OUTER CONJUGACY OF SHIFTS ON THE HYPERFINITE II₁-FACTOR

DONALD BURES AND HONG-SHENG YIN

For a shift σ on the hyperfinite II₁ factor R, we define the derived shift σ_{∞} to be the restriction of σ to the von Neumann algebra generated by the $(\sigma^k(R))' \cap R$. Outer conjugacy of shifts implies conjugacy of derived shifts. In the case of *n*-shifts with *n* prime, we calculate σ_{∞} explicitly. Combining this with the known classification of *n*shifts up to conjugacy, we obtain useful outer-conjugacy invariants for *n*-shifts.

Following Powers [5], we define a shift σ on a von Neumann algebra M to be a unit-preserving *-endomorphism of M such that $\bigcap_{k=1}^{\infty} \sigma^k(M) = \mathbb{C}$, the complex numbers. We define the derived shift σ_{∞} to be the restriction of σ to the von Neumann algebra M_{∞} generated by all the $(\sigma^k(M))' \cap M$. When two shifts on a factor of type II₁ are outer conjugate, their derived shifts are conjugate (Theorem 1.2, below). This gives us a useful outer-conjugacy invariant. In particular, for shifts σ such that $\sigma_{\infty} = \sigma$, this shows that outer-conjugacy implies conjugacy (when specialized to binary shifts, this is the affirmative answer to a conjecture of Enomoto and Watatani [3]).

In §2, we compute σ_{∞} explicitly when σ is an *n*-shift on the hyperfinite II₁ factor *R* and *n* is prime. 2-shifts, called binary shifts in [5], were introduced by R. Powers in [5]. *n*-shifts have been studied in [1], [2] and [7]. In the notation of [1], every *n*-shift can be associated with a doubly-infinite sequence $(a(k))_{k\in\mathbb{Z}}$ in \mathbb{Z}_n which is odd and fails to be periodic mod *p* for all primes *p* dividing *n*. Furthermore, every such sequence occurs. In case *n* is square-free, two shifts with sequences $(a_1(k))$ and $(a_2(k))$ are conjugate if and only if there exists an *m* in \mathbb{Z}_n such that $a_2(k) = m^2(a_1(k))$ for all *k*. Thus, up to multiplication by a square, the sequence associated with σ_{∞} is an outer conjugacy invariant for σ .

The computation of σ_{∞} breaks down into three cases. First, if (a(k)) fails to be ultimately periodic then $R_{\infty} = \mathbb{C}$; in this case σ_{∞} is trivial and contains no information. Secondly, at the opposite extreme, if a(k) = 0 for all but finitely many k then $R_{\infty} = R$ and $\sigma_{\infty} = \sigma$; in

this case outer conjugacy is equivalent to conjugacy. Finally, the most interesting case occurs when (a(k)) is ultimately periodic but doesn't end in 0's: here R_{∞} is a factor not equal to \mathbb{C} or R and σ_{∞} is an *n*-shift; we are able (Theorem 2.1) to calculate explicitly the sequence associated with σ_{∞} from (a(k)).

PROBLEM. If σ_1 and σ_2 are *n*-shifts with $R_{\infty} \neq \mathbb{C}$, does conjugacy of the derived shifts $(\sigma_1)_{\infty}$ and $(\sigma_2)_{\infty}$ imply outer conjugacy of σ_1 and σ_2 ? Equivalently, if σ is an *n*-shift with $R_{\infty} \neq \mathbb{C}$, are σ and σ_{∞} outer conjugate?

In attempting to answer this problem, we present in §3 a method for producing many shifts outer conjugate to a given shift. This yields many interesting examples. But even in simple specific cases, given that $(\sigma_1)_{\infty} = (\sigma_2)_{\infty}$ it is still not clear whether σ_1 and σ_2 are outer conjugate.

Acknowledgment. The second named author wishes to thank Ed Granirer for support through NSERC.

1. Definition and properties of σ_{∞} . As in [5], a shift σ on a von Neumann algebra M is defined to be a unital *-endomorphism of Msuch that $\bigcap_{k=1}^{\infty} \sigma^k(M) = \mathbb{C}$. Two shifts σ_1 and σ_2 , on M_1 and M_2 respectively, are said to be conjugate when there exists a *-isomorphism ϕ of M_2 onto M_1 such that $\sigma_1 \circ \phi = \phi \circ \sigma_2$, and outer conjugate when there exists a unitary u in M_1 such that $(adu) \circ \sigma_1$ and σ_2 are conjugate.

Let σ be a shift on M. Define

$$M_k = (\sigma^k(M))' \cap M$$
 for $k = 0, 1, 2, ...$

Evidently M_0 is the center of M and $M_0 \subset M_1 \subset M_2 \subset \cdots$. Let M_∞ be the von Neumann subalgebra of M generated by the M_k and let σ_∞ be the restriction of σ to M_∞ . We call σ_∞ the derived shift of σ .

LEMMA 1.1. σ_{∞} is a shift on M_{∞} .

Proof. First note that $\sigma_{\infty}(M_{\infty}) \subset M_{\infty}$, since $x \in M_k$ implies that for all $y \in M$,

$$\sigma(x)\sigma^{k+1}(y) = \sigma(x\sigma^k(y)) = \sigma(\sigma^k(y)x) = \sigma^{k+1}(y)\sigma(x),$$

which shows that $\sigma(x) \in M_{k+1} \subset M_{\infty}$.

Then σ_{∞} is a shift because $\bigcap_{k=1}^{\infty} \sigma_{\infty}^{k}(M_{\infty}) \subset \bigcap_{k=1}^{\infty} \sigma^{k}(M) = \mathbb{C}$.

THEOREM 1.2. Let σ_1 and σ_2 be shifts on the type II₁-factors M_1 and M_2 respectively. If σ_1 and σ_2 are outer conjugate then their derived shifts $(\sigma_1)_{\infty}$ and $(\sigma_2)_{\infty}$ are conjugate.

Proof. Evidently if σ_1 and σ_2 are conjugate then so are $(\sigma_1)_{\infty}$ and $(\sigma_2)_{\infty}$. Hence given that σ_1 and σ_2 are outer conjugate we may assume without loss of generality that $M_1 = M_2 = M$ and that $\sigma_2 = (\operatorname{Ad} w) \circ \sigma_1$ for some unitary w in M. Set $w_1 = w$ and for $k = 2, 3, \ldots$ set $w_k = w\sigma_1(w)\sigma_1^2(w)\cdots\sigma_1^{k-1}(w)$. Then we can see that:

(1.1)
$$(\operatorname{Ad} w_k) \circ \sigma_1^k = \sigma_2^k \quad \text{for } k = 1, 2, \dots$$

For (1.1) holds for k = 1, and, for all $y \in M$,

$$[(\operatorname{Ad} w_k) \circ \sigma_1^k]y = (\operatorname{Ad} w_{k-1}) \circ \sigma_1^{k-1}(w)\sigma_1^k(y)(\sigma_1^{k-1}(w))^* = (\operatorname{Ad} w_{k-1}) \circ \sigma_1^{k-1}(w\sigma_1(y)w^*) = [(\operatorname{Ad} w_{k-1}) \circ \sigma_1^{k-1}][\sigma_2(y)].$$

Thus (1.1) follows by induction.

From (1.1), Ad w_k maps $\sigma_1^k(M)$ isomorphically onto $\sigma_2^k(M)$; therefore Ad w_k maps $M_k^{(1)} = (\sigma_1^k(M))' \cap M$ isomorphically onto $M_k^{(2)} = (\sigma_2^k(M))' \cap M$. For all $x \in M_k^{(1)}$,

$$(\mathrm{Ad}\, w_{k+1})(x) = (\mathrm{Ad}\, w_k)(\sigma_1^k(w)x(\sigma_1^k(w)^*)) = (\mathrm{Ad}\, w_k)(x).$$

Hence the isomorphisms $\operatorname{Ad} w_k$ are compatible with the inclusions $M_k^{(1)} \subset M_{k+1}^{(1)}$ and $M_k^{(2)} \subset M_{k+1}^{(2)}$; the following diagram is commutative: $\dots \rightarrow M_k^{(1)} \rightarrow M_{k+1}^{(1)} \rightarrow \dots$

Ad
$$w_k \downarrow$$

 $\dots \to M_k^{(2)} \to M_{k+1}^{(2)} \to \dots$ Thus there exists a unique *-isomorphism ϕ from the C*-algebra gen-

 $\downarrow \operatorname{Ad} w_{k+1}$

Thus there exists a unique *-isomorphism ϕ from the C*-algebra generated by the $M_k^{(1)}$ onto the C*-algebra generated by the $M_k^{(2)}$ such that

 $\phi(x) = (\operatorname{Ad} w_k)(x) \quad \text{for all } x \in M_k^{(1)}.$

Because Ad w_k preserves the trace τ on M, so does ϕ . Hence ϕ extends to an isomorphism $\overline{\phi}$ of von Neumann algebras from $(M_1)_{\infty}$ onto $(M_2)_{\infty}$.

Finally we check that $\overline{\phi} \circ (\sigma_1)_{\infty} = (\sigma_2)_{\infty} \circ \overline{\phi}$. For $x \in M_k^{(1)}$:

$$\overline{\phi} \circ (\sigma_1)_{\infty}(x) = \phi(\sigma_1(x)) = (\operatorname{Ad} w_{k+1})(\sigma_1(x))$$

= $(\operatorname{ad} w)(\sigma_1(w_k x w_k^*)) = \sigma_2(w_k x w_k^*) = ((\sigma_2)_{\infty} \circ \phi)(x).$

COROLLARY 1.3. Suppose that σ_1 and σ_2 are shifts on the type II₁-factors M_1 and M_2 respectively. Suppose that $(M_1)_{\infty} = M_1$ and

 $(M_2)_{\infty} = M_2$. Then σ_1 and σ_2 are outer conjugate if and only if they are conjugate.

The following are examples of shifts σ such that $M_{\infty} = M$ so that $\sigma_{\infty} = \sigma$ and Corollary 1.3 applies.

EXAMPLE 1. Let σ be an *n*-shift with determining sequence $(a(k))_{k \in \mathbb{Z}}$ such that a(k) = 0 for all but finitely many k (see §2 for details). Corollary 1.3 applied in this case demonstrates a conjecture of [3].

EXAMPLE 2. Let σ be the canonical shift of the hyperfinite II₁-factor R realized as the von Neumann algebra of the GNS-representation associated with the unique tracial state on a UHF-algebra of type n^{∞} .

EXAMPLE 3. Let R be realized as the von Neumann algebra generated by a sequence of projections p_1, p_2, \ldots satisfying the Jones relations

(i) $p_i p_j p_i = \tau p_i$ for |i - j| = 1.

(ii) $p_i p_j = p_j p_i$ for $|i - j| \ge 2$.

(iii) There is a trace on R for which the conditional expectation E_n onto the *-algebra generated by p_1, \ldots, p_n and 1 satisfies: $E_n(p_{n+1}) = \tau$. Let σ be the shift $\sigma(p_i) = p_{i+1}$ (see [4] and [1, §5]).

The common feature of these examples is the existence of $a \in R$ such that the $a_k = \sigma^k(a)$ generate R and that each a_j commutes with all a_k for all $k \ge k_0(j)$. Then $a_j \in R_{k_0(j)} \subset R_{\infty}$, so $R_{\infty} = R$ and $\sigma_{\infty} = \sigma$. We have shown:

LEMMA 1.4. Suppose that σ is a shift on M and that there exists an a in M such that:

(i) $a, \sigma(a), \sigma^2(a), \ldots$ generate M, and

(ii) there is a k_0 such that a commutes with $\sigma^k(a)$ for all $k \ge k_0$. Then $M_{\infty} = M$ and $\sigma_{\infty} = \sigma$.

Lemma 1.5. $(M_{\infty})_{\infty} = M_{\infty}, \ (\sigma_{\infty})_{\infty} = \sigma_{\infty}.$

Proof. Let $S_k = (\sigma^k(R_\infty))' \cap R_\infty$. Then

 $S_k \supset (\sigma^k(R))' \cap R_{\infty} = ((\sigma^k(R))' \cap R) \cap R_{\infty} = R_k \cap R_{\infty} = R_k.$

Thus $(R_{\infty})_{\infty}$, the W^{*}-algebra generated by the S_k , contains R_{∞} . Since the opposite inclusion is evident, $(R_{\infty})_{\infty} = R_{\infty}$.

LEMMA 1.6. Suppose that σ is a group shift, $\sigma = \sigma(G, s, \omega)$ in the notation of [1], where s is a shift on the abelian group G, and ω is

an s-invariant cocycle on G. Define $\rho(g \wedge h) = \omega(g,h)\overline{\omega(h,g)}$ for all $h, g \in G$. Let, for k = 0, 1, 2, ...,

$$D_k = \{g \in G \mid \rho(g \wedge s^k(G)) = 1\}$$

and let $D_{\infty} = \bigcup_{k=0}^{\infty} D_k$. Let \tilde{s} and $\tilde{\omega}$ be the restrictions of s and ω to D_{∞} . Then σ_{∞} is the group shift $\sigma(D_{\infty}, \tilde{s}, \tilde{\omega})$.

Proof. Use Proposition 1.2 of [1].

COROLLARY 1.7. There exist shifts on the hyperfinite II_1 -factor R which fail to be outer conjugate to any group shift.

Proof. By Lemma 1.6 and Theorem 1.2, it suffices to display a shift σ on R which is not a group shift and for which $\sigma_{\infty} = \sigma$. In Example 3 above, take $\tau = 1/p$ where p is a prime > 4. Then $\sigma_{\infty} = \sigma$ and σ is not conjugate to a group shift by Proposition 5.4 of [1].

2. *n*-shifts on the hyperfinite factor: calculation of σ_{∞} . Fix an integer $n \ge 2$. For the main results of this section *n* will be assumed prime. Fix $\gamma = \exp(2\pi i/n)$.

An *n*-shift σ on the hyperfinite factor *R* may be characterized (see [1], [7], [2]) by the existence of a unitary *u* in *R* such that:

(i) $u^n = 1, u^m \notin \mathbb{C}$ for m = 1, 2, ..., n - 1,

(ii) R is generated by the $\sigma^k(u)$ for k = 0, 1, 2, ..., and

(iii) u and $\sigma^k(u)$ commute up to scalars:

$$u(\sigma^k(u))u^*(\sigma^k(u))^* \in \mathbb{C}$$
 for $k = 1, 2, \dots$

We write:

$$u_k = \sigma^k(u), \qquad u_j u_k u_j^* u_k^* = \gamma^{a(k-j)} \text{ for all } j, k = 0, 1, \dots$$

where $a(k) \in Z_n$. Then we call $(a(k))_{k \in Z}$ a determining sequence for σ . The sequence (a(k)) is odd and fails to be periodic mod p for every prime p dividing n; furthermore all such sequences occur as the determining sequence of an n-shift σ on R (see [1]). When n is square-free, two sequences $(a_1(k))$ and $(a_2(k))$ determine conjugate shifts if and only if there is an $m \in Z_n$ such that $a_2(k) = m^2(a_1(k))$ for all k (see [1]).

Here we are concerned with the calculation of σ_{∞} and R_{∞} . σ is a group shift $\sigma(G, s, \rho)$ with $G = \bigoplus_{k=0}^{\infty} (Z_n)^{(k)}$, s the canonical shift $s: e_k \to e_{k+1}$ on G, and $\rho(e_j \wedge e_k) = \gamma^{a(k-j)}$ for $j, k = 0, 1, 2, \ldots$ From Lemma 1.6 we know that σ_{∞} is a group shift, namely $\sigma(D_{\infty}, \tilde{s}, \tilde{\rho})$ where \tilde{s} and $\tilde{\rho}$ are the restrictions of s and ρ to D_{∞} and $D_{\infty} = \bigcup_{k=0}^{\infty} D_k$. As in Lemma 1.6,

$$D_k = \{g \in G | \rho(g \wedge s^k(G)) = 1\}.$$

 σ_{∞} is not always an *m*-shift (see Example 7 at the end of §2). If, however, *n* is a prime, then σ_{∞} is an *n*-shift. Theorem 2.1 summarizes the calculation of σ_{∞} in this case.

THEOREM 2.1. Let n be a prime and let σ be an n-shift on the hyperfinite II₁-factor R with determining sequence (a(k)). Let σ_{∞} on R_{∞} be the derived shift of σ .

Part A. (i) $R_{\infty} = R$ if and only if a(k) = 0 for all but finitely many k.

(ii) $R_{\infty} \neq \mathbb{C}$ if and only if (a(k)) is ultimately periodic; i.e. there exist T > 0 and K such that a(k + T) = a(k) for all $k \ge K$.

(iii) In all cases R_{∞} is a factor. If $R_{\infty} \neq \mathbb{C}$ then σ_{∞} is an *n*-shift and R_{∞} is isomorphic to R.

Part B. Suppose now that (a(k)) is ultimately periodic so that $R_{\infty} \neq \mathbb{C}$. Let q_0 be the smallest integer such that $R_{q_0} \neq \mathbb{C}$. Define the length of a nonzero v in G to be L when $v = \sum_{j=0}^{L} v_j e_j$ with $v_L \neq 0$. Then we have:

(iv) Let $v \neq 0$ be in D_{q_0} . Then v spans D_{q_0} and $v, s(v), s^2(v), \ldots$, $s^k(v)$ is a basis for D_{q_0+k} . Hence D_{∞} is isomorphic to $G = \bigoplus_{k=0}^{\infty} (Z_n)^{(k)}$ by the mapping $s^k(v) \to e_k$.

(v) g has minimal length in $D_{\infty} - \{0\}$ if and only if g spans D_{q_0} .

Part C. Let v be a vector of minimal length L in $D_{\infty} - \{0\}$. Suppose that a(k) commences its ultimate periodicity at k_0 so that

a(k+T) = a(k) for all $k \ge k_0$ and $a(k_0 - 1 + T) \ne a(k_0 - 1)$. Then

(vi) $q_0 = k_0 + L$.

(vii) k_0 is the smallest integer such that $\tilde{v} \perp A^k$ for all $k \ge k_0$, where $\tilde{v} = [v_L, v_{L-1}, \ldots, v_0]$ and $A^k = [a(k), a(k+1), \ldots, a(k+L)]$ are in $(Z_n)^{L+1}$ with the usual inner product.

(viii) L is the rank of the $T \times T$ matrix A with jth row $A_j = [a(k_0 + j - 1), a(k_0 + j), \dots, a(k_0 + j + T - 2)].$

(ix) σ_{∞} has determining sequence (b(k)) given by $\gamma^{b(k)} = \rho(v \wedge s^k v)$. Then $b(q_0 - 1) \neq 0$ and b(k) = 0 for all $k \geq q_0$.

(x) The Jones index $[R: R_{\infty}]$ is n^{L} .

Proof. (i) $R_{\infty} = R$ if and only if $D_{\infty} = G$ if and only if $e_0 \in D_{\infty}$. That happens if and only if, for some m, $\rho(e_0 \wedge e_k) = 1$ for all $k \ge m$, i.e. a(k) = 0 for $k \ge m$.

(ii) Suppose that a(k + T) = a(k) for all $k \ge k_0$. Then $g = e_0 - e_T$ is in $D_{k_0} \subset D_{\infty}$ and $R_{\infty} \ne \mathbb{C}$.

Conversely, suppose that $R_{\infty} \neq \mathbb{C}$. Then $D_{k_0} \neq 0$ for some k_0 . Taking $g = \sum g_j e_j \neq 0$ in D_{k_0} , we get (Lemma 3.2 of [1])

$$\sum_{j=0}^{\infty} g_j a(k-j) = 0 \quad \text{for all } k \ge k_0.$$

From here, as in the proof of Lemma 3.4 of [1], we easily see that a(k) is ultimately periodic.

(iii) See the proof of (ix).

(iv) LEMMA. If $g = \sum_{j=0}^{\infty} g_j e_j$ is in D_{q_0+k} and if $g_0 = g_1 = \cdots = g_k = 0$ then g = 0.

Proof of the Lemma. Assume that $g_0 = g_1 = \cdots = g_k = 0$ and $g \in D_{q_0+k}$. Then $g = s^{k+1}g'$ for some $g' \in G$, so $\rho(g' \wedge e_j) = \rho(g \wedge e_{j+k+1}) = 0$ for all j with $j + k + 1 \ge q_0 + k$ or for all j with $j \ge q_0 - 1$. Hence g' is in $D_{q_0-1} = 0$ so g' = 0 and g = 0.

Proof of (iv). Suppose $v, w \in D_{q_0}$ with $v \neq 0$. Then $v_0 \neq 0$ and there exists $\lambda \in Z_n$ such that $(w - \lambda v)_0 = 0$. Then $w = \lambda v$ by the lemma. We have shown that v spans D_{q_0} .

Evidently $v, s(v), \ldots, s^k(v)$ are linearly independent (they are in row echelon form) in D_{q_0+k} . For $w \in D_{q_0+k}$ we can successively find $\lambda_0, \lambda_1, \ldots, \lambda_k$ such that $w' = w - \sum_{j=-0}^k \lambda_j s^j v$ has $w'_0 = w'_1 = \cdots = w'_k = 0$. Then the lemma shows that w' = 0, and we have shown that $v, sv, \ldots, s^k v$ span D_{a_0+k} .

(v) By (iv), every non-zero g in D_{∞} can be written in the form

$$g = \sum_{j=0}^k \lambda_j s^j v$$
 with $\lambda_k \neq 0$.

Evidently the length of g is equal to k + L where L is the length of v. Hence g is of minimal length in $D_{\infty} - \{0\}$ if and only if $g = \lambda v$ for $\lambda \neq 0$.

(vi) Write $v = \sum_{k=0}^{L} v_k e_k$ with $v_0, v_L \neq 0$. Then because v is in D_{q_0} , $\sum_{j=0}^{L} v_j a(k-j) = 0 \quad \text{for all } k \geq q_0.$ As in the proof of Lemma 3.4 of [1], that implies periodicity of a(k) commencing at $q_0 - L$. Hence $k_0 \le q_0 - L$ or $k_0 + L \le q_0$.

To prove the opposite inequality use a(k+T) = a(k) for all $k \ge k_0$. Combining that with $\sum_{j=0}^{L} v_j a(k-j) = 0$ for k large enough we obtain $\sum_{j=0}^{L} v_j a(k-j) = 0$ for all k such that $k-L \ge k_0$ or $k \ge k_0+L$. That shows v is in D_{k_0+L} and therefore that $k_0 + L \ge q_0$.

(vii) q_0 is the smallest integer such that, for all $k \ge q_0$, $\rho(v \land e_k) = 1$. This is equivalent to

$$0 = \sum_{j=0}^{L} v_j a(k-j) = \sum_{j=0}^{L} \tilde{v}_j a(k-L+j) = (\tilde{v}|A^{k-L}).$$

Hence q_0 is the smallest integer such that $\tilde{v} \perp A^{k-L}$ for all $k \ge q_0$, and $k_0 = q_0 - L$ is the smallest integer such that $\tilde{v} \perp A^k$ for all $k \ge k_0$.

(viii) From a(k + T) = a(k) for all $k \ge k_0$ it follows that $e_0 - e_T$ is in D_∞ so $L \le T$. If $r = \operatorname{rank} A < T$ choose T - r linearly independent vectors $\tilde{v}(1), \tilde{v}(2), \ldots, \tilde{v}(T-r)$ in $(Z_n)^T$ perpendicular to A_1, A_2, \ldots, A_T . Taking a suitable linear combination of the $\tilde{v}(k)$ we can find a vector \tilde{g} of the form $[g_r, g_{r-1}, \ldots, g_1, g_0, 0, \ldots, 0]$. Then $g = \sum_{k=0}^r g_k e_k$ is in D_∞ so $L \le r$. In all cases, then, we have proved $L \le r$. If L = T then L = r = T, so to complete the proof we need only show that $r \le L$ provided L < T.

Suppose then that L < T. let $\tilde{v} = [v_L, v_{L-1}, \dots, v_0, 0, \dots, 0]$ in $(Z_n)^T$ where v has minimal length in D_∞ . Then $\tilde{v}, s\tilde{v}, \dots, s^{T-(L+1)}\tilde{v}$ are T-L linearly independent vectors perpendicular to A_1, A_2, \dots, A_T . Hence $r = \operatorname{rank} A \leq T - (T-L) = L$.

(ix) D_{∞} is isomorphic to G by $s^k v \to e_k$. Under this isomorphism the restriction of s to D_{∞} corresponds to s and the restriction of ρ to D_{∞} corresponds to $\tilde{\rho}(e_0 \wedge e_k) = \rho(v \wedge s^k v)$. Hence σ_{∞} has defining sequence (b(k)) given by:

$$\gamma^{b(k)} = \rho(v \wedge s^k v).$$

Because $v \in D_{q_0}$ and $D_{q_0-1} = 0$, $\rho(v \wedge e_k) = 1$ for all $k \ge q_0$ and $\rho(v \wedge e_{q_0-1}) \ne 1$. That implies $\rho(v \wedge s^k v) = 1$ for all $k \ge q_0$ and $\rho(v \wedge s^{k-1}v) \ne 1$, where we use the fact that $v_0 \ne 0$. Thus b(k) = 0 for $k \ge q_0$ and $b(q_0 - 1) \ne 0$.

Then (b(k)) is not periodic; therefore R_{∞} is a factor and is in fact isomorphic to R by [1]. This also proves (iii).

(x) The span of $e_0, e_1, \ldots, e_{L-1}$ is a complement for D_{∞} in G. Hence G/G_{∞} is isomorphic to $(Z_n)^L$, and, by Proposition 1.4 of [1], $[R:R_{\infty}] = n^L$.

EXAMPLES. In each case we specify σ by giving the determining sequence $(a(k))_{k\in\mathbb{Z}}$: we write $a = a(0), a(1), a(2) \dots$ Similarly we specify σ_{∞} by giving its determining sequence (b(k)). *n* can be taken to be an arbitrary prime with the noted exceptions: it is understood that integers are to be reduced mod *n*. The first repeating period is underlined.

1.
$$a = 0, \underline{1}, 1, 1, 1, ..., k_0 = 1, L = T = 1, q_0 = 2, v = e_0 - e_1, b = 0, 1, \underline{0}, 0, ...$$

2. $a = 0, 0, \underline{1, 2}, 1, 2, ..., n \neq 2, 3.$
 $k_0 = 2, T = 2, A = [\frac{1}{2}, \frac{2}{1}]$ has rank 2,
 $L = r = 2, q_0 = 4.$
Then $v = e_0 - e_2, b(k) = 2a(k) - [a(k + 2) + a(k - 2)].$
 $b = 0, -2, 1, 2, \underline{0}, 0, ...$
3. $a = 0, 0, \underline{1, 2}, 1, 2, ...$ with $n = 3.$
As in Example 2, $k_0 = 2$ and $T = 2$ but now A has rank 1, so
 $L = r = 1$ and $q_0 = 3.$ $v = e_0 - 2e_1,$
 $b(k) = 2a(k) + a(k - 1) + a(k + 1),$
 $b = 0, 1, 1, \underline{0}, 0, ...$
4. $a = 0, 0, \underline{1, -1}, 1, -1, ...,$
 $k_0 = 2, v = e_0 + e_1, q_0 = 3,$
 $b(k) = 2a(k) + (a(k + 1) + a(k - 1)))$
 $b = 0, 1, 1, \underline{0}, 0, ...$
5. $a = 0, 0, 1, 2, 3, 4, ...,$
 $T = n, k_0 = 1, v = e_0 - 2e_1 + e_2$ is of minimal length in D_{∞}
because
 $[\frac{1}{2}, \frac{2}{3}]$ has rank 2.
 $L = 2, q_0 = 3,$
 $b(k) = 6a(k) - 4[a(k + 1) + a(k - 1)] + [a(k + 2) + a(k - 2)]$
 $b = 0, -2, 1, \underline{0}, 0, ...$
6. $a_1 = 0, 0, 1, 0, 0, 1, ...,$
 $a_2 = 0, 1, 0, 0, 1, 0, ...$ for $n \neq 2$
 $a_3 = 0, 2, 2, 0, 2, 2, ...$ for $n \neq 2$
all have $L = T = 3, k_0 = 0, q_0 = 3, v = e_0 - e_3.$
 $b = 0, 1, 1, 0, 0, ...$

In the calculation of b_3 we use the fact that multiplying a determining sequence by a square does not change its conjugacy class (see [1]).

7. $a = 0, 3, 0, 0, \dots, 0, 6, 18, \dots$ for $n \neq 3$, N arbitrary ≥ 3 where a(0) = 0, a(1) = 3, a(k) = 0 for $2 \leq k \leq N - 1$, and for $k \geq N$:

(2.1)
$$a(k) = 2 \sum_{i=k-N}^{k-1} a(i).$$

Then (2.1) holds for all $k \ge 2$ but not for k = 1 since $2\sum_{i=1-N}^{0} a(i) = 2a(-1) = -6$ and $n \ne 3$. Hence a(k) is not periodic, but is ultimately periodic commencing with $k_0 = -N + 2$. A minimal v in D_{∞} is given by $v = e_0 - 2\sum_{i=1}^{N} e_i$.

Therefore L = N and $q_0 = 2$. A direct calculation of b(1) gives $9 = 3^2$ so

$$b=0,1,\underline{0},0,0,\ldots$$

8. A 4-shift σ on R such that σ_{∞} is not an m-shift for any m:

$$a = 0, 1, \underline{2}, 2, \dots, \qquad n = 4.$$

Since (a(k)) fails to be periodic mod 2 the factor condition is satisfied and σ is a shift on R by [1]. In $G = \bigoplus_{k=0}^{\infty} (Z_4)^{(k)}$ take $v_0 = 2e_0$, $v_k = e_{k-1} + e_k$ for $k \ge 1$. Then $s(v_0) = v_0 + 2v_1$, $s(v_k) = v_{k+1}$ for $k \ge 1$. We see easily (as in the proof of Theorem 2.1) that $D_2 = Z_2v_0$, $D_3 = Z_2v_0 \oplus Z_4v_1$ and finally that

$$D_{\infty} = Z_2 v_0 \oplus Z_4 v_1 \oplus Z_4 v_2 \oplus \dots$$

Hence σ_{∞} is the group shift $\sigma(D_{\infty}, \tilde{s}, \tilde{\rho})$ where \tilde{s} and $\tilde{\rho}$ are the restrictions to D_{∞} of s and ρ on G. If σ_{∞} were an *m*-shift, there would exist a $g \in D_{\infty}$ such that $g, s(g), s^2(g), \ldots$ generate D_{∞} (see Proposition 5.2 of [1]). It is easy to check that this is impossible. It is also easy to check that $\tilde{\rho}$ is non-degenerate on D_{∞} so that R_{∞} is a factor.

3. Outer conjugacies. Given an *n*-shift σ with determining sequence (a(k)) we give one method for calculating determining sequences of *n*-shifts outer conjugate to σ . Although this method produces some interesting examples we are unable to exploit it to the extent of showing when σ and σ_{∞} are outer conjugate in general.

A basic lemma from operator theory follows.

LEMMA 3.1. Suppose that n is an integer ≥ 2 and that u is a unitary operator with $u^n = 1$. Then there exists a unitary y in the *-algebra generated by u with the following properties:

1. $y^n = 1$ in case n is odd; $y^{2n} = 1$ in case n is even.

254

2. Let $\gamma = \exp(2\pi i/n)$. For all unitaries v such that $uvu^*v^* = \gamma^a$ where $a \in \mathbb{Z}_n$,

$$yvy^* = u^a v$$
 for $n \ odd$,
 $yvy^*(u^a v)^* \in \mathbb{C}$ for $n \ even$.

Proof. Suppose first that n is odd. Let $T_n = \{\lambda \in \mathbb{C} | \lambda^n = 1\}$. It suffices to produce a function $f: T_n \to T_n$ such that

(3.1)
$$f(\gamma z) = z f(z)$$
 for all $z \in T_n$.

For given such a function, let y = f(u). Then y is unitary and $y^n = 1$. If $uvu^*v^* = \gamma^a$ then $vuv^* = \gamma^{-a}u$ so $vf(u)v^* = f(\gamma^{-a}u) = F(u)$ where $F(z) = f(\gamma^{-a}z) = \overline{z}^a f(z)$ by (3.1). Then $F(u) = (u^*)^a f(u)$ so $vyv^* = u^{-a}y$ or $yvy^* = u^av$.

To show that a function f satisfying (3.1) exists, let

(3.2)
$$f(\gamma^s) = \gamma^{[s(s-1)/2]}$$
 for $s = 0, 1, ..., n-1$.

We confirm that (3.2) holds for s = n also, since (n-1)/2 is an integer, and then easily check that f satisfies (3.1).

Suppose now that *n* is even. (Then of course a function *f* satisfying (3.1) cannot exist.) Let $\delta = \exp(\pi i/n)$ and define $f(\gamma^s) = \delta^s \gamma^{[s(s-1)/2]}$ for s = 0, 1, ..., n-1. Then $f(\gamma z) = \delta z f(z)$ for all $z \in T_n$ and, as in the case when *n* is odd, $\gamma = f(u)$ has the required properties.

COROLLARY 3.2. Suppose that σ is an n-shift on M, $\sigma = \sigma(G, s, \rho)$ where $G = \bigoplus_{k=0}^{\infty} (Z_n)^{(k)}$. Let $g \to u_g$ be the canonical twisted representation of G in M, and define a bilinear map [,] from $G \times G$ to Z_n by:

$$\gamma^{[g,h]} = \rho(g \wedge h) = u_g u_h u_g^* u_h^* \quad \text{for } g, h \in G.$$

Fix $g \in G$ and define $\phi_g: G \to G$ by: $\phi_g(h) = h + [g, h]g$ for all $h \in G$. Then there exists a unitary y_g in M such that

$$y_g u_h y_g^* = \lambda(g, h) u_{\phi_g(h)}$$
 for all $h \in G$

where $\lambda(g,h) \in \mathbb{C}$.

PROPOSITION 3.3. Suppose that *n* is a prime and that the *n*-shift σ on the hyperfinite factor *R* has determining sequence (a(k)). Let $G = \bigoplus_{k=0}^{\infty} (Z_n)^{(k)}$, let *s* be the shift $e_k \to e_{k+1}$ on *G*, let ρ on *G* be defined by (a(k)), and let [,] and ϕ_g be defined as in Corollary 3.2, so that

$$[e_i, e_j] = a(j - i)$$
 for all $i, j = 0, 1, 2, ...$

Suppose that $g(1), g(2), \ldots, g(m)$ are in G and let ϕ be $\phi_{g(1)} \circ \phi_{g(2)} \circ \phi_{g(3)} \circ \cdots \circ \phi_{g(m)}$. Suppose that v(0) in G is such that G is generated by $v(0), v(1), v(2), \ldots$ where $v(k) = \phi(s(v(k-1)))$. Then b(k) = [v(0), v(k)] defines a determining sequence (b(k)) of an n-shift σ' on R which is outer conjugate to σ .

Proof. We may assume that $\sigma = \sigma(G, s, \rho)$ and that $R = W^*(G, \rho)$. Let $y = y_{g(1)}y_{g(2)}\cdots y_{g(n)}$ where $y_{g(k)}$ is given by Corollary 3.2. Then $yu_hy^* = \lambda(h)u_{\phi(h)}$ for all $h \in G$, where $\lambda(h) \in \mathbb{C}$. Hence

$$[(\operatorname{Ad} y) \circ \sigma](u_{v(k)}) = \lambda_k u_{v(k+1)}$$

for $\lambda_k \in \mathbb{C}$. Now let $\sigma' = (\operatorname{Ad} y) \circ \sigma$ and let $w_0 = u_{v(0)}$. Then

1. $w_0^n = 1$ and $w_0^k \neq 1$ for k = 1, ..., n - 1;

- 2. the $w_k = (\sigma')^k w_0$ generate *R*;
- 3. $w_0 w_k w_0^* w_k^* = \gamma^{[v(0), v(k)]}$.

Therefore (Proposition 4.1 of [1]), σ' is an *n*-shift on *R* with determining sequence b(k) = [v(0), v(k)].

EXAMPLES. 1. Take σ_0 given by the sequence $0, 1, \underline{0}, 0, \cdots$ (i.e. $a(0) = 0, a(1) = 1 \ a(2) = 0 \dots$). Then the shifts given by each of the following sequences are outer conjugate to σ_0 , and hence, for each, the derived shift is σ_0 and $q_0 = 2$.

- (a) $0, \underline{1}, 1, 1, \ldots$
- (b) $0, 2, 0, 2, 0, \dots$, for $n \neq 2$,
- (c) $0, 1, a, a^2, \ldots,$
- (d) $0, \lambda + 1, \lambda^2 1, \lambda^3 + 1, \dots$, for $\lambda \neq -1, n \neq \lambda + 1$, (e) $0, 1 - \lambda \mu, (1 - \lambda \mu)(\lambda^2 - \mu^2)/\lambda - \mu, \dots, (1 - \lambda \mu)(\lambda^n - \mu^n)/\lambda - \mu, \dots$, for $\lambda \neq \mu, \lambda \mu \neq 1$.

The g(i)'s in Proposition 3.3 which demonstrate the above outer conjugacies are

(a)
$$g_1 = e_0$$
,
(b) $g_1 = -e_1$, $g_2 = e_0$,
(c) $g_1 = (1 + a)e_0$, $g_2 = -e_1$,
(d) $\mu = -1$ in (e),

(e) $g_1 = \mu e_1$, $g_2 = \lambda e_0$. In each case we can take $v(0) = e_0$.

REMARKS. Given a shift σ of forms (c), (d) or (e) for example, the calculation of σ_{∞} or q_0 by the methods of §2 might be very difficult even for one prime *n*. There are, however, shifts which have derived

shift σ_0 which are not obviously outer conjugate to σ (see Example 7 of §2).

2. Take σ_0 given by $b = 0, 0, 1, \underline{0}, 0, \ldots$ Then the shifts given by the following defining sequences are outer conjugate to σ_0 :

- (a) $0, 0, 1, 0, 1, \ldots$,
- (b) $0, \overline{0, 2}, 0, 0, 0, 2, 0, \dots$, for $n \neq 2$ (note $k_0 = -1$),
- (c) $0, 0, 1, 0, \lambda, 0, \lambda^2, 0, \ldots$

The g(i)'s in Proposition 3.3 which demonstrate the above outer conjugacies are as follows: (a) $g(0) = e_0$; (b) $g(0) = -e_2$, $g(1) = e_0$; (c) $g(0) = \lambda e_0$.

References

- D. Bures and H.-S. Yin, Shifts on the hyperfinite factor of type II₁, J. Operator Theory, 20 (1988), 91–106.
- [2] M. Choda, Shifts on the hyperfinite II₁-factor, J. Operator Theory, 17 (1987), 223-235.
- [3] M. Enomoto and Y. Watatani, A solution of Powers' problem on outer conjugacy of binary shifts, (preprint).
- [4] V. F. R. Jones, Index for subfactors, Invent. Math., 72 (1983), 1-25.
- [5] R. T. Powers, An index theory for semigroups of *-endomorphisms of B(H) and type II₁ factors, Canad. J. Math., to appear.
- [6] G. Price, Shifts on type II₁ factors, Canad. J. Math., **39** (1987), 492–511.
- [7] ____, Shifts of integer index on the hyperfinite II_1 factor, preprint.

Received March 21, 1988.

DEPARTMENT OF MATHEMATICS University of British Columbia Vancouver V6T 1Y4, B.C. Canada