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A PRETENDER TO THE TITLE
"CANONICAL MOEBIUS STRIP"

GIDEON SCHWARZ

The Moebius Strip that results from identifying two opposite sides
of a rectangle is embedded analytically and isometrically in Euclidean
3-space, as part of the rectifying developable of the algebraic curve
given in paramatric form by

x = sin / , y = (1 - cos t)3, z = sin( 1 - cos /)

or equivalently, by

y2 + 6x2y - Sy + x6 = x3y - z3 = 0.

1. A Moebius strip is the topological space obtained from a closed
rectangle by identifying two opposite sides "with a twist", that is, so
that each vertex is identified with its diagonal opposite. There are
many ways to embed this space in Euclidean 3-space. One embedding
that comes to mind naturally is obtained by choosing an interval on
the positive half of the c-axis, rotating it around the z-axis at some
fixed rate, and, at the same time, rotating it at half that rate around its
perpendicular bisector in the x-y-plane. If the parameter t is defined
as the angle through which the first rotation has gone, and s is length
measured along the rotating interval, the equations of the surface are
easily seen to be analytic functions of the parameters.

In the real world, Moebius Strips are made out of paper: a pa-
per rectangle whose length is sufficiently large compared to its width
can be made into a Moebius Strip, without doing violence to the paper
(such as tearing, stretching or creasing it), by bending it smoothly, and
pasting together two edges in the appropriate manner. Is the first em-
bedding an acceptable mathematical model for the "real" strip? The
answer is "no". Our qualifications of what may be done to the paper
amount to requiring the embedding to be an isometry of the metric
space defined by identifying two opposites of a rectangle appropri-
ately. An isometry would preserve the Gaussian curvature, which is 0
for the rectangle, while the surface obtained in the analytical embed-
ding above is easily seen to have everywhere negative curvature.

Recently Carmen Chicone [1] has shown that there exist analytic
embeddings of the Moebius Strip as a regular flat surface in 3-space. A
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flat surface, i.e. one of zero Gaussian curvature, is locally isometric to
a portion of the plane. Chicone's Moebius Strips can indeed be cut and
rolled out isometrically on a plane, but the shapes they take on have
not been shown to be rectangles. To illustrate the problem, consider
embedding a cylindrical band in a circular cone. The embedded band
can be made isometric to a section of a planar annulus with its two
straight edges identified, but not to a rectangle. Had the "center curve"
of Chicone's surface been a geodesic, a narrow band around it would
have been the required surface, isometric to a rectangle; but this has
not been shown to be the case.

FIGURE

2. A flat surface with a curve that is a geodesic on it can be inter-
preted as the rectifying developable (see e.g. [2] p. 70) of the curve,
provided the curve is regular, and has no straight parts; the surface is
thus determined by the curve. Furthermore, if the curve is analytic
and regular, so is the surface. This suggests the following plan for
constructing an isometric analytic embedding of a rectangular Moe-
bius Strip: find a simple closed regular analytic curve in 3-space, whose



CANONICAL MOEBIUS STRIP 197

principal normal reverses its direction when the curve is traversed one
time. A sufficiently narrow band of the rectifying developable will be
the required solution.

To make the curve closed, its cartesian coordinates will be assumed
to be periodic functions of the parameter t. The simplest such func-
tions are trigonometric polynomials. The form of the polynomials
is found by some heuristics based on empirical evidence. Consider
a Moebius Strip made by glueing together the overlapping ends of a
paper rectangle. The glued paper strip will arrange itself so that the
glued area, being stiίfer than the rest of the paper strip, will contain
the point where the mean curvature of the strip changes sign. The
shape of the strip suggests that it has an axis of symmetry passing
through that point. This axis cuts across the band along the glued
part, and pierces the band orthogonally at the point that had been the
center of the rectangle before it was twisted. Note that any surface
that is carried into itself by a rotation of 180 degrees around an axis
that is tangent to it at one point, and perpendicular to it at another
point, is nonorientable: if a normal to the surface had been chosen ev-
erywhere, the rotation would reverse the normal at the former point,
and would leave the normal at the latter point unchanged. Assume
that the surface, and hence also the curve, have such an axis of sym-
metry; let the first point be the origin, where χ=y = z = t = 0,
and let the axis of symmetry be the y-axis, with its positive direction
pointing towards the second point. The symmetry of the curve under
a rotation of 180 degrees around the y-axis is attained by choosing
for y an even function of t, and for x and z, odd functions; the
former will be a sum of cosine terms, and the latter, sums of sine
terms. For x a single term turns out to be sufficient. Put x = A sin t,
y = Bo + B{ cost + B2cos2t + - , z = C\ sin/ + C2sin2t9 . . . . The
choice of origin leads to the condition that the coefficients of y add up
to 0. For the positive direction of the x-axis, the tangent of the curve
at the origin can be chosen, leading to C\ +2C2-\— = 0. The assump-
tion that at the origin the normal to the strip, which is the principal
normal to the curve, reverses direction, leads to B\ +4B2-\— = 0. All
these conditions can be fulfilled by y and z being just second degree
trigonometric polynomials. By rewriting the appropriate polynomials
in factored form, the curve

x = sin t, y = (1 - cos t)2, z = sin t( 1 - cos t)

is obtained. This is a simple regular analytic closed curve, that is
invariant under a 180 degree rotation around the y-axis, has curvature
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0 at the origin, and its rectifying plane at the point where / = π,
x = 0, y = 4, z = 0 is orthogonal to the y-axis. However, this
curve has nonzero torsion at the origin, where the curvature is 0. The
direction of the ruling on a rectifying developable is given, in terms
of the curvature k, the torsion τ , the tangent unit vector T and the
unit binormal B, by /cB + τT. Therefore, when a point along the
curve given above, approaches the origin, the direction of the rulings
approaches the tangent to the curve. At the origin there is thus no way
to broaden the curve into a strip: the rectifying developable is singular
there. To prevent this from happening, the torsion must be made to
vanish wherever the curvature does, and at least at the same rate. With
this in mind, after some trial and error, one finds that redefining y(t)
as (1 - cos/)3 will do the job: it will yield the required behavior at
the origin, while at t = π the rectifying plane will still be orthogonal
to the y-axis. As is easily seen, the curve given by

x = sin /, y = (1 - cos /)3 , z = sin /( 1 - cos /)

is not only analytic but algebraic: it is the intersection of the surfaces
given by

y2 + 6x2y - &y + x 6 = 0 and χ 3 = y z 3 .

3. The "velocity" v(t), the length of the vector (xf, y', z '), is the
square root of a polynomial of the sixth degree in cos /. It is positive
for all /, since x1 = cos/ and y' = 3sin/(I — cos/)2 never vanish
together, and v(t) has no singularities. The vector (x", y", z") does
vanish at 0. Its cross-product with (xf, yf, z1) has the y-component
-sin/(I + 2cos2 /) therefore w{t), the squared length of the cross
product of (xf, y', z') and (x", y", z"), vanishes only at the origin
where it has a zero of order 2. The curvature of the curve, that is
given by k(t) = y/w(t)/v3(/), is thus seen to have its only zero at
the origin; it is |/| times an analytic function, and is not analytic
itself. Note, however, that the second order zero of k2 comes from a
factor 1—cos/, which has the analytic square-root v^sin^/. One can
therefore define an analytic "signed curvature" q{t) = /c(/)sign(sin \t).
The fact that q has the double period 4π corresponds to the fact
that the principal normal to the curve, which is also the normal to
its rectifying developable, flips 180 degrees when / passes through 0.
The torsion τ(/), depends on the determinant Δ(/) of the first three
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derivatives of (x, y, z) . The leading terms near t = 0 are as follows:

* y z

First derivatives: 1 \t5 \tλ\
Second derivatives: 0 ^-st4 3t;
Third derivatives: - 1 I5t3 3.

The lowest power of t appearing in the summands of this determi-
nant is 4, and the corresponding terms are ^-t4, and -45t4. There-
fore Δ(ί) has a fourth-order zero at the origin. The torsion τ(ί) =
A(t)/w(t) has, consequently, a second-order zero at the origin (it may
have other zeros, but since w(t) vanishes only at the origin they need
not concern us), and the ratio of the torsion of q{t) has a first-order
zero there. In parametric form, the Moebius Strip can be written as

(x(t, s)y{t, s), z(t, s)) = (x(t), y(t), z(ή) +

where t is arbitrary, and s, the parameter that represents geodesic
distance from the curve, is restricted to a sufficiently small interval,
symmetric around 0. In this form the parametrization is not analytic
at t = 0. The singularity at 0 is removed, however, when s is replaced
by s sign(sin jt), yielding

(x(t, s), y(t, s)z(t, s)) = (x(t), y[t), z(ή)

+ s

The direction of the binormal is that of the cross-product above, whose
leading term at the origin is (0, — 3ί, 0). Therefore B flips around
when t passes 0, and sign(sin^)B is analytic there. Since τ and
q have zeros of order two and one respectively, the quotient τ/q
vanishes at the origin, and the ruling of the rectifying developable to
the curve at the origin lies on the y-axis, as required.

The fact that the curve is algebraic, and that the added rulings are
algebraic as well, implies, by the Seidenberg-Tarski Theorem [3], that
the strip is itself part of an algebraic surface.

I am indebted to Professor Brumfiel for pointing out this last im-
plication. Thanks also to Moe Hirsch, who made me aware of the
manuscript of Carmen Chicone.

P.S After this paper had been submitted, Gil Bor called my atten-
tion to a paper by Wunderlich [4], that also describes an algebraic
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isometrically embedded Moebius Strip. The initial approach in Wun-
derlich's paper is similar to the present one; however, mainly by the
use of trigonometric polynomials, the path to the result is considerably
shorter and simpler here. See [5] for an exposition of related work.
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