar representation: u2 —>• 1,
•υ —> — 1. (i?(Γ^) and i?(Γ^_1) denote the representation rings). •

The role played by A, B, C in Section II was symmetrical. Unfor-
tunately this is not the case for Ak, Bk, Ck (k > 4) as we shall see in
the forthcoming propositions. We recall that there are formal power
series S(Z) € Ω2, J{Z) e Ωo such that A2 = AS{D), B2 = BS{D),
C2 = CS(D), A(2 + J{D)) = B(2 + J{D)) = C{2 + J{D)) = 0 (see
2.10,2.13).

The formal power series S(Z), J(Z) will play an important role in
the calculations ahead.

PROPOSITION 3.8. Suppose k>4.
(a) AkBkCk = 0.
(b)Ak(2 + J(Dk)) = 0.
(c) There are Ek e Ω2, Fk € Ω4 such that Ak = Bk + Ck- Ek{Dk),

BkCk=Fk(Dk).

Proof, (a) The relation AkBkCk = 0 is proved in exactly the same
way as in 2.9(b).

(b) By 3.1 there are H0(Z) € Ω2, HX{Z) e Ω2, H2(Z) e Ω4 such
that: B2

+ι = Bk+ιH0(Dk+ι)+Ck+ι(Dk+ι)+H2(Dk+ι). By 3.7(c) we get
q2

+ 1 = Ck+iH0(Dk+ι)+Bk+iHι(Dk+ί)+H2{Dk+i) and C2

+ι -B2

+ι =
(Q+i - Bk+ι)Hi(Dk+ι) with Hz = HQ-H{e Ω2. By using 3.7(a)
we see that: A\ = Ak H^{Dk); as in 2.13 the relation cf\(ξ2) =
0 shows that there is J\{Z) e Ωo depending on H^{Z) such that
Ak(2 + Jι(Dk)) = 0 and by 3.7(b) we get A(2 + Jι(D)) = 0; so there is
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H4(Z) € Ωo, v'(H4) > 1 such that 2 + JX(Z) = (2 + /(Z))(l +H4(Z))
(see 2.15) and consequently 2 + J(Z) = (2 + JX(Z))H5(Z),
H5(Z) € Ωo being such that: (1 + H4{Z)){\ + H5{Z)) = 1. Hence
Ak(2 + J(Dk)) = 0.

(c) By using the relations ηrηs = ηr+s+ηr-s, r e Z, 5 € Z, η0 = \+ξι,
t\ik-2 = ξ2 +£3, then a straightforward calculation shows that there is a
polynomial -Rm[X] € Z[X] such that Rm(0) = 0 and η2m = -Km(>?i)+*7o>
2 < m < k - 2; in fact i?m(X) is determined by R2{X) = X4 - 4X,
Rm(X) = R1

m_ϊ{X) + ARm.ι{X)\ so: & + & = *2^ = Rk-iim) + m =
Rk-2{*lι) + 1 +£i T n e n t n e proof of 3.4 shows that there are Ek(Z) e
Ω2, Fk(Z) € Ω4 such that: Bk + Ck = cfι(Rk_2(ηι)) + Ak = Ek(Dk) +
Ak and BkCk = AkEk{Dk) + cf2{Rk_2{ηx)) = AkEk{Dk) + Fk{Dk). As
0 = AEk{D)+Fk{D) by 3.7(b) we see that Ek{Z) e (2 + J(Z))Ω» and
consequently -δ^Q = Fk{D) since ^4 (̂2 + J{Dk)) = 0. Hence (c) is
proved. •

PROPOSITION 3.9. Suppose k>4.
(a) There is M(Z) e Ω2 such that: Bk(2 + J{Dk)) + M(Dk) =

Q ( 2 + J{Dk)) + M(Dk) = 0 αnβ? j»f (Z)Λ) φ 0.
(b) Γ A ^ is N(Z) e Ω4, 5«cA ί/w/: B\ = BkS(Dk) + N(Dk), C\ =

QS'φ/t) + ΛΓ(Z>Λ) and N(Dk) φ 0.
(c) There are Gk(Z) e Q2, Lk(Z) e Ω4 the coefficients of which can

be computed from those of J(Z), S(Z), Ek{Z), Fk(Z) and satisfying
Gk{Dk) = M(Dk), Lk{Dk) = N{Dk).

Proof, (a) As in 3.1 there are Hγ{Z) e Ω2, K0(Z) e Ω2, KX{Z) € Ω4

such that: B\ = BkHx(Dk) +AkK0{Dk) + Kx{Dk); hence: AK0(D) = 0
which imply by 2.15 that K0(Z) e (2+/(Z))Ω*; so: Bl = BkH{(Dk) +
Kι(Dk) because Λλ(2 + /(/>*)) = 0 by 3.8(b). We have B£+1 =
BkHn{Dk) + Kn{Dk) with jyΛ(Z) G Ω2n, ΛΓB(Z) € Ω 2 n + 2 satisfying:
Hn(Z) = //,(Z)i/«_1(Z) + ϋ:n_1(Z),Jfi:n(Z) = ^ ( z ^ . ^ z ) , n >
2. It follows easily that Limn^oo !/(//„) = Lim^^oo^i^) = +00; as
c/i (if) = 0 we have 2Bk + E«>2 anB

n

k = 0 with αB = Σi+j=n aih the
Λ/y> i> 1> 7 > 1> being the coefficients of the formal group law. A proof
similar to that of 2.13 shows that there are P\{Z) e Ωo, PiiZ) e Ω2,
v'{P\) > 1, v'W > 1 such that Bk(2 + Pχ(Dk)) + P2(Dk) = 0; by
3.7(a) we have Q ( 2 + Pι(Dk)) + P2(Dk) = 0; hence A(2 + P^D)) = 0
and as a direct consequence of 2.15 there is Pτ,(Z) € Ωo such that
2 + J(Z) = (2 + Px{Z))Pi{Z) and then: Bk{2 + J{Dk)) + M{Dk) =
Ck(2 + J{Dk)) + M{Dk) = 0 with M(Z) = P2(Z). P3(Z) € Ω2. Sup-
pose M(Dk) = 0; then Bk(2 + J{Dk)) = Q ( 2 + J{Dk)) = 0; from
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3.8(c) we have A\ = Ak{Bk + Ck) - ΛkEk(Dk) and consequently
AEk{D) = 0; so Ek{Z) € (2 + /(Z))Ω* and A\ = (Bk + Ck)

2. Let
θ: MU —• K being the canonical map between spectra; θ sends Eu-
ler classes to Euler classes; the relation A2, = (Bk + Ck)

2 becomes by
using θ: 1 + ξx - ξ2 - £3 = 0 in K°(BTk) which is impossible since
1 Hi -£2-£3 Φ 0 in R(Γk) (the canonical map from R(Γk) to K°(BΓk)
is injective). Hence M(Dk) Φ 0.

(b) We have seen in (a) that B\ = BkHx{Dk) + Kx{Dk); so: C\ =
CkHx{Dk) + Kx{Dk) and: A2 = AHX(D) + KX(D) = AS(D); then
A[HX(D) - S(D)] + Kι(D) = 0 and there is S0{Z) e Ω2 such that
HX{Z) = S(Z) + (2 + J(Z))S0(Z); consequently: B\ = BkS{Dk) -
M(Dk)S0(Dk) + K,{Dk) = BkS(Dk) + N(Dk) with: N(Z) = KX{Z) -
M(Z)SQ(Z) e Ω4; by 3.7(c) C2 = CkS(Dk) + N(Dk). If N(Dk) = 0
then as in 2.13 we would have Ck(2+ J{Dk)) = 0 and then M(Dk) - 0
which is false by (a). Hence: N(Dk) Φ 0.

(c) We need to show first that Tk(Z) φ. 2Ω* (Γ3(Z) = T{Z) and
Tk(Z) are defined respectively in 2.11 and 3.6). Suppose k = 3; from
AB + BC + CA = Q(D) and A(2 + J(D)) = 5(2 + J{D)) = 0 (see 2.9
and 2.13) we get (2 + /(£>)) Q(Z>) = 0; so:

( 2 + / ( Z ) ) ( 2 ( Z ) = ( 2 + μxZ + μ2Z
2 + ••• ) ( 4 Z + β2Z

2 + β3Z
3 + •••)

= 8 Z + (2β2 + 4μ)Z2 + (2β3 + μιβ2 + 4μ2)Z3

hence T{Z) φ 2Ω* since μxβ2 $ 2U*{pί) (see 2.9 and 2.13). Sup-
pose that Ti(Z) <£ 2Ω«, 3 < i < k - 1, and Tk(Z) e 2Ω*; as Ak =
Bk + Ck-Ek{Dk) (see 3.8(c)) we have Ek{Dk_{) = 0 and then Ek(Z) e
Γ A _,(Z)α; from Tk(Z) e η t_1(Z)Ω,, Γfc(Z) € 2Ω, and Tk_x(Z) <£
2Ω* it follows easily that 2Tk_x{Dk) = 0; consequently 2Ek(Dk) = 0
and 2Ak = 2(Bk + Ck) which is impossible (it can be seen by us-
ing θ: MU -> K as in (a)). Hence Tk(Z) <£ 2Ω*, k > 3. Let
q: Ω* -> Ω*/2Ω* = (C/*(/7ί)/2t/*(pθ)[[z]] be the canonical projec-
tion and Λ(Z) the image of i?(Z) by q. Now it follows easily from
3.8(c) and (a) that: 2M(Dk) + Ek(Dk)(2 + J{Dk)) = 0 and then
2M{Z) + Ek{Z)(2 + J{Z)) = T^Z) • H(Z), H(Z) e Ω,. Hence
E_k(Z) • J(Z) = Tk(Z) • H(Z); as Tk(Z) φ 0 the formal power series
Ή(Z) is unique and its coefficients which belong to U*(pt)/2U*{pt) =
22[xx,xx,...] (\XJ\ = -2i) are computable from those of Ek, J and
Tk; if Ή(Z) = ΣdiZ1, dt Φ 0, then there is a unique element
et € 2[xx,...,xn,...] = U*{pt) whose coefficients as a polynomial
in xx,...,xn,..., are odd and such that e, = ύf, ; it follows that
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Ek(Z)(2+J(Z))-Tk(Z)-(ΣeiZ') = -2Gk{Z) and Gk(Dk) = M(Dk).
The same method can be used to determine Lk(Z) by considering the
relation 2N(Dk) = ££(£>*) - Ek{Dk)S{Dk) - 2F(Dk) which is an easy
consequence of (b) and 3.8(c). D

Let /* be the graded ideal of Λ* generated by the homogeneous
formal power series Gk(X, Z) = X{2+J(Z))+Gk{Z) e Λ2, Gk(Y, Z) =
7(2 + J(Z)) + Gk{Z) € A2, Tk(Z) e Λ4 (see 3.6 and 3.9) and Ϊ'J the
graded ideal of Λ* generated by the homogeneous formal power series
Lk(X,Z) = X2- XS{Z) - Lk{Z) G Λ4, Lk(Y,Z) = Y2 - YS(Z) -
Lk(Z) e Λ4, XY-Fk(Z) G Λ2 (see 3.8(c) and 3.9). The proofs of the
following lemmas are quite similar to those of 2.15, 2.16 and will be
omitted.

LEMMA 3.10. IfHχ{Z), H2{Z), H${Z) are elements o/Ω* such that
BkHx{Dk)+CkH2{Dk)+Hi{Dk) = 0 thenXHι(Z)+YH2(Z)+H3(Z) e
Gk(X,Z)Ω* + Gk(Y,Z)Ω. + Tk(Z)Ω* c ϊ[. D

LEMMA 3.11. For any P(X,Y,Z) e Λ* there are H{{Z), H2(Z),
Hι(Z) elements ofΩ* such that P(X, Y,Z) - [XHX(Z) + YH2(Z) +
H3(Z)]eP;. Ώ

As a direct consequence of 3.10, 3.11 we get our main theorem
where /* = ϊ[ + ϊ'l (see the proof of 2.17).

THEOREM 3.12. The graded U*(pt)-algebra U*(BΓk) is isomorphic
to Λ*//* where /* is a graded ideal o/Λ* generated by six homogeneous
formal power series. D

REMARK. The homomorphism fk* induced by the inclusion Γ ^ c
Tk (see 3.7) is such that fk(Bk) = 0,

fk{Ck) = Bic-i + Q _ ! -E k_,(D k^){E k_ x{D k_ x) φ 0),

f*(Dk) = Dk_x if k > 5 (see 3.8). But f*4{BA) = 0, f*(C4) = P(D) -
(B + C), P(D) φ 0 (see 2.9, 2.6), /4*(£>4) = D.

Let U*(pt)[[Dk]] be {R(Dk),R(Z) e Ω*}.

THEOREM 3.13. (a) U*(pt)[[Dk]] ~ Ω,/(ΓΛ) as graded U*(pt)-
algebras.

(b) U*{BΓk) is generated by 1, Ak, Bk as a U*(pt)[[Dk]]-module.
Moreover ifVk = U*(pt)[[Dk]] then:

vk n vkBk = vkn vkck = vkBk n vkck = Gk{Dk) • vk.
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Proof. The assertion (a) is a consequence of 3.6; the first part of (b)
is proven in 3.1 and the second part is a consequence of 3.10. D

Now we are going to alter Bk, Ck in order to improve 3.13(b).
From Bk(2 + J(Dk)) + Gk{Dk) = 0 it follows easily that Gk(D) = 0;
so AGk(D) = 0 and Gk(Z) = (2 + J{Z))Ok{Z\ G'k{Z) e Ω2; hence

(Bk + σk(Dk))(2 + J(Dk)) = (Ck + G'k(Dk))(2 + J(Dk)) = 0.

Furthermore if μ: U*(BTk) —• H*(BΓk) is the edge homomorphism
(in connection with the £/*-AHSS for BΓk) then μ{Bk + Gf

k(Dk)) =
μ(Bk), μ(Ck + G'k{Dk)) = μ(Ck). This remark and Lemma 3.10 allow
the following rearrangement of Theorem 3.13 with Bk = Bk + Gk(Dk),
Ck = Ck + G'k(Dk).

THEOREM 3.14. (a) U*(pή[[Dk]] ~ Ω*/(7*) as graded U*(pt)-
algebras.

(b) As graded U*(pt)[[Dk]]-modules we have:

U*(BΓk) ~ U\pt)[[Dk}} θ U*(pt)[[Dk]] Έfk φ U*(pt)[[Dk]] Ck

and Bf

k, Ck have the same annihilator (2 + J{Dk)) U*(pt)[[Dk]]. π

Appendix.
(A) Calculation ofU*{Bϊm) by a new method. The method used in

the case G = Γk applies more simply in the case G = Z m . Let w be
exp(2//m) and p the irreducible unitary representation of lm defined
by p(q) = wq-> Ά £ 2 m . Let η be the complex vector bundle over B2m

corresponding to p and Dx = e(η) = c/i(^/) G U2(BIm).
Let Λ;

+ be C/*(/7θ[[zl]? graded by taking dim Z = 2. There is a topol-
ogy on Λ' 2 Λ, « > 0, defined by the subgroups Jr = {P e A!2n,v{P) >
r}, with i/(P) = 25 if P{Z) = asZ

s + as+λZ
s+x + ••• ,as φ 0; Λ'2π

is complete and Hausdorff. Furthermore, U2n(B2m) is topologized
by the subgroups Jr>2n~r induced by the C/*-AHSS for BΈm, taken
as a system of neighbourhoods of 0. The group U2n(Blm) is com-
plete and Hausdorff because the C/*-AHSS for BΊLm collapses. More-
over there is a unique continuous homomorphism of graded U*(pt)
algebras φ': Λ* —• U*(Blm) such that φ'(Z) = D\ and φ1 is surjective
(see Sections I and II).

The complex vector bundle ηm is trivial (dim ηm = 1) because pm =
1. Hence cfx{ηm) = 0. If m 0 denotes a map: BU(l)m -+ BU{\)
classifying 0 m γ{ 1) (γ(1) being a universal complex vector bundle over
BU(l)) and if cx = cf{(γ(l)) then:

= Σ a ( u ) e ι l e 2 2 '-eUm, u = (MI, . . . ,w



UNITARY COBORDISM 97

U\ > 0,...,um > 0, βi being the image of a\ ® a2 ® ® αm with
#1 = a2 = - Λ/-1 = 1, Λ/ = ci, Λ/+i = = am = 1, by the product:
(g)m C/*(5C/(1)) -> UBU{\)m). The vector bundle ^ w is classified by
the composite:

d being the diagonal map and g a map classifying η. It follows that
if T(Z) = Eβ(«)Z M l + " 2 + "M" e Λ'2? we have Γ^/K^/)) = Γ(^(ι/)) =
T{DX) = 0. It is easily seen that Γ(Z) = [m](Z).

THEOREM A.I. U*(B2m) ~ MJ([m]{Z)) as graded U*(pt)-algebras.

Proof. Let /* be ([m](Z)). The homomorphism φ': K -* U*(BZm)
of graded ί7*(/?ί)-algebras, defined above, is surjective; moreover φ'{L)
= 0. Hence φ' gives rise to a homomorphism of graded U*(pή-
algebras ψ: MJh -+ U*(Blm). Let P(Z) be any element of M2n

(n > 0) such that P(D{) = 0; if P(Z) = a0 + ^ Z + a2Z
2 + , then

α0 = 0 because α0 = -(fliA + a2D\ + ) e U*(Blm) n ί/*(pί) = 0.
It follows that P(Z) = α Λ Z ^ + ̂ 0 + 1 Z ^ + 1 + • , with /?0 > 1, aPo φ 0.
We have

since this group is closed in U2n(B2m), it follows that

oo

a i

Let Λ1 be the quotient map:

j2po,2(n-po) _^ j2po,2(n-po)/j2po+l,2(n-po)-\

= H2p°(Blm)

(H2po(Blm) = 2m because p 0 > 1) It follows from s(P(Dx)) = 0 that
a* = ^ 4 o W e f o r m ^ i ( z ) = P(Z) -f l^ZΛ-iΓ(Z); then PX{DX) = 0
and v(P\) > v(P) We repeat the same process, and there is an element
Pr+ι(Z) e Af

2n, r > 1, such that

PΓ + 1(Z) = P(Z) - « Z ^ - i + ^ Z ^ - 1 + + a'pZ
p'-ι)T{Z)

with the properties: Pr+χ(D{) — 0, v(Pr+{) = p r + i > pr-' > Pi >
Po. Hence limr_^ooZ/(Pr+i) = +oc and by Sec. I we have P(Z) =
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(Σ,ΐίoaPiZP'~l)τ(z) e hn* It follows that ψ is injective and the
theorem has been proved. D

Note. P. S. Landweber has proved a similar result by using other
methods (see [13]).

(B) Calculation ofU*(BSU(n)). Particular case n = 2: SU(2) =
Sp(l). Consider the S1-bundle U(n)/SU(n) = Sι -> BSU(n) Λ
BU(n), n > 2, p = Bi with i: SU(n) c t/(n); let <* be the complex
vector bundle E = BSU(n) xSι C Λ BU(n), where S 1 acts on C by the
multiplication in C. If Eo = E - j(BU(n))9 j being the zero-section
of ξ9 then we have the Gysin exact sequence (see [4]):

)) e^ Ui+2(BU(n)) ^ Ui+2(E0)

where π 0 denotes π|£Ό The map g: BSU(n) —̂  £Ό defined by g(x) =
[x? 1] is an embedding; take Ef = g(BSU(n))9 f the inclusion: E' c
2?o a n d h: EQ -> Ef the map defined by Λ[x,z] = [xz/\z\, 1]; then by
using h and the homotopy H: EQ x I —• £Ό given by //([x, z], ί) =
[x, ίz + (1 - t)z/\z\] we see that E' is a strong deformation retract of
EQ; it is easily seen that π' o h = TΓQ and π' o g = p with π' = π|-E;, ^
being considered as a homeomorphism: BSU{ή) -^ g(BSU(n)). So:
KQ = h* o g*~ι op* and since Λ* o ̂ * - 1 is an isomoφhism the above
exact sequence gives the following one:

> U\BU(n)) 'eM] Ui+2(BU(n)) ^ Ui+2(BSU{n))

Consider the canonical map of ring spectra / : MU —• // (see [1]);
/ # (-) maps Euler classes to Euler classes. Suppose e(ξ) = 0; then
/#(-)(e(<^)) = 0, which means that the Euler class of ξ for H is
0. From the Gysin exact sequence of ξ for H it follows easily that
H2(BU(n)) - H2(BSU(n)) which is impossible since H2(BU(n)) φ 0
and H2{BSU(n)) = 0 (see [12], page 237). Hence e(ξ) φ 0 and the
map - e(ξ) is injective. Consequently the sequence:

0 -> U2i(BU(n)) '*$ U2i+2{BU(n)) £ U2i+2{BSU{n)) - 0

is exact and U2M(BSU{n)) = 0, i > 0. So we have:

THEOREM B.I. ίFe Aαve U2M(BSU(n)) = 0, / > 0,
induces an isomorphism:

U2M{BU{n))le{ξ)U2i{BU{n)) - U2i+2{BSU(n)), i e 1.
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Now let (gij) be a set of transition functions for a universal U(n)-
bundle: EU(n) —> BU(n). If g/y denotes the image of gij by the
quotient map q: U(n) —> U(n)/SU(n) — 5 1 then (g^ ) is a set of
transition functions for ξ\ from #(#//) = det(gv/) and dim^ = 1, it
follows that ξ is isomorphic to the complex vector bundle Anγ(n),γ(n)
being a universal vector bundle over BU(n). Hence:

THEOREM B.2.

U2i+2(BU{n))/e(Anγ(n)) U2i{BU(n)) ~ U2i+2(BSU{n)).

and U2M{BSU(n)) = 0, i > 0. D

Particular Case n = 2; 5/7(1) = 517(2). By Section II we have
C/*(55p(l)) = U*(BSU(2)) = C/*(pί)[[Πl, with F = c/2(0), 0 being
a universal 5/?(l)-vector bundle over 55(1), regarded as a ϊ7(2)-vector
bundle. Then cf{(θ) = P o (^) = Σ ~ i *i*"" ^ U2(BSU(2)). If p de-
notes the projection: BSU{2) —• BU{2), we have seen that the fol-
lowing sequence is exact: 0 -> U2i(BU(2)) 'e{Aϊl{2)) U2i+2{BU(2)) ^
U2i+2(BSU(2)) -> 0. We wish to calculate the coefficients 6/? / > 1.
The 5/7(1 )-vector bundle 0 considered as a 5ϊ7(2)-vector-bundle is a
universal 5ί7(2)-vector-bundle over BSU(2) isomorphic to p*(γ(2))
as a complex vector bundle. We have U*(BU(2)) — U*(pt)[[cι,C2]].
cx — c/i(y(2)), C2 = ^Λ(y(2)) and consequently

It follows that: cx - ^,->i */4 = ^(Λ2?(2)) H(cί,c2) with H(dc2) e
U°(BU(2)).

Let fc: 5t/( l) x BC/(1) -»• 51/(2) be a map classifying y(l) x y(l).
Hence A:*(Λ2y(2)) = y(l) ® y(l) and fc*(e(Λ2y(2))) = F(X, 7), the
formal group law. Then k*(c\ -Σi>ι bi4) = F(x> Y)k*(H(cι,c2)); as
k*(c{) = X + Y and A:*(c2) = XY we get:

X + Y - Σ bi(XYY = F(X, Y)G(X, Y) e

If i(ΛΓ) = [—1](ΛΓ) then we have:
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This relation determines completely the coefficients bu i > 1; for ex-
ample b\ = —an, b2 = 0ii#n#21 - #22 the α, 7 being the coefficients
of the group law.

(C) Ring Structure ofH*(BΓk),k > 3. M. Atiyah has determined
the ring-structure of H*(BΓ$) by using AΓ-theory (see [2]); namely
H*(BΓi) = Z[x9y,z] subject to the relations xy — 4z, 2x = 2y =
x2 = y2 — Sz = 0, d im* = 2, dimy = 2, dimz = 4. We want to give
another proof of this result using complex cobordism and determine
the ring structure of H*(BΓk), k>4.

We have H2(BΓ) = Z x θ ly, H4(BT) = Z z with x = cι(ξj),
y = c\{ξk), z = c2(η) (see Section II). Moreover: 2x = 2y = Sz — 0.
We have

B2 = BS(D), C2 = CS(D),

BC = (B + C)[P{D) - S(D)] - Q(D)

(A, B, C play a symmetrical role; see Section II). If μ is the edge
homomorphism we have x2 = μ{BS(D)) = 0(μ: /4>° -+ Z 4 ' 0 / / 5 ' " 1 =
H4(BΓ3); BS{D) e J6'2 C / 5 - 1 ) ; similarly y2 = 0; xy = -μ(Q(D))
= - 4 z 3 = -4z = 4z because Q(D) = AD + ^ ^ 2 ^ Z z (see 2.9).

Suppose k > 4. We have H2{BTk) = lxk © ZyΛ, H4(BΓk) =
I Z£ with x^ = C1OU2), ̂  = ci(^3), z^ = c2(ιji) (see 2.3, 2.4). We
have 2xk = 2y^ = 2kzk = 0. The proof of Proposition 3.8 shows
that xkyk = μ{Fk{Dk)),μ being the edge homomorphism, Fk(Dk) =
c/2(i?fc_2(>/i)) with Rk_2(X) e 1[X]; Rk-i(X) i s determined induc-
tively by R2(X) = X4-4X2, Rm+x(X) = R2

m(X) + 4Rm(X), m > 2. By
3.4 we get Fk(Dk) = R'k_2(2) + Σi>2 ^ > »i e U*(pt), R'k_2{X) being
the derivative of Rk-2(X). An easy calculation shows that R!k_2{2) =
22/:-4 As 2/: - 4 > A: we get xkyk = 22k~4zk = 0. As a consequence
of the relations in R(Γk) stated in the beginning of Section III we get:

^ -2_i) because ^(i/i) = 0. By
/ 2 ^ and consequently

^2(^-2-1) = (1 - 2 f c-1)zΛ. Therefore: χ2 = -2k~ιzk = 2h~xzk. Sim-
ilarly: y\ = 2k~xzk. Hence we have proved the following result:

THEOREM C. Ifk > 4 we have H*(BΓk) = T\xk,yk,zk\ &\mxk =
= 2,dimz^ = 4 subject to the relations: 2xk — 2yk — xkyk —
0,x2=y2 = 2k-ιzk. Π



UNITARY COBORDISM 101

REFERENCES

[I] J. F. Adams, Stable Homotopy and Generalized Homology, University of Chi-
cago Mathematics Lecture Notes, 1971.

[2] M. F. Atiyah, Characters and cohomology of finite groups, I.H.E.S. Publ. Math.,
9(1961), 23-64.

[3] N. A. Baas, On the Stable Adams Spectral Sequence, Aarhus Universitet Lecture
Notes, 1969.

[4] T. Brόcker and T. t. Dieck, Kobordismen Theorie, Lecture Notes in Math., Vol.
178, Springer Verlag, 1970.

[5] H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press,
1956.

[6] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Asso-
ciative Algebras, Wiley, New York, 1962.

[7] T. t. Dieck, Steenrod operationen in kobordismen theorien, Math. Z., 107 (1968),
380-401.

[8] , Bordism of G-manifolds and integrality theorems, Topology, 9 (1970),
345-358.

[9] , Actions of finite Abelian p-groups without stationary points, Topology, 9
(1970), 359-366.

[10] D. Pitt, Free actions of generalized quaternion groups on spheres, Proc. London
Math. Soc, 26(1973), 1-18.

[II] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
[12] R. E. Stong, Notes on Cobordism Theory, Mathematical Notes, Princeton Uni-

versity Press, 1968.
[13] P. S. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc.

Adv. Study. Inst. Alg. Top. 256-269, Aarhus 1970.
[14] D. C. Ravenel, Complex Cobordism and Stable Homoty Groups of Spheres,

Academic Press, Inc., 1986.

Received October 5, 1986 and in revised form August 15, 1988.

UNivERSiTέ MOHAMMED V
B.P. 1014
RABAT, MOROCCO






