UNITARY COBORDISM OF CLASSIFYING SPACES OF QUATERNION GROUPS

Abdeslam Mesnaoui

The main purpose of this article is to prove that the complex cobordism ring of classifying spaces of quaternion groups $\Gamma_k(|\Gamma_k| = 2^k)$ is a quotient of the graded ring $U^*(pt)[[X, Y, Z]]$ (dim $X = \dim Y = 2$, dim = Z = 4) by a graded ideal generated by six homogeneous formal power series.

0. Introduction. Let Γ_k be the generalized quaternion group. Γ_k is generated by u, v, subject to the relations $u^t = v^2$, uvu = v, $t = 2^{k-2}$. In order to calculate $U^*(B\Gamma_k)$ we first consider the case k = 3, i.e. $\Gamma_3 = \Gamma$. We recall that $\Gamma = \{\pm 1, \pm i, \pm j, \pm k\}$ with the relations $i^2 = j^2 = k^2 = -1$, ij = k, jk = i, ki = j. We shall define $A \in \tilde{U}^2(B\Gamma)$, $B \in \tilde{U}^2(B\Gamma)$, $D \in \tilde{U}^4(B\Gamma)$ as Euler classes of complex vector bundles over $B\Gamma$ corresponding to unitary irreducible representations of Γ . Let Λ_* be the graded $U^*(pt)$ -algebra $U^*(pt)[[Z, Y, Z]]$ with dim $X = \dim Y = 2$, dim Z = 4, $\Omega_* = U^*(pt)[[Z]] \subset \Lambda_*$ and $U^*(pt)[[D]] = \{P(D), P \in \Omega_*\}$. Then by using the Atiyah-Hirzebruch spectral sequence we obtain the following results where $T(Z) \in \Omega_4$, $J(Z) \in \Omega_0$ are well defined formal power series.

THEOREM 2.18. (a) As graded $U^*(pt)$ -algebras we have:

 $U^*(pt)[[D]] \simeq \Omega_*/(T(Z)).$

(b) As graded $U^*(pt)[[D]]$ -modules we have: $U^*(B\Gamma) \simeq U^*(pt)[[D]] \oplus U^*(pt)[[D]] \cdot A \oplus U^*(pt)[[D]] \cdot B$ and A, B have the same annihilator $(2 + J(D)) \cdot U^*(pt)[[D]]$.

THEOREM 2.17. The graded $U^*(pt)$ -algebra $U^*(B\Gamma)$ is isomorphic to Λ_*/I_* where I_* is a graded ideal generated by six homogeneous formal power series.

The method used for Γ is extended to Γ_k , $k \ge 4$. As before we shall define $B_k \in \tilde{U}^2(B\Gamma_k)$, $C_k \in \tilde{U}^2(B\Gamma_k)$, $D_k \in \tilde{U}^4(B\Gamma_k)$ as Euler classes of complex vector bundles over $B\Gamma_k$ corresponding to unitary irreducible representations of Γ_k and elements $G'(Z) \in \Omega_2$,

 $T_k(Z) \in \Omega_4$. If $B'_k = B_k + G'_k(D_k)$, $C'_k = C_k + G'_k(D_k)$ then we get:

THEOREM 3.14. (a) $U^*(pt)[[D_k]] \simeq \Omega_*/(T_k)$ as graded $U^*(pt)$ -algebras.

(b) As graded $U^*(pt)[[D_k]]$ -modules we have:

 $U^*(B\Gamma_k) \simeq U^*(pt)[[D_k]] \oplus U^*(pt)[[D_k]] \cdot B'_k \oplus U^*(pt)[[D_k]] \cdot C'_k$

and B'_k , C'_k have the same annihilator $(2 + J(D_k)) \cdot U^*(pt)[[D_k]]$.

THEOREM 3.12. The graded $U^*(pt)$ -algebra $U^*(B\Gamma_k)$ is isomorphic to Λ_*/\tilde{I}_* where \tilde{I}_* is a graded ideal of Λ_* generated by six homogeneous formal power series.

In the appendix, part A, we give a new method of calculating $U^*(B\mathbb{Z}_m)$. Let Λ'_* be the graded algebra $U^*(pt)[[Z]]$, dim Z = 2.

THEOREM A.1. $U^*(B\mathbb{Z}_m) \simeq \Lambda'_*/([m](Z))$ as graded $U^*(pt)$ -algebras.

In part B we show that:

THEOREM B.2.

 $U^{2i+2}(BSU(n)) \simeq U^{2i+2}(BU(n))/e(\Lambda^n \gamma(n)) \cdot U^{2i}(BU(n))$

and $U^{2i+1}(BSU(n)) = 0, i \in \mathbb{Z}$.

In this theorem $e(\Lambda^n \gamma(n))$ is the Euler class of $\Lambda^n \gamma(n)$ where $\gamma(n)$ denotes the universal bundle over BU(n).

In part C we calculate $H^*(B\Gamma_k), k \ge 4$.

THEOREM C. If $k \ge 4$ then we have $H^*(B\Gamma_k) = \mathbb{Z}[x_k, y_k, z_k]$ with dim $x_k = \dim y_k = 2$, dim $z_k = 4$, subject to the relations:

$$2x_k = 2y_k = x_k y_k = 2^k z_k = 0, \quad x_k^2 = y_k^2 = 2^{k-1} z_k.$$

Theorem C is certainly known to workers in the field. The layout is as follows:

I Preliminaries and notations.

- II Calculation of $U^*(B\Gamma)$.
- III Calculation of $U^*(B\Gamma_k), k \ge 4$.
- IV Appendix.

In the course of the computations we have determined the leading coefficients of some formal power series with the purpose of using them in a subsequent paper where the bordism groups $\tilde{U}_*(B\Gamma_k)$ are calculated.

We shall use the same notation for unitary irreducible representations of Γ_k and corresponding complex vector bundles over $B\Gamma_k$. The notation $\gamma(n)$ will be used for the universal complex vector bundle over BU(n). The notation \mathbb{Z} will be for the ring of integers and \mathbb{C} for the complex number field.

The results of this paper have been obtained in 1983 under the supervision of Dr. L. Hodgkin, University of London. I thank him sincerely for having proposed the subject, for his advice and encouragement. I would like to express my deep thanks to the referee who made many useful suggestions; they helped to improve the exposition of this paper and the statement of some results, particularly Theorems 2.18 and 3.14.

I. Preliminaries and notations. 1. Let X be a CW-complex; we define a filtration on $U^n(X)$ by the subgroups

$$J^{p,q} = \operatorname{Ker}(i^* \colon U^n(X) \to U^n(X_{p-1})),$$

 X_p being the *p*-skeleton of X, $i: X_{p-1} \subset X$, p + q = n; $U^n(X)$ is a topological group, the subgroups $J^{p,q}$ being a fundamental system of neighbourhoods of 0; we denote this topology by T. If the U*-Atiyah-Hirzebruch spectral sequence (denoted by U*-AHSS) for X collapses then T is complete and Hausdorff (see [3]). The edge homomorphism $\mu: U^n(X) - H^n(X)$ is defined by $\mu = 0$ if n < 0 and if $n \ge 0$ it is the projection $U^n(X) = J^{0,n} = J^{n,0} \to J^{n,0}/J^{n+1,-1} = E_{\infty}^{n,0} \subset E_2^{n,0} = H^n(X)$. By easy arguments involving spectral sequences we have the following basic result:

THEOREM 1.1. Let X be a CW-complex such that:

(a) The U^* -AHSS for X collapses.

(b) For each $n \ge 0$ there are elements a_{in} generating the \mathbb{Z} -module $H^n(X)$.

Then for each $n \ge 0$ there are elements $A_{in} \in U^n(X)$ such that:

(a) $\mu(A_{in}) = a_{in}$.

(b) If *E* denotes the $U^*(pt)$ -submodule of $U^*(X)$ generated by the system (A_{in}) and if E_n is the n-component of *E* then $\overline{E}_n = U^n(X)$, \overline{E}_n being the closure of E_n for *T*.

Moreover (b) is valid of we take any system (A'_{in}) , $A'_{in} \in U^n(X)$ such that $\mu(A'_{in}) = a_{in}$ for each (i, n).

(See Theorem 2.5 for a proof of this result in a special case.)

2. Let X be a skeleton-finite CW-complex, which is the case we are interested in. There is a ring spectra map $f: MU \to H$ (see [1]); by naturality of AHSS the map $f^{\#}(X): U^{*}(X) \to H^{*}(X)$ induced by f is identical to the edge-homomorphism described above. Let ξ be a complex vector bundle over X of dimension n; the Conner-Floyd characteristic classes of ξ will be denoted by $cf_{i}(\xi)$; the Euler class $e(\xi)$ of ξ for MU is $cf_{n}(\xi)$ and the Euler class $e_{1}(\xi)$ for H is the Chern class $c_{n}(\xi)$. As $f^{\#}(X)$ maps Euler classes on Euler classes we have $\mu(e(\xi)) = e_{1}(\xi)$ (see [7]).

3. Consider the formal power series ring $E_* = U^*(pt)[[c_1, c_2, ..., c_r]]$ graded by taking dim $c_1 = n_1 > 0, ..., \dim c_r = n_r > 0$. Given $P(c_1, ..., c_r) \in E_n$ with $P \neq 0$,

$$P=\sum a_u\cdot c_1^{u_1}\cdots c_r^{u_r}, \quad u=(u_1,\ldots,u_r),$$

we define $\nu(P) = \{\inf(n_1u_1 + \cdots + n_ru_r), a_u \neq 0\}$ and $\nu(0) = +\infty$. Let J_p be $\{P \in E_n | \nu(P) \ge p\}$; we have $E_n = J_0 \supset J_1 \supset \cdots$, and since $\bigcap_{p\ge 0} J_p = 0$, $E_n = \underset{\leftarrow}{\text{Lim}} E_n/J_p$, it follows that E_n is complete and Hausdorff for the topology defined by the filtration (J_p) .

Suppose that B is a CW complex such that the associated U^* -AHSS collapses; if $A_i \in U^{n_i}(B)$, i = 1, 2, ..., r, then there is a unique continuous homomorphism $\psi: E_* \to U^*(B)$ such that $\psi(c_i) = A_i$, i = 1, 2, ..., r.

Now in a different situation consider the case where B_1 is a CWcomplex such that $U^*(B_1) = E_*$. There are two topologies on $U^*(B_1)$ defined respectively by the filtration (J_p) on E_* and by the filtration $(J_1^{p,q})$ deduced from the U*-AHSS for B_1 . If B is a CW-complex such that the U*-AHSS for B collapses, $(J^{p,q})$ the corresponding filtration on U*(B) (see §I) and g a continuous map: $B \to B_1$ then from $J_p \subset$ $J_1^{p,q}$, $g^*(J_1^{p,q}) \subset J^{p,q}$ it follows that $g^*: E_n \to U^n(B)$ is continuous for the topologies defined by ν on E_n and $(J^{p,q})$ on U*(B). As a consequence if (P_m) is a sequence of polynomials such that $(P_m) \to P$ in E_n and if $g^*(c_i) = A_i$ then $P_m(A_1, \ldots, A_r) \to g^*(P)$ in U*(B); so if $P = \sum a_u c_1^{u_1} \cdots c_r^{u_r} \in E_n$ we can write $g^*(P) = \sum a_u A_1^{u_1} \cdots A_r^{u_r}$.

In the sequel we shall also be concerned with $\Lambda_* = U^*(pt)[[X, Y, Z]]$, dim $X = \dim Y = 2$, dim Z = 4; Λ_* has the topology defined by ν . The following assertions are clear:

(a) In Λ_{2n} : $(R_p) \to 0$ iff $\nu(R_p) \to \infty$.

(b) If $P(X, Y, Z) \in \Lambda_{2m+2n}$, $Q(X, Y, Z) \in \Lambda_{2n}$ and (R_p) a sequence in Λ_{2m} such that $R_p \to R$ and $\nu(P - R_p Q) \to \infty$ then RQ = P.

(c) If $\nu(R_p) \to \infty$ then the sequence (M_p) defined by $M_p = R_0 + \cdots + R_p$ converges to a unique limit denoted by $\sum_{p>0} R_p$.

In Sections II and III we shall define three elements $A_k \in \tilde{U}^2(B\Gamma_k)$, $B_k \in \tilde{U}^2(B\Gamma_k)$, $D_k \in \tilde{U}^4(B\Gamma_k)$; as the U*-AHSS for $B\Gamma_k$ collapses there is a unique continuous homomorphism φ of graded $U^*(pt)$ -algebras: $\Lambda_* \to U^*(B\Gamma_k)$ such that $\varphi(X) = A_k$, $\varphi(Y) = B_k$, $\varphi(Z) = D_k$.

The next well known result will be useful:

PROPOSITION 1.2. Suppose X a CW-complex such that $H^*(X) = \mathbb{Z}[a]$. Then there is an element $A \in U^*(X)$ such that $\mu(A) = a$ and $U^*(X) = H^*(X) \hat{\otimes} U^*(pt) = U^*(pt)[[A]]$. Moreover for any $A' \in U^*(X)$ such that $\mu(A') = a$ we have $U^*(X) = U^*(pt)[[A']]$.

II. Computation of $U^*(B\Gamma)$. We recall that the quaternion group Γ consists of $\{1, \pm i, \pm j, \pm k\}$ subject to the relations ij = k, jk = i, ki = j, $i^2 = k^2 = -1$. The irreducible unitary representations of Γ are 1: $i \to 1$, $j \to 1$, ξ_i : $i \to 1$, $j \to -1$, ξ_j : $i \to -1$, $j \to 1$, ξ_k : $i \to -1$, $j \to -1$, $j \to -1$, $j \to 1$, ξ_k : $i \to -1$, $j \to -1$, η : $i \to ({}^{i \ 0}_{0 \ -i})$, $j \to ({}^{0 \ -1}_{1 \ 0})$; the character table of Γ is:

(Conjugacy classes)

	1	-1	±i	±j	$\pm k$	
1	1	1	1	1	1	
ξ_i	1	1	1	-1	-1	
ξ_j	1	1	-1	1	-1	
ξ_k	1	1	-1	-1	1	
η	2	-2	0	0	0	

We have the following relations in the representation ring $R(\Gamma)$:

$$\begin{aligned} \xi_i^2 &= \xi_j^2 = \xi_k^2 = 1, \quad \xi_i \cdot \xi_j = \xi_k, \quad \xi_j \cdot \xi_k = \xi_i, \quad \xi_k \xi_i = \xi_j, \\ \eta \cdot \xi_i &= \eta \cdot \xi_j = \eta, \quad \eta^2 = 1 + \xi_i + \xi_j + \xi_k \quad (\text{see [6], [2]}). \end{aligned}$$

We have $H^0(B\Gamma) = \mathbb{Z}$, $H^{4n}(B\Gamma) = \mathbb{Z}_8$, $n \ge 1$, $H^{4n+2}(B\Gamma) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $n \ge 0$, $H^{2n+1}(B\Gamma) = 0$. Moreover if *d* is a generator of $H^4(B\Gamma)$ and if *a*, *b* are generators of $H^2(B\Gamma)$ then d^n is a generator of $H^{4n}(B\Gamma)$, $n \ge 1$, and ad^n , bd^n are generators of $H^{4n+2}(B\Gamma)$, $n \ge 0$ (see [5]). Since $H^m(B\Gamma) = 0$, *m* odd we have:

PROPOSITION 2.1. The U*-AHSS for $B\Gamma$ collapses.

There are four important complex vector-bundles $\xi_i, \xi_j, \xi_k : E\Gamma \times_{\Gamma} \mathbb{C} \to B\Gamma$ and $\eta : E\Gamma \times_{\Gamma} \mathbb{C}^2 \to B\Gamma$ where the actions of Γ on \mathbb{C} and \mathbb{C}^2 are induced by the representations ξ_i, ξ_j, ξ_k and η . We have a canonical inclusion $q : \mathbb{Z}_2 \subset \Gamma$ obtained by identifying $\{1, i^2\}$ with \mathbb{Z}_2 ; let ρ be the unitary representation of \mathbb{Z}_2 given by $\rho(1) = 1, \rho(i^2) = -1$; the restriction map: $R(\Gamma) \to R(\mathbb{Z}_2)$ sends ξ_i, ξ_j, ξ_k to 1 and η to 2ρ ; so:

PROPOSITION 2.2. $(Bq)^*(\xi_h), h = i, j, k$, are trivial and $(Bq)^*(\eta) = 2\rho$.

1. Chern Classes of ξ_i , ξ_j , η . The canonical isomorphism

$$\operatorname{Hom}(\Gamma, U(1)) \to H^2(\Gamma)$$

is given by $\delta \to c_1(g(\delta))$ where g denotes the canonical map: $R(\Gamma) \to K^0(B\Gamma)$ and c_1 the first Chern class (Sec. [2]). Since Hom $(\Gamma, U(1)) = \{1, \xi_i, \xi_j, \xi_k\}$ and $H^2(B\Gamma) = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ we have:

PROPOSITION 2.3. $H^2(B\Gamma)$ is generated by $\{c_1(\xi_i), c_1(\xi_i)\}$.

Now we consider the topological group Sp(1) of quaternions of absolute value 1; Sp(1) is homeomorphic to S^3 and $H^*(BS^3) = \mathbb{Z}[u]$, dim u = 4, u being the first symplectic Pontrjagin class of the universal Sp(1)-vector bundle θ . If we consider θ as a U(2)-vector bundle, then $u = c_2(\theta)$ (see [12], page 179). Let $p: \Gamma \subset Sp(1) = S^3$ be the natural inclusion; then it is easily seen that $(Bp)^*(\theta) = \eta$, θ being regarded as a U(2)-vector bundle.

PROPOSITION 2.4. We have $c_1(\eta) = 0$ and $H^4(B\Gamma)$ is generated by $c_2(\eta)$.

Proof. Since det $\eta = 1$ we have $c_1(\eta) = 0$. From the transgression exact sequence of the fibration: $S^3/\Gamma \to B\Gamma \xrightarrow{Bp} BS^3$ we get the exact

sequence: $H^4(BS^3) \xrightarrow{(Bp)^*} H^4(B\Gamma) \to H^4(S^3/\Gamma) = 0$ and the result follows (see [11], page 519).

From 2.3, 2.4 we may take the Euler classes $e_1(\eta) = d$ as a generator of $H^4(B\Gamma)$ and $\{a = e_1(\xi_i), b = e_1(\xi_j)\}$ as a system of generators of $H^2(B\Gamma)$. Moreover $e_1(n \cdot \eta) = e_1(\eta)^n = d^n$ and $\{e_1(\xi_i + n \cdot \eta) = ad^n, e_1(\xi_j + n \cdot \eta) = bd^n\}$ are generators of $H^{4n}(B\Gamma), n \ge 1$ and $H^{4n+2}(B\Gamma),$ $n \ge 0$, respectively.

2. Computation of $U^*(B\Gamma)$. Let A, B, D be the Euler classes for MU of ξ_i , ξ_j , $\eta: e(\xi_i) = A \in \tilde{U}^2(B\Gamma)$, $e(\xi_j) = B \in \tilde{U}^2(B\Gamma)$, $e(\eta) = D \in \tilde{U}^4(B\Gamma)$. We recall that $\Lambda_* = U^*(pt)[[X, Y, Z]]$ is graded by taking dim $X = \dim Y = 2$, dim Z = 4; there is a unique continuous homomorphism $\varphi: \Lambda_* \to U^*(B\Gamma)$ of graded $U^*(pt)$ -algebras such that $\varphi(X) = A$, $\varphi(Y) = B$, $\varphi(Z) = D$. In particular if $P(Z) = \alpha_0 + \alpha_1 Z + \cdots + \alpha_i Z^i + \cdots \in \Lambda_{2n}$ then $\varphi(P) = P(D) = \lim_{n \to \infty} (\alpha_0 + \cdots + \alpha_n \cdot D^n)$ in $U^{2n}(B\Gamma)$. If $U^*(pt)[[D]] = \{R(D), R(Z) \in \Omega_*\}$, then $U^*(pt)[[D]]$ is a sub- $U^*(pt)$ -algebra of $U^*(B\Gamma)$.

THEOREM 2.5. $U^*(B\Gamma)$ is concentrated in even dimensions and as a $U^*(pt)[[D]]$ -module $U^*(B\Gamma)$ is generated by 1, A, B.

Proof. We have $U^{2n+1}(B\Gamma) = 0$ because $J^{p,q} = J^{p+1,q-1}$ if p + q = 2n + 1 and then $U^{2n+1}(B\Gamma) = J^{0,2n+1} = \bigcap_{p+q=2n+1} J^{p,q} = 0$ (see Section I).

Suppose 2n = 4m + 2 > 0. If $x \in U^{4m+2}(B\Gamma) = J^{0,4m+2} = J^{4m+2,0}$ then $\mu(x) = \alpha_m a d^m + \beta_m b d^m = \mu(\alpha_m A D^m + \beta_m B D^m), \alpha_m \in U^0(pt) = \mathbb{Z}$, $\beta_m \in U^0(pt) = \mathbb{Z}$. It follows that $\mu(x - (\alpha_m A D^m + \beta_m B D^m)) = 0$ and $x_1 = x - (\alpha_m A D^m + \beta_m B D^m) \in J^{4m+3,-1} = J^{4m+4,-2}$. Let s_1 be the quotient map: $J^{4m+4,-2} \rightarrow J^{4m+4,-2}/J^{4m+5,-3} = H^{4m+4}(B\Gamma, U^{-2}(pt))$ $= U^{-2}(pt) \otimes H^{4m+4}(B\Gamma)$. Then $s_1(x_1) = \gamma_{m+1} \otimes d^{m+1}, \gamma_{m+1} \in U^{-2}(pt)$. From the following commutative diagram where χ is induced by the $U^*(pt)$ -module-structure:

it follows that $s_1(x_1) = s_1(\gamma_{m+1}D^{m+1})$ and then $s_1(x_1 - \gamma_{m+1}D^{m+1}) = 0$; so $(x_1 - \gamma_{m+1})D^{m+1} \in J^{4m+5-3} = J^{4(m+1)+2,-4}$. We have $x_2 = x_1 - \gamma_{m+1}D^{m+1} = x - (A \cdot \alpha_m D^m + B \cdot \beta_m D^m + \gamma_{m+1}D^{m+1}) \in J^{4(m+1)+2,-4}$. By using again the products χ we see that after a finite number of steps there are three polynomials in Z:

$$P_q(Z) = \alpha_m Z^m + \alpha_{m+1} Z^{m+1} + \dots + \alpha_{m+q-1} Z^{m+q-1},$$

$$Q_q(Z) = \beta_m Z^m + \beta_{m+1} Z^{m+1} + \dots + \beta_{m+q-1} Z^{m+q-1},$$

$$R_q(Z) = \gamma_{m+1} Z^{m+1} + \dots + \gamma_{m+q} Z^{m+q}, \text{ with}$$

$$\deg P_q = m + (q-1), \quad \deg Q_q = m + (q-1),$$

$$\deg R_q = m + q \text{ such that}$$

(1)
$$x - (A \cdot P_q(D) + BQ_q(D) + R_q(D)) \in J^{4(m+q)+2,-4q}$$
.

Furthermore

$$P_{q+1}(Z) = P_q(Z) + \alpha_{m+q} Z^{m+q},$$

$$Q_{q+1}(Z) = Q_q(Z) + \beta_{m+q} Z^{m+q},$$

$$R_{q+1}(Z) = R_q(Z) + \gamma_{m+q+1} Z^{m+q+1}.$$

If

$$P(Z) = \sum_{i=m}^{\infty} \alpha_i Z^i \in \Lambda_{4m}$$
$$Q(Z) = \sum_{i=m}^{\infty} \beta_i Z^i \in \Lambda_{4m}$$
$$R(Z) = \sum_{i=m+1}^{\infty} \gamma_i Z^i \in \Lambda_{4m+2}$$

then by using (1) and Section I we have x = AP(D) + BQ(D) + R(D). The cases 2n = 4m + 2 < 0 and 2n = 4m are similar.

The next two propositions will be used later on.

Proposition 2.6. If

$$H(Z) = \sum_{i=0} \alpha_i Z^i \in \Lambda_{2n}$$

is such that H(D) = 0, then $\alpha_0 = 0$ and if α_p is the leading coefficient, we have $\alpha_p \in 8 \cdot U^*(pt)$.

Proof. Since $D \in \tilde{U}^*(B\Gamma)$ we have

$$\sum_{i=1}^{\infty} \alpha_i D^i = D\left(\sum_{i=1}^{\infty} \alpha_i D^{i-1}\right) \in \widetilde{U^*}(B\Gamma);$$

then $\alpha_0 \cdot 1 \in \tilde{U}^*(B\Gamma) \cap U^*(pt) = \{0\}$ and $\alpha_0 \cdot 1 = 0$. If *i* denotes the inclusion $\{*\} \subset B\Gamma$ we have $i^*(\alpha_0 \cdot 1) = \alpha_0 = 0$. Then H(Z) =

 $\alpha_p Z^p + \cdots + \alpha_m Z^m + \cdots, \ \alpha_p \neq 0, \ p \geq 1.$ From $\alpha_q D^q \in J^{4q,2n-4q} \subset J^{4p+4,2n-(4p+4)}, \ q \geq p+1$, it follows that $t_q = \alpha_{p+1} D^{p+2} + \cdots + \alpha_q D^q \in J^{4p+4,2n-(4p+4)}, \ q \geq p+1$. Since $J^{4p+4,2n-(4p+4)}$ is closed for the topology T of $U^{2n}(B\Gamma)$ we have

$$\sum_{i=p+1}^{\infty} \alpha_i D^i \in J^{4p+4,2n-(4p+4)} \subset J^{4p+1,2n-(4p+1)}$$

Let s be the quotient map

$$\begin{split} J^{4p,2n-4p} &\to J^{4p,2n-4p}/J^{4p+1,2n-(4p+1)} \\ &= H^{4p}(B\Gamma, U^{2n-4p}(pt)) = H^{4p}(B\Gamma) \otimes U^{2n-4p}(pt) \\ &= \mathbb{Z}_8 \otimes U^{2n-4p}(pt) = U^{2n-4p}(pt)/8 \cdot U^{2n-4p}(pt). \end{split}$$

Then:

$$0 = s(H(D)) = s(\alpha_p D^p) + s\left(\sum_{i=p+1} \alpha_i D^i\right) = s(\alpha_p D^p) = \alpha_p \otimes d^p;$$

since d^p is a generator of $H^{4p}(B\Gamma)$ we have $\alpha_p \in 8U^{2n-4}(pt)$.

Let F be the formal group law and [2](Y) = F(Y, Y); if ρ is the nontrivial unitary irreducible representation for \mathbb{Z}_2 then we get (see [9]):

PROPOSITION 2.7. $U^*(B\mathbb{Z}_2) = U^*(pt)[[Y]]/([2](Y))$ and the image of Y by the quotient map: $U^*(pt)[[Y]] \to U^*(B\mathbb{Z}_2)$ is the Euler class $e(\rho)$.

We have adopted the following graduation in 2.7: if

$$F(X, Y) = X + Y + a_{11}XY + \sum_{i \ge 1, j \ge 1} a_{ij}X^{i}Y^{j},$$

then $|a_{ij}| = 2(1-i-j)$, |X| = |Y| = 2; so $F(X, Y) \in \Lambda_2$. We shall often make use of the coefficient a_{11} . We know that there is a unique formal power series $[-1](Y) \in U^*(pt)[[Y]](\subset \Lambda_2)$ such that: F(Y, [-1](Y)) = 0.

PROPOSITION 2.8. There is $P_0(Z) \in \Omega_2$, $P_0(Z) = b_1 Z + \sum_{i\geq 1} b_i Z^i$ such that $cf_1(\eta) = P_0(D)$. The coefficients b_i , $i \geq 1$, are determined by the relation $\sum_{i>1} b_i (Y \cdot [-1](Y))^i = Y + [-1]Y$; in particular $b_1 = -a_{11}$.

Proof. We have seen that if θ is the universal Sp(1)-bundle over $Sp(1) = BS^3$ considered as a U(2)-vector bundle then $\eta = (Bp)^*(\theta)$,

 $p: \Gamma \subset Sp(1)$. As $H^*(BS^3) = \mathbb{Z}[u]$, $u = c_2(\theta)$, we have $U^*(BS^3) = U^*(pt)[[V]]$, $V = e(\theta)$, the Euler class of θ for MU. Hence there is $P_0(Z) = \sum_{i>1} b_i Z^i \in \Omega_2$ such that $P_0(V) = cf_1(\theta)$; it follows that

$$cf_1(\eta) = (Bp)^*(cf_1(\theta)) = (Bp)^*\left(\sum_{i\geq 1} b_i V^i\right) = \sum_{i\geq 1} b_i D^i = P_0(D).$$

The relation $\sum_{i\geq 1} b_i (Y \cdot [-1]Y)^i = Y + [-1](Y)$ is proved in the Appendix part B and gives $b_1 = -a_{11}$.

We recall that $A = cf_1(\xi_i) \in \tilde{U}^2(B\Gamma)$, $B = cf_1(\xi_j) \in \tilde{U}^2(B\Gamma)$, $D = cf_2(\eta) \in \tilde{U}^4(B\Gamma)$; let $C \in \tilde{U}^2(B\Gamma)$ be $cf_1(\xi_k)$.

PROPOSITION 2.9. (a) There are $P(Z) \in \Omega_2$, $Q(Z) \in \Omega_4$, $P(Z) = -4a_{11}Z + \sum_{i\geq 2} \alpha_i Z^i$, $Q(Z) = 4Z + \sum_{i\geq 2} \beta_i Z^r$, $\beta_2 \notin 2U^*(pt)$, such that $cf_1(\eta^2) = P(D) = A + B + C$, $cf_2(\eta^2) = Q(D) = AB + BC + CA$. (b) $cf_3(\eta^2) = ABC = 0$, (c) $A^3 = -AQ(D) + A^2P(D)$, $B^3 = -BQ(D) + B^2P(D)$.

Proof. (a) Let $g: B\Gamma \to BU(2)$ be a map classifying η ; then η^2 is classified by the composite: $B\Gamma \xrightarrow{\Delta} B\Gamma \times B\Gamma \xrightarrow{g \times g} BU(2) \times BU(2) \xrightarrow{m} BU(4)$, where *m* is a map classifying $\gamma(2) \otimes \gamma(2)$ and Δ the diagonal map. We have $U^*(BU(2) \times BU(2)) = U^*(pt)[[c_1, c_2, c'_1, c'_2]], c_1, c_2, c'_1, c'_2$ being respectively the images of $cf_1(\gamma(2)) \otimes 1, cf_2(\gamma(2)) \otimes 1, 1 \otimes cf_1(\gamma(2)), 1 \otimes cf_2(\gamma(2))$ by the canonical map: $U^*(BU(2)) \otimes U^*(BU(2)) \xrightarrow{X} U^*(BU(2) \times BU(2))$. Since the following diagram commutes:

$$\begin{array}{cccc} U^*(BU(4)) \xrightarrow{m^*} U^*(BU(2) \times BU(2)) & \stackrel{(g \times g)^*}{\longrightarrow} & U^*(B\Gamma \times B\Gamma) \xrightarrow{\Delta^*} U^*(B\Gamma) \\ & & \uparrow & & \uparrow \swarrow & \\ U^*(BU(2)) \otimes B^*(BU(2)) & \xrightarrow{X} & U^*(B\Gamma) \otimes U^*(B\Gamma) \end{array}$$

we must substitute $cf_1(\eta)$ for c_1 , c'_1 , $cf_2(\eta)$ for c_2 , c'_2 in $m^*(cf_1(\gamma(4)))$, $m^*(cf_2(\gamma(4)))$, $m^*(cf_3(\gamma(4)))$ in order to calculate $cf_1(\eta^2)$, $cf_2(\eta^2)$, $cf_3(\eta^2)$ (see Sec. I).

We have $m^*(cf_1\gamma(4)) = \sum a_{(u,v)}c_1^{u_1}c_2^{u_2}c_1'^{v_1}c_2'^{v_2}$, $u = (u_1, u_2)$, $v = (v_1, v_2)$, $u_1 \ge 0$, $u_2 \ge 0$, $v_1 \ge 0$, $v_2 \ge 0$. It is important to calculate $a_{(u,v)}$ when $u_1 = u_2 = 0$, or $v_1 = v_2 = 0$.

Suppose $u_1 = u_2 = 0$. We denote by 0 the pair (0,0). Then the coefficients $a_{(0,v)}$ are given by $i^* \circ m^*(cf_1(\gamma(4)))$, *i* being the natural inclusion:

$$\{*\} \times BU(2) \xrightarrow{l} BU(2) \times BU(2).$$

Since $i^* \circ m^*(\gamma(4)) = \gamma(2) + \gamma(2)$ we have $i^* \circ m^*(cf_1(\gamma(4))) = 2c'_1$. Similarly $a_{(u,0)} = 2c_1$. Hence

$$m^{*}(cf_{1}(\gamma(4))) = 2(c_{1} + c_{1}') + \sum_{\substack{\|u\| \ge 1 \\ \|v\| \ge 1}} a_{(u,v)}c_{1}^{u_{1}}c_{2}^{u_{2}}c_{1}'^{v_{1}}c_{2}'^{v_{2}}$$

where $||u|| = u_1 + u_2$, $||v|| = v_1 + v_2$.

We recall that $cf_1(\eta) = P_0(D)$, $P_0(Z) \in \Omega_2$, $\nu'(P_0) = 1$, $\nu' = \frac{1}{4}\nu$ (see Sec. I). Consider

$$P(Z) = 2(P_0(Z) + P_0(Z)) + \sum_{\substack{||u|| \ge 1 \\ ||v|| \ge 1}} a_{(u,v)} P_0^{u_1 + v_1}(Z) Z^{u_2 + v_2}$$

= $4b_1 Z + \sum_{i \ge 2} \alpha_i Z^i$,

 b_1 being the first coefficient $\neq 0$ of $P_0(Z)$ because $u_1 + v_1 + u_2 + v_2 \geq 2$ when $||u|| \geq 1$, $||v|| \geq 1$. Hence $cf_1(\eta^2) = P(D)$. We remark that $P(Z) \in \Omega_2$.

There are unique elements $b_{(u,v)} \in U^*(pt)$ such that $m^*(cf_2(\gamma(4))) = \sum b_{(u,v)}c_1^{u_1}c_2^{u_2}c_1'^{v_1}c_2'^{v_2}$. Then the coefficients $b_{(u,0)}$ and $b_{(0,v)}$ are given by $cf_2(\gamma(2) + \gamma(2)) = cf_1^2(\gamma(2)) + 2cf_2(\gamma(2))$. Hence

$$m^{*}(cf_{2}(\gamma(4)) = c_{1}^{2} + c_{1}^{2} + 2(c_{2} + c_{2}^{1}) + \sum_{\|u\| \ge 1, \|v\| \ge 1} b_{u,v}c_{1}^{u_{1}}c_{2}^{u_{2}}c_{1}^{\prime v_{1}}c_{2}^{\prime v_{2}}.$$

Consider

$$Q(Z) = 4Z + 2P_0^2(Z) + \sum_{\|u\| \ge 1, \|v\| \ge 1} b_{(u,v)} P_0^{u_1 + v_1}(Z) Z^{u_2 + v_2}$$

= $4Z + \sum_{i \ge 2} \beta_i Z^i$.

Then $cf_2(\eta^2) = Q(D), Q(Z) \in \Omega_4$.

Let q be the inclusion $\mathbb{Z}_2 \subset \Gamma$; since $(Bq)^*(\xi_h)$, h = i, j, k, are trivial by 2.2 we have $(Bq)^*(A) = (Bq)^*(B) = (Bq)^*(C) = 0$ and since $Q(D) = cf_2(\eta^2) = AB + BC + CA$ we have $(Bq)^*(Q(D)) = 0$. It follows by 2.7 that $(Bq)^*(D) = d^2$, d being the image of Y by the quotient map:

$$U^*(pt)[[Y]] \to U^*(pt)[[Y]]/([2](Y)).$$

Thus:

$$4Y^{2} + \sum_{i \ge 2} \beta_{i} \cdot Y^{2i} = [2](Y) \cdot G(Y)$$

= $(2Y + a_{11}Y^{2} + a_{3}Y^{3} + \cdots)(\varepsilon_{0}Y + \varepsilon_{1}Y^{2} + \varepsilon_{2}Y^{3} + \cdots)$ and

ABDESLAM MESNAOUI

$$\epsilon_0 = 2, \quad 0 = 2\epsilon_1 + a_{11}\epsilon_0 = 2(\epsilon_1 + a_{11});$$
 so
 $\epsilon_1 = -a_{11}, \quad \beta_2 = 2\epsilon_2 - a_{11}^2 + 2a_3;$

since $a_{11}^2 \notin 2U^*(pt)$ (because $U^*(pt) = [x_1, x_2, ...]$, $a_{11} = -x_1$) it follows that $\beta_2 \notin 2U^*(pt)$. The relations P(D) = A + B + C, Q(D) = AB + BC + CA are easy consequences of the relation $\eta^2 = 1 + \xi_i + \xi_j + \xi_k$.

(b) The above relation gives $cf_3(\eta^2) = ABC$; in order to show that ABC = 0 we consider the Boardman map $Bd: U^*(B\Gamma) \rightarrow K^*(B\Gamma) \hat{\otimes} \mathbb{Z}[a_1, a_2, ...]$ (see [8], page 358). This map is a ring-homomorphism which is injective because $B\Gamma$ has a periodic cohomology; furthermore if τ is a line complex vector bundle over $B\Gamma$ we have:

$$Bd(e(\tau)) = (\tau - 1) + (\tau - 1)^2 \otimes a_1 + (\tau - 1)^3 \otimes a_2 + \cdots;$$

as $(\xi_i - 1)(\xi_j - 1)(\xi_k - 1) = 0$ we get Bd(ABC) = 0 and ABC = 0.

(c) We have Q(D) = A(B+C) + BC = A(P(D)-A) + BC; as ABC = 0 we obtain $A^3 = -AQ(D) + A^2P(D)$; similarly $B^3 = -AQ(D) + A^2P(D)$.

PROPOSITION 2.10. There is $S(Z) = -a_{11}Z + \sum_{i\geq 2} s_i \cdot Z^i \in \Omega_2$ such that $A^2 = AS(D)$, $B^2 = BS(D)$. Moreover:

$$AB = (A+B)(P(D) - S(D)) - Q(D),$$

P(Z), Q(Z) being as in 2.9.

Proof. Consider the relation $\eta \xi_i = \eta$. If the vector bundle $\gamma(2) \otimes \gamma(1)$ over $BU(2) \times BU(1)$ is classified by $m_1: BU(2) \times BU(1) \to BU(2)$ and if $g: B \to BU(2)$, $h: B \to BU(1)$ are classifying maps for η and ξ_i , then $\eta \xi_i$ is classified by:

$$B\Gamma \xrightarrow{\Delta} B\Gamma \times B\Gamma \xrightarrow{g \times n} BU(2) \times BU(1) \xrightarrow{m_1} BU(2).$$

We have the following commutative diagram:

$$\begin{array}{cccc} U^*(BU(2)) \stackrel{m_1^*}{\to} U^*(BU(2)) \times BU(1) & \stackrel{(g \times h)^*}{\to} & U^*(B\Gamma \times B\Gamma) \stackrel{\Delta^*}{\to} U^*(B\Gamma) \\ & & \chi \uparrow & & \chi \uparrow \swarrow & \text{cup-product} \\ & & U^*(BU(2)) \otimes U(BU(1)) & \stackrel{g^* \times h^*}{\to} & U^*(B\Gamma) \otimes U^*(B\Gamma). \end{array}$$

Moreover $U^*(BU(2) \times BU(1)) = U^*(pt)[[c_1, c_2, c'_1]]$ where c_1, c_2, c'_1 are the images respectively of $cf_1\gamma(2) \otimes 1$, $cf_2\gamma(2) \otimes 1$, $1 \otimes cf_1\gamma(1)$ by the canonical map: $U^*(BU(2)) \times U^*(BU(1)) \xrightarrow{X} U^*(BU(2) \times BU(1))$. Then

$$m_1^*(cf_2(\gamma(2))) = \sum e_{(u,v)} c_1^{u_1} c_2^{u_2} c_1^{\prime v}, \quad u = (u_1, u_2).$$

If *i* and *j* are the natural inclusions: $BU(2) \times \{*\} \rightarrow BU(2) \times BU(1)$ and $\{*\} \times BU(1) \rightarrow BU(2) \times BU(1)$, then the coefficients $e_{(u,0)}$ and $e_{(0,v)}$ are given respectively by $i^* \circ m^*(cf_2(\gamma(2))) = cf_2(\gamma(2)) = c_2$ and $j^* \circ m^*(cf_2(\gamma(2))) = cf_2(\gamma(1) + \gamma(1)) = c_1^{\prime 2}$. Hence

$$m_{1}^{*}(cf_{2}(\gamma(2))) = c_{2} + c_{1}^{\prime 2} + \sum_{\substack{\|u\| \ge 1\\v \ge 1}} e_{(u,v)} c_{1}^{u_{1}} c_{2}^{u_{2}} c_{1}^{\prime v}$$
$$= c_{2} + c_{1}^{\prime 2} + c_{1}^{\prime} N_{1}(c_{1}, c_{2}) + c_{1}^{\prime 2} N_{2}(c_{1}, c_{2})$$
$$+ \dots + c_{1}^{\prime m} N_{m}(c_{1}, c_{2}) + \dots$$

To calculate $cf_2(\eta \cdot \xi_i)$ we substitute $cf_1(\eta)$, $cf_2(\eta)$, $cf_1(\xi_i)$, respectively for c_1 , c_2 , c'_1 . We recall that $cf_1(\eta) = P_0(D)$, $\nu'(P_0) = 1$ ($\nu' = \frac{1}{4}\nu$; see Sec. I). We can substitute $P_0(Z)$ for c_1 and Z for c_2 in $N_m(c_1, c_2)$ to obtain $M_m(Z) \in \Omega_*$, $\nu'(M_m) \ge 1$, $m \ge 1$. We need to calculate the leading coefficient of $M_1(Z)$. To this purpose consider $T = BU(1) \times$ BU(1) and $r: T \to BU(2)$ a map classifying $\pi_1^*(\gamma(1)) + \pi_2^*(\gamma(1)), \pi_1$, π_2 being respectively the first and second projections $T \to BU(1)$; we have $U^*(T \times BU(1)) = U^*(pt)[[e_1, f_1, e'_1]]$ with $(r \times 1)^*(c_1) =$ $e_1 + f_1$, $(r \times 1)^*(c_2) = e_1f_1$, $(r \times 1)^*(c'_1) = e'_1$; it is easily seen that $(r \times 1)^*(m_1^*cf_2(\gamma(2))) = F(e_1, e'_1)F(f_1, e'_1)$ where F denotes the formal group law. It follows that $e_{((1,0),1)} = 1$, $e_{((0,1),1)} = 2a_{11}$ and $M_1(Z) =$ $a_{11}Z + \sum_{i>2} b'_i Z^i$, $\nu'(M_1) = 1$.

Now from the relation $A^3 = -AQ(D) + A^2P(D)$ we deduce that $A^n = AQ_n(D) + A^2P_n(D), n \ge 3$, with $Q_n(Z) \in \Omega_{2n-2}, P_n(Z) \in \Omega_{2n-4}, Q_3(Z) = -Q(Z), P_3(Z) = P(Z), Q_{n+1}(Z) = -Q(Z)P_n(Z), P_{n+1}(Z) = P(Z)P_n(Z) + Q_n(Z)$. Then $\nu'(P_{n+1}) \ge \inf(\nu'(P_n), \nu'(P_{n-1}))$ and $\nu'(P_{n+1}) \ge (n+1)/2$; so:

$$\lim_{n\to\infty}\nu'(P_n)=\lim_{n\to\infty}\nu'(Q_n)=+\infty.$$

Consider

$$M_n(X,Z) = Z + X^2 [1 + M_2(Z) + P(Z)M_3(Z) + \dots + P_n(Z)M_n(Z)] + X[M_1(Z) + Q_3(Z)M_3(Z) + \dots + Q_n(Z)M_n(Z)] \in \Lambda_4.$$

As

$$\lim_{n \to \infty} \nu(P_n M_n) = \lim_{n \to \infty} \nu(Q_n M_n) = +\infty$$

it follows that $\lim_{n\to\infty} M_n(X,Z)$ exists (see Sec. I) and may be written as: $Z + X^2[1 + H(Z)] + XH_1(Z)$ with $H(Z) \in \Omega_0$, $\nu'(H) \ge 1$. We remark that the leading coefficient of $H_1(Z)$ is that of $M_1(Z)$; so: $H_1(Z) = a_{11}Z + \sum_{i\ge 2} d_i Z^i \in \Omega_2$. Thus: $cf_2(\eta\xi_i) = D + A^2[1 + H(D)] + AH_1(D) = cf_2(\eta) = D$ and $A^2[1 + H(D)] = A^2[1 + H(D)] = Cf_2(\eta) = D$ $-AH_1(D)$. Let $E(Z) \in \Omega_0$ be such that E(Z)(1 + H(Z)) = 1; hence $A^2 = AS(D)$ with $S(Z) = -H_1(Z)E(Z) = -a_{11}Z + \sum_{i\geq 2} s_iZ^i \in \Omega_2$. Similarly $B^2 = BS(D)$. Now

$$AB = AB + BC + CA - C(A + B)$$

= Q(D) - [P(D) - (A + B)] \cdot (A + B)
= Q(D) - P(D) \cdot (A + B) + 2AB + (A + B)S(D)
= 2AB + Q(D) + (A + B)(S(D) - P(D)).

Then:

$$AB = (A+B)[P(D) - S(D)] - Q(D). \qquad \Box$$

LEMMA 2.11. There is $T(Z) = 8Z + 2\lambda_2 Z^2 + \sum_{i\geq 3} \lambda_i Z^i \in \Omega_4$, $\lambda_2 \notin 2U^*(pt)$ and T(D) = 0.

Proof. From $\eta^2 = 1 + \xi_i + \xi_j + \xi_k$ we get $\eta^3 = 4\eta$. Let $g_1: B\Gamma \rightarrow BU(4)$ and $g: B\Gamma \rightarrow BU(2)$ be classifying maps (respectively) for η^2 and η ; then η^3 is classified by: $B\Gamma \stackrel{\Delta}{\rightarrow} B\Gamma \times B\Gamma \stackrel{g_1 \times g}{\rightarrow} BU(4) \times BU(2) \stackrel{m_2}{\rightarrow} BU(8), m_2$ being a map classifying $\gamma(4) \otimes \gamma(2)$. Then we get $m_2^*(cf_2(\gamma(8))) = \sum f_{(u,v)}c_1^{u_1}c_2^{u_2}c_3^{u_3}c_4^{u_4}c_1'^{v_1}c_2'^{v_2}$, with $u = (u_1, u_2, u_3, u_4), v = (v_1, v_2)$. The coefficients $f_{(u,0)}$ and $f_{(0,v)}$ are given respectively by $cf_2(\gamma(4) + \gamma(4)) = c_1^2 + 2c_2$ and $cf_2(4\gamma(2)) = 6c_1'^2 + 4c_2'$. Thus

$$m_{2}^{*}(cf_{2}(\gamma(8))) = c_{1}^{2} + 2c_{2} + 6c_{1}^{\prime 2} + 4c_{2}^{\prime} + \sum_{\substack{\|u\| \ge 1 \\ \|v\| \ge 1}} f_{(u,v)}c_{1}^{u_{1}}c_{2}^{u_{2}}c_{3}^{u_{3}}c_{4}^{u_{4}}c_{1}^{\prime v_{1}}c_{2}^{\prime v_{2}}.$$

In order to calculate $cf_2(\eta^3)$ we must substitute $cf_1(\eta^2) = P(D)$, $cf_2(\eta^2) = Q(D)$, $cf_3(\eta^2) = 0$, $cf_4(\eta^2) = 0$, $cf_1(\eta) = P_0(D)$, $cf_2(\eta) = D$ respectively for c_1 , c_2 , c_3 , c_4 , c'_1 , c'_2 . Consider

$$E(Z) = P^{2}(Z) + 2Q(Z) + 6P_{0}^{2}(Z) + 4Z + \sum_{\|u\| \ge 1, \|v\| \ge 1} f_{(u,v)}P^{u_{1}}(Z)Q^{u_{2}}(Z)P_{0}^{v_{1}}(Z) \cdot Z^{v_{2}},$$

 $u = (u_1, u_2, 0, 0), v = (v_1, v_2).$ Hence $E(D) = cf_2(\eta^3)$; but as the leading coefficients of P(Z) and Q(Z) belong to $4U^*(pt), E(Z)$ has the form: $2Q(Z) + 6P_0^2(Z) + 4Z + 4\tau Z^2 + \sum_{i\geq 3} \tau_i Z^i$. So: $E(D) = 2Q(D) + 6P_0^2(D) + 4D + 4\tau D^2 + \sum_{i\geq 3} \tau_i D^i = cf_2(\eta^3) = cf_2(4\eta) = 6cf_1^2(\eta) + 4cf_2(\eta) = 6P_0^2(D) + 4D$. Hence if $T(Z) = 2Q(Z) + 4\tau Z^2 + \sum_{i\geq 3} \tau_i Z^i \in \Omega_4$, then T(D) = 0. As $Q(Z) = 4Z + \sum_{i\geq 2} \beta_i Z^i, \beta_2 \notin 2U^*(pt)$, we have: $T(D) = 8Z + 2\lambda_2 Z^2 + \sum_{i\geq 3} \lambda_i Z^i, \lambda_2 \notin 2U^*(pt)$. \Box

THEOREM 2.12. If $M(Z) \in \Omega_*$ is such that M(D) = 0, then $M(Z) \in \Omega_*T(Z)$.

Proof. We may suppose $M(Z) \in \Omega_{2n}$, $n \in \mathbb{Z}$. If $M(Z) = \omega_0 + \sum_{i\geq 1} \omega_i Z^i$, then by 2.6 we have $\omega_0 = 0$ and the first coefficient $\omega_i \neq 0$, say ω_{P_0} , is such that $P_0 \geq 1$, $\omega_{p_0} \in 8U^*(pt)$. Thus $M(Z) = 8\omega'_{p_0}Z^{p_0} + \sum_{i>P_0} \omega_i Z^i$. Consider $M_1(Z) = M(Z) - \omega'_{P_0} \cdot Z^{P_0-1} \cdot T(Z) \in \Omega_{2n}$. We have $\nu(M_1(Z)) > \nu(M(Z))$ and $M_1(D) = 0$. Then $M_1(Z) = 8\omega'_{P_1}Z^{P_1} + \sum_{i>P_1} \theta_i \cdot Z^i$, $P_1 > P_0$. We form

$$M_2(Z) = M_1(Z) - \omega'_{P_1} Z^{P_1 - 1} T(Z)$$

and then $\nu(M_2) > \nu(M_1)$, $M_2(D) = 0$. After a finite number of steps we get $M_{r+1}(Z) = M(Z) - (\omega'_{P_0}Z^{P_0-1} + \dots + \omega'_{P_r}Z^{P_r-1})T(Z)$ such that $P_r > P_{r-1} > \dots > P_1 > P_0$, $\nu(M_{r_1}) > \nu(M_r) > \dots > \nu(M_1) > \nu(M)$ and $M_{r+1}(D) = 0$. Since $\lim_{r\to\infty} \nu(M_r) = \infty$ it follows that $M(Z) = (\sum_{k\geq 0} \omega'_{P_k} \cdot Z^{P_k-1}) \cdot T(Z)$ (see Sec. I). \Box

LEMMA 2.13. There is $J(Z) = \mu_1 Z + \sum_{i \ge 2} \mu_i Z^i \in \Omega_0$, $\mu_1 \notin 2U^*(pt)$, such that A[2 + J(D)] = B[2 + J(D)] = 0.

Proof. We have $[2](Y) = 2Y + a_{11}Y^2 + \sum_{i\geq 3} a_iY^i$. As ξ_i^2 is trivial we have [2](A) = 0 and from $A^2 = AS(D)$ $(S(Z) \in \Omega_2)$ we get $A^n = AS^{n-1}(D)$. Consider $H_n(X, Z) = X[2 + a_{11}S(Z) + \cdots + a_nS^{n-1}(Z)]$. Since $\lim_{n\to\infty} \nu(S^n) = \infty$ it follows that $\lim_{n\to\infty} H_n(X, Z)$ exists and has the form X[2 + J(Z)], with

$$J(Z) = a_{11}S(Z) + \sum_{n \ge 3} a_n S^{n-1}(Z) = -a_{11}^2 Z + \sum_{i \ge 2} \mu_i Z^i.$$

If $\mu_1 = -a_{11}^2$ we see that $\mu_1 \notin 2U^*(pt)$. Thus A(2+J(D)) = [2](A) = 0. Similarly B(2+J(D)) = 0.

LEMMA 2.14. Suppose $XM(Z) + YN(Z) + E(Z) \in \Omega_*$ is such that AM(D) + BN(D) + E(D) = 0. Then the first coefficient $\neq 0$ of M(Z) and the first coefficient $\neq 0$ of N(Z) belong to $2U^*(pt)$.

Proof. We may suppose $XM(Z) \in \Omega_{2n}$, $YN(Z) \in \Omega_{2n}$, $E(Z) \in \Omega_{2n}$, $n \in \mathbb{Z}$. We shall give a proof in the case: $0 \neq M(Z) = a_p Z^p + a_{p+1}Z^{p+1} + \cdots, a_p \neq 0, 0 \neq N(Z) = b_q Z^q + b_{q+1}Z^{q+1} + \cdots, b_q \neq 0$ and $p \leq q$. We observe that if $s \geq p$ then $A(a_p D^p + \cdots + a_{p+s} D^{p+s}) \in J^{4p+2,2n-4p-2}$ and consequently $AM(D) \in J^{4p+2,2n-4p-2}$ because the subgroups $J^{*,*}$ are closed in $U^*(B\Gamma)$. Similarly

$$A(a_{p+1}D^{p+1} + \dots + a_rD^r + \dots) \in J^{4p+6,2n-4p-6}$$

and consequently

$$A(a_{p+1}D^{p+1} + \dots + a_rD^r + \dots) \in J^{4p+3,2n-4p-3}$$

There are similar remarks concerning BN(D). Since by hypothesis $p \le q$ we have $4p + 2 \le 4q + 2$ and $J^{4p+2,2n-4p-2} \supset J^{4q+2,2n-4q-2}$. We shall denote by g the quotient map:

$$J^{4p+2,2n-4p-2} \to J^{4p+2,2n-4p-2}/J^{4p+3,2n-4p-3}$$

= $[U^{h}(pt)/2U^{h}(pt)] \oplus [U^{h}(pt)/2U^{h}(pt)],$

with h = 2n - 4p - 2. Then $g(AM(D)) = \overline{a}_p$, \overline{a}_p being the image of a_p by the quotient map

$$U^{h}(pt) \rightarrow U^{h}(pt)/2U^{h}(pt),$$

 $U^{h}(pt)/2U^{h}(pt)$ being the first summand.

(a) Suppose E(D) = 0.

(i) p = q. We have $g(AM(D)) = \overline{a}_p$ and $g(BM(D)) = \overline{b}_p$ respectively in the first and second summand of the sum $[U^h(pt)/2U^h(pt)] \oplus [U^h(pt)/2U^h(pt)]$. Since AM(D) + BN(D) = 0 we have $\overline{a}_p = 0$, $\overline{b}_p = 0$ and thus $a_p \in 2U^*(pt)$, $b_p \in 2U^*(pt)$. (ii) p < q. From $J^{4p+2,2n-4p-2} \supset J^{4p+3,2n-4p-3} \supset J^{4q+2,2n-4q-2}$ it

(ii) p < q. From $J^{4p+2,2n-4p-2} \supset J^{4p+3,2n-4p-3} \supset J^{4q+2,2n-4q-2}$ it follows that g(BN(D)) = 0 and consequently $\overline{a}_p = 0$ which means that $a_p \in 2U^*(pt)$.

(b) Suppose $E(D) \neq 0$.

Take $E(Z) = d_0 + \sum_{i \ge 1} d_i Z^i$. As $E(D) = -(AM(D) + BN(D)) \in \tilde{U}^*(B\Gamma)$ we have $d_0 = 0$. Hence:

$$E(Z) = \sum_{i \ge r} d_i Z^i, \quad d_r \neq 0, \quad r \ge 1.$$

If $d_r = 8e_{r_1}$, we form

$$E_1(Z) = E(Z) - e_{r_1} Z^{r-1} T(Z)$$

= $\sum_{i \ge r'} d'_i Z^i$, $r' > r$, $d'_{r'} \ne 0$ or $\nu(E_1) > \nu(E)$.

If $d'_{r'} = 8e_{r_2}$ we form $E_2(Z) = E_1(Z) - e_{r_2}Z^{r'-1}T(Z)$ and so on. But after a finite number of steps we have $E_{p_0}(Z) = \sum_{i \ge h} t_i Z^i$ and $t_h \notin 8U^*(pt)$ because, if not, we would have $E(Z) \in \Omega_*T(Z)$ and thus E(D) = 0 which contradicts the hypothesis (b): $E(D) \neq 0$ (see the proof of 2.12). Hence there is a formal power series $F(Z) \in \Omega_{2n}$ such that F(D) = E(D) and $F(Z) = \sum_{i \ge h \ge 1} t_i Z^i$, $t_h \notin 8U^*(pt)$. This means that $E(D) \in J^{4h,2n-4h}$ and $E(D) \notin J^{4h+1,2n-4h-1}$. (i) p = q, 4h < 4p + 2 = 4q + 2. Then: $J^{4h,2n-4h} \supset J^{4h+1,2n-4h-1} \supset J^{4p+2,2n-4p-2}$. Since E(D) = -(AM(D) + BN(D)) we have $E(D) \in J^{4h+1,2n-4h-1}$ which is impossible.

(ii) p = q, 4p + 2 = 4q + 2 < 4h.

Then $J^{4p+2,2n-4p-2} \supset J^{4p+3,2n-4p-3} \supset J^{4h,2n-4h}$ and $AM(D) + BN(D) = -E(D) \in J^{4p+3,2n-4p-3}$. Consequently $\overline{a}_p = 0$, $\overline{b}_p = 0$ and thus $a_p \in 2U^*(pt)$, $b_p \in 2U^*(pt)$.

(iii) p < q, 4h < 4p + 2 < 4q + 2. Then $J^{4h,2n-4h} \supset J^{4p+2,2n-4p-2} \supset J^{4q+2,2n-4q-2}$. From E(D) = -(AM(D) + BN(D)) it follows that

$$E(D) \in J^{4p+2,2n-4p-2} \subset J^{4h+1,2n-4h-1} \ (\subset J^{4h,2h-4h})$$

which is impossible.

(iv) p < q, 4p + 2 < 4h < 4q + 2 or 4p + 2 < 4q + 2 < 4h. We have either

$$J^{4p+2,2n-4p-2} \supset J^{4p+3,2n-4p-3} \supset J^{4h,2n-4h} \supset J^{4q+2,2n-4q-2}$$

or

$$J^{4p+2,2n-4p-2} \supset J^{4p+3,2n-4p-3} \supset J^{4q+2,2n-4q-2} \supset J^{4h,2n-4h}$$

It follows in both cases that $\overline{a}_p = 0$ and $a_p \in 2U^*(pt)$. Hence we have proved that if $p \leq q$ we have $a_p \in 2U^*(pt)$ in both cases $E(D) = 0, E(D) \neq 0$. So $M(Z) = a_p Z^p + a_{p+1} Z^{p+1} + \cdots, a_p = 2e_p \neq 0$. By 2.13 if K(X,Z) = X(2 + J(Z)) then K(A,D) = 0. We form $XM(Z) - e_p Z^p K(X,Z) = XM_1(Z), M_1(Z) = e_{p_1} Z^{p_1} + \cdots, p_1 > p$, and we get: $AM_1(D) + BN(D) + E(D) = 0$. If $p_1 < q$ we carry on the same process and after a finite number of steps there is $M_r(Z) \in \Lambda_{2n-2}$ such that $AM_r(D) + BN(D) + E(D) = 0$ and $q \leq p_r$, p_r being such that $M_r(Z) = \omega_{p_r} Z^{p_r} + \omega_{p_r+1} Z^{p_r+1} + \cdots, \omega_{p_r} \neq 0$. Thus the argument used is the case $p \leq q$ (above) shows that $b_q \in 2U^*(pt)$.

Let I'_* the graded ideal of Λ_* generated by $K(X, Z) = X(2+J(Z)) \in \Lambda_2$, $K(Y, Z) = Y \cdot (2+J(Z)) \in \Lambda_2$ and $T(Z) \in \Omega_4$ (see 2.13, 2.12).

LEMMA 2.15. Let M(Z), N(Z), E(Z) be elements of Ω_* such that AM(D) + BN(D) + E(D) = 0. Then: $XM(Z) + YN(Z) + E(Z) \in K(X, Z)\Omega_* + K(Y, Z)\Omega_* + T(Z)\Omega_* \subset I'_*$ and AM(D) = BN(D) = E(D) = 0.

Proof. Suppose $XM(Z) \in \Lambda_{2n}$, $YN(Z) \in \Lambda_{2n}$, $E(Z) \in \Lambda_{2n}$, $n \in \mathbb{Z}$. We shall give a proof in the case $M(Z) \neq 0$, $N(Z) \neq 0$, the other cases being simpler. Take $P(X, Y, Z) = XM(Z) + YN(Z) + E(Z), M(Z) = a_{p_0}Z^{p_0} + a_{p_0+1}Z^{p_0+1} + \cdots, a_{p_0} \neq 0, N(Z) = b_{q_0}Z^{q_0} + b_{q_0}Z^{q_0+1} + \cdots, b_{q_0} \neq 0$. By 2.14 we have $a_{p_0} = 2a'_{p_0}, b_{q_0} = 2b'_{q_0}$ and then: $P(X, Y, Z) - (a'_{p_0}Z^{p_0}K(X, Z) + b'_{q_0}Z^{q_0}K(Y, Z)) = X[M(Z) - a'_{p_0}Z^{p_0}(2 + J(Z))] + Y[N(Z) - b'_{q_0}Z^{q_0}(2 + J(Z))] + E(Z) = XM_1(Z) + YN_1(Z) + E(Z)$ with $\nu(M) < \nu(M_1), \nu(N) < \nu(N_1)$. Moreover we have $AM_1(D) + BN_1(D) + E(D) = P(A, B, D) = 0$. The same process can be carried out for $XM_1(Z) + YN_1(Z) + E(Z)$ and after a finite number of operations we get $M_1(Z), M_2(Z), \dots, M_{r+1}(Z), N_1(Z), N_2(Z), \dots, N_{r+1}(Z)$,

$$P(X, Y, Z) - \left[\left(\sum_{i=0}^{r} a'_{p_i} Z^{p_i} \right) K(X, Z) + \left(\sum_{i=0}^{r} b'_{q_i} Z^{q_i} \right) K(Y, Z) \right]$$

= $XM_{r+1}(Z) + YN_{r+1}(Z) + E(Z)$

with $p_0 = \nu'(M) < p_1 = \nu'(M_1) < \cdots < p_{r+1} = \nu'(M_{r+1}), q_0 = \nu'(N) < q_1 = \nu'(N_1) < \cdots < q_{r+1} = \nu'(N_{r+1})$. Take

$$H_1(Z) = \sum_{i=0}^{\infty} a'_{p_i} Z^{p_i}, \qquad H_2(Z) = \sum_{i=0}^{\infty} b'_{q_i} Z^{q_i}.$$

Since $\lim_{r\to\infty} \nu(M_r) = \lim_{r\to\infty} \nu(N_r) = +\infty$ we have $\lim_{r\to\infty} XM_r(Z) = \lim_{r\to\infty} YN_r(Z) = 0$ and there are $H_1(Z) \in \Omega_*$, $H_2(Z) \in \Omega_*$ such that: $P(X, Y, Z) - [H_1(Z)K(X, Z) + H_2(Z)K(Y, Z)] = E(Z)$. Since P(A, B, D) = K(A, D) = K(B, D) = 0 we have: E(D) = 0 and then by 2.12 there is $H_3(Z) \in \Omega_*$ such that $E(Z) = H_3(Z) \cdot T(Z)$. Finally we have $P(X, Y, Z) = H_1(Z)K(X, Z) + H_2(Z)K(Y, Z) + H_3(Z)T(Z) \in K(X, Z)\Omega_* + K(Y, Z)\Omega_* + T(Z)\Omega_* \subset I'_*$ and $XM(Z) = H_1(Z)K(X, Z)$, $YN(Z) = H_2(Z) \cdot K(Y, Z)$, $E(Z) = H_3(Z) \cdot T(Z)$. Consequently: AM(D) = BN(D) = E(D) = 0.

Consider $S(X, Z) = X^2 - XS(Z) \in \Lambda_4$, $S(Y, Z) = Y^2 - YS(Z) \in \Lambda_4$, $R(X, Y, Z) = XY - (X + Y)(P(Z) - S(Z)) + Q(Z) \in \Lambda_4$. By 2.10 we have: S(A, D) = S(B, D) = R(A, B, D) = 0. Let I''_* be the grade ideal of Λ_* generated by S(X, Z), S(Y, Z), R(X, Y, Z).

LEMMA 2.16. For any $P(X, Y, Z) \in \Lambda_*$ there are M(Z), N(Z), E(Z), elements of Ω_* such that $P(X, Y, Z) - [XM(Z) + YN(Z) + E(Z)] \in I''_*$.

Proof. From $X^2 - XS(Z) = S(X, Z)$ we see that there is $M_n(X, Z) \in \Lambda_*$ such that $X^n - XS^{n-1}(Z) = S(X, Z)M_n(X, Z), n \ge 2$, with $M_2(X, Z) = 1$ and $M_{n+1}(X, Z) = S^{n-1}(Z) + XM_n(X, Z), n \ge 2$. It is easily seen that $\lim_{n\to\infty} \nu(S^n) = \lim_{n\to\infty} \nu(M_n) = +\infty$. If $P(X, Y, Z) \in \Lambda_{2m}$ we

can write $P(X, Y, Z) = \sum_{i=0}^{\infty} X^i P_i(Y, Z)$ with dim $P_i = 2(m - i)$. We have $X^i P_i(Y, Z) = XS^{i-1}(Z)P_i(Y, Z) + S(X, Z)M_i(X, Z)P_i(Y, Z), i \ge$ 2. From Section I and the fact that the multiplication by an element of Λ_* is continuous we see that there are H(Y, Z), $H_1(X, Y, Z)$ such that: $P(X, Y, Z) = XH(Y, Z) + S(X, Z)H_1(X, Y, Z) + P_0(Y, Z)$. Similarly there are $F_0(Z)$, $F_1(Z)$, $F_2(Y, Z)$ such that $H(Y, Z) = YF_1(Z) +$ $S(Y, Z)F_2(Y, Z) + F_0(Z)$ and $G_0(Z)$, $G_1(Z)$, $G_2(Y, Z)$ such that $P_0(Y, Z) = YG_1(Z) + S(Y, Z)G_2(Y, Z) + G_0(Z)$. Then a straightforward calculation shows that with $M(Z) = F_0(Z) + F_1(Z) \cdot (P(Z) -$ S(Z)), $N(Z) = G_1(Z) + F_1(Z) \cdot (P(Z) - S(Z))$, $E(Z) = G_0(Z) Q(Z) \cdot F_1(Z)$ we get $P(X, Y, Z) - [XM(Z) + YN(Z) + E(Z)] \in I''_*$. \Box Let I_* be $I'_* + I''_*$.

THEOREM 2.17. The graded $U^*(pt)$ -algebra $U^*(B\Gamma)$ is isomorphic to Λ_*/I_* where I_* is a graded ideal generated by six homogeneous formal power series.

Proof. Consider the map $\varphi : \Lambda_* \to U^*(B\Gamma)$ of graded $U^*(pt)$ -algebras such that $\varphi(X) = A$, $\varphi(Y) = B$, $\varphi(Z) = D$. By Theorem 2.5 φ is surjective and by Lemmas 2.15, 2.16 φ is injective.

REMARKS. (1) Consider the involution $h: \Lambda_* \to \Lambda_*$ such that h(Y) = X, h(X) = Y, H(Z) = Z. We have $h(I_*) = I_*$ and thus there is an isomorphism \overline{h} of graded $U^*(pt)$ -algebras: $U^*(B\Gamma) \to U^*(B\Gamma)$ such $\overline{h}(A) = B$, $\overline{h}(B) = A$, $\overline{h}(D) = D$. Consequently $\overline{h}^2 = \text{Id}$.

(2) If $q: \mathbb{Z}_2 \subset \Gamma$ denotes the canonical inclusion, then $(Bq)^*: U^*(B\Gamma) \to U^*(B\mathbb{Z}_2)$ is neither injective nor surjective.

An important and easy consequences of Theorem 2.12 and Lemma 2.15 is the following theorem which gives the structure of $U^*(pt)[[D]]$ -module of $U^*(B\Gamma)$.

THEOREM 2.18. (a) As graded $U^*(pt)$ -algebras we have:

$$U^*(pt)[[D]] \simeq \Omega_*/(T(Z)).$$

(b) As graded $U^*(pt)[[D]]$ -modules we have: $U^*(B\Gamma) \simeq U^*(pt)[[D]] \oplus U^*(pt)[[D]]A \oplus U^*(pt)[[D]]$. B and: A and B have the same annihilator

$$(2+J(D))U^{*}(pt)[[D]].$$

III. Computation of $U^*(B\Gamma_k)$, $k \ge 4$. The group Γ_k , $k \ge 4$, is generated by u, v, subject to the following relations $u^t = v^2$, uvu = v,

 $t = 2^{k-2}$; $|\Gamma_k| = 2^k$. We have $H^0(B\Gamma_k) = \mathbb{Z}$, $H^{4p}(B\Gamma_k) = \mathbb{Z}_{2^k}$, p > 0, $H^{4p+2} = \mathbb{Z}_2 \oplus \mathbb{Z}_2$, $p \ge 0$, $H^{2p+1}(B\Gamma_k) = 0$, $p \ge 0$. Furthermore if d_1 , $\{a_1, b_1\}$ are generators of respectively $H^4(B\Gamma_k)$ and $H^2(B\Gamma_k)$, then d_1^p , $\{a_1d_1^p, b_1d_1^p\}$ are generators of respectively $H^{4p}(B\Gamma_k)$ and $H^{4p+2}(B\Gamma_k)$, $p \ge 0$ (see [5]). The irreducible unitary representations of Γ_k are 1: $u \to 1$, $v \to 1$, ξ_1 : $u \to 1$, $v \to -1$, ξ_2 : $u \to -1$, $v \to 1$, ξ_3 : $u \to -1$, $v \to -1$,

$$\eta_r \colon u \to \begin{pmatrix} \omega^r & 0\\ 0 & \omega^{-r} \end{pmatrix}, \quad v \to \begin{pmatrix} 0 & (-1)\\ 1 & 0 \end{pmatrix}, \qquad r = 1, 2, \dots, 2^{k-2} - 1$$

and ω a primitive 2^{k-1} th root of unity (see [6]).

The relations between the irreducible unitary representations of Γ_k are as follows: $\xi_1^2 = \xi_2^2 = \xi_3^2 = 1$, $\xi_1 \cdot \xi_2 = \xi_3$, $\xi_2\xi_3 = \xi_1$, $\xi_3 \cdot \xi_1 = \xi_2$; if we introduce $\eta_0 = 1 + \xi_1$, $\eta_{2^{k-2}} = \xi_2 + \xi_3$, then we can define $\eta_s, s \in \mathbb{Z}$, by the relations $\eta_{2^{k-2}+r} = \eta_{2^{k-2}-r}, \eta_r = \eta_{-r}$ and we have: $\eta_r \cdot \eta_s = \eta_{r+s} + \eta_{r-s}, r \in \mathbb{Z}, s \in \mathbb{Z}$ (see [10]). As in Section II we shall be working with $A_k = cf_1(\xi_1) \in \tilde{U}^2(B\Gamma_k), B_k = cf_1(\xi_2) \in \tilde{U}^2(B\Gamma_k), C_k = cf_1(\xi_3) \in \tilde{U}^2(B\Gamma_k), D_k = cf_2(\eta_1) \in \tilde{U}^4(B\Gamma_k)$. We have as in 2.5 with $U^*(pt)[[D_k]] = \{R(D_k), R \in \Omega_*\}$:

THEOREM 3.1. $U^*(B\Gamma_k)$ is concentrated in even dimensions and as a module over $U^*(pt)[[D_k]]$, $U^*(B\Gamma_k)$ is generated by 1, B_k , C_k . \Box

The following proposition is proved in the same way as 2.8 and 2.6, $P_0(Z)$ being the formal power series of 2.8:

PROPOSITION 3.2. (a) We have $cf_1(\eta_1) = P_0(D_k)$. (b) If $H(Z) = \sum_{i\geq 0} \alpha_i Z^i \in \Omega_{2n}$ is such that $H(D_k) = 0$, then $\alpha_0 = 0$ and the leading coefficient of H(Z) belongs to $2^k U^*(pt)$.

LEMMA 3.3. For each $n \in \mathbb{Z}$ there is a polynomial $P_{2n+1}(X) \in \mathbb{Z}[X]$ such that $P_{2n+1}(0) = 0$, $P_{2n+1}(2) = 2$, $P_{2n+1}(\eta_1) = \eta_{2n+1}$.

Proof. Since $\eta_{-r} = \eta_r$, we may suppose $n \ge 0$. Then the assertion is evidently true if n = 0 with $P_1(X) = X$. Suppose that there are polynomials $P_{2i+1}(X) \in \mathbb{Z}[X]$, $0 \le i \le n-1$, such that $P_{2i+1}(\eta_1) = \eta_{2i+1}$, $P_{2i+1}(0) = 0$ and $P_{2i+1}(2) = 2$. Then $\eta_1^2 P_{2n-1}(\eta_1) = \eta_1^2 \eta_{2n-1} = (\eta_2 + \eta_0) \eta_{2n-1} = \eta_{2n+1} + 2\eta_{2n-1} + \eta_{2n-3}$. Hence if $P_{2n+1}(X) = (X^2 - 2)P_{2n-1}(X) - P_{2n-3}(X)$ we have $P_{2n+1}(X) \in \mathbb{Z}[X]$, $P_{2n+1}(0) = 0$, $P_{2n+1}(2) = 2$ and $P_{2n+1}(\eta_1) = \eta_{2n+1}$. □

In the sequel we shall consider the sequence P_{2n+1} , $n \ge 0$, determined by $P_1(X) = X$, $P_3(X) = X^3 - 3X$ and the relation

$$(X^{2}-2)P_{2n-1}(X) - P_{2n-3}(X) = P_{2n+1}(X).$$

If $P(X) \in \mathbb{Z}[X]$ we shall denote by P' the derivatives of P.

PROPOSITION 3.4. If ζ is a complex vector bundle over $B\Gamma_k$ such that $\zeta = P(\eta_1)$ where $P \in \mathbb{Z}[X]$, P(0) = 0, then there is a formal power series $P'(2)Z + \sum_{i>2} \delta_i Z^i \in \Omega_4$ such that $cf_2(\zeta) = P'(2)D_k + \sum_{i>2} \delta_i D_k^i$.

Proof. For each $q \ge 1$ the complex bundle η_1^q is classified by the composite: $\Gamma_k \stackrel{\Delta}{\to} (B\Gamma_k)^q \stackrel{X^q g}{\to} (BU(2))^q \stackrel{m_q}{\to} BU(2^q)$ where Δ is the diagonal map, g a map classifying η_1 and m_q a map classifying $\bigotimes^q \gamma(2)$. We have $U^*(BU(2)^q) = U^*(pt)[[c_1^{(1)}, c_2^{(1)}, c_1^{(2)}, c_2^{(2)}, \dots, c_1^{(q)}, c_2^{(q)}]]$ where $c_k^{(i)}$, k = 1 or k = 2, is the image of $a_1 \otimes a_2 \dots \otimes a_q$, $a_1 = a_2 = \dots = a_{i-1} = 1$, $a_i = cf_k(\gamma(2))$ (k = 1 or k = 2), $a_{i+1} = \dots = a_q = 1$, by the canonical product $\bigotimes^q U^*(BU(2)) \to U^*(BU(2^q))$. Then $m_q^*(cf_2\gamma(2^q)) = \sum a_u(c_1^{(1)})^{u_1^{(1)}} \cdot (c_2^{(1)})^{u_2^{(1)}} \cdots (c_1^{(q)})^{u_1^{(q)}} \cdot (c_2^{(q)})^{u_2^{(q)}}$. If we substitute Z for $c_2^{(i)}$ and $P_0(Z)$ for $c_1^{(i)}$, $i = 1, 2, \dots, q$, we have a formal power series $R_q(Z) \in \Omega_4$ such that $R_q(D_k) = cf_2(\eta_1^q)$. If $\{p_j\}$ denotes the base point of BU(2) and k_i the inclusion:

$$\{p_1\} \times \{p_2\} \times \cdots \times \{p_{i-1}\} \times BU(2) \times \{p_{i+1}\} \times \cdots \times \{p_q\} \subset (BU(2))^q,$$

we see that $k_i^* \circ m_q^*(cf_2(\gamma(2^q))) = cf_2(2^{q-1}\gamma(2)) = 2^{q-1}cf_2(\gamma(2)) + 2^{q-2}(2^{q-1}-1)cf_1^2(\gamma(2))$. Consequently $R_q(Z) = q2^{q-1}Z + \sum_{i\geq 2}\varepsilon_iZ^i$. Similarly there are formal powers series $H_1(Z) \in \Omega_2$, $H_s(Z) \in \overline{\Omega}_{2s}$, $s \geq 3$, such that $H_1(D_k) = cf_1(\eta_1^q)$ and $H_s(D_k) = cf_s(\eta_1^q)$, $s \geq 3$; we have $\nu'(H_1) \geq 1$, $\nu'(H_s) \geq 2$, $s \geq 3$. (We recall that $\nu'(P(Z)) = \frac{1}{4}\nu P(Z)$.) It follows that if $\zeta = \sum_{i=1}^r m_i \eta_1^i$, $m_i \geq 0$, there is a formal power series $H(Z) \in \Omega_4$ such that $H(D_k) = cf_2(\zeta)$ and $H(Z) = (\sum_{i=1}^r im_i 2^{i-1})Z + \sum_{i\geq 2} \varepsilon_i'Z^i$. Now suppose that ζ is a complex vector bundle such that $\zeta = \sum_{i=1}^r m_i \eta_1^i - \sum_{i=1} n_i \eta_1^i$, $m_i \geq 0$, $n_i \geq 0$. The above remarks show that

$$cf(\zeta) = 1 + cf_1(\zeta) + cf_2(\zeta) + \cdots$$

= $[1 + M_1(D_k) + cf_2(\zeta_1) + M_2(D_k)]$
× $[1 + M'_1(D_k) + cf_2(\zeta_2) + M'_2(D_k)]^{-1}$

with $\zeta_1 = \sum_{i=1}^r m_i \eta_1^i$, $\zeta_2 = \sum_{i=1}^r n_i \eta_1^i$, M_1 , M_2 , M_1' , M_2' being elements of Ω_* such that $\nu'(M_1) \ge 1$, $\nu'(M_1') \ge 1$, $\nu'(M_2) \ge 2$, $\nu'(M_2') \ge 2$. It follows that $cf_2(\zeta) = M(D_k)$, with $M(Z) \in \Omega_4$ and M(Z) = $\sum_{i=1}^{r} (im_i 2^{i-1} - in_i 2^{i-1})Z + \sum_{i \ge 2} \delta_i Z^i. \text{ Then if } P(X) = \sum_{i=1}^{r} m_i X^i - \sum_{i=1}^{r} n_i X^i \in \mathbb{Z}[X] \text{ we see that } M(Z) = P'(2)Z + \sum_{i \ge 2} \delta_i Z^i, P'(X) \text{ being the derivative of } P(X).$

LEMMA 3.5. There is a formal power series

$$Q_1(Z) = (1 + 2^2 n(n+1))Z + \sum_{i \ge 2} \beta'_i Z^i \in \Omega_4$$

such that $Q_1(D_k) = c f_2(\eta_{2n+1})$.

Proof. Since $\eta_{2n+1} = P_{2n+1}(\eta_1)$ with $P_{2n+1} \in \mathbb{Z}[X]$, $P_{2n+1}(0) = 0$, then by 3.4 it is enough to prove that $P'_{2n+1}(2) = 1 + 2^2n(n+1)$. This assertion is true when n = 0 because $P_1(X) = X$. Suppose that $P'_{2i+1}(2) = 1 + 2^2i(i+1), 0 \le i \le n-1$. We have $P_{2n+1} = (X^2 - 2)P_{2n-1} - P_{2n-3}$ and then $P'_{2n+1}(2) = 2^2P_{2n-1}(2) + 2P'_{2n-1}(2) - P'_{2n-3}(2) = 2^3 + 2[1 + 2^2(n-1)n] - [1 + 2^2(n-2)(n-1)] = 1 + 2^2n(n+1)$ ($P_{2n-1}(2) = 2$ by 3.3). Hence the lemma has been proved.

In Lemma 3.5 the coefficients β'_i depend on *n*; however we have chosen not to complicate the notation.

PROPOSITION 3.6. There is a formal power series

$$T_k(Z) = 2^k Z + 2^{k-2} \lambda'_2 Z^2 + 2^{k-3} \lambda'_3 Z^3 + \dots + 2\lambda'_{k-1} Z^{k-1} + \sum_{i \ge k} \lambda'_i Z^i \in \Omega_4,$$

with $\lambda'_2 \notin 2U^*(pt)$, such that $T_k(D_k) = 0$. Moreover if $R(Z) \in \Omega_*$ and $R(D_k) = 0$ then $R(Z) \in T_k(Z)\Omega_*$.

Proof. From 3.5 there is a formal power series

$$Q_1(Z) = [1 + 2^2(2^{k-3} - 2)(2^{k-3} - 1)]Z + \sum_{i \ge 2} \beta'_i Z^i \in \Omega_4$$

such that $Q_1(D_k) = c f_2(\eta_{2^{k-2}-3})$. We have $1 + 2^2(2^{k-3}-2)(2^{k-3}-1) = 9 + 2^{2k-4} - 3 \cdot 2^{k-1}$. Now

$$\eta_1^2 \eta_{2^{k-2}-1} = (\eta_2 + \eta_0) \eta_{2^{k-2}-1} = \eta_{2^{k-2}+1} + \eta_{2^{k-2}-3} + 2\eta_{2^{k-2}-1} = 3\eta_{2^{k-2}-1} + \eta_{2^{k-2}-3}$$

and consequently if $P(X) = (X^2 - 3)P_{2^{k-2}-1}$, we have $P \in \mathbb{Z}[X]$, P(0) = 0 and $P(\eta_1) = \eta_{2^{k-2}-3}$. Then from 3.4 there is a formal power series $Q_2(Z) = P'(2) + \sum_{i\geq 2} \beta_i'' Z^i \in \Omega_4$ such that $Q_2(D_k) = cf_2(\eta_{2^{k-2}-3})$. We

91

have $P'(2) = 2^2 P_{2^{k-2}-1}(2) + P'_{2^{k-2}-1}(2) = 2^3 + 1 + 2^2 (2^{k-3} - 1)2^{k-3} = 2^{k-3}$ $9 + 2^{2k-4} - 2^{k-1}$. Hence

$$0 = Q_2(D_k) - Q_1(D_k)$$

= $[9 + 2^{2k-4} - 2^{k-1} - (9 + 2^{2k-4} - 3 \cdot 2^{k-1})]D_k$
+ $\sum_{i \ge 2} (\beta_i'' - \beta_i')D_k^i$
= $2^k D_k + \sum_{i \ge 2} \mu_i' D_k^i, \qquad \mu_i' = \beta_i'' - \beta'.$

Then if $T_k(Z) = 2^k Z + \sum_{i>2} \mu'_i Z^i \in \Omega_4$ then we have $0 = T_k(D_k)$. By 3.2 and a proof similar to that of 2.12, Section II, if $R(Z) \in \Omega_*$ is such that $R(D_k) = 0$ then $R(Z) \in T_k(Z)\Omega_*$. Now we want to show that $\mu'_2 = 2^{k-2}\lambda'_2, \lambda'_2 \notin 2U^*(pt), \mu'_3 = 2^{k-3}\lambda'_3, \dots, \mu'_{k-1} = 2\lambda'_{k-1}$. Instead of $T_3(Z)$ we take the formal power series T(Z) defined in Section II (see 2.11). We recall that $T(Z) = 2^3 Z + 2\lambda_2 Z^2 + \sum_{i>3} \lambda_i Z^i$, $\lambda_2 \notin 2U^*(pt)$. Hence if k = 3 the assertion concerning the coefficients of $T_k(Z)$ is true. Suppose that

$$T_{k}(Z) = 2^{k}Z + 2^{k-2}\lambda'_{2}Z^{2} + 2^{k-3}\lambda'_{3}Z^{3} + \dots + 2\lambda'_{k-1}Z^{k-1} + \sum_{i \ge k}\lambda'_{i}Z^{i}, \quad \lambda'_{2} \notin 2U^{*}(pt).$$

Consider the inclusion

$$i_{k+1} \colon \Gamma_k = \{ (u^2)^m v^n, \ n = 0, 1, \ 0 \le m \le 2^{k-1} - 1 \} \subset \Gamma_{k+1}$$
$$= \{ u^m v^n, \ n = 0, 1, \ 0 \le m \le 2^k - 1 \}.$$

It is easily seen that $(Bi_{k+1})^*(D_{k+1}) = D_k$. We have: $T_{k+1}(Z) =$ $2^{k+1}Z + \sum_{i>2} \mu_i''Z^i$ and $T_{k+1}(D_{k+1}) = 0$. It follows that $T_{k+1}(D_k) = 0$ and consequently there is an element $\alpha'_0 + \alpha'_1 Z + \alpha'_2 Z^2 + \cdots \in \Omega_0$ such that:

$$2^{k+1}Z + \sum_{i\geq 2} \mu_i''Z^i$$
$$= \left(2^k Z + 2^{k-2}\lambda_2' Z^2 + \dots + 2\lambda_{k-1}' Z^{k-1} + \sum_{i\geq k} \lambda_i' Z^i\right) \left(\sum_{i\geq 0} \alpha_i' Z^i\right).$$

Then $\alpha'_0 = 2$; $\mu''_2 = 2^k \alpha'_1 + 2^{k-2} \lambda'_2 \alpha'_0 = 2^{k-1} [2\alpha'_1 + \lambda'_2] = 2^{k-1} \lambda''_2, \lambda''_2 \notin$ $2U^*(pt)$; if 2 < i < k we have:

$$\mu_i'' = 2^k \alpha_{i-1}' + 2^{k-2} \lambda_2' \alpha_{i-2}' + 2^{k-3} \lambda_3' \alpha_{i-3}' + \dots + 2^{k-i} \lambda_i' \alpha_0' = 2^{(k+1)-i} \lambda_i''.$$

Hence the proposition has been proved.

Hence the proposition has been proved.

Suppose $k \ge 4$; the inclusions $i_k: \Gamma_{k-1} \subset \Gamma_k$ and $j_k: \Gamma \subset \Gamma_k$ are given respectively by $\{(u^2)^m v^n, 0 \le m \le 2^{k-2} - 1, n = 0, 1\} \subset \{u^m v^n, 0 \le m \le 2^{k-1} - 1, n = 0, 1\}$ and $j_k = i_k \circ \cdots \circ i_4$; Γ_k is normal in Γ_{k+1} and $\Gamma_{k+1}/\Gamma_k = \{1, \overline{u}\} \simeq \mathbb{Z}_2$; if $q_k: \Gamma_k \to \Gamma_k$ is the conjugation by $u \in \Gamma_{k+1} - \Gamma_k$ then $q_k(u^2) = u^2$, $q_k(v) = v(u^2)^{-1}$. Let $f_k: B\Gamma_k \to B\Gamma_{k-1}, g_k: B\Gamma \to B\Gamma_k, h_k: B\Gamma_k \to B\Gamma_k$ be respectively Bi_k, Bj_k and Bq_k .

LEMMA 3.7. Suppose $k \ge 4$. (a) $f_k^*(A_k) = A_{k-1}, f_k^*(B_k) = 0, f_k^*(C_k) = A_{k-1}, f_k^*(D_k) = D_{k-1}$. (b) $g_k^*(A_k) = A, g_k^*(B_k) = 0, g_k^*(C_k) = A, g_k^*(D_k) = D$. (c) $h_k^*(A_k) = A_k, h_k^*(B_k) = C_k, h_k^*(C_k) = B_k$.

Proof. The proof is easy; for example $f_k^*(A_k) = A_{k-1}$ because i_k^* : $R(\Gamma_k) \to R(\Gamma_{k-1})$ maps ξ_1 to the similar representation: $u^2 \to 1$, $v \to -1$. $(R(\Gamma_k)$ and $R(\Gamma_{k-1})$ denote the representation rings). \Box

The role played by A, B, C in Section II was symmetrical. Unfortunately this is not the case for A_k , B_k , C_k $(k \ge 4)$ as we shall see in the forthcoming propositions. We recall that there are formal power series $S(Z) \in \Omega_2$, $J(Z) \in \Omega_0$ such that $A^2 = AS(D)$, $B^2 = BS(D)$, $C^2 = CS(D)$, A(2 + J(D)) = B(2 + J(D)) = C(2 + J(D)) = 0 (see 2.10, 2.13).

The formal power series S(Z), J(Z) will play an important role in the calculations ahead.

PROPOSITION 3.8. Suppose $k \ge 4$. (a) $A_k B_k C_k = 0$. (b) $A_k (2 + J(D_k)) = 0$. (c) There are $E_k \in \Omega_2$, $F_k \in \Omega_4$ such that $A_k = B_k + C_k - E_k(D_k)$, $B_k C_k = F_k(D_k)$.

Proof. (a) The relation $A_k B_k C_k = 0$ is proved in exactly the same way as in 2.9(b).

(b) By 3.1 there are $H_0(Z) \in \Omega_2$, $H_1(Z) \in \Omega_2$, $H_2(Z) \in \Omega_4$ such that: $B_{k+1}^2 = B_{k+1}H_0(D_{k+1}) + C_{k+1}(D_{k+1}) + H_2(D_{k+1})$. By 3.7(c) we get $C_{k+1}^2 = C_{k+1}H_0(D_{k+1}) + B_{k+1}H_1(D_{k+1}) + H_2(D_{k+1})$ and $C_{k+1}^2 - B_{k+1}^2 = (C_{k+1} - B_{k+1})H_3(D_{k+1})$ with $H_3 = H_0 - H_1 \in \Omega_2$. By using 3.7(a) we see that: $A_k^2 = A_k \cdot H_3(D_k)$; as in 2.13 the relation $cf_1(\xi_1^2) = 0$ shows that there is $J_1(Z) \in \Omega_0$ depending on $H_3(Z)$ such that $A_k(2+J_1(D_k)) = 0$ and by 3.7(b) we get $A(2+J_1(D)) = 0$; so there is

 $H_4(Z) \in \Omega_0, \nu'(H_4) \ge 1$ such that $2 + J_1(Z) = (2 + J(Z))(1 + H_4(Z))$ (see 2.15) and consequently $2 + J(Z) = (2 + J_1(Z))H_5(Z)$, $H_5(Z) \in \Omega_0$ being such that: $(1 + H_4(Z))(1 + H_5(Z)) = 1$. Hence $A_k(2 + J(D_k)) = 0$.

(c) By using the relations $\eta_r \cdot \eta_s = \eta_{r+s} + \eta_{r-s}$, $r \in \mathbb{Z}$, $s \in \mathbb{Z}$, $\eta_0 = 1 + \xi_1$, $\eta_{2^{k-2}} = \xi_2 + \xi_3$, then a straightforward calculation shows that there is a polynomial $R_m[X] \in \mathbb{Z}[X]$ such that $R_m(0) = 0$ and $\eta_{2^m} = R_m(\eta_1) + \eta_0$, $2 \le m \le k - 2$; in fact $R_m(X)$ is determined by $R_2(X) = X^4 - 4X$, $R_m(X) = R_{m-1}^2(X) + 4R_{m-1}(X)$; so: $\xi_2 + \xi_3 = \eta_{2^{k-2}} = R_{k-2}(\eta_1) + \eta_0 =$ $R_{k-2}(\eta_1) + 1 + \xi_1$. Then the proof of 3.4 shows that there are $E_k(Z) \in$ Ω_2 , $F_k(Z) \in \Omega_4$ such that: $B_k + C_k = cf_1(R_{k-2}(\eta_1)) + A_k = E_k(D_k) +$ A_k and $B_kC_k = A_kE_k(D_k) + cf_2(R_{k-2}(\eta_1)) = A_kE_k(D_k) + F_k(D_k)$. As $0 = AE_k(D) + F_k(D)$ by 3.7(b) we see that $E_k(Z) \in (2 + J(Z))\Omega_*$ and consequently $B_kC_k = F_k(D)$ since $A_k(2 + J(D_k)) = 0$. Hence (c) is proved. \Box

PROPOSITION 3.9. Suppose $k \ge 4$.

(a) There is $M(Z) \in \Omega_2$ such that: $B_k(2 + J(D_k)) + M(D_k) = C_k(2 + J(D_k)) + M(D_k) = 0$ and $M(D_k) \neq 0$.

(b) There is $N(Z) \in \Omega_4$, such that: $B_k^2 = B_k S(D_k) + N(D_k)$, $C_k^2 = C_k S(D_k) + N(D_k)$ and $N(D_k) \neq 0$.

(c) There are $G_k(Z) \in \Omega_2$, $L_k(Z) \in \Omega_4$ the coefficients of which can be computed from those of J(Z), S(Z), $E_k(Z)$, $F_k(Z)$ and satisfying $G_k(D_k) = M(D_k)$, $L_k(D_k) = N(D_k)$.

Proof. (a) As in 3.1 there are $H_1(Z) \in \Omega_2$, $K_0(Z) \in \Omega_2$, $K_1(Z) \in \Omega_4$ such that: $B_k^2 = B_k H_1(D_k) + A_k K_0(D_k) + K_1(D_k)$; hence: $AK_0(D) = 0$ which imply by 2.15 that $K_0(Z) \in (2+J(Z))\Omega_*$; so: $B_k^2 = B_k H_1(D_k) +$ $K_1(D_k)$ because $A_k(2 + J(D_k)) = 0$ by 3.8(b). We have $B_k^{n+1} =$ $B_k H_n(D_k) + K_n(D_k)$ with $H_n(Z) \in \Omega_{2n}$, $K_n(Z) \in \Omega_{2n+2}$ satisfying: $H_n(Z) = H_1(Z)H_{n-1}(Z) + K_{n-1}(Z), K_n(Z) = K_1(Z)H_{n-1}(Z), n \ge 0$ 2. It follows easily that $\lim_{n\to\infty}\nu(H_n) = \lim_{n\to\infty}\nu(K_n) = +\infty$; as $cf_1(\xi_2^2) = 0$ we have $2B_k + \sum_{n>2} a_n B_k^n = 0$ with $a_n = \sum_{i+j=n} a_{ij}$, the $a_{ij}, i \ge 1, j \ge 1$, being the coefficients of the formal group law. A proof similar to that of 2.13 shows that there are $P_1(Z) \in \Omega_0$, $P_2(Z) \in \Omega_2$, $\nu'(P_1) \ge 1, \ \nu'(P_2) \ge 1$ such that $B_k(2 + P_1(D_k)) + P_2(D_k) = 0$; by 3.7(a) we have $C_k(2 + P_1(D_k)) + P_2(D_k) = 0$; hence $A(2 + P_1(D)) = 0$ and as a direct consequence of 2.15 there is $P_3(Z) \in \Omega_0$ such that $2 + J(Z) = (2 + P_1(Z))P_3(Z)$ and then: $B_k(2 + J(D_k)) + M(D_k) =$ $C_k(2 + J(D_k)) + M(D_k) = 0$ with $M(Z) = P_2(Z)$. $P_3(Z) \in \Omega_2$. Suppose $M(D_k) = 0$; then $B_k(2 + J(D_k)) = C_k(2 + J(D_k)) = 0$; from

3.8(c) we have $A_k^2 = A_k(B_k + C_k) - A_k E_k(D_k)$ and consequently $AE_k(D) = 0$; so $E_k(Z) \in (2 + J(Z))\Omega_*$ and $A_k^2 = (B_k + C_k)^2$. Let $\theta: MU \to K$ being the canonical map between spectra; θ sends Euler classes to Euler classes; the relation $A_k^2 = (B_k + C_k)^2$ becomes by using $\theta: 1 + \xi_1 - \xi_2 - \xi_3 = 0$ in $K^0(B\Gamma_k)$ which is impossible since $1 + \xi_1 - \xi_2 - \xi_3 \neq 0$ in $R(\Gamma_k)$ (the canonical map from $R(\Gamma_k)$ to $K^0(B\Gamma_k)$ is injective). Hence $M(D_k) \neq 0$.

(b) We have seen in (a) that $B_k^2 = B_k H_1(D_k) + K_1(D_k)$; so: $C_k^2 = C_k H_1(D_k) + K_1(D_k)$ and: $A^2 = AH_1(D) + K_1(D) = AS(D)$; then $A[H_1(D) - S(D)] + K_1(D) = 0$ and there is $S_0(Z) \in \Omega_2$ such that $H_1(Z) = S(Z) + (2 + J(Z))S_0(Z)$; consequently: $B_k^2 = B_k S(D_k) - M(D_k)S_0(D_k) + K_1(D_k) = B_k S(D_k) + N(D_k)$ with: $N(Z) = K_1(Z) - M(Z)S_0(Z) \in \Omega_4$; by 3.7(c) $C_k^2 = C_k S(D_k) + N(D_k)$. If $N(D_k) = 0$ then as in 2.13 we would have $C_k(2 + J(D_k)) = 0$ and then $M(D_k) = 0$ which is false by (a). Hence: $N(D_k) \neq 0$.

(c) We need to show first that $T_k(Z) \notin 2\Omega_*$ $(T_3(Z) = T(Z)$ and $T_k(Z)$ are defined respectively in 2.11 and 3.6). Suppose k = 3; from AB + BC + CA = Q(D) and A(2 + J(D)) = B(2 + J(D)) = 0 (see 2.9 and 2.13) we get (2 + J(D)) Q(D) = 0; so:

$$(2+J(Z))Q(Z) = (2+\mu_1 Z + \mu_2 Z^2 + \cdots)(4Z + \beta_2 Z^2 + \beta_3 Z^3 + \cdots)$$

= 8Z + (2\beta_2 + 4\mu)Z^2 + (2\beta_3 + \mu_1\beta_2 + 4\mu_2)Z^3
+ \cdots \in T(Z)\Omega_*;

hence $T(Z) \notin 2\Omega_*$ since $\mu_1\beta_2 \notin 2U^*(pt)$ (see 2.9 and 2.13). Suppose that $T_i(Z) \notin 2\Omega_*$, $3 \le i \le k-1$, and $T_k(Z) \in 2\Omega_*$; as $A_k =$ $B_k + C_k - E_k(D_k)$ (see 3.8(c)) we have $E_k(D_{k-1}) = 0$ and then $E_k(Z) \in$ $T_{k-1}(Z)\Omega_*$; from $T_k(Z) \in T_{k-1}(Z)\Omega_*$, $T_k(Z) \in 2\Omega_*$ and $T_{k-1}(Z) \notin I_{k-1}(Z)$ $2\Omega_*$ it follows easily that $2T_{k-1}(D_k) = 0$; consequently $2E_k(D_k) = 0$ and $2A_k = 2(B_k + C_k)$ which is impossible (it can be seen by using $\theta: MU \to K$ as in (a)). Hence $T_k(Z) \notin 2\Omega_*, k \geq 3$. Let $q: \Omega_* \to \Omega_*/2\Omega_* = (U^*(pt)/2U^*(pt))[[Z]]$ be the canonical projection and $\overline{R}(Z)$ the image of R(Z) by q. Now it follows easily from 3.8(c) and (a) that: $2M(D_k) + E_k(D_k)(2 + J(D_k)) = 0$ and then $2M(Z) + E_k(Z)(2 + J(Z)) = T_k(Z) \cdot H(Z), H(Z) \in \Omega_*.$ Hence $\overline{E}_k(Z) \cdot \overline{J}(Z) = \overline{T}_k(Z) \cdot \overline{H}(Z)$; as $\overline{T}_k(Z) \neq 0$ the formal power series $\overline{H}(Z)$ is unique and its coefficients which belong to $U^*(pt)/2U^*(pt) =$ $\mathbb{Z}_2[x_1, x_1, \ldots]$ ($|x_i| = -2i$) are computable from those of \overline{E}_k , \overline{J} and \overline{T}_k ; if $\overline{H}(Z) = \sum \overline{d}_i Z^i$, $\overline{d}_i \neq 0$, then there is a unique element $e_i \in \mathbb{Z}[x_1, \ldots, x_n, \ldots] = U^*(pt)$ whose coefficients as a polynomial in x_1, \ldots, x_n, \ldots , are odd and such that $\overline{e}_i = \overline{d}_i$; it follows that $E_k(Z)(2+J(Z)) - T_k(Z) \cdot (\sum e_i Z^i) = -2G_k(Z)$ and $G_k(D_k) = M(D_k)$. The same method can be used to determine $L_k(Z)$ by considering the relation $2N(D_k) = E_k^2(D_k) - E_k(D_k)S(D_k) - 2F(D_k)$ which is an easy consequence of (b) and 3.8(c).

Let \tilde{I}'_* be the graded ideal of Λ_* generated by the homogeneous formal power series $G_k(X, Z) = X(2+J(Z))+G_k(Z) \in \Lambda_2$, $G_k(Y, Z) =$ $Y(2+J(Z))+G_k(Z) \in \Lambda_2$, $T_k(Z) \in \Lambda_4$ (see 3.6 and 3.9) and \tilde{I}''_* the graded ideal of Λ_* generated by the homogeneous formal power series $L_k(X, Z) = X^2 - XS(Z) - L_k(Z) \in \Lambda_4$, $L_k(Y, Z) = Y^2 - YS(Z) L_k(Z) \in \Lambda_4$, $XY - F_k(Z) \in \Lambda_2$ (see 3.8(c) and 3.9). The proofs of the following lemmas are quite similar to those of 2.15, 2.16 and will be omitted.

LEMMA 3.10. If $H_1(Z)$, $H_2(Z)$, $H_3(Z)$ are elements of Ω_* such that $B_k H_1(D_k) + C_k H_2(D_k) + H_3(D_k) = 0$ then $XH_1(Z) + YH_2(Z) + H_3(Z) \in G_k(X, Z)\Omega_* + G_k(Y, Z)\Omega_* + T_k(Z)\Omega_* \subset \tilde{I}'_*$.

LEMMA 3.11. For any $P(X, Y, Z) \in \Lambda_*$ there are $H_1(Z)$, $H_2(Z)$, $H_3(Z)$ elements of Ω_* such that $P(X, Y, Z) - [XH_1(Z) + YH_2(Z) + H_3(Z)] \in \tilde{I}_*''$.

As a direct consequence of 3.10, 3.11 we get our main theorem where $\tilde{I}_* = \tilde{I}'_* + \tilde{I}''_*$ (see the proof of 2.17).

THEOREM 3.12. The graded $U^*(pt)$ -algebra $U^*(B\Gamma_k)$ is isomorphic to Λ_*/\tilde{I}_* where \tilde{I}_* is a graded ideal of Λ_* generated by six homogeneous formal power series.

REMARK. The homomorphism f_k^* induced by the inclusion $\Gamma_{k-1} \subset \Gamma_k$ (see 3.7) is such that $f_k^*(B_k) = 0$,

$$f_k^*(C_k) = B_{k-1} + C_{k-1} - E_{k-1}(D_{k-1})(E_{k-1}(D_{k-1}) \neq 0),$$

 $\begin{array}{l} f_k^*(D_k) = D_{k-1} \text{ if } k \geq 5 \text{ (see 3.8). But } f_4^*(B_4) = 0, \ f_4^*(C_4) = P(D) - \\ (B+C), \ P(D) \neq 0 \text{ (see 2.9, 2.6)}, \ f_4^*(D_4) = D. \\ \text{Let } U^*(pt)[[D_k]] \text{ be } \{R(D_k), R(Z) \in \Omega_*\}. \end{array}$

THEOREM 3.13. (a) $U^*(pt)[[D_k]] \simeq \Omega_*/(T_k)$ as graded $U^*(pt)$ -algebras.

(b) $U^*(B\Gamma_k)$ is generated by 1, A_k , B_k as a $U^*(pt)[[D_k]]$ -module. Moreover if $V_k = U^*(pt)[[D_k]]$ then:

$$V_k \cap V_k B_k = V_k \cap V_k C_k = V_k B_k \cap V_k C_k = G_k (D_k) \cdot V_k.$$

Proof. The assertion (a) is a consequence of 3.6; the first part of (b) is proven in 3.1 and the second part is a consequence of 3.10.

Now we are going to alter B_k , C_k in order to improve 3.13(b). From $B_k(2 + J(D_k)) + G_k(D_k) = 0$ it follows easily that $G_k(D) = 0$; so $AG_k(D) = 0$ and $G_k(Z) = (2 + J(Z))G'_k(Z)$, $G'_k(Z) \in \Omega_2$; hence

$$(B_k + G'_k(D_k))(2 + J(D_k)) = (C_k + G'_k(D_k))(2 + J(D_k)) = 0.$$

Furthermore if $\mu: U^*(B\Gamma_k) \to H^*(B\Gamma_k)$ is the edge homomorphism (in connection with the U*-AHSS for $B\Gamma_k$) then $\mu(B_k + G'_k(D_k)) = \mu(B_k)$, $\mu(C_k + G'_k(D_k)) = \mu(C_k)$. This remark and Lemma 3.10 allow the following rearrangement of Theorem 3.13 with $B'_k = B_k + G'_k(D_k)$, $C'_k = C_k + G'_k(D_k)$.

THEOREM 3.14. (a) $U^*(pt)[[D_k]] \simeq \Omega_*/(T_k)$ as graded $U^*(pt)$ -algebras.

(b) As graded $U^*(pt)[[D_k]]$ -modules we have:

 $U^*(B\Gamma_k) \simeq U^*(pt)[[D_k]] \oplus U^*(pt)[[D_k]] \cdot B'_k \oplus U^*(pt)[[D_k]] \cdot C'_k$ and B'_k , C'_k have the same annihilator $(2 + J(D_k)) \cdot U^*(pt)[[D_k]]$. \Box

Appendix.

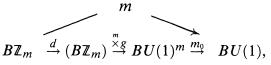
(A) Calculation of $U^*(B\mathbb{Z}_m)$ by a new method. The method used in the case $G = \Gamma_k$ applies more simply in the case $G = \mathbb{Z}_m$. Let w be $\exp(2i/m)$ and ρ the irreducible unitary representation of \mathbb{Z}_m defined by $\rho(\overline{q}) = w^q$, $\overline{q} \in \mathbb{Z}_m$. Let η be the complex vector bundle over $B\mathbb{Z}_m$ corresponding to ρ and $D_1 = e(\eta) = cf_1(\eta) \in U^2(B\mathbb{Z}_m)$.

Let Λ'_{*} be $U^{*}(pt)[[Z]]$, graded by taking dim Z = 2. There is a topology on Λ'_{2n} , $n \ge 0$, defined by the subgroups $J_{r} = \{P \in \Lambda'_{2n}, \nu(P) \ge r\}$, with $\nu(P) = 2s$ if $P(Z) = a_{s}Z^{s} + a_{s+1}Z^{s+1} + \cdots, a_{s} \ne 0; \Lambda'_{2n}$ is complete and Hausdorff. Furthermore, $U^{2n}(B\mathbb{Z}_{m})$ is topologized by the subgroups $J^{r,2n-r}$ induced by the U^{*} -AHSS for $B\mathbb{Z}_{m}$, taken as a system of neighbourhoods of 0. The group $U^{2n}(B\mathbb{Z}_{m})$ is complete and Hausdorff because the U^{*} -AHSS for $B\mathbb{Z}_{m}$ collapses. Moreover there is a unique continuous homomorphism of graded $U^{*}(pt)$ -algebras $\varphi' \colon \Lambda'_{*} \to U^{*}(B\mathbb{Z}_{m})$ such that $\varphi'(Z) = D_{1}$ and φ' is surjective (see Sections I and II).

The complex vector bundle η^m is trivial $(\dim \eta^m = 1)$ because $\rho^m = 1$. 1. Hence $cf_1(\eta^m) = 0$. If m_0 denotes a map: $BU(1)^m \to BU(1)$ classifying $\bigotimes^m \gamma(1) (\gamma(1))$ being a universal complex vector bundle over BU(1)) and if $c_1 = cf_1(\gamma(1))$ then:

$$m_0^*(c_1) = \sum a_{(u)} e_1^{u_1} e_2^{u_2} \cdots e^{u_m}, \quad u = (u_1, \dots, u_m).$$

 $u_1 \ge 0, \ldots, u_m \ge 0$, e_i being the image of $a_1 \otimes a_2 \otimes \cdots \otimes a_m$ with $a_1 = a_2 = \cdots a_{i-1} = 1$, $a_i = c_1$, $a_{i+1} = \cdots = a_m = 1$, by the product: $\bigotimes^m U^*(BU(1)) \to UBU(1)^m)$. The vector bundle η^m is classified by the composite:



d being the diagonal map and *g* a map classifying η . It follows that if $T(Z) = \sum a_{(u)}Z^{u_1+u_2+\cdots+u_m} \in \Lambda'_2$, we have $T(cf_1(\eta)) = T(e(\eta)) = T(D_1) = 0$. It is easily seen that T(Z) = [m](Z).

THEOREM A.1. $U^*(B\mathbb{Z}_m) \simeq \Lambda'_*/([m](Z))$ as graded $U^*(pt)$ -algebras.

Proof. Let I_* be ([m](Z)). The homomorphism $\varphi': \Lambda'_* \to U^*(B\mathbb{Z}_m)$ of graded $U^*(pt)$ -algebras, defined above, is surjective; moreover $\varphi'(I_*) = 0$. Hence φ' gives rise to a homomorphism of graded $U^*(pt)$ algebras $\overline{\varphi}': \Lambda'_*/I_* \to U^*(B\mathbb{Z}_m)$. Let P(Z) be any element of Λ'_{2n} $(n \ge 0)$ such that $P(D_1) = 0$; if $P(Z) = a_0 + a_1Z + a_2Z^2 + \cdots$, then $a_0 = 0$ because $a_0 = -(a_1D_1 + a_2D_1^2 + \cdots) \in \tilde{U}^*(B\mathbb{Z}_m) \cap U^*(pt) = 0$. It follows that $P(Z) = a_{p_0}Z^{p_0} + a_{p_0+1}Z^{p_0+1} + \cdots$, with $p_0 \ge 1$, $a_{p_0} \ne 0$. We have

$$a_{p_0+1}D_1^{p_0+1} + \dots + a_{p_0+k}D_1^{p_0+k} \in J^{2(p_0+1),2(n-p_0-1)};$$

since this group is closed in $U^{2n}(B\mathbb{Z}_m)$, it follows that

$$\sum_{i=1}^{\infty} a_{p+i} D_1^{p_0+i} \in J^{2(p_0+1),2(n-p_0-1)} \subset J^{2p_0+1,2(n-p_0)-1}$$

Let *s* be the quotient map:

$$J^{2p_0,2(n-p_0)} \to J^{2p_0,2(n-p_0)}/J^{2p_0+1,2(n-p_0)-1}$$

= $H^{2p_0}(B\mathbb{Z}_m) \otimes U^{2(n-p_0)}(pt) = \mathbb{Z}_m \otimes U^{2(n-p_0)}(pt)$
= $U^{2(n-p_0)}(pt)/mU^{2(n-p_0)}(pt)$

 $(H^{2p_0}(B\mathbb{Z}_m) = \mathbb{Z}_m$ because $p_0 \ge 1$). It follows from $s(P(D_1)) = 0$ that $a_{p_0} = ma'_{p_0}$. We form $P_1(Z) = P(Z) - a'_{p_0}Z^{p_0-1}T(Z)$; then $P_1(D_1) = 0$ and $\nu(P_1) > \nu(P)$. We repeat the same process, and there is an element $P_{r+1}(Z) \in \Lambda'_{2n}$, $r \ge 1$, such that

$$P_{r+1}(Z) = P(Z) - (a'_{p_0}Z^{p_0-1} + a'_{p_1}Z^{p_1-1} + \dots + a'_{p_r}Z^{p_r-1})T(Z)$$

with the properties: $P_{r+1}(D_1) = 0$, $\nu(P_{r+1}) = p_{r+1} > p_r \cdots > p_1 > p_0$. Hence $\lim_{r\to\infty} \nu(P_{r+1}) = +\infty$ and by Sec. I we have $P(Z) = p_0$.

 $(\sum_{i=0}^{\infty} a'_{p_i} Z^{p_i-1}) T(Z) \in I_{2n}$. It follows that $\overline{\varphi}'$ is injective and the theorem has been proved.

Note. P. S. Landweber has proved a similar result by using other methods (see [13]).

(B) Calculation of $U^*(BSU(n))$. Particular case n = 2: SU(2) = Sp(1). Consider the S¹-bundle $U(n)/SU(n) = S^1 \rightarrow BSU(n) \xrightarrow{p} BU(n)$, $n \ge 2$, p = Bi with i: $SU(n) \subset U(n)$; let ξ be the complex vector bundle $E = BSU(n) \times_{S^1} \mathbb{C} \xrightarrow{\pi} BU(n)$, where S¹ acts on \mathbb{C} by the multiplication in \mathbb{C} . If $E_0 = E - j(BU(n))$, j being the zero-section of ξ , then we have the Gysin exact sequence (see [4]):

$$\cdots \to U^{i}(BU(n)) \xrightarrow{e(\xi)} U^{i+2}(BU(n)) \xrightarrow{\pi_{0}^{*}} U^{i+2}(E_{0})$$
$$\to U^{i+1}(BU(n)) \to \cdots,$$

where π_0 denotes $\pi | E_0$. The map $g: BSU(n) \to E_0$ defined by g(x) = [x, 1] is an embedding; take E' = g(BSU(n)), j' the inclusion: $E' \subset E_0$ and $h: E_0 \to E'$ the map defined by h[x, z] = [xz/|z|, 1]; then by using h and the homotopy $H: E_0 \times I \to E_0$ given by H([x, z], t) = [x, tz + (1-t)z/|z|] we see that E' is a strong deformation retract of E_0 ; it is easily seen that $\pi' \circ h = \pi_0$ and $\pi' \circ g = p$ with $\pi' = \pi | E', g$ being considered as a homeomorphism: $BSU(n) \xrightarrow{\sim} g(BSU(n))$. So: $\pi_0^* = h^* \circ g^{*-1} \circ p^*$ and since $h^* \circ g^{*-1}$ is an isomorphism the above exact sequence gives the following one:

$$\cdots \to U^{i}(BU(n)) \xrightarrow{e(\zeta)} U^{i+2}(BU(n)) \xrightarrow{p^{*}} U^{i+2}(BSU(n))$$
$$\to U^{i+1}(BU(n)) \to \cdots$$

Consider the canonical map of ring spectra $f: MU \to H$ (see [1]); $f^{\#}(-)$ maps Euler classes to Euler classes. Suppose $e(\xi) = 0$; then $f^{\#}(-)(e(\xi)) = 0$, which means that the Euler class of ξ for H is 0. From the Gysin exact sequence of ξ for H it follows easily that $H^2(BU(n)) \simeq H^2(BSU(n))$ which is impossible since $H^2(BU(n)) \neq 0$ and $H^2(BSU(n)) = 0$ (see [12], page 237). Hence $e(\xi) \neq 0$ and the map $\cdot - e(\xi)$ is injective. Consequently the sequence:

$$0 \to U^{2i}(BU(n)) \xrightarrow{\cdot e(\xi)} U^{2i+2}(BU(n)) \xrightarrow{p^*} U^{2i+2}(BSU(n)) \to 0$$

is exact and $U^{2i+1}(BSU(n)) = 0$, $i \ge 0$. So we have:

THEOREM B.1. We have $U^{2i+1}(BSU(n)) = 0$, $i \ge 0$, and the map p^* induces an isomorphism:

$$U^{2i+2}(BU(n))/e(\xi)U^{2i}(BU(n)) \simeq U^{2i+2}(BSU(n)), \qquad i \in \mathbb{Z}.$$

Now let (g_{ij}) be a set of transition functions for a universal U(n)bundle: $EU(n) \rightarrow BU(n)$. If \overline{g}_{ij} denotes the image of g_{ij} by the quotient map $q: U(n) \rightarrow U(n)/SU(n) = S^1$ then (\overline{g}_{ij}) is a set of transition functions for ξ ; from $q(g_{ij}) = \det(g_{ij})$ and $\dim \xi = 1$, it follows that ξ is isomorphic to the complex vector bundle $\Lambda^n \gamma(n), \gamma(n)$ being a universal vector bundle over BU(n). Hence:

THEOREM B.2.

$$U^{2i+2}(BU(n))/e(\Lambda^n \gamma(n)) \cdot U^{2i}(BU(n)) \simeq U^{2i+2}(BSU(n)).$$

and $U^{2i+1}(BSU(n)) = 0, \ i \ge 0.$

Particular Case n = 2; Sp(1) = SU(2). By Section II we have $U^*(BSp(1)) = U^*(BSU(2)) = U^*(pt)[[V]]$, with $V = cf_2(\theta)$, θ being a universal Sp(1)-vector bundle over BS(1), regarded as a U(2)-vector bundle. Then $cf_1(\theta) = P_0(V) = \sum_{i=1}^{\infty} b_i V^i \in U^2(BSU(2))$. If p denotes the projection: $BSU(2) \to BU(2)$, we have seen that the following sequence is exact: $0 \to U^{2i}(BU(2)) \xrightarrow{e(\Lambda^2\gamma(2))} U^{2i+2}(BU(2)) \xrightarrow{p^*} U^{2i+2}(BSU(2)) \to 0$. We wish to calculate the coefficients b_i , $i \ge 1$. The Sp(1)-vector bundle θ considered as a SU(2)-vector-bundle is a universal SU(2)-vector-bundle over BSU(2) isomorphic to $p^*(\gamma(2))$ as a complex vector bundle. We have $U^*(BU(2)) = U^*(pt)[[c_1, c_2]]$. $c_1 = cf_1(\gamma(2)), c_2 = cf_2(\gamma(2))$ and consequently

$$p^{*}(c_{1}) = \sum_{i \ge 1} b_{i} V^{i} = \sum_{i \ge 1} b_{i} (cf_{2}(\theta))^{i} = \sum_{i \ge 1} b_{i} p^{*}(c_{2})^{i}$$
$$= p^{*} \left(\sum_{i \ge 1} b_{i} c_{2}^{i} \right).$$

It follows that: $c_1 - \sum_{i \ge 1} b_i c_2^i = e(\Lambda^2 \gamma(2)) \cdot H(c_1, c_2)$ with $H(c_1 c_2) \in U^0(BU(2))$.

Let $k: BU(1) \times BU(1) \rightarrow BU(2)$ be a map classifying $\gamma(1) \times \gamma(1)$. Hence $k^*(\Lambda^2 \gamma(2)) = \gamma(1) \otimes \gamma(1)$ and $k^*(e(\Lambda^2 \gamma(2))) = F(X, Y)$, the formal group law. Then $k^*(c_1 - \sum_{i \ge 1} b_i c_2^i) = F(X, Y)k^*(H(c_1, c_2))$; as $k^*(c_1) = X + Y$ and $k^*(c_2) = XY$ we get:

$$X + Y - \sum_{i \ge 1} b_i (XY)^i = F(X, Y) G(X, Y) \in U^*(pt)[[X, Y]].$$

If i(X) = [-1](X) then we have:

$$X + i(X) = \sum_{i \ge 1} b_i (X \cdot i(X))^i.$$

This relation determines completely the coefficients b_i , $i \ge 1$; for example $b_1 = -a_{11}$, $b_2 = a_{11}a_{11}a_{21} - a_{22}\cdots$ the a_{ij} being the coefficients of the group law.

(C) Ring Structure of $H^*(B\Gamma_k), k \ge 3$. M. Atiyah has determined the ring-structure of $H^*(B\Gamma_3)$ by using K-theory (see [2]); namely $H^*(B\Gamma_3) = \mathbb{Z}[x, y, z]$ subject to the relations xy = 4z, $2x = 2y = x^2 = y^2 = 8z = 0$, dim x = 2, dim y = 2, dim z = 4. We want to give another proof of this result using complex cobordism and determine the ring structure of $H^*(B\Gamma_k), k \ge 4$.

We have $H^2(B\Gamma) = \mathbb{Z}x \oplus \mathbb{Z}y$, $H^4(B\Gamma) = \mathbb{Z} \cdot z$ with $x = c_1(\xi_j)$, $y = c_1(\xi_k)$, $z = c_2(\eta)$ (see Section II). Moreover: 2x = 2y = 8z = 0. We have

$$B^{2} = BS(D), \qquad C^{2} = CS(D),$$

$$BC = (B+C)[P(D) - S(D)] - Q(D)$$

(A, B, C play a symmetrical role; see Section II). If μ is the edge homomorphism we have $x^2 = \mu(BS(D)) = 0$ ($\mu: J^{4,0} \to J^{4,0}/J^{5,-1} = H^4(B\Gamma_3)$; $BS(D) \in J^{6,-2} \subset J^{5,-1}$); similarly $y^2 = 0$; $xy = -\mu(Q(D))$ $= -4z_3 = -4z = 4z$ because $Q(D) = 4D + \sum_{i>2} \beta_i Z^i$ (see 2.9).

Suppose $k \ge 4$. We have $H^2(B\Gamma_k) = \mathbb{Z}x_k \oplus \mathbb{Z}y_k$, $H^4(B\Gamma_k) = \mathbb{Z} \cdot z_k$ with $x_k = c_1(\xi_2)$, $y_k = c_1(\xi_3)$, $z_k = c_2(\eta_1)$ (see 2.3, 2.4). We have $2x_k = 2y_k = 2^k z_k = 0$. The proof of Proposition 3.8 shows that $x_k y_k = \mu(F_k(D_k))$, μ being the edge homomorphism, $F_k(D_k) = cf_2(R_{k-2}(\eta_1))$ with $R_{k-2}(X) \in \mathbb{Z}[X]$; $R_{k-2}(X)$ is determined inductively by $R_2(X) = X^4 - 4X^2$, $R_{m+1}(X) = R_m^2(X) + 4R_m(X)$, $m \ge 2$. By 3.4 we get $F_k(D_k) = R'_{k-2}(2) + \sum_{i\ge 2} \nu_i D_k^i$, $\nu_i \in U^*(p_i)$, $R'_{k-2}(X)$ being the derivative of $R_{k-2}(X)$. An easy calculation shows that $R'_{k-2}(2) = 2^{2k-4}$. As $2k - 4 \ge k$ we get $x_k y_k = 2^{2k-4} z_k = 0$. As a consequence of the relations in $R(\Gamma_k)$ stated in the beginning of Section III we get: $\xi_2\eta_1 = \eta_{2^{k-2}-1}$. Hence $x_k^2 + c_2(\eta_1) = c_2(\eta_{2^{k-2}-1})$ because $c_1(\eta_1) = 0$. By $3.5 cf_2(\eta_{2^{k-2}-1}) = [1+2^{k-1}(2^{k-3}-1)]D_k + \sum_{i\ge 2} \beta'_i D_k^i$ and consequently $c_2(\eta_{2^{k-2}-1}) = (1-2^{k-1})z_k$. Therefore: $x_k^2 = -2^{k-1}z_k = 2^{k-1}z_k$. Similarly: $y_k^2 = 2^{k-1}z_k$. Hence we have proved the following result:

THEOREM C. If $k \ge 4$ we have $H^*(B\Gamma_k) = \mathbb{Z}[x_k, y_k, z_k]$, dim $x_k =$ dim $y_k = 2$, dim $z_k = 4$ subject to the relations: $2x_k = 2y_k = x_ky_k =$ $2^k z_k = 0$, $x_k^2 = y_k^2 = 2^{k-1} z_k$.

UNITARY COBORDISM

References

- [1] J. F. Adams, *Stable Homotopy and Generalized Homology*, University of Chicago Mathematics Lecture Notes, 1971.
- [2] M. F. Atiyah, *Characters and cohomology of finite groups*, I.H.E.S. Publ. Math., 9 (1961), 23–64.
- [3] N. A. Baas, *On the Stable Adams Spectral Sequence*, Aarhus Universitët Lecture Notes, 1969.
- [4] T. Bröcker and T. t. Dieck, *Kobordismen Theorie*, Lecture Notes in Math., Vol. 178, Springer Verlag, 1970.
- [5] H. Cartan and S. Eilenberg, *Homological Algebra*, Princeton University Press, 1956.
- [6] C. W. Curtis and I. Reiner, *Representation Theory of Finite Groups and Associative Algebras*, Wiley, New York, 1962.
- [7] T. t. Dieck, Steenrod operationen in kobordismen theorien, Math. Z., 107 (1968), 380–401.
- [8] ____, Bordism of G-manifolds and integrality theorems, Topology, 9 (1970), 345-358.
- [9] ____, Actions of finite Abelian p-groups without stationary points, Topology, 9 (1970), 359-366.
- [10] D. Pitt, Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc., 26 (1973), 1–18.
- [11] E. H. Spanier, Algebraic Topology, McGraw-Hill, 1966.
- [12] R. E. Stong, Notes on Cobordism Theory, Mathematical Notes, Princeton University Press, 1968.
- [13] P. S. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc. Adv. Study. Inst. Alg. Top. 256-269, Aarhus 1970.
- [14] D. C. Ravenel, Complex Cobordism and Stable Homoty Groups of Spheres, Academic Press, Inc., 1986.

Received October 5, 1986 and in revised form August 15, 1988.

UNIVERSITÉ MOHAMMED V B.P. 1014 Rabat, Morocco