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A GEOMETRIC BOUND FOR MAXIMAL FUNCTIONS
ASSOCIATED TO CONVEX BODIES

DETLEF MULLER

For a convex symmetric body B in Rn let MB denote the centered
maximal operator

MBf{x) = sup - J — / \f(x + ty)\ dy

for / E L/OC(R/I). We associate with B two linear invariants σ(B)
and Q(B), and show that for p > 1 the norm of the operator MB

on Lp(Rn) is bounded by a constant which may depend on p,σ{B)
and Q{B), but not explicitly on the dimension n. In particular, if Bq

denotes the unit ball in Rn with respect to the /^-norm, we can prove
that Mβq has a bound on Lp(Rn) which is independent of n, provided
that 1 < q < oo.

The behaviour of maximal functions associated to convex bodies
has been studied by various authors during recent years. When B
is the Euclidean ball, i.e. B = 1?2, Stein [9] has shown that MB is
bounded on Lp{Un) uniformly in n for every p > 1, and Bourgain [2,
3, 4] and Carbery [6] have shown that the analogue of this holds for
any convex body B, provided p > 3/2. Moreover, by a result of Stein
and Strόmberg [11] it is known that the LP operator norm ||A/ |̂|̂ )/7 of
MB grows at most linearly in the dimension n for any p > 1.

Since the general estimates for convex bodies in [2] do not imply
that IIA/ l̂lp^ has a bound independent of n, if p < 3/2, it is well
possible that for p < 3/2 one can only hope for estimates of ||Λfg||p5P

which depend on additional geometric invariants associated with the
body B. In this article, we shall show that one can in fact prove an
estimate of this kind:

We associate with B the following two linear invariants σ(B) and
Q(B): There exists a regular linear transformation S of Rw, which
is unique modulo orthogonal transformations, and a unique constant
L(B) such that Vol̂  S(B) = 1 and

S{B)

for all unit vectors ξ eRn. Let l/σ(B) be the minimum of all (n - 1)-
dimensional volumes of all sections of S(B) by hyperplanes, and Q(B)
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the maximum of the (n — 1)-dimensional volumes of all orthogonal
projections of S(B) onto hyperplanes (we note that σ(B) « L(B)).
Then, for p > 1, the operator norm HM^H^ can be estimated by a
constant depending only on /?, σ(B) and Q{B).

This criterion suffices for example to prove the uniform bounded-
ness in n of the maximal function Mβq9 where Bq denotes the unit
ball with respect to the /^-norm on RΛ, 1 < q < oo. This extends a
result of Bourgain [4] who proved it for q e 2N by making use of
an "extra" decay of the Fourier transform of χβ2k, XB2k denoting the
characteristic function of B2k. However, this extra decay depends on
some "smoothness" of Bq for q e 2N, which can easily be destroyed
by cutting off a small piece of B2k along an affine hyperplane, whereas
our result is invariant under such operations.

Moreover, since one can show that Q(Boo) = y/n, this might indicate
that the norm of the "cubic" maximal operator MBoo associated with
the unit cube of U is possibly growing with the dimension, if p < 3/2,
and our results give some hints how one might try to prove this.

I would like to express my gratitude to the Mathematical Sciences
Research Institute in Berkeley for the warm hospitality during my stay
there by which this paper was completed, and especially to E. M. Stein
for hints concerning multipliers of Laplace-transform type.

2. The main theorem. Let B be a convex symmetric body in Rn.
Arguing as in [2], we see that there exist a linear transformation S e
GL(R") and a constant L(B) > 0 such that

(1) VolnS(B) = l and / \(x,ζ)\2dx = L(B)2

JS(B)

for all unit vectors ξ e Sn~ι = {ξ e Rn : \ζ\2 = Σj \ζj\2 = 1}. It is easy
to see that L(B) is determined uniquely by (1), and that S is unique
up to multiplication by an orthogonal transformation from the left.

For ζ e Sn~\ we define similarly as in [2]

(2) φ{u) := φξ(u) := V o l ^ α * e S(B) : (x,ξ) = u})9 ueR.

Moreover, let πζ denote the orthogonal projection of Rn onto the hy-
perplane perpendicular to ξ. Then the constants

(3) l/σ(B):= max{^(0) : ξ e Sn'{},

Q(B) := rmx{Voln^(πξ(S(B)) : ξ e

are obviously linear invariants for B, i.e. σ(U(B)) = σ(B) and Q(U(B))
= Q(B) for all U e GL(RΛ).
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Since also ||Af^||Pϊp is a linear invariant for B, we therefore may and
shall assume in the sequel (except for §3) that S(B) = B. Then, by
[2], Lemma 1, there exist two universal constants 0 < α, A < oo, such
that

(4) φ(u) < Aφ{Q)e-aφmu\ ueR.

Moreover, there is a universal constant a\ > 0, such that with L =

L(B)

(5) a-ι<L φξ(0)<au ζeSn~ι.

This implies in particular σ(B) « L(B).

THEOREM 1. Let p > 1. Then for all f e Lp(Rn)

(6) \\MBf\\p<C(pMB),Q(B))\\f\\p>

where the constant C = C(p, σ, Q)ι is independent ofn and grows with

σ and Q.

Note that, for p > 3/2, C can even be chosen to be independent of
σ and Q by [3] or [6].

Let us fix some notation. We denote by m the multiplier

(7) m(ξ) = χB(ξ) = ί χB(x)e-2πi{ξ>x) dx

associated to χB. If w e L°°(Rn) is any multiplier, we define the
corresponding multiplier operator Tw as

(8) Tw(f)=Γ-ι(wf),

SF~1 denoting the inverse Fourier transform.
For p G R with p > 1/2 let us define the pth fractional derivative

(ξ - Vym of m as in [6] by

(9) (ξ • VYm{ξ) = XL m(rζ)
drj

= [(-2πi(xyξ)yK(x)e-2πi(χ& dx,

where K = χB. Then, by the results of [6], expecially Theorem 2 and
Proposition (ii), our Theorem 1 will be an immediate consequence of

1 Here and in the sequel constants will frequently be denoted by C, with the understanding
that they may be different from statement to statement.
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PROPOSITION 1. Let 1/2 < p < 1. Then for all f e LP{Un)

\\T(ζ.vymf\\p<Cp{pMB\Q{B))\\f\\p

if I < p < oo, where the constant Cp is again independent ofn.

This proposition is closely related to the question raised in [6],
whether it is possible to find a bound for T<^.^m which is independent
of n.

The proof of Proposition 1 will be based on analytic interpolation.
We define a family of operators Ta = Tma, a e C, by

(10) ma(ξ) = (1 + \ξ\)ι-a[Γam(rξ)]\r=u ξ φ 0.

Here, I~a denotes the αth fractional Riesz derivative with base point
2, that is

(11) /-"/(r) = -^L- [\s-r)-°-ιf(s)ds, Reα<0,

if/eC°°(]0,2]).
It is well known that I~a can be extended analytically to the whole

complex plane, and that I~k = (d/dr)k is the usual kth derivative
for k = 0,1,.... Note that I~a and (d/dr)a as defined in (9) do not
agree. However, we shall show later that the difference of these two is
unimportant for our problem. We also define T£ = Γm* by

(12) mε

a(ξ) = (l + \ξ\Γ£ma(ξ), ε > 0.

The proof of Proposition 1 will essentially be contained in the Lem-
mas 2 and 4 to follow, which deal with the two endpoint cases for the
interpolation. Lemmas 1 and 3 are more of a technical nature.

LEMMA 1. Let 0 < Reα < 1, k e N. Then for u > 1

Jo (1+j/κ)*
?~2πιs ds - ^ - Γ ( l - α)

The proof of Lemma 1 is an easy consequence of Cauchy's integral
theorem and follows by changing the path of integration from the
interval [0, u] to -/[0, w], connecting those two paths by quarter circles
of radii u and ε, ε —> 0. We shall omit the technical details.
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LEMMA 2. Fix N > 0 and 0 < e < 1/2. Then
(i) ||/Wα||oo < CΛKσ(5),β(5))*2*lImαl, 0 < Reα < ΛΓ,

(π) IKHoo < CN(σ(B),Q(B))e2π\lm«\, -ε < Reα < N.

Proof. Assume Reα > —e, and let k = [Reα] be the integer part of
Reα. Then it follows easily by partial integration from (10) that

k

OL\S>) — £_^

By (1), with 9? = ψξ/\ξ\9 we have

(14) m(ξ)= e
J—OO

hence

^ J m(rξ)\r=2 = {-2πi\ξ\y J ̂

By partial integration this implies

( ή \ J 1 C°

f-rJ m(rξ)\r=2 = -(-2πi\ξ\γ-1 J
(2) and (15) imply for 0 < j < N

du.

L j m(rξ)\r=2 < CN\ζY du

\ξ\J < CNσ(By\ξ\J.

Moreover, since (uiφ)'(u) = juj~ιφ(u) + u->φ'(u), and since φ'{u) has
constant sign for u > 0 resp. u < 0, (16) and (4) yield

Together, we obtain

(iϊ m(rξ)\r=:
<CN(σ(B))\ξ\J/(l

at least for j > 1. However, for 7 = 0, (15) and (16) easily imply

\m{ξ)\ < C(l + ̂ (0))/(l + |{|) < C Q(B)/(l + \ξ\).
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So, together we get

DETLEF MULLER

<CN(σ(B),Q(B))- \ξ\J

This implies, for j = 0,..., k,

(17) ΓΓ i _ a ) (Jp

where we made use of the well known asymptotics [8, p. 79]

(18) \Γ(x + iy)\ ~ ff-(*/2)|jΊ|y|(χ-i/2). ^ / ^ a s ^j _+ ^

So, it remains to estimate the integral term in (13), which, up to
the sign, is given by

where

- a)

r2

F(ή= / (s - l)k-ae~2πits ds.

The estimate of J(ζ) requires more technique, but is essentially based
again on (4), so that the rest of the proof of the lemma could be
skipped for a first reading. We set

G(u)= Γ'
Jo

ueR.

Then
roo

/ F{\ξ\u)uk+Xφ{u)du
J—oo

= \ξ\~k-2 Γ F(u)uk+1φ(u/\ξ\)du
J —oo

roo

= -\ξ\-k-' G(u)φ'(u/\ζ\)du,
J —OO

and hence

(19)

Γ(k
G(u)φ'(u/\ξ\)du
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Now
ru

(20) /
JO

±
k+\

7=0

Let

(21) Gιj ( u ) = u k + { - J ί { s -

and

(21)' Gk+2(u) = Gk+2 = Jutl-

and define for j = 0,... , k + 2

(22) /;(£) = £

~—2πius

\ξ\2
Gj{u)ψ?{ul\ξ\)du

Γ(* + 1 - α)/_«, " ' ι

By (20), G is a linear combination of the (7,, and so it remains only
to show that all functions Jj have an estimate of the desired type.

For; = 0,...,fc+ 1,

Gj(u) = u^Je-2™ Γ
Jo

so Lemma 1 implies for \u\ > 1

(23) Gj(u) = ± ie^2^-^)

0-2πis ds,

- a)ua'Jea'Je'2πiu

Moreover, if \u\ < 1, then

— ua~J
-U

p-2πiu ί Ώk+\-a
I p-2πiu

_ < 2j+ι

Jo ds[(l+s/u)J+ι
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which easily implies

(23)' \Gj(u

(23) and (23)' imply

(24) \Jj(ζ)\ < - CN

{-

\k+ι~j

" L

l-Reα

lip

hr^a)\[uk+x'iφ>{um)

X f
J\

However, if j < k + 1, then

(25) uk+{-Jφ'(u/\ξ\)du

φ\ul\ξ\)du

< - [l φ'(u/\ζ\)du < 2φ(0)\ξ\,
Jo

and similarly one shows by (4) that

I z oo poo

\ uRea-Jφ'(u/\ξ\)du =-\ξ\ι+Kea-j uKea-jφ'(u)du
l /i Jι/Vt\

<\ξ\ί+Rea-j \\ξ\j-Reaφ(l/\ζ\)

{

ι/Vt\

- j\φ(O) du

α-7| ί°° uKea-jφ(u)du\

hence

(26) / uRea-jφ'{u

Of course | / * uk~^φ'(u/\ξ\) du\ is even dominated by (26). (24), (25)
and (26) imply, for |^| > 1,

(27) \Jj(ζ)\<CN(σ

Moreover, since obviously

(27)' - l-Reα

< Cχ/\k + 1 - α|, we have

1 C°°
v φ'(u/\ξ\)du

£-a)\ Jo\Γ(k + 2-a,\j0

lί l>l
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The last two estimates imply the desired uniform estimates of ma(ξ)
and m*a(ξ) for \ζ\ > 1.

There remains the case \ζ\ < 1, which is easy: By partial integration

2 / j \k+2

/

2 / j \k+2

which, together with (15) and (2), implies

\J(ξ)\<CN(σ,Q)eπllmal\ξ\k+l',

this settles the case \ξ\ < 1. D

LEMMA 3. For each unit vector η e Sn~ι define a distribution μη =
= (>/ ^)XB- Then μη is even a bounded measure, and

Proof. Let φ e Cβ°(Rn) with ||p||oo = 1. After rotating coordinates,
we may assume that η is the nth coordinate vector. Writing Rn =
Rn~ι x R with coordinates (x9 ύ)9 we then have

ί dφ f f dφ
Jβdη Jπη(B)JBχ9u

where Bx is the interval Bx = {u e R : (x9 u) e B}9 with endpoints say
a(x) < b(x)9 unless Bx = 0. So

[φ(b(x)) - ^(flW)]rfx < 2Yoln^(πη(B));

hence ||//^||Λ/ < 2Volπ_i(π f/(5)). Moreover, choosing φ to be linear on
each section Bx such that φ{b(x)) = 1 and φ(a(x)) — - 1 immediately
also gives \μn\hi > 2Yoln-ι(πη(B)). Π

LEMMA 4. Let 0 < ε < 1/2. ΓΛw

(28) | |7^ β + / V/| | p<C β(p,cj(Jϊ;

for every I < p < oo.

Proof. Let a = —ε + iv. Since
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it clearly suffices to prove that the multiplier operator corresponding
to (1 + \ξ\y-ε~am(sξ) satisfies (28) uniformly for 1 < s < 2.

Consider the multiplier Mv(ξ) = (1 + |£|)~/ z /. This multiplier is of
Laplace-transform type in the sense of [8, Ch. II, §4], since one easily
checks that

roo

= λ a{t)i
Jo

a{t) =
1

e"λt dt, λ > 0, where

sive'sds\ .re-1 -

Since ||α||oo < O ( 7 Γ / 2 ) | Z / |, the general theory of heat-diffusion semi-
groups [8] implies for 1 < p < oo

\^y) \\IMvJ\\p S ^Pe
κ ' n {\\j\\p, / t L ^ H j ,

where Cp is a constant depending only on p.
Since (1 + \ξ\y-ε-am(sξ) = (1 + \ξ\)-iv(l + \ξ\)m(sξ), and since

\\τm(s-)\\p,p = \\Tm\\P,p < \B\ = 1 for all p, (29) reduces the proof of
(28) finally to estimating the multiplier operator corresponding to

(30) mo(ζ) = -2π\ξ\m(ξ).

Define measures μ; by βj = dχβ/dxj, j = l,...,n. Since

we have

(31)
7=1

where Rj denotes the jth Riesz transform. By a result of Stein [10]
(see also [7]), it is known that

(32)

1/2

Σ <AP
1 < p < oo,

where Ap is independent of n. Using a simple duality argument, (31)
and (32) imply

(33) \\TmJ\\p<Ap, 1 < p < oo,
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where \/p + 1//?' = 1. Let g(f)2(x) = Σj \μj * /Ml 2 - We want to
estimate the LP -operator norm of the sublinear operator g.

If p = 2, we obtain from (17)

(34) \\g(f)\\2 = \\TmJ\\2 < | |mo|U|/||2 < C(σ,

For p = oo, we observe that

(35) \g(f)(x)\ = \(VχB) * f(x)\ = sup \μη * f(x)\,
Sι

where μη is defined as in Lemma 4. This in combination with Lem-
ma 4 implies

(36) \\g(f)\\oo < sup IKII

Interpolation between (34) and (36) yields

\\g(f)\\p<C(p9σ,Q)\\f\\P9 2<p<oo

hence, by (33), also

(37) \\Tmof\\p<C(p9σ9Q)\\f\\p,

at least for 2 < p < oc, but by passing to the adjoint operator 7^o, we
get (37) also for 1 < p < 2. This concludes the proof of Lemma 4. D

Proof of Proposition 1. Let p = 1 - ε e ]l/2,1[. From Lemma 2 (ii)
and (13) it follows easily that the family {T*} in an admissible family
(in the sense of [12, Ch. V]) on every strip -ε < Reα < TV, N > 0.
Thus, choosing TV sufficiently large and interpolating the estimates in
Lemma 2 and Lemma 4 between Reα = -ε and Reα = N, we obtain

(38) \\TΪ_εf\\p < Ce(pMB),Q(B))\\f\\P

for any 1 < p < 2, hence, by duality, for any 1 < p < oo. But,

(39) m\_ε(ξ) = [Γ»rn(rξ)]\r=ι

2

 ΛX_odm{sζ) ,

Moreover, (ξ V)αm((^) is given by [5, p. 51]

(s-l)-a~ιm(sξ)ds if - 1< α < 0.

By partial integration, we see that
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for 0 < a < 1. A comparison with (39) shows that

(ί • V)'«(ί) = mί_,(ί) ^ ^ J £ ( , l ) 5
1

Since /2°°(.s - I ) " ' 0 " 1 ds < oo, this together with (38) implies

D

3. Examples: The /̂ -unit balls. In the sequel, let 1 < q < oo be
fixed, and let

£>q = £>q = \X E H . \X\g 21 if

be the unit ball with respect to the /^-norm \x\g = (Σ\χj\q)ι^q (resp.
|x|oo = max|x7 |, if q = oo).

Let κ{n) = Kq(n) denote the volume of B%. A straight-forward
calculation, using induction on n, easily yields (q < oo)

(40) Kq(n) = 2]

Choose m = mq{n) > 0 so, that the body Bq = mBq has volume 1.
(40) implies m ~ nχlq up to a constant ^ (see [4]). Of course, if
q = oo, we have K^Π) = 2n, and m = 1/2. Let us determine the
constant L mentioned in (5):

Because of the symmetry properties of Bq, we have for any ξ eSn~ι

r r I \ Γ Γ
/ (ί,x}2Jx = > / ξjxfdx= > if / x»dx= xi dx,

J Dq : J Bq \ ϊ I q Q

and so we may choose S(Bq) to be Bq, and obtain for L = L{Bq)

r rm

2^ — I Λw flΛ — Z I Xn\irl \Xn\ ) Kq\n —I) UΛn

JBn h

where B denotes the Beta-function.
Since mnκq{n) — \, this yields

B(K
κq{n) \q q *q
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by Stirling's formula, and so by (5)

(41) aϊxAqzσ(Bn

q)

at least for q < oo. However, for q = oo clearly L2 = 1/2, hence

In order to estimate Q(B*)9 we adapt an idea from [4]: Let τ :
[0, oc[—> [0,1] be a smooth function satisfying the conditions (q < oo)

(42) τ = l on[0,ro«],

(42/ τ = 0 on[m* + l,oo[,

(42)" - 2 < τ' < 0,

and set K{x) = τ{Σ \Xj\q), * e Rw. Note that by (42) χ~ < K, and by

(42)' {jrfl + \)χlqBq c (l+c/n)Bq =Bq, hence ||AΊ|Li < C. Moreover,
we have

(43) Vol π - 1 (π t f (^)) = i | | | | | i for a l l i e s " 1 " 1 .

This is in fact true if B = Bq is any convex body and K any function
which is 1 on B, non-increasing with growing distance from 2?, and
such that dK/dξ is integrable: We may assume without restriction
that ξ = en. Then, adapting the notations from the proof of Lemma
4,

L dκ dt
POO

Jb(x)

OK
dt+

ra(x)

J—oo

dK

dt
(χ,t) dt

hence

In order to estimate \\dK/dζ\\Lι, observe that

dK/dζ = qτ' (J2 \xjή • Σtj m(Xj)\xj\q-\

and hence

\\dK/dξ\\v < 2q L
JB

2" .4ί, kej=±\"n<

dx

dx.
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However, Khintchine's inequality

2-Σ
8,=±1 7=1

1/2

otj € R,

implies

\\dK/dξ\\v <CqL 7-1)

1/2

η 1/2

by Holder's inequality, since Yo\n(Bq) < C. Because of the symmetry

of Bq, this yields

1/2

and hence, because of (4), (5), (41) and (43),

(44) Q{Bn

q) <Cq, \<q<oo,

independently of n. So Theorem 1 implies

COROLLARY 1. Let \ < q < oo. Then for all feLP(Rn)

\\MB»f\\p<C(p,q)\\f\\p, Kp<oo,

independently ofn.

What can be said about the case q = oo?
In this case, an easy geometric consideration shows that for any

ξ € Sn~ι (see also [1], pp. 41, 45)

)) = £VolΛr_,(F) (ξ,n(F)),
F

where summation is over all faces F of the cube B^ whose out-
ward normal n(F) satisfies (ζ, n(F)) > 0. So, if we choose ξ =
«- 1 / 2(l, 1.....1), we get
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The same argument easily shows that Volw_i(π^(JβOo)) < y/n for any
η eSn~\ and we get

(45) QTO = Vϋ.

So, our criterion gives a bound for | | M ^ | | P ^ which grows with n.
Let us conclude with a direct consequence of our results, which

appears a bit surprising at the first glance (we do, however, not claim
originality for this result). Let Σ(Bjf) denote the surface area of B%.

COROLLARY 2. If I < q < oo, then cφi < Σ(B%) < Cqy/ri, whereas

fe) = 2n.

Proof. By Cauchy's surface formula [1, p. 48]

~ nκ2(n)

hence, by (40), (44), for q < oo

Σ(B») < Cqφι.

Moreover, it is well known [1, p. 104] that the Euclidean ball has
minimal surface area among all convex bodies of given volume, and
Σ(Bξ) = mn-χΣ{B^) = mn~ιn • κ2(n) = n/m ~ c • yfn by (40), where
m = ni2{n). So we also obtain
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