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RESIDUE CLASS DOMAINS OF THE RING
OF CONVERGENT SEQUENCES AND OF C°°([0, 1], R)

JAMES J. MOLONEY

We show that there are exactly 10 residue class domains of c ,
the ring of real convergent sequences. We also classify some of the
residue class domains of C°°([0, 1], R).

Introduction. The residue class domains of C(X, R) (the ring of
real valued continuous functions on a topological space X) have been
extensively studied by Kohls [16], Gillman and Jerison [10], and oth-
ers.

In [6], Cherlin and Dickmann began the study of the residue class
domains of C(N*, R), where N* is the one-point compactification
of N . Clearly C(N*, R) is isomorphic to c, the ring of real conver-
gent sequences. In [8], Cherlin and Dickmann (and Louveau) showed
that there exist non-maximal prime ideals p of C(N*, R) such that
C(N*, R)/p is a real closed valuation ring. They asked about the other
prime ideals. Both the author's dissertation (written under Cherlin's
guidance) and this paper grew out of that question. We deal with two
main problems:

(1) Classify all the residue class domains of C(N*, R), assuming
the continuum hypothesis.

(2) Classify the residue class domains of C°°([0, 1], R).
(The reader may well ask, "What about C([0, 1], R)?" We touch

this question very lightly. Cherlin and Dickmann, in §4 of [8], go into
it more deeply.)

We completely solve problem 1 in this paper. We show that there
are exactly ten residue class domains of C(N*, R).

We can classify these domains in the following manner, considering
c rather than C(N*, R):

First, one of these conditions will hold for (l°°/p - c/p) it will
either be empty, have a non-empty countable coinitial subset, or be
non-empty with no countable coinitial subset.

Second, one of these conditions will hold on neighborhoods of zero
in c/p there will either be a countable coinitial subset of c/p of
the form {[f]k}™=ι, or a countable coinitial subset {[fm]}^=\ of c/p
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where [fm]k > [fm+\] for all /:, m e N, or there will be no countable
coinitial subset of c/p .

This accounts for nine of the domains; R = c/m, where m is any
maximal ideal of c, is the tenth.

Our main line of attack is to use some work of Ax and Kochen [1]
concerning valued fields. (The use of valuations to study C(X 9 R)/p
goes back at least to [16].) In [14] it was shown that, under certain
conditions, two valued fields will be isomorphic if and only if both the
two valuation groups and the two residue class fields are isomorphic.
For a non-maximal prime ideal p of c, we have a chain of at most
three fields:

R c Frac(/°°/c0) C Frac(c/p)

(where CQ is the set of sequences that converge to zero, and Frac(Z>)
denotes the fraction field of a domain D). The question then comes
down to: "What are the possible valuation groups of Frac(/°°/co)
over R, and what are the possible valuation groups of Frac(c/p) over
Frac(/°°/co) ?" We shall show that there are three in each case.

In the first case, Frac(/°°/co) over R, the valuation group is closely
tied to (l°°/p - c/p). If l°°/p = c/p, then the valuation group is the
group {0}. If l°°/p Φ c/p, then (l°°/p - c/p)+ having a countable
coinitial subset is equivalent to the valuation group having a countable
cofinal subset. These conditions are closely tied to different types of
non-principal ultrafilters on N .

In the second case, Frac(c/p) over Frac(/°°/p), the valuation group
is closely tied to the neighborhoods of zero in c/p. These neighbor-
hoods of zero will have a countable coinitial subset if and only if the
valuation group has a countable cofinal subset. Further, these neigh-
borhoods of zero will have a coinitial subset of the form {[f]k}%L{,
if and only if the valuation group has a cofinal subgroup isomoφhic
to R.

Non-principal ultrafilters on N play an extremely large role in this
paper, since every non-maximal prime ideal p of c has such an ul-
trafilter associated with it. For a very good survey article on these
non-principal ultrafilters, see [23].

Problem 2 is considerably more complicated. There are several rea-
sons for this. Among them are the exceedingly richer prime ideal
structure of C°°([0, 1], R) and the fact that not all convergent se-
quences can be extended to C°° functions.

We are able to solve a small piece of this problem, by using the
results of problem 1. Certain quotient rings of C°°([0, 1], R) are iso-
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morphic to subrings of c. For some of these, we completely classify
the "inherited" residue class domains. We also classify the residue
class domains associated with the largest differentially closed sub-
ideals of these inherited ideals. These latter domains are differential
rings, and have themselves a very complicated structure.

Finally, we show the existence of a prime ideal which is neither
inherited from C([0, 1], R) nor a differentially closed sub-ideal of
an inherited ideal. In fact, we show the existence of a prime ideal p
of C°°([0, 1], C) which is not equal to its own complex conjugate.

In §1 we review certain preliminaries. In §2, we show that there are
at most 10 residue class domains of c, depending on whether or not
all three cases of coinitial subset of (l°°/p - c/p)+ , mentioned earlier,
can occur. In §3, we show that all three cases do, in fact, occur. In
§4, we apply these results to some other spaces. In §5, we study the
residue class domains of C°°([0, 1], R).

I would like to thank my thesis advisor, Professor Gregory Cherlin,
who suggested this problem and the main lines of attack to me, while
I was his Ph.D. student at Rutgers University.

1. Preliminaries.

A. Real closed fields. Here are some well known facts concerning real
closed fields, which will bring us to the Ax-Kochen Theorem, which
plays a significant role in this approach to classifying the residue class
domains of c.

DEFINITION 1.1. A real closed field is an ordered field such that:

(i) Every positive element of F has a square root in F.
(ii) Every odd degree polynomial, P G F[x], has a zero in F.

We denote by C(X, R) the ring of all real valued continuous func-
tions defined on a topological space X.

(1.2) If m is a maximal ideal of C(X, R), then C(X, R)/m is a
real closed field ([10], p. 175).

Considering non-maximal prime ideals of C(X, R), we will find
the following to be useful.

PROPOSITION 1.3. Let p be a prime ideal of C{X, R). Then,
Frac(C(X, R)//?) is a real closed field.

Proof. C(X, R)/p is ordered by ([10], p. 69). In proving (1.2),
Gillman and Jerison showed that in C(X, R)/p , every polynomial of
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odd degree with leading coefficient 1 has zero in C(X, R)/p. Triv-
ially, every positive element has a square root.

DEFINITION 1.4. A real closed ring A is an ordered domain such

that

(i) Every positive element of A has a square root in A.
(ii) Given any polynomial P G A[x] and a, b G A, a < b, if P

changes sign from a to b, then P has a zero c such that a < c < b.

We use N* to denote the one-point compactification of the natural
numbers. Cherlin and Dickmann (and Louveau) have shown that:

(1.5) There exist non-maximal prime ideals of C(N*, R) such that
C(N*, R)/p is a real closed ring ([8], 3.2.2).

We are interested in the other quotient domains as well. The fol-
lowing is well known:

(1.6) The following are equivalent:

(i) A is a real closed ring.
(ii) A is a convex subring of a real closed field and / G A.

B. Filters. Every prime ideal has associated with it a prime z-filter.
For X = N* every non-maximal prime z-filter has a corresponding
non-principal ultrafilter on N. These facts we shall use extensively
throughout this paper.

Here we recall some simple properties of filters which will be as-
sumed in later arguments.

The zero set, f~ι(W) > ° f a function / e C(X, R) is denoted by
Z(f).

DEFINITION 1.7. A z-filter is a family & of zero sets such that

(i) Z ( / ) G ^ and Z(g)e^ imply [Z(f)nZ(g)]eΓ.
(ii) Z(f)eΓ, Z(f)cZ(g) imply Z(g)e^.

The filter &" is proper if
(iii) φ£F.

DEFINITION 1.8. A z-filter is prime if [Z(f) u Z(g)] G & implies
Z(f)eSf or Z(g)e^.

Prime z-filters are crucial to the study of residue class domains. In
particular, we shall find useful the following theorems.

(1.9) Given a topological space X and a prime z-filter & on X,
the set of functions

is a prime ideal ([10], p. 29).
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(1.10) Given a prime ideal p of C(X 9 R), there exists a prime z-
filter & such that Z ( / ) G 7 implies / e p . That is, p& c p ([10],
p. 197).

DEFINITION 1.11. An ultrafilter on a set S is a family ^ of subsets
of S, such that

(i) A e % and B e % imply (AnB)e^.
(ii) ^ G ̂  and ^ c 5 imply B e%f.

(iii) 0 £ ^ .
(iv) For all ^ c 5, either y4 G ̂  or (£ - ^) G 2T.

NOTATION 1.12. For an ultrafilter & on a set X, and for functions
f,g:X->*

f=g means {x\f{x) = g(x)} G W.

f>g means {x|/(x) > g(x)} G ̂ .

For a prime z-filter & on a topological space JSΓ, and for / , g G

/ = g means {x|/(x) = g(x)} ef.

f>g means {x|/(x) > g(x)} G ^ but / ψ g.
,9- &

We will need the following theorems on ultrafilters.

(1.13) Let & be a non-maximal prime z-filter on N*. Then there
exists an ultrafilter (?/{3Γ) on N such that for A c N

A G ίίφ') <-• (Λ U {oo}) G ^

([17], Th. 2.2).

REMARK 1.14. For & and %{9') as above, letting c denote the
ring of convergent real sequences and letting

we have

(1.15) C(X, R)/p is always an ordered domain ([10], p. 69).

(1.16) For a prime ideal p of C(X 9 R), if & is the prime z-filter
such that

Z(f) e^ implies f ep
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then
{x\f(x)>g(x)}e^ implies [f]>[g]

([16], p. 69).
Combining (1.14) and (1.16) we have

(1.17) Let p be a prime ideal of c. Let ̂  be the ultrafilter such
that

{n\f(n) = 0}e^ implies fep.

Then
f>g implies [f]>[g].

DEFINITION 1.18. For & and p as in (1.10), we call & the prime
z-filter associated with p. For % and p as in (1.17), we call % the
ultrafilter associated with p.

NOTATION 1.19. CQ denotes the set of real valued sequences con-
verging to zero. l°° denotes the ring of bounded real valued sequences.

REMARK 1.20. Let p be a non-maximal prime ideal of c. Then p
is properly contained in c 0 .

As a result of the comparison test, we have

REMARK 1.21. CQ is a convex subset of l°° . In fact CQ is a convex
ideal of l°°.

C. Valuation theory. Back in [16], Kohls began using valuation
theory to study residue class domains of C(X, R). Since that time,
valuation theory has been greatly developed by Ax and Kochen. We
will use their results to classify the residue class domains of c, giving
the fraction field of c/p (p being a non-maximal prime ideal of c)
the structure of a valued field.

DEFINITION 1.22. A valued field is a 6-tuple (K, R, I, G, υ ,Έ),
where

(i) K is the field, hereafter called the main field.
(ii) R is a subring of AΓ such that for all ae K, either α E R or

a" 1 Gi?.
i? is called the valuation ring.
(ϋi) / = {αEi?|α"1 £ i?}.
/ is called the valuation ideal.
(iv) G is an ordered Abelian group, isomorphic to (K-{0})/(R-I),

considering the latter as a multiplicative group.
G is called the valuation group.
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(v) v is the canonical map from (K - {0}), also denoted K*,
to G.

v is called the valuation.
(vi) K is a field isomorphic to R/I.
K is called the residue class field.

PROPOSITION 1.23. If {K9 R919G9v 9 K) is a valued field, then for
any two non-zero elements a, b E K,

v(a + b)> mm(υ(a),

Proof. Without loss of generality, assume that v(a) > v(b). This
is equivalent to a/b e R. But then (a/b) +l = (a + b)/beR and
v(a + b) > υ(b).

DEFINITION 1.24. A valued field with cross-section is a pair
((K,R,I, G,v,K); π) where (K,R,I, G,v,K) is a valued field
and π is a group homomorphism from G to K# such that

v(π(a)) = a for all a E G.

DEFINITION 1.25. Given a valued field (K, R, / , G, v , Έ), the
residue map is the ring homomorphism p: R —> K, whose kernel is
/ . We write p(x) = x.

DEFINITION 1.26. A Hensel field is a valued field (K ,R, I, G, v 9Έ)
with the following property:

Given a polynomial P e R[x], if P e JSΓ[X] has a non-singular root
at α E AT, then P has a root at some a e R such that α = a.

DEFINITION 1.27. A valued field (K, R, I, G, v, K) is ω-pseudo-
complete if: given a sequence {α7} , aj e K, such that for all j ,

^ ( ^ + 2 - aj+i) > υ(aj+ι - aj)

then there exists a E K such that

for all 7 E N .

DEFINITION 1.28. Given two valued fields (K, R, I, G, v ,Έ) and
(Kf

9 R f

9 Γ9 G'9v', K ) 9 a n analytic isomorphism i s a p a i r ( ^ , ^ # )
where

(i) ^ : K —> if' is a field isomorphism.
(ii) ψ*: G —• G' is an Abelian group isomorphism.

(iii) For all beK, bφθ\ υ'(ψ(b)) = ψ#(v(b)).
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DEFINITION 1.29. Given two fields with cross section

((K,R,I,G,υ9K);π) and ( ( # ' , 7?', / ' , Gf, v', Kf) π')

a cross-analytic isomorphism is an analytic isomorphism (ψ, ψ§) such
that

ψ(π(a)) = π'(ψ*(a)), for all α e (?.

DEFINITION 1.30. A subgroup H of a group G is a pure subgroup
if:

If a e H and b e G such that for some « e N, nb — a, then

REMARK 1.31. If G is a divisible group, then its subgroup H is
pure if and only if it is divisible.

DEFINITION 1.32. Let

((K,R,I,G,v,K);π) and ( ( * ' , i?', / ' , <7, v', Z ' ) ; π;)

be two valued fields with cross section. Let E be a subfield of AT and
let £ ' be a subfield of A '̂. A cross-analytic isomorphism (ψ 9 ψ#)
f r o m ( ( E , E Γ)R,E n I , v ( E ) , v \ E , Έ ) ; π \ υ { E ) ) t o ( ( E ' , E'n R ! ,
E'ΠΓ 9 v'(E'), i ' l^ , J51') π'l^^')) is a pwr^ m^p if v(E) is a count-
able pure subgroup of G and v'(Ef) is a countable pure subgroup of
σ.

PROPOSITION 1.33. L ^ (K, R, I, G, v ,K) and (K', R', Γ, σ9

υf

 9 K
!) be two valued fields. Then the following are equivalent:

(1) Γ A e r e ex/ste α « analytic isomorphism from (K9 R919G9v 9 K)
to (Kf,R',Γ, G1 , v ' t

( 2 ) R~R'.
(3) / - / ' .

. That (1) -• (2) -> (3) is trivial. It remains to show that
(3) —• (1). Let θ: I —> V be the isomorphism. We will define an
isomorphism ψ: K —> K1. Let α € ^ if 1/α e / , then ^(α) =
l/((9(l/α)). If 1/α ^ / , then for β e I, we have that (α/?) e / ,
so for β φ 0 let ψ(a) = (θ(aβ))/θ(β). Then, ψ(R) = Rf and
ψ(R - I) = Rf - Γ. Consider an element of G, [α ( Λ - / ) ] . We
define y/#, ^ # ([α (R - /)]) = [ψ{a) (i?' - / ' ) ] . This completes the
proof.

Because of Proposition 1.33 we have the following:
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DEFINITION 1.34. Let R be a domain (but not a field) such that,
for all x,y € i?, either x\y or y\x. Then letting / be the
set of non-units of R, we have a valued field (Frac(jR), R, / ,
Frac(i?)#/(i? - / ) , v , R/I). We call this valued field the valued field
generated by R.

LEMMA 1.35. Let K be afield. Let I c K be a subset such that
(a) / is closed under addition, subtraction, and multiplication.
(b) K - I is closed under multiplication.
(c) 1 ί l .

Then I determines a valued field, the valued field generated by R =
{xeK\l/x£I}.

Proof. Given / c K, R is unique, and K is the fraction field of
R, Frac(i?). We need to show that R is closed under addition. Let
(a + b) eK -R, that is, l/(a + b)el. We shall show that either a
or b is in K - R, that is, either I/a or l/b is in / . But ί/(a + b) =
(l/b)-(a/b) (l/(a + b)) and l/(a + b) = (\/a)-(b/a) (l/(a + b)).
Recall that / is closed under addition, so if ((a/b) (I/(a + b))) e /
then so is l/b, similarly for (b/a) (I/(a + b)) and I/a. But

((a/b): (\/(a + b))) ((b/a) (\/(a + 6))) = \/((a + b)2) e I.

Therefore R is closed under addition (recall that K -1 is multiplica-
tively closed), and the proof is complete.

NOTATION 1.36. Because of Lemma 1.35, we can identify a valued
field by identifying the main field K and the valuation ideal / . Thus,
(K = Fmc(c/p), / = CQ/P) will denote the unique valued field with
main field Fmc(c/p) and valuation ideal / = CQ/P . Similarly, we
shall let R = l°°/p denote the unique valued field having valuation
ring l°°/p.

D. Ordered divisible Abelian groups. We can capsulize the Ax-
Kochen results by saying that under certain conditions two valued
fields are isomorphic if their residue class fields are isomorphic and
their valuation groups are isomorphic.

For all valued fields that we deal with in this paper the valuation
groups will be ordered divisible Abelian groups.

DEFINITION 1.37. An ordered divisible Abelian group is an ordered
Abelian group G, such that for all b e G and n e N, there exists
c eG such that nc = b.
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REMARK 1.38. A torsion free divisible Abelian group is a vector
space over Q. A fortiori, an ordered divisible Abelian group is a
vector space over Q.

REMARK 1.39. Let G and H be two ordered divisible Abelian
groups and let f:G—>H be surjective. Then there exists a ho-
momorphism g: H —• G such that / o g: H —• H is the identity. In
particular, for a valued field (K, R, / , G, v , K), if K#/{-1, 1} and
G are divisible groups, then there exists a cross-section π: G -^ K# .

DEFINITION 1.40. An ordered divisible Abelian group 6 is ω r

saturated if it satisfies the following property:
Let A and 5 be two subsets of G such that for all a e A and

b e B , a < b. Let card ̂ 4 < Ko and card 5 < Ko. Then there exists
g eG such that

(i) a < g for all aeA and
(ii) g < b for all b e B.

We observe that either ,4 or B (or both) may be finite or empty.

PROPOSITION 1.41. Let G and H be two ordered divisible Abelian
groups. Let cardG = card// = Ni. Let both G and H be ω\-
saturated. Then there exists an ordered Abelian group isomorphism
θ: G->H.

Proof. We prove this by a very standard method. First we well order
the elements of G and H, {ga}a<ωι and {ha}a<ωχ - (Of course, this
well ordering has no connection with the orders on either group.) For
each gβ G G, we have two sets

g$ = {g e G\g > gβ} and gj = {g e G\g < gβ},

similarly for hβ G H.
We shall construct a family of isomorphisms between subgroups

{θa I Ga —> //α}α<ω, 9

such that
(a) for all γ > a, Ga c (77, Ha c Hγ, and #7 extends 0α and
(b) G = U < ω , GQ , H = U α < ω i //α, and such that θ = (Ja<COi θa is

the desired isomorphism.
First, we let Go = {0} , Ho = {0} , and <90(0) = 0.
For a limit ordinal λ, we let Gλ = \Ja<λ Ga, Hλ = \Ja<λ Ha, θλ =
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If a is of the form a = λ + 2n — 1, we choose gβ £ Ga-X such that
β < γ for all gγ £ Gα-i Then Ga will be the subgroup generated
by gβ and Gα_i . For θa(gβ) we choose h e H such that

(i) for all * G Gα_! n ̂  , 0α-i(s) > * ,

(ii) for all £ G Gα_! n gjf, 0α-ite) < h .

Since Gα_i is countable, the existence of such an h is guaranteed
by hypothesis.

Finally, if a is of the form a = λ + In, we choose hβ £ //α_i
such that β < γ for all hγ φ Ha-{. For θ~{(hβ) we choose g e G,
such that

(l)for heHa-XnhV9 θ~\(h) > g,

(2)foτheHa^nhj9 θ-χ_x{h)<g.
This completes the construction and the proof.

PROPOSITION 1.42. Let G be an ω\-saturated ordered divisible
Abelian group. Let H be a convex subgroup of G, and let H have a
countable cofinal subset. Then G/H is an ω\-saturated ordered divis-
ible Abelian group.

Proof. Clearly G/H is a divisible Abelian group. Since H is a
convex subset of G, G/H inherits the order from G. To see that
G/H is ωx-saturated, let A = {[α7- + H]} and B = {[bk + H]}. As
usual, let [aj + H] < [bk + H] for all aj and bk. Let {hm} be the
countable cofinal subset of H, with hm > 0 for all m . We then have
two countable subsets of G

Ax = {(aj+hm)}jmeN>, Bx =

and aj + hm < bk-hn, for all j , k, m, and n. Then, by ωx-
saturation of G there exists g G G, such that

(i) aj + hm< g for all aj and hm ,
(ii) bk - hn > g for all bk and hn .

Therefore

[aj + H]<[g + H] for all \a} +H]eA

and
[bk + H]>[g + H] for all [bk + H]eB.

2. Residue class domains of c. In this section we shall show that
there are either exactly 7 or exactly 10 residue class domains of c. In
§3 we shall show that there are exactly 10.
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2.1. c and l°° . In this part of §2, we shall show four things:
1. Frac(c/p) = Frac(/°°/p).
2. Frac(c//?) can be made a valued field with residue class field

Frac(/°°/co). We also classify all the valuation groups of these valued
fields. There are three.

3. Frac(/°°/co) can be made a valued field with residue class field
R. We classify all possible valuation groups for these valued fields.
There are at most three, including the trivial {0}.

4. We show that the valued fields in 2 and 3 are ω-pseudo-complete.
ω-pseudo-completeness is one of the hypotheses of the Ax-Kochen

Theorem. 1 is needed to show 2 and 3.
In part 2 of this section we shall apply Ax-Kochen machinery to 2

and 3 to show that there are either exactly 7 or exactly 10 residue class
domains of c.

Recall that to every non-maximal prime ideal p of c, there is asso-
ciated a non-principal ultrafilter %f on N such that Z(/) € ^ implies
fep.

Observe also:

REMARK 2.1.1. Let % be a non-principal ultrafilter on N . For
f, gee, if

then there exists θ e l°° such that

On the other hand, we shall see later that there exist an ultrafilter
*V and f,gec such that

/ > S > 0

and

fθ = g implies θ £ c.

( / and g, of course, depend on *V.) Therefore, /°° will play a major
role in this paper.

NOTATION 2.1.2. Let p be a non-maximal prime ideal of c, and
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let V be the ultrafilter associated with p . Then

/0 2, = \θel°°\limθ =

REMARK 2.1.3. pb9 CQ,^, and / Q ^ are all convex prime ideals of
l°° - h,& is a maximal ideal.

We shall show that Fmc(c/p) and CQ/P generate a valued field
(K = Frac(c/p), / = CQ/P) . Further, the residue class field of the
above mentioned value field is isomorphic to Frac(/°°/co,^) Finally,
Frac(/°°/co,^) and /o,^/co,^ ^ s o generate a valued field (K =
Frac(/°°/co,^), / = /o,^/^o,^) ? and the residue class field of this field
is R.

We would like first to characterize Frac(c/jp). We do so in the next
proposition.

PROPOSITION 2.1.4. Let p be a non-maximal prime ideal of c. Then

Frac(c//?) ^ Fmc(l°°/pb).

Proof. We have the field isomorphism induced by the map /: c/p —•
l°°/Pb where /([/ + /?]) = [f + Pb\- We need to show that this field
isomorphism is onto. So let

with θ el°° and ψ e l°° . Let ^ G C 0 - ] ? . Then (#0) e c0 . Hence

/ [ g P ] \ = lgθ+pb] = [Θ+Pb]

\[gψ+p]J [ + ] [ + Y

Next we shall classify a special case of Frac(c//?), namely the case
where p = p% .

PROPOSITION 2.1.5. For α non-principαl ultrafilter %? on N , let

P* = {fz

Then

N
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Proof. By Proposition 2.1.4, we need only show that Frac(l°°/p%b)

is isomorphic to ( Π N

R ) / ^ Certainly, /°° c Π N R ' a n d θ =^ ψ is

equivalent to (θ - ψ) ep%,b, so Fτac{l°°/p^tb) c ( Π N R ) / ^
 N e x t >

let Ω € Π N R I f ι ^ I Ω I ' t n e n

Ω Ξ 1 Λ Ω V ( - 1 ) = Ω,

and Ωi e /°°. If Ω >v 1, let Ω2 = Ω V 1 =v Ω. If Ω <* - 1 , let
Ω 2 = Ω Λ ( - 1 ) = 2 / Ω . Then,

We wish to show now that, for a non-maximal prime ideal p,
Frac(c/p) and co/p generate a valued field (K = Fτac{c/p), / =

. This will be done in Proposition 2.1.8.

LEMMA 2.1.6. Let p be a non-maximal prime ideal for c. Then
l°°/pb is a convex subring of Frac(l°°/pb).

Proof. Let \[θ + pb]\ > \[ψ + Pb]\. Then \ψ\ =v \θ\ A\ψ\. Clearly
\θ(n)\ > \θ(n)\ Λ \ψ{n)\ for all n <= N , so

|fl| Λ \Ψ\ ]Oΰ.
θ '

hence

[Θ+Pb]

and
[ψ+Pb]
[Θ+Pb]

LEMMA 2.1.7. Let p be α non-mαximαl prime ideal of c. Then

[Frac(c/p) - co/p]

is a multiplicatίvely closed subset of Frac(c//?).

Proof. This is clearly equivalent to [Frac(/°°//?/,) - Co^/pb] being
multiplicatively closed. By Lemma 2.1.6 and Remark 2.1.3,
is convex in Frac(/°°//7^). Let

ϊθ\] ΓΛ-Ί

7—~ and
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be elements of Frac(/°°//?^). Assume

10il.ίMGCl
[ψ\] [Ψ2]

Assume towards contradiction that

[0i] „ „

and

By convexity of
\Ψi\ " υ '

, this implies that both

1 >

[0i]
[Ψl]

oduct

[02]

[Ψl)

and

. Hence

and 1

[02]

[ψl\

> [0i]

and el°°/pb.
[Ψι] ' " [Ψi\

is a prime ideal of l°° /pb > the result follows.

Therefore

Since

PROPOSITION 2.1.8. For p a non-maximal prime ideal of c,
Frac(c//?) and Co/p generate a valid field (K = Frac(c//?), / = co/p).

Proof. Lemmas 2.1.7 and 1.35.

We wish now to study the valuation group of the valued field (K =
Frac(c//?), / = CQ/P) . We shall show that it is always a convex sub-
group of an o)\ -saturated ordered divisible Abelian group. This is
done in Proposition 2.1.12.

LEMMA 2.1.9. Let {[fm]} be a countable subset of co/p (or of
k^/Pb) - Then there exists [g] e co/p (or [g] e k9v/Pb > respectively)
such that [g] > \[fm]\ for all m.

Proof. Given {fm}, we define {hj} :

Clearly hj=v\fj\.
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We next define a function k: N —• N U {00} :

k(n) = sup{j\lΛhj(n)<l/j}.

We next define g: N —> R, by

1 if *:(/!) e N ,
g(n) = { k(n)

(O if k(n) = 00.

It can be checked that g has the desired properties.

REMARK 2.1.10. If v is the valuation in the valued field (K —

Frac(c//>), / = co/p), then v([f]) > v([g]) if and only if [f]/[g] e

Co/P

LEMMA 2.1.11. Let % be a non-principal ultrafilter on N. Let {fm}
and {gk} be two countable subsets of IQ^ (either or both may be finite
or empty), such that fm >& gk for all m and k. Then there exists
hεh,& such that

fm >% h >y gk for all m and k.

We leave the proof of Lemma 2.1.11 to the reader.

PROPOSITION 2.1.12. Let p be a non-maximal prime ideal of c. Let
{[fm]} and {[gk]} be countable subsets of Co/p (either or both subsets
may be finite and {[fm]} may be empty) such that

[fm] > [gk] > 0

and
\ψ\eco/p for all m and k.
Urn]

Let the set {[gk]} be non-empty. Then there exists [h] e co/p such
that

[h] , , „
77Λ e co/p for all m
Uml

and
^ for all k.

Proof. We consider four cases.
Case 1. {[/m]} is empty. This is Lemma 2.1.9.
Case 2. For each [fk] there exists j > k such that
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and for each [gm] there exists / > m such that

[8ml

In this case, let h be the sequence guaranteed by Lemma 2.1.11,

fk >% h >w gm for all m and k.

Then, since fj>%h, it follows that

Since h >& gi, it follows that

[gm] [gm]

Case 3. For each [fk], there exists j > k such that

however, there exists [gi] such that for all [gm],

E3
(or vice versa for / and g). In this case, let

[gi]
[fk]

 ι w " - • " " " •

By Lemma 2.1.9, there exists [θ] e co/p such that [θ] > [θk] for all
k. Let

rui _ [gi]

Clearly [fj] > [h] for all j , and hence
[JjX>w Q/P f o r a i u

Clearly

and for m > i,
[gj] = [gm] [gjl

[h] [h] [gm]
but

[gi] ,
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therefore, by primality of Co/p,

[h] eCo/p

Case 4. There exist [/}] and [gi] such that

W
and

Co/p for all k

[gm]
^r <£ CQ/P for all m.

In this case, let [h] = V[/y] [gi]. Clearly,

[Λ] [ft] /ϊftL

For fceN such that [fj]>[fk],

W

and by primality of

[A]

For m 6 N such that [gm] > [gi],

[gm] [gj] [ft]
[A] *[^m] [A]

and by primality of

If /? is a prime ideal of c, such that p# c p c Co, then the valuation
group of the valued field (JRΓ = Frac(c/p), / = co/p) is a convex
subgroup of the valuation group of (K = Frac(c//?^/), / = Co/p^).
Accordingly, we turn our attention to the case p = /%.

LEMMA 2.1.13. Lei W be a non-principal ultrafilter on N and let
{fj} be a countable family of sequences such that

Λ > fa > «•
Then there exists g such that

fj>8>° f°rallJ
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Proof. First we define a family of sequences {gj}, by

ΛOO ifΛ<»»o.
8j[n) \l/n iffj(n)<0.

Then let g(n) = gx{n) Λ Λ gn{n).

PROPOSITION 2.1.14. Ifp=p^ for some non-principal ultrafilter %ί,
then the values field (K = Fτac(c/p), I = c/p) has an ω\-saturated
valuation group.

Proof. Follows by Lemma 2.1.13, Proposition 2.1.12, and Lemma
2.1.9.

We next show that the valuation group of (K = Fτac(c/p), / =
CQ/P) must take one of three forms. We shall later show (Theorem
2.1.17) that each of these three forms describes a unique group up to
isomorphism.

THEOREM 2.1.15. Let p be a non-maximal prime ideal of c. Let G
be the valuation group of the valued field (K = Frac(c/p), / = co/p).
Then G has one of the following forms:

(i) G is ω\-saturated.
(ϋ) G = R®GQ with lexicographical ordering, and with GQ being

an ω i-saturated group.
(iii) G = [JjLι(ΈLj Θ Gj) where each sum R7 θ Gj is as in (ii), and

Rj 0 Gj is a convex subgroup of Gj+\.

Proof. A cofinal subset of G is the image of a coinitial subset of

(co/p)+.
If (co/p)+ has no countable coinitial subset, then by Lemma 2.1.9

and Proposition 2.1.12, G is co\ -saturated. As an example of this
case, we have p = p%?.

If {CQ/P)+ has a countable coinitial subset, then either there exists
[f] G Co/ρ such that {[/]*} is coinitial or no such [/] exists.

First, assume that such an [/] exists. Let

H = {[θ] e Fnc(c/p)\ \[θ]\k > [f] and \[θ]\~k > [f] for all k}.

Claim. Go = v(H) is an ω\ -saturated ordered divisible Abelian
group.
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Proof of claim. By Lemma 2.1.9 and Proposition 2.1.12, it suffices
to show that v(H) has no countable cofinal subset. This is equivalent
to showing that (H)+ has no countable coinitial subset.

We assume toward a contradiction that (H)+ has a countable coini-
tial subset {[gj]}. But by Proposition 2.1.12, there exists [h] e Co/p
such that [gj] > [h] > [f]x^k for j e N and k e N . By definition of
H, [h] € (/0+ a n ( i s o {[£/]} is n o t coinitial. This proves the claim.

Now, let [g] e (co/p)+ W e define

r([g]) = mΐ{teR+\\[g]\>[f]t};

then

If]
So

™eH.

As an example of this case we have, letting f(n) = e n, for any
non-principal ultrafilter ^ ,

for all k, fk :

Finally, we assume that (co/p)+ has a countable coinitial subset but
no [/] such as above exists. It is trivial to show that in this case we
have a countable coinitial subset {[fm]}^=\ where [fm]k > [fm+\] fo r

all k G N and ra G N. If we let

Hm = {[θ] G Fτac(c/p)\ \[θ]\k > [fm] and \l/[θ]\k > [fm]

for all k G N},

then it is easy to show that v(Hm) = Gm is an ω\-saturated ordered
divisible Abelian group. Let [g] G (co/p)+ Then by coinitiality of
{[/m]}^=i, there exists [/)] such that {t G R+|[,?] > [//]'} is non-
empty. Let

Then

[fiY>
and
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As an example of this case we have, letting

fk(n) = e-"",

/>={*!/*> |*| for all fcj.

LEMMA 2.1.16. Let G and H be two ordered vector spaces over R.
Let cardG = card// = \H\. Let both G and H, considered as ordered
divisible Abelian groups, be convex subgroups of ω\-saturated groups.

Let there exist {gn} c G such that for all c e G, there exists gn

such that gn > c\ and gn+\ > r gn for all r e R and all n e N.
Let {hm} be an analogous subset of H.
Then H and G are isomorphic as ordered Abelian groups.

Proof. For each gn , we define
(a) G Λ ϊ L = {ce G\gn > \r • c\ for all r e R} .
(b) Gnu — {c G G\ there exists Γ G R such that rgn > c}. Also,

for each hm we define Hm ? L and Hm ? υ , in the same fashion.
We observe that, for all m and n, HmL and GnL are ω r

saturated ordered divisible Abelian groups. We also observe that by
1.42, Hm+ι9L/Hm9u and Gm+iyL/Gm9u are ω rsaturated.

We shall construct two families of isomorphisms

{θn' Gn,L-+ Hn,L} and {ψn: GnyU -> Hn^}

such that

(i) ψn extends θn.

(ii) θn+\ extends ψn.

Then, θ = \J™=ι θn is the desired isomorphism.

Since Gγ L and H\ L are ω\-saturated there exists θ\: G\ L —•

HUL.
Since Gn ? u = R® Gnι and Hnu = R@ Hni (each with the

lexicographical ordering), we can easily extend θn to ψn . It remains
to extend ψn to θn+\.

Since Gn+\^ι/Gn^u and Hn+\^L/Hn^v are both ωj-saturated, by
1.41 there exists an isomorphism

This yields the following diagram

0 - + (/n,c/ —»• Gn+\^L —• GΠ+I^L/GΠ^U -> 0

^ W+1

0 —^ #>!,£/ —»• Hn+\ L —• Hn+\^L/Hn^u —• 0
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and by the Five-Lemma, there exists an isomorphism

making the diagram commute. θn+\ therefore extends ψn . This
proves the lemma.

THEOREM 2.1.17. Let p and q be non-maximal prime ideals of c.
Let Gp denote the valuation group of the valued field (K = ¥mc(c/p),
/ = CQ/P) . Define Gq analogously. Let one of the following three
conditions hold:

(i) Neither {CQ/P)+ nor (co/q)+ have countable coinitίal subsets.
(ii) Both {co/p)+ and (co/q)+ have countable coίnitial subsets of

the form {[f]k}^{.
(iii) Both (co/p)+ and (co/<?)+ have countable coίnitial subsets but

neither has a coinitial subset of the form {[f]k}(£=ι

Then Gq~Gp.

Proof. If (i) holds then Gq ~ Gp by Proposition 2.1.12 and 1.41.
If (ii) holds, then by Theorem 2.1.15, Gq = R®G0,q and Gp =

R®Go^p with lexicographical ordering and with Go^q and G$^p being
ω\-saturated ordered divisible Abelian groups. Then by 1.41, G0,p —
Go,q . Of course, R ~ R, so Gq ~ Gp .

If (iii) holds, then, by Theorem 2.1.15, Gp = \J™=ι{ΈLm®Gm,p) and
Gq — U^ = 1 (R W @Gmiq). By Lemma 2.1.16, these are isomorphic.

What we have done now is classified up to isomorphism all the
valuation groups that arise in the valued fields (K = Frac(c//?), / =
CQ/P) . The work of Ax and Kochen allows us to classify (c/p) by
means of these groups and the valuation group of the valued field (K =
Frac(/°°/co,g/), / = h,^/co,w) > ^ being the ultrafilter associated with
p . Therefore, we study IQ^/CQ^ .

REMARK 2.1.18. The residue class field of (K — Frac(/°°/co,^), / =
V^/O),^) is R, so for θ and ψ in l°°, we have that the following
are equivalent:

(i) v([θ])>v([ψ]).
(ii) r\ψ\>^\θ\ for all r e R+ .

(iii) r\[ψ]\ > \[θ]\ for all r € R+ .
(iv)

The following proposition is closely analogous to Proposition 2.1.12.
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PROPOSITION 2.1.19. Let % be a non-principal ultrafilter on N . Let
{[θj]} and {[ψk]} be two countable subsets of (Io9&/Co9&)+ such that
ΛΨiΛ > [θj] for all j and k, and all r e R + . Let {[θj]} be non-
empty. Then there exists [Ω] G /o,^/co,^ such that

r[ψk]>[Ω] for all re R+ and all [ψk]

and
r[Ω] > [θj] for all r e R+ and all [θj].

Proof. We consider 3 cases.

Case 1. {[^]} is empty. In this case the result follows from
Lemma 2.1.9.

Case 2. For each [θj] there exists [θm] such that r [θm] > [θj] for
all r G R + , and for each [ψk] there exists [ψ{\ such that r[ψk]>[ψi]
for all r G R+ . Then by Lemma 2.1.11, there exists Ω G /°° such that

ψk > Ω > θj for all k and j .

Case 3. Either there exists [θm] such that for each [θj] there exists
r e R+ such that

[θm]>r[θj],

or there exists [ψ{\ such that for each [ψk] there exists Γ G R + such
that

lΨk]>r[Ψi]>

or both.

In this case, we either define a family [θj] or [ψ'k] or both: [θj] =

2j[θm], [ψ'k] = 2~k[ψi]. Then the result follows from Lemma 2.1.11.
We did not deal with the case where {[θj]} is empty; that is, we

did not show that (/o,^/co,^)+ does not have a countable coinitial
subset. It turns out that (/o,^/<?o,^)+ can have a countable coinitial
subset; in fact, (/o,^/^o,^)+ c a n be empty. But there is one kind of
coinitial subset that (/o,^/^o,ar)+ cannot have.

PROPOSITION 2.1.20. Let ^ be a non-principal ultrafilter on N.
Then (/o,^/^o,^)+ does not have a coinίtial subset of the form {[θ]k}.

Proof. Given θ G IQ^ , with 0 >^ 0, we define ψ

0 if 0(1!) = 0,

| otherwise.
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Then
θk > ψ > f for all k and for all / e c0.

We can now classify, up to isomorphism, the possible valuation
groups of the valued fields (K = (l°°/co9&), / = h,&/co,&) I*1 2.2,
we shall show that this classifies Frac(/°°/co?^) UP t 0 isomorphism.
Frac(/°°/co,^) is the residue class field of the valued field (K =
Frac(c//?), / = co/p), with & being the ultrafilter associated with
p.

THEOREM 2.1.21. Let % and Ψ* be two non-principal ultrafilters
on N. Let G% be the valuation group of the valued field (K =
Frac(/°%;o,^), / = /o,^M),^) Define G^ analogously. Let one
of the following conditions hold:

(i) h,& = co,%' and lo9y = co9y
(ii) (/o,^/co,^)+ Φ 0 and has no countable coinitial subset) and

(h,r-/co9v)+ Φ 0 and has no countable coinitial subset
(iii) Both (lo,&/co,&)+ and (h,vr/co9

<r)+ have non-empty count-
able coinitial subsets.

Then G^^G^.

Proof. If (i) holds, then GW ~ {0} ~ G^ . If (ii) holds then G^ and
GV are ω\ -saturated ordered divisible Abelian groups of cardinality
Ni. By 1.41, G% ~ Gψ . If (iii) holds, then Gy ^ G^ by Lemma
2.1.16.

We summarize:
(a) The valuation group of the valued field (K = Frac(c//?), / =

CQ/P) is independent of %, the ultrafilter associated with p.
(b) The valuation group of the valued field (K = Frac(/°°/co,^),

/ = IQ9#/CO9&) is determined by %.
Finally, one of the hypotheses of the Ax-Kochen Theorem is that the

valued field must be ω-pseudo-complete. Therefore, we must show:

PROPOSITION 2.1.22. Let p be a non-maximal prime ideal of c.
Then the valued field (K = Frac(c//?), / = CQ/P) is ω-pseudo com-
plete. Let %S be a non-principal ultrafilter on N. Then the valued field
(K = Frac(/°°/co,^), / = /o,2fM),2f) is co-pseudo-complete.

Proof. This is actually a fairly simple application of Lemma 2.1.11.
We shall only prove this proposition for (K = Frac(/°°/co,^), I =
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Let {[%:]} be a countable subset of Frac(/°°/co,^) s u °h that

[Ψk-\]-lΨk+2\7 ϊ f / o , * / £ < ) , * ίor all Ar.

That is,

all k.

We need to show that there exists [ψ] e Frac(/°°/co,^) such that

Ί S F ^ Γ 6 *>.*/«.. fora.!..

That is,

- [ψk]) for all /c.

Toward this end, we construct two subsets of Frac(/°°/<;o,^) , £*y and
Ŝ , . We construct them in the following manner:

(1) If [Wk+i]>[Wk],then [ψk]eSL and (2[ψM] - [ψk]) e Sv.
(2) If [ψk+ι] < [ψk], then [ψk] e Sv and (2[ψk+ι] - [ψk]) e SL.

By Lemma 2.1.11, there exists [ψ] e Frac(/°°/co,^), [ψ] less than
every element of Su and greater than every element of SL . It is easy
to check that [ψ] has the desired properties.

2.2. Real closed valued fields. Here we will be using the Ax-Kochen
machinery to show that there are either exactly 7 or exactly 10 residue
class domains of c. We first must finish showing that the precondi-
tions for the Ax-Kochen machinery are satisfied. This is checked in
Proposition 2.2.3. With Proposition 2.2.7 we begin using the work
of Ax and Kochen. We cannot use their results directly because we
are trying to show, not only that the valued fields are isomorphic, but
also that certain subrings are isomorphic. Therefore we will mimic
Kochen's proof of Theorem 1 in [14] (this theorem says that, under
certain conditions, two valued fields are isomorphic if their valuation
groups and their residue class fields are isomorphic), modifying it to
ensure that the subrings are isomorphic. We use this result in two
separate steps.

We first consider the valued field (K = Frac(/°°/co,^), / =
lo,^/co,&) whose residue class field is R. Then we consider the
valued field (K = Frac(c//?), / = co/p), whose residue class field is

In the first step, we show that for two ultrafilters It and Ψ' if
the valuation groups of (K = Frac(/00/co,^), / = /o,^M),^) and
(K = Frac(/°°/co,^), / = /o,Wco,r0 a r e isomorphic, then we have
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an isomorphism from Frac(/°°/co,^) to Frac(/°°/co,^) which sends
the constant functions to the constant functions. As we showed
in 2.1 there are at most three different valuation groups for (K =
Frac(/°°/co,^), / = /o^/co.aO > including the trivial group {0} .

In the second step, for two non-maximal prime ideals p, q c c9

with % and "V as the ultrafilters associated with p and q, we show
that: If

(a) we have an isomorphism from Frac(/°°/co,g/) to Frac(/°°/co,^)
which sends the constant functions to the constant functions
and

(b) The valuation groups of (K = Frac(c//?), / = CQ/P) and (K =
Frac(c/#), / = Co/q) are isomorphic.
Then we have an isomorphism from Frac(c/p) to Frac(c/#), such
that the image of c/p is c/q.

As we showed in 2.1, there are three possible valuation groups for
(K = Frac(c/p), / = Co/p). The three choices for valuation group of
(K = Frac(c//?), / = co/p) and at most three choices for the valuation
group of (K = Frac(/°°/co,^) > I — h^/^o,^) yield at most 9 residue
class domains c/p, with p non-maximal.

DEFINITION 2.2.1. A real closed valued field with convex valuation
is a valued field (K, R, I, G, υ ,K) such that

(i) K is a real closed field.
(ii) For a, b e K, if a > b > 0 then v(b) > v(a).

We first prove some simple but essential results about real closed
fields with convex valuation which will enable us to use the Ax-Kochen
machinery.

LEMMA 2.2.2. For a valued field (K, R, I, G,v ,Έ), the following
are equivalent

(i) (K, R, I, G,v, K) is a real closed valued field with convex
valuation.

(ii) K is a real closed field and I is a convex subset of K.
(iii) R is a real closed ring.

Proof. Left to reader.

PROPOSITION 2.2.3. Let (K, R, I, G, v, Z) be a real closed field
with convex valuation. Then

(i) (K,R,I,G,v,K) is a Henselfield.
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(ii) Έ is a real closed field,
(iii) K#/{-l , 1} is a divisible group.
(iv) G is a divisible group.
(v) There exists a cross-section π: G —> K*.

Proof, (i) Let g{x) e R[x] and let g(x) = /(*) e Z[JC] . If / has
a non-singular root at a, then / changes sign at a. Let β, γ e K
be such that (w.l.o.g.)

(1) β<a<γ,
(2) for β <y < a we have /(y) > 0, and
(3) for a < y < γ we have f(y) < 0.

Then, for z e R, if β < ~z < a we have g(z) > 0, and for a < ~z < γ
we have g(z) < 0. Since g changes sign and R is real closed, there
exists aeR such that g(a) = 0 and a = a.

(ii) Clearly, every positive element of Έ has a square root. So
let f(x) e Έ[x] be an odd degree polynomial. Clearly there exists
g(x) e R[x] such that

(1) degg(x) = deg/(x), which is odd,
(2) f(x) = / ( * ) , and
(3) the leading coefficient of g(x) is a unit of R. Since i? is real

closed, there exists b e R such that g(b) = 0. Then f(b) = 0.
(iii) For all positive b, for all n, there exists c e K such that

cn = b.
(iv) The image of a divisible Abelian group is always divisible.
(v) Torsion-free divisible Abelian groups are vector spaces over Q.

Hence all exact sequences split.

COROLLARY 2.2.4. Let p be a non-maximal prime ideal of c. Let
{K, RJ ,G,υ,K) be the valued field (K = Fraφ//?), / = co/p).
Then K is a real closed fieldf G is a divisible group, and there is a
cross-section π: G —• K#. Further, (K = Frac(c//?), / = co/p) is a
Hens el field.

COROLLARY 2.2.5. Let % be a non-principal ultrafilter on N. Then
Frac(/°°/co,^) is a real closed field, and l°°/co9& is a real closed ring.

We now begin exploiting the work of Ax and Kochen.

NOTATION 2.2.6. Let (K, i?, /, G, υ ,K) and (Kf, R', / ' , G,

v1, Kf) be two valued fields. Let E c K and E' c K1 be subfields.
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Let

(0, 0#): ((E,RnE,InE, v(E),v\E,E)9 π\v{E))

-> ((£' ,R'nE',I'nE', v\E'), v'\E>, £ ' ) , π ' l^^))

be a pure map. We hereafter simply denote this as

Θ\E->E'

when there is no danger of confusion.

We have the following important fact from [14].

PROPOSITION 2.2.7. Let ({K, R, I, G, v ,K), π) and ({Kf, Rf, Γ,
G, v1, ΛΓ;), π;) 6^ ω-pseudo-complete Hensel fields with cross-section
such that

(i) CardA: = CardA'/ = «i.
(ii) c h a r Z ^ c h a r Z ' ^ 0 .

(iii) There exists an isomorphism ψ#: G —• G'.

(iv) K~Kf.

Let E c K and E1 c Kf be subfields such that Έ = Έ and Ί? = ~κ!.
Let θ: E -+ Er be a pure map such that # # : v(E) —• v'(J5;) w ίΛe
restriction of ψ# to v (E). Let c e K. Then there exists a subfield
F c K, with c G F, E c F, and a pure map p: F —• F1 such that p
extends θ (/?# thus extends θ#), and p# is the restriction of ψ* to
v(F).

Proof ([14], Proposition 3.)

Combining Proposition 2.2.3 and Proposition 2.2.7 we have:

PROPOSITION 2.2.8. Let (K, R, I, G, v ,K) and {Kf, R!, / ; , G,
vf, ~K') be ω-pseudo-complete real closed valued fields with convex val-
uation. Let π and πf be the cross-sections guaranteed by Proposition
2.2.3. Let

(i) C a r d A : = C a r d A : / = N i ,
(ii) ψ#: G —• G be an isomorphism,

(iii) K-K1.

Let E cK and Ef c K' be subfields such that Έ = K and Έ' = Kf.
Let θ: E -> E' be a pure map such that θ#: υ(E) -* υ\Ef) is the
restriction of ψ# to v(E). Let c e K. Then there exists a subfield
F c K, with c e F and E c F, and a pure map p: F -> F' such
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that p extends θ {thus ρ# extends θ#), and ρ# is the restriction of
ψ# to v (F).

From Proposition 2.2.8, we can see that once we get the first such
pure map between such subfields of K and K1, we can extend it by in-
duction to a cross-analytic isomorphism between the two valued fields
with cross section. We do not want the cross-analytic isomorphism for
its own sake, of course. We want at last to be able, under certain condi-
tions, to construct an isomorphism between c/p and c/q . To do this,
we use the fact that in the valued field (K = Frac(c//?), / = CQ/P) ,
co/p = I c c/p. Also, in the valued field (K — Frac(/°°/co,^), / =
h,&/co,&), the valuation ideal /0,^/co,^ has trivial intersection with
the image of c/p .

PROPOSITION 2.2.9. Let % and "V be non-principal ultrafilters on
N. Let one of the following conditions hold:

(1) (l°°/co^)^Rand (l™/co,^)^R.
(2) (/o,^M),^)+ has no countable coinitial subset and (lo^/Co^)+

has no countable coinitial subset.
(3) (/o, &/co, w)+ has a non-empty countable coinitial subset, so does

(/o,Wco,^)+
Then there exists an isomorphism

such that for fee,

Proof. We first observe that the subsets

and

are both isomorphic to R. We have isomorphisms χ^ and χ<r such
that

= l im/= lim f(n)

So we have
0i: Ex -* E\ with θx = χ^} o χy.
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This, of course, disposes of case (1).
For the other two cases, since υ is trivial on E\ and v1 is trivial

on E\, θ\ is trivially a pure map.
We extend θ\ by induction using Proposition 2.2.8. It is therefore

necessary to show that the valued fields (K = Frac(/°°/co,^/), / =
h,κ/co,w) and (K = Frac(/°°/co,^), / = /o,W^o,r) satisfy the hy-
potheses of Proposition 2.2.8.

By Lemma 2.2.2 and Corollary 2.2.5, these are both real closed fields
with convex valuations and in both cases the residue class field is R
hence the residue class fields are isomorphic to each other. In fact, θ\
induces this isomorphism. By 2.1.21, the valuation groups are isomor-
phic (and θ\: {0} -» {0} is certainly the restriction of this isomor-
phism). By 2.1.22, both valued fields are ω-pseudo-complete. Clearly,
they each have cardinality Ni = 2^o. The hypotheses of Proposition
2.2.8, then, are satisfied.

So we well order the elements of Frac(/°°/co,^), {xa}a<ω , and the
elements of Frac(/°°/co,^) > {ya}a<ω We shall show that there exists
a family of pure maps {θa: Ea —• E'a}a<COi such that

(a)

I

(c) θ = \Ja<ω θa is the desired isomorphism.

We have shown above that θ\: E\ —» E[ exists, and that E\ — K ~

Έ! = Έι.
Let a = λ + In where λ is a limit ordinal and n is a non-negative

integer. Given θa: Ea —> E'a , by Proposition 2.2.7 there exists θa+\:
Ea+X -+ Ef

a+ι such that: θa+ι extends θa, Ea c Ea+γ, E'a c E'a+ι,

and x(yl+A2) E £ : α + i .

Let a = λ + In + 1. Given 0 α : £"α —+ Ef

a, there trivially exists

0 " 1 : E'a —• E α and by Proposition 2.2.7 there exists θ " ^ : Ef

a+{ ->

£ α + i where 0 ^ extends 0" 1 and yA+^ eE'a+ι .
Finally, for limit ordinals A,

a n d E'λ

This completes the proof.

We shall show later, in §3, that all 3 cases of Proposition 2.2.9, (1),
(2), and (3), occur.

We wish to prove a proposition similar to the preceding one for the
valued field (K — Frac(c//?), / = CQ/P) . However, since we do not
have an obvious image of the residue class field in the main field, as
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the constant functions are an obvious image of R, it is not quite as
easy to get the initial pure map. Toward that end, we have:

LEMMA 2.2.10. Let (K, R, I, G, v , Z) be a real closed valued field
with convex valuation. Let KQ be a maximal subfield of K on which
the valuation is trivial Then

KQ ~ KQ = K.

Proof. Clearly KQ ~ KQ C K. Assume towards a contradiction that
β E K - KQ . Let b e K be such that b = β . Consider two cases:

Case 1. For all P e K0[x], (except P = 0), v(P(b)) = 0.
Then ϋΓo(fc) is an extension of KQ on which the valuation is trivial,

contrary to assumption.

Case 2. There exists P e K0[x], P φ 0, such that υ(P(b)) > 0.
The set of such P (including 0) forms an ideal of AToM, and

since K0[x] is a PID we let P\ be the generator of this ideal. We
then have v{Px{b)) > 0, and hence ~Pχ(β) = 0; and by Henselity
(Proposition 2.2.3), there exists c e K such that c = β and Λ(c) =
0. KQ(C) is then an extension of KQ on which the valuation is trivial,
contradicting the hypothesis.

LEMMA 2.2.11. Let {K,R, / , G,υ,K) and (A7, R', / ' , < 7 , ? / ,

AΓ;) δe reα/ closed valued fields with convex valuation. Let K ~ K*.
Then there exist subfields KQ C K and Kf

0 c Kf such that

(a) KQ^K0 = K^Kr = KfQ^Kf

0.
(b) υ is trivial on KQ .
(c) v1 is trivial on K$.

Proof. This follows immediately from Lemma 2.2.10.

PROPOSITION 2.2.12. Let p and q be non-maximal prime ideals
of c. Let % be the ultrafilter associated with p and let "V be the
ultrafilter associated with q. Let there exist an isomorphism

such that for fee,

and let one of the following conditions hold:
(a) Neither (CQ/P)+ nor (co/<?)+ has a countable coinitial subset.
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(b) Both (CQ/P)+ and (co/q)+ have a countable coinitial subset of
the form {[f]k}%L{.

(c) Both (co/p)+ and (θ)/<?)+ have countable coinitial subsets, but
neither has a coinitial subset as in (b).

Then c/p ~ c/q.

Proof. We will proceed on lines similar to those in the proof of
Proposition 2.2.9. We shall construct a cross-analytic isomorphism
between the valued fields (K = Fmc(c/p), / = CQ/P) and (K =
Fmc(c/q), / = Co/q). This will certainly map CQ/P one to one onto
cQ/q. We shall also ensure that for a constant sequence r, the image
of [r + p] is [r + q].

By Lemma 2.2.2, (K = Fmc(c/p), / = co/p) and (K = Fmc(c/q),
/ = co/q) are real closed valued fields with convex valuation. By
2.1.22, they are ω-pseudo-complete. By 2.1.17, the valuation groups
are isomorphic. Clearly Card(Frac(c//?)) = Card(Frac(c/#)) = Ni =
2^o.

We recall that

Fmc(c/p) ~ Frac(/°°//? )̂ and Frac(c/^) ~ Frac(/°°/^),

and that the image of co/p and co/q in Frac(l/pb) and Fτac(l°°/qb)
are co,^M> and Co^/qb. Clearly the residue class field of (K =
Frac(c//?), / = CQ/P) is isomorphic to Frac(/00/co,^) and the resi-
due class field of (K = Frac(c/#), / = co/q) is isomorphic to

We let KQ be a subfield of Frac(c//?) and K'Q be a subfield of
Frac(c/^) such that

(i) For any constant sequence r,

[r + p]e Ko a n d [r + q]e Kf

Q.

(ii) v is trivial on KQ and vf is trivial on KQ .
(iii) KQ and Λ^ are maximal with respect to property (ii).

Next by Lemma 2.2.10, we have isomorphisms

and
χq:K'Q-

such that for any constant sequence r,
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Then

Ψ\ =Xgl °θoχp

is our desired initial pure map.
The proof can be completed by transfinite induction as in Proposi-

tion 2.2.9.

Together Propositions 2.2.9 and 2.2.12 give us the following, which
is the main theorem of this section.

THEOREM 2.2.13. Let p and q be non-maximal prime ideals of c.
Let %? be the ultrafilter associated with p. Let T' be the ultrafilter
associated with q. Let one of the conditions (1) to (3) below hold, and
let one of conditions (a) to (c) below hold.

(1) /°°/c0^ ^ R and l°°/c0^ * R.
(2) (/o,^7θ),^)+ has no countable coinitial subset, neither does

(3) (lo,#/co,&)+ has a non-empty countable coinitial subset, so does

(a) Neither (co//*)+ n o r (<V<?)+ has α countable coinitial subset.
(b) Both (co/p)+ and (c$/q)+ have coinitial subsets of the form

{[f]k}keN.
(c) Both (CQ/P)+ and (co/q)+ have countable coinitial subsets but

not ofthe form {[f]k}keN.
Then c/p ~ c/q.

THEOREM 2.2.14. There are at most 10 residue class domains of c.

Proof. Let p be a maximal ideal of c, then c/p ~ R. For p
nonmaximal, there are at most the 9 cases listed in Theorem 2.2.13.

We shall show later that there are exactly 10 residue class domains
of c.

3. Ultrafilters and (/o,^/co,^) I n this section we show that there
are exactly 10 residue class domains of c. Toward that end, we show
that all three cases of 2.2.9 do occur. That is, we show that there exist
ultrafilters ^ , *V, and W on N such that

(i) (/°°/co,*)^R.
(ii) (/o,y/co,y)+ h a s n o countable coinitial subset.

(iii) (/o,y/^o,y)+ has a non-empty countable coinitial subset.
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Satisfying (i) is equivalent to % being a P-point ultraίilter. The
existence of P-point ultrafilters is guaranteed by Martin's Axiom, a
fortiori by the Continuum Hypothesis. On the other hand it is con-
sistent with ZFC that P-points do not exist (see [2], [21], [23], and
[24]).

Necessary and sufficient conditions for ultrafilters to satisfy (ii) are
not known; neither are those for (iii). We show that to satisfy (ii), it
is sufficient that *V be a limit point of a discrete sequence of non-
principal ultrafilters. In 3.2 we construct an ultrafilter W satisfying
(iii), which is obviously neither a P-point nor a limit point of a dis-
crete set of non-principal ultrafilters.

It is known (see [23]), that CH guarantees the existence of ultra-
filters that are neither P-points nor limit points of discrete sets of
non-principal ultrafilters. There are two cases (both guaranteed):

(a) Weak P-points that are not limit points of any countable subset
of j J N - N .

(b) Ultrafilters that are limit points of a countable subset of /?N-N,
but not of a discrete countable subset.

Interestingly, the residue class domains themselves can distinguish
3 types of non-principal ultrafilters on N, while the first order theories
of these domains can only distinguish 2 types [19].

3.1. P-points and limit points of sequences of ultrafilters. We first
show that the case l°° /CQ^ ~ R does, in fact, occur.

LEMMA 3.1.1. There exists a non-principal ultrafilter % on N such
that: Given a sequence of subsets ofN, {Aj}JLx with

(a) Aj+ι cAj,
(b) Aj€& for all j ,

there exists Ae% such that (A - Aj) is finite for all j .

Proof [21].

Ultrafilters % such as in Lemma 1 are called P-point ultrafilters
(strictly speaking, they are the P-points of /?N - N).

LEMMA 3.1.2. For % as in Lemma 1, if θ e l°°, then there exists
fee such that θ =# f.

Proof Let r = \\mwθ. Let Aj = {n\\θ{n) - r\ < ί/j}. Clearly,
Aj+\ C Aj and Aj G % for all j . Hence there exists A e ^ such
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that for all j , the set

{neA\\θ(n)-r\>l/j}

is finite. Define / :

( θ(n) for n e A,

\ r for n £ A.

Then / Ξ ^ θ a n d / e c .

PROPOSITION 3.1.13. For %S as in Lemma 1,

Proof. For y/, 0 e /°° , let lim /̂ 0 = limg/ ^ . Then \\vs\^{ψ — θ) =
0. By Lemma 3.1.2, there exists fee such that / =& ψ-θ . Clearly,

oo /(π) = 0, so (ψ - θ) e co,^ This proves the proposition.

The preceding proposition was first proved in [8], Th. 3.2.2 by Cher-
lin, Dickmann, and Louveau.

We next show that the case does occur where (/o,^/^o,^)+ is non-
empty and has no countable coinitial subset.

LEMMA 3.1.4. Let {^j}Jlx be a countable family of non-principal
ultrafilters on N. Let there exist a family of subsets of N, {Aj}JL{

such that

(i) Aj eVj,

(ii) Aj Γ)Ai = 0 for iφj.

Let % be a non-principal ultrafilter on N. Then the family of subsets
"V, defined by

^ = {B cN\{j\B e^j} e^}

is an ultrafilter.

Proof. Left to reader.

PROPOSITION 3.1.5. Let "V be an ultrafilter as in Lemma 4. Then
(/o,^/co,^)+ has no countable coinitial subset.

Proof. Assume toward a contradiction that {[#&]} is a countable
coinitial subset of (/o,Wco,^)+ Choose representatives of each con-
gruence class, ψk G [θk], such that ψk(n) > ψn+\(n) > 0 for all k
and n . This then gives us that for any ultrafilter ί/j , if

ψk > I/I for all / e c0
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and if / < k, then
ψi > I/I for all / e c0.

We define θ e l°° on Aj by: 0(«) = ^ ( π ) , where

k = max < 1, sup \m<j\ψm>\f\ for all / e Co > >.

I I *i JJ

Clearly, then,

[j\ψi > I/I for all / € c0 U \j\θ > |/| for all / e J

and for all m

\ j\ψm > I/I for all / G Co ̂  = \j > ™\ψm > θ \.

Hence, for all m, and for all f ECQ,
> 0 > I/I,

contrary to assumption.

3.2. Ultrafilters W such that {lo,w/co,w)+ has a countable coini-
tial subset. Finally we wish to show that there exists a non-principal
ultrafilter W such that (lo,w/co,w)+ has a (non-empty) countable
coinitial subset. This amounts to the following: We need to construct
an ultrafilter W containing a doubly indexed countable family of sub-
sets of N,

r A loo oo
\Λj,kfj=\k=\

where for each [θj] in the countable coinitial subset

It is also necessary that for any j e N, if a set Bj is such that Bj—Aj ^
is finite for all k e N, then Bc- e W otherwise θj would converge
(mod W). It is further necessary that for any ψ\ N —> R, such that
#; >^ |ί^| for all j G N, ^ should converge (mod 3Γ).

If any countable coinitial subset exists then there exists a countable
coinitial subset {θj}Jlι such that θj+\ is not merely less {moάW)
than any power of θj, but in fact is less {moάW) than the compo-
sition with θj of any non-decreasing / : R —• R (f o θj >ψ- 0/+i).
This is Lemma 3.2.1.
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We observe that for any ψ, Ω: N —• (0, 1],

oo

\J[ψ-χ((09 l/k]) - Ω-^O, l/k])] c {/i|vf(/i) < Ω(/i)}

Therefore / o 0y >w θj+\ for all non-decreasing / : R+ —• R+ is
equivalent to

k=\

There are two main steps in constructing the ultrafilter W.
The first step is by far the hardest. In the first step we construct a

filter %T and a countable subset of l°° , {θj}f=λ such that:

(1) %? contains the family of sets {Aj ,k)%\k=\> with Ajk =

ΘJι((O,l/k]).
(2) %f contains the family of sets {U^LiMy+i ,σ(k) ~Aj ,£]} > f°Γ aU

σ: N -» N and for all J G N .

(3) For any set 5 7 with (Bj ~AjΛ) finite for all k G N, 5 ? e XT.
(4) For any ψ e l°° either \ψ\ >^ θj for some J G N or

for some filter ^ extending ^ , ^ converges (mod &).
The last property of %? could be rephrased (and this is the form of

the property that we work with):
For any nested sequence of sets {Cm}™={ either
(a) There exists G G / and J G N such that GnCm c Ajitn for

all m E N, or
(β) There exists C c N such that C - Cm is finite for all m e N,

and for all # e ^ , CnH^0.
If X has all four of these properties we say that J? is combed by

the family of sets stf = {Aj ^k}J>=xf=x.

In the second step we extend β? to an ultrafilter W, taking care
that W satisfies property (4). (Properties (1), (2), and (3) are true for
all extensions of βf.) For the ultrafilter 3Γ, property (4) will mean
that, given ψ e l°°, either \ψ\ >y θj for some j or ψ converges
(mod 3Γ). {[θj]}(p=ι, then, will be the desired countable coinitial
subset.

LEMMA 3.2.1. Let W be a non-principal ultrafilter on N. Let
{θj}JL{ be a countable coinitial subset of (/o,y - ^o,^)+ Then for
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each j , there exists m(j) G N such that, for all non-decreasing func-
tions f: R+ -> R+, / o 0, >w θmU).

Proof. Assume false. Let there exist θj such that for each θm,
there exists fm such that

fm ° 0y.

Define / , for l/(n + 1) < x < \jn,

= Λ
m = l

Then, for all m,

Claim, foθj φ c§^.

Proof of Claim. Let A^W be such that foQj\A converges to zero.
For b9 c> 0 ? if /(fc) = c, then foθj(n) < c/2 implies ffy(/i) < 6.
Hence 0/|^ converges to zero, contrary to hypothesis.

This claim and the fact that

θm > f°θ, for all m,
w J

together contradict the coinitiality of {θm}™=ι.

PROPOSITION 3.2.2. Let W be a non-principal ultrafilter on N.
Then the following are equivalent:

(i) There exists a {non-empty), countable, coinitίal subset of

(ii) There exists a countable family of subsets {^j ,k}JL\f=\ c W
such that

(1) AjΛ cAj+uk,

(2) 4/,*+i C ^ ^ ,
(3) ybr α// sequences σ: N —> N, and for all j ,

L A : = 1

(4) for B a subset of N, z/yor wme J ' G N , B uAjik has finite
complement for all fceN, ίλefl B eW, and

(5) g/ven α countable family of sets
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(a) Q + 1 c Q ,
(b) Ck eW for all k, and
(c) for all j, [(J*Li(Q - AjΛ)} e W,
there exists C ^W such that (C - Ck) is finite for all k.

Proof. (i)-»(ii). Let {[θj]}ψ=ι be a countable coinitial subset of
(A),Wco,:r )+ Let θj(n) > θj+\{n) > 0. By Lemma 3.2.1, for each j
there exists m{j) G N, with

ΘJ >foθmU)

for all non-decreasing / : R+ —• R+. Without loss of generality let
m(j) = j + 1. Then let

It can be checked that {Aj^k}JLx™=χ has the desired properties.

(ϋ)->(i). We define θj\

\/k ifneAJ9k-Aj9k+l9

0 if/ien?=i^,ifc

Clearly {[θj]} is a countable coinitial subset of (/o,^/^o,^)+ This

completes the proof.

The rest of this section will be devoted to constructing a W con-
taining a family of sets such as in Proposition 3.2.2.

DEFINITION 3.2.3. Given a family srf — {Aj^yjLifLi of subsets of
N, such that

(a) Ajik cAj+uk,
(b) AjΛ+x cAJ9k,

a filter %? is combed by stf if

(a) For all maps σ : N - ^ N , \JkLdAj+iMk)"Aj9k]e^.
(β) Given a nested sequence of subsets of N, {Cm} , either

(one) There exists C c N such that C - Cm is finite for all
m e N and for every He^9 CnH^0.

(two) There exists G e / and j eN such that (GΠ Cm) c
yί7 m for all m G N.

LEMMA 3.2.4. Lei J/ όe α̂s m Definition 3.2.3. L^ a filter ^ be
combed by J/ . Then the following are satisfied'.
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(z)Forall jeN, [ n * l i ^ M r e * \
(b) If B c N is such that for some j e N , B U Ajk has finite

complement for all k G N, then B G ^ .

Proof, (a) Let σ(fc) = & . Then given x G Π&LI -4/,*: > *
j,k] for any k. Hence

Uc=\
Γ K ./

lk=l

(b) For B and j as in the hypothesis, Bc —
Define

is finite for all k .

Clearly,

and

Hence B

r=\

=0
Jc=\

n
lk=\

cΰ.

The above lemma shows that property (4) of Proposition 3.2.2 is
really superfluous.

REMARK 3.2.5. For a non-principal ultrafilter f on N, the fol-
lowing are equivalent:

(i) (/o,Wco,^)+ has a countable coinitial subset.
(ii) There exists a family of sets si = {Aj^yjL^^ as in Defini-

tion 3.2.3 such that W is combed by si .

Our next step is to find a family si = {Aj9k)JL\kL\ a n d a filter &
that is combed by si . Later, we shall extend hf to an ultrafilter W
which is also combed by si .

NOTATION 3.2.6. We let η denote the 7 th prime.

DEFINITION 3.2.7. We define a family of functions {VJ\ N —• N},

by
Vj(n) = k if ή\n and ή+x \ n.
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We are now ready to construct s/ = {Aj9k)%\k=\

N O T A T I O N 3.2.8. ujik, Wj,k> a n d Aj,k w iU denote the following
sets

uj,k = {n\Vj{n) = k},
WJΛ= U uj,m = {n\Vj{n)>k},

m>k

j
AJ'Λ = \Jwi,k'

i = l

Clearly Ajyk dAjΛ_XΛ and Ajik+ι c A j Λ .

Now we are ready to construct the filter %?.

N O T A T I O N 3.2.9. For $/ as above, given j € N and a map σ: N -*

•N, Fj9σ will denote the set

LEMMA 3.2.10. Lrt ^y,ik* j ; € N , t e N be as in Notation 3.2.8
F/)(T, J E N , σ G N N be as in Notation ?>.2.9. Then the family

has the finite intersection property.

Proof. For a finite collection of sets {Aj ^k)T=\> if we let k1 =

max{A:/} , then Axk> c Πί=i ^ ,ife F ° r a ^ fiχe^ 7 and a finite collec-

tion of functions {σ;: N —> N } ^ j , if we let σ = θ\ V o-i V V σm ,

then /} j ( T c Πi=i V̂ ,σ Therefore, we need only consider sets of the

form
m

ι = l

where ji+\ > j\ for all / < m. We let ko = k and fc, =
Then

m

eH.

This completes the proof.

NOTATION 3.2.11. From now on X will denote the filter generated

by
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We need to show that %? is combed by

REMARK 3.2.12. Observe that for all j eN and k eN,

Lm=l

so wjik e%?.

In order to prove that %? is combed by si : We will define a family
of properties for subsets of N, {M(i, j)}, such that if K c N has
property M(i9 j) for all / e N and E N then the family of sets
& U {K} has the finite intersection property. We will also define a
family of properties {P(i, j)} for nested sequence of subsets of N,
such that if {Cm}™={ does not have property P(i, j) for all /, j e N
then there exists ( ? G / and r e N such that CmnG c Ar^m for
all m. On the other hand, if {Cm}^= 1 does have property P(i9 j)
for all /, j G N then there exists C such that C — Cm is finite for
all m G N and C has property Af(z, 7) for all /, 7 e N . Hence
β? U {C} has the finite intersection property.

DEFINITION 3.2.13. For

as in Notation 3.2.8, a set K c N /zαs property M{\, 7) if

is an infinite set.
We define "the property M(i, j) " inductively.

DEFINITION 3.2.14. For i > 2 a set K c N /zαs property M(i, j)
if

{fc|AΓ ΓiUj^ has property Af (/ — 1, 7 -h 1)}

is an infinite set.

We shall next show (Proposition 3.2.17) that if K has property
M(i, j) for all / e N and j e N , then ϋΓ has non-empty intersection
with each set H e ^ . (In fact, we shall show that for // e ^ , i/ Π #
also has property Af(/, j) for all / e N, 7 € N.) Then & u {A:} has
the finite intersection property.
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LEMMA 3.2.15. Let K have property M(i, j) for all i e N and all
j e N . Then for all M e N and n e N, K π Am 9 n also has property
M(i, j) for all i e N and j e N.

Proof, It is sufficient to show that KnAm^n has property M(i, 1)
for all / > 2. Since Kn A\ 9n c iSΓ Π Am j π , it is sufficient to show that
KnAιin has property Af(/, 1) for all i>2. So let A: have property
Af(ι, 1) for some i>2. Then

{k\K Γ\Uιik has property M(z -1,2)}

is an infinite set. But then

{k > n\K Hu^k has property M(i -1,2)}

is also an infinite set, and K n A\ ,n also has property M(i, 1).

LEMMA 3.2.16. Let Fm^σ be as in Notation 3.2.9. IfKcN has
property M(i, j) for all i e N and J G N , then for all m e N and
σ e N N , ^ n f m , σ /z<zsproperty M{i, y) ^or <z// / G N and J G N .

. It clearly suffices to show that KnFm 9 σ has property M(i, 7)
for all / > 3 and for all j < rn. Let K Π um^ have property

/ - 1, m + 1 ) . Then

)jP has property M(i - 2, m + 2)}

is an infinite set. But then

{p > σ(k+ l)\Knum^knum+ι,p has property Af(/-2, m + 2)}

is also an infinite set, and K Π uniijc Π Fmi(7 has the property

M{i- 1, m + 1). Thus

iUm^ has property Af(z - 1, m + 1)}

= {fcl-KTiM^^ Πi^ ) (τ has property Aί(/- 1, m + 1)}.

So if # has property M(i, m), then so does KnFm,σ .

Claim. Given m > 2, if the pair (J, n)9 with m > d > 2 and
fl > 3 has the property:

"If L c N has property Af(ί, d) for some i > n, then so does
LnF m , σ , fora l l σ : N - * N , "

then the pair (d — 1, n + 1) has the same property.
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Proof of Claim. For some / > n + 1, let J c N have property
M(i, d- 1). Given k e N , if [/Πw^j k\ has property M(i- 1 , d ) ,
then by hypothesis so does [/ Π u^-x^h Π i ^ σ ] That is

{fc|/ Π u^-x^k has property Λf(/ - 1, d)}

= {k\JΓ\ud_uk Γ\Fm,σ has property M(i - 1, d)}.

This proves the claim.

We have already shown that the pair (ra, 3) has the property in
the claim; hence so does (1, m + 2). This proves lemma.

PROPOSITION 3.2.17. If K c N has property M{i, j) for all i e N
and j eN then for all H e^, KnH has property M(i, j) for all
/ e N and jeN. Afortiori KnH^0.

Proof. Follows from Lemma 3.2.15 and Lemma 3.2.16.

DEFINITION 3.2.18. {Cm}™=ι, a nested sequence of subsets of N,
has property P(l, j) if

lm=l

is an infinite set.
We define "the property P(i, j) " inductively.

DEFINITION 3.2.19. {C m }^ = 1 , a nested sequence of subsets of N,
has property P(i9j) if

{k\{Cm Π Uj^}™=ι has property P(i - 1 , 7 + 1)}

is an infinite set.

PROPOSITION 3.2.20. If for some i eN, j eN, a nested sequence of
sets {Cm}^= 1 does not have property P(i, j) then there exist k eN
and σ e N N such that for all m eN

7+/-1

CAi

Proof. We proceed by induction.
/ = 1. Given j eN, such that {Cm}^= 1 does not have property

, ; ) we let

k' = 1 + max{A:|Cw Π wy ̂  ^ 0 for all m e N}.
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Then, for k > kf, we define

m{k) = max{ra |C m n u j k Φ 0 } .

We define a: N —• N by

123

σ(k) = 1 + max {m(r)}.
k'<r<k

We shall show that

AjJc>nCmn \J(Aj+\,σ(k) ~AJ,
lk=l

CA 7+1, m

Letting
t(m) = mm{k > k'\Cm Π ujik Φ 0}

it follows that

ik=\

ccmn

Next we show that

k>t(m)+\

σ(t(m) + 1) > m.

max {w(Ό}

= 1 +max{^|3r, k! < r < t(m) + 1; CsΓ\Uj,r φ 0}

> 1 + max{s\Cs Π Uj^m) Φ 0} > 1 + m > m.

/ > 2 . Assume that the proposition is true for all J G N and all

d < i. Let { C m } ^ = 1 not have property P ( / , 7 ) . That is,

{k\{Cm Π w, ,*}~ = 1 has property P(/ - 1 , 7 + 1)}

is a finite set.

Let

k! = 1 + max{Λ:|{Cm Π w ; ^ } ^ = 1 has property P(/ - 1, 7 + 1)}.

So, for A: > kf, by induction there exist z(k) G N and a map σ^: N -+

N such that for all m e N

j+i-l

n f , σ . CAj



124 JAMES J. MOLONEY

We define the map σ: N —• N by

σ(k) = max < k, max {z(r)}, max (σr(A:)} >
I A:'<r<A: k'<r<k )

We shall show that

AjJc>nCmn Π F, „
I I λ'σ

This will complete the proof of the proposition.
Let x eCmΠU for some k>k'. Now observe that for d > k,

and σ(rf) > A:.

Hence

and

Therefore

σ oσ(d) > σk o

> [σkf{d).

'j+i-ι

n *.*
Thus, for all k > k'

j + ί - l

This completes the proof of the proposition.

y+i-l

n .̂̂

V+ί»'

LEMMA 3.2.21. Let a nested sequence of sets, {Cm}^=1, have prop-
erty P(i, j) for all i e N and J G N . Then there exists C c N

(1) C - C m is finite for all m e N .
(2) C /z(25 property M(i, j) for all i G N and J G N .

Proof. Clearly, if C has property M(i, 1) for all / e N then it has
property M(i, j) for all / G N and j e N .

We choose an increasing function θ: N —• N such that

{Cm n

has property P(/\ 2 ) .
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Next, we choose a family of maps
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such that, if

then for r < i

,... ,bi)e rangeψ (

A

has property P(i - r, 1 + r ) , and

A

for all m e N .
We construct C in the following manner: Given m e N, for each

r < m, and for each r-tuple whose entries (a\, ... , ar) are less than
or equal to m, letting

ψ r ( a Ϊ 9 . . . , a r ) = ( b ι 9 . . . , b r )

we choose an x,

We let C be the set of all these x 's. C clearly has property M{i, 1)
for all / € N , and clearly C - Cm is finite for all m e N .

REMARK 3.2.22. Lemma 3.2.21 shows that for a nested sequence of
sets {C m }^ = 1 , there will exist G e ^ and j e N such that C m n G c
yl7jm for all m e N , if and only if for some / G N and j e N ,
{Cm}^= 1 does not have property P(i, j). Further, by considering
the sequence of sets {Cm}^= 1 with Cw = C for all m e N , we see
that there exists G e / with G n C = 0 if and only if, for some
i e N and ' e N , C does not have property M(i, »

PROPOSITION 3.2.23. Let sf be as in Notation 3.2.8. £et %T be as
in Notation 3.2.11. Then %* is combed by s/ .

Proof. Trivially, in fact by definition of βf,

k=ι
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and %? satisfies (a) of Definition 3.2.3.
Given a nested sequence of sets {Cm}™={, by Proposition 3.2.20,

either
(1) There exists / / G / and j G N such that Cm ΠH c A^m for

all m G N or
(2) {Cm}^= 1 has property P(i,j) for all / G N and j e N .
(1) is condition (/? one) of Definition 3.2.3, so we assume that (2)

holds. Then by Lemma 3.2.21, there exists C c N such that, for all
m G N, C -Cm is a finite set, and such that C has property M{i, j)
for all / G N and J G N . By Proposition 3.2.17, for such a C, given
any H e ^, C ΠH ^ 0. This is condition ( β two) of Definition
3.2.3, and so the proof is complete.

We next show that if a filter %? is combed by a family of sets si ,
then so is every countable extension of %?.

LEMMA 3.2.24. Let srf be as in Notation 3.2.8. Let %? be as in
Notation 3.2.11. Let {Da} be a countable family of subsets of N such
that ^U{Da} has the finite intersection property. Let & be the filter
generated by %f\l {Da}. Then & is combed by stf .

Proof. Order {Da} as a sequence {Dn} . Let Et = Γ\ι

n=\ Dn - Clearly
Ei G 9 for all / G N. Also clearly, given a set K c N such that for all
H G^r and all / G N , ^ n 77 Π £ z ^ 0 , we have that for all G e f ,
KnG^0.

Let {Cm}^= 1 be a nested sequence of subsets of N such that
(a) for all G e & and all m G N, GnCm^0 and
(b) there does not exist G G ^ such that for some J ' G N

GnCmcAj9m for all m G N.

Clearly {Cm}^= 1 also has these properties with respect to ^ and,
also clearly, for all / G N so does the sequence of sets

Thus for each ι e N , there exists C^ c £, such that C ( ί ) - [ C w n £ ( ]
is finite for all m e N and, for all H ^^f

We let

ί = l
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Clearly
m-\

c'-ςc|J [c« - cff]

and so C # - C w is a finite set for all m e N . Given // e ^ and 2s, ,

and

hence

HnEiΠC* Φ 0.

This completes the proof.

Clearly the above lemma would hold for any family si as in Defi-
nition 3.2.3 and any filter %? combed by si .

Now comes the main result of this section. The ultrafilter W,
of course, is not a countable extension of %f, so we use a different
method, a fairly standard trick, to construct a W combed by si .

THEOREM 3.2.25. There exists an ultrafilter W on N such that
(A),Wco,y)+ Λαs Λ [non-empty) countable coinitial subset

Proof. By Remark 3.2.5, it is sufficient to show that the W is
combed by si,

where 4̂7 ̂  is as in Notation 3.2.8.
By Proposition 3.2.23, M? is combed by si and by Lemma 3.2.24

so are all countable extensions of %?.
We complete the proof by induction. We shall simultaneously con-

struct a family of filters {^a}a<ω{, and a family of subsets of N,

]

We shall construct the X^ 's in the standard manner. We let %\ =
%?. For each a, when we have chosen Ea we let ̂ + i be the filter
generated by ̂  U {Ea} . For a limit ordinal λ, we let

Finally,

w — \J
a<ω,
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As we observed earlier, for a < a>\, %*a is combed by sf . We also
observed that Lemma 3.2.24 does not directly yield that W is combed
by sf. The trick then is to properly choose the Ea 's. Toward this
end, we order the power set of N such that each subset of N has
countably many predecessors. {A*}α<ω, will denote the ordered set
of subsets of N. We also order the set of nested sequences of subsets
of N such that each sequence has countably many predecessors. We
denote the ordered set of nested sequences by {{Cm}γ}γ<ω and Cm, γ

shall denote the m th set in the nested sequence {Cr}γ.
To choose Ea, we consider two cases.

Case 1. There exists a nested sequence {Cm}γ c Ha such that
(la) There does not exist C e ^ such that (C - Cm?}>) is a finite

set for all m e N and
(lb) There do not exist H eJ%* and j e N such that C m > 7 Π H c

Aj ym for all m e N.
We let δ be the least such γ.
We let D c N be a set such that:
(#) (D - Cm9s) is a finite set for all m 6 N and
(##) For all H e JTa , D n H φ 0.

Such a set D exists since, as we said above, ^ is combed by J / .
Next, either (D n Da), (D Π Dc

a) or both will satisfy (##) above.
If (D nDa) satisfies (##), then let Ea = D Π Da; otherwise, let
EQ = DnDc

a.

Case 2. No nested sequence such as described in Case 1 exists.
Then let Ea = Da unless Dc

a e J%*. If Dc

a e %*a , then let Ea=Dc

a.

So, let {Cr}γ C %β. Clearly, for η = 3max{y, /?}, either there
exists C e <%η with (C - C m ? y ) a finite set for all m e N, or there
exists H e^η and Έ N such that Cm,γΠH c 4/,/w f° r a l i m Ξ N.

THEOREM 3.2.26. C/p fo isomorphism, there are exactly ten residue
class domains of c, the ring of real convergent sequences.

Proof. 3.2.25, 3.1.3, 3.1.5, 2.2.13, and 2.2.14.

4. Some applications to other spaces. Cherlin and Dickmann [8]
showed that for any compact space X with finitely many accumulation
points the residue class domains of C(X, R) are precisely those of c.
We show that all the residue class domains of c are also residue class
domains of C(X, R) for many other spaces X. Among these spaces
are all non-discrete metric spaces. We also show that if a space X
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has a compact non-discrete subset then C(X, R) has at least 4 of the
residue class domains of c. Finally, we show that for certain spaces
X, for any non-maximal prime ideal p, C(X, R)/p has four of the
residue class domains of c (e.g. I = N * x N * or even X = Πf N*).

DEFINITION 4.1. A compact space X with finitely many accumu-
lations points is said to have Cantor-Bendixson rank one. A compact
space Y has Cantor-Bendixson rank n + 1 if the set of accumula-
tion points of Y has Cantor-Bendixson rank n (with the subspace
topology).

THEOREM 4.2. Let X be a compact space having Cantor-Bendixson
rank one. Let p be a prime ideal of C(X, R). Then there exists a
prime ideal q of c such that C(X, R)/p ^ c/q.

Proof. [8], 3.3.2.

We also wish to see for which other X does C(X, R) have the
residue class domains of §§2 and 3. First, we notice:

REMARK 4.3. Let X be a completely regular space. If N* can be
imbedded in X, then it can be C-imbedded. That is, every continu-
ous function on N* can be extended to a continuous function on X,
rest: C(X, R) —> C(N*, R) (the restriction map) is onto, and every
residue class domain of C(N*, R) ~ c is a residue class domain of
C(X, R). In particular, this holds for any nondiscrete metric space.

There are also spaces which have some of the residue class domains
of c, but not necessarily all. For instance, if X is a compact space
and has a C* imbedded copy of N (that is, all bounded sequences
extend to continuous functions on X) then X has exactly 4 of the
residue class domains of c, R and the domains where IQ ? % = CQ^ .
Observe that, except for R, these are real closed valuation domains,
see [8].

THEOREM 4.4. Let X be a non-discrete pseudo-compact space. Then
among the residue class domains of C(X, R) are rings isomorphic to
the following cases of cjp :

(1) R.
(2) lo^ = co^ and (co/p)+ has no countable coinitial subset.
(3) /0 y = CQ % and (co/p)+ has a coinitial subset of the form
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(4) /o,^ = CQ^ and (co/p)+ has a countable coinίtial subset, but
not as in (3) above.

Proof. We can construct a countably infinite subset F of I , such
that every point of Y shall be an isolated point of Y. We choose a
sequence of points {yn}^L\, and a sequence of open neighborhoods
{0n}™=\, such that

(a) yn£@n
(b) &n n<fj = 0 if j < n (by symmetry, if j φ n ).

(c) |J^ = 1 &n has infinite complement for all k.
Let Y = {yn}^L\ We shall first show that for every convergent se-
quence g there exists feC(X9R) such that f(yn) = g(ri) Clearly,
g = r + h where r is a constant sequence and h converges to zero.
Since h converges to zero it is the uniform limit of a set of sequences
{hj}yL\ having finite support,

h{ή) = hj{n) for all n < j .

By complete regularity of X we have a family of continuous functions

ί
+ hj{n) ifx=yn,

Their uniform limit / is the desired extension of g. Thus, for the
restriction map

rest: C(Λ\ R)->/°°

defined

rest(/)(/i) = f(yn)

we have

Let "V be a P-point ultrafilter and let p be a prime ideal of c,
containing

(Recall that pb = {θ e l°°\3f ep; f =^ θ}; Notation 2.1.2.) Then

c / c n ^ = l°°/pb = rest(C(X, R ) ) / ( ^ n [rest(C(X, R))]),

which proves the theorem.
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COROLLARY 4.5. Let X be a topological space, with a compact, non-
discrete subset W. Then C(X,R) has the four residue class domains
listed in Theorem 4.4.

REMARK 4.6. βN, the Stone-Cech compactification of N, has pre-
cisely the 4 residue class domains listed in Theorem 4.4. This does
not depend on the existence of P-points.

LEMMA 4.7. Let X be a compact metric space of finite Cantor-
Bendixson rank. Let SF be a non-maximal prime z-filter on X. Then
there exists a compact rank one set Y c X, and an ultrafilter % on
the isolated points of Ύ, such that if Ae% and F contains an open
neighborhood of A then F G &.

Proof. Let X have Cantor-Bendixson rank n. χ(n~ιϊ is a rank
one set.

Case 1. There exists an open neighborhood & of (X{n~1^ -
such that *f £ &. then @c e &. ffc has rank < n. We can repeat
this with ffc acting as X.

Case 2. For every open neighborhood (9 of (X(n~ι) - Xw), ~& e
&. Let A c (X^"1) -XW) and B c (X^n~^ - X^), AnB = 0
and A UB = (X^"1) - X^). Let &>A be an open neighborhood of A
and &B be an open neighborhood of B. Then &A U &B is an open
neighborhood^ (X^~^ -JfW), so ( ^ U ^ 5 ) G ̂ . By primality
of y , either ^ G ̂  or ^ G &.

This completes the proof.

THEOREM 4.8. Let X be a compact metric space of finite Cantor-
Bendixson rank. Let p be a non-maximal prime ideal of C(X, R).
Then C(X, R)/p has 4 of the residue class domains of c.

Proof. Let & be the prime z-filter associated with p. We assume
that there is no rank one F G &, (or else this is trivial). Let Y be
the rank one set guaranteed by Lemma 4.7. By 1.14, the ultrafilter
% on the isolated points of Y induces a prime z-filter &γ on Y.
This induces a prime z-filter ^ on I . Clearly & is contained in
9. Then p ^ c p% and p% <tp. Therefore p C p& and we have

0: C(X9 R)/p - C(X, R)/p* * C(Y,

The result follows immediately.
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REMARK 4.9. The author showed in [19], that for any compact space
of finite rank, there is a metric space of finite rank with the same set
of residue class domains. This natural generalization of Theorem 4.2
means that Theorem 4.2 could be extended to all compact spaces of
finite rank. It would be extended to all compact spaces of finite rank.
It would be natural to support that Lemma 4.7 could be extended
much further; however, as Theorem 4.10 shows below, Lemma 4.7
cannot be extended to [0, 1]. This was shown earlier in [8], 3.4.2.

THEOREM 4.10. There is a non-maximal prime z -filter SF on [0, 1],
such that, given any rank one set A, there exists F e SF such that
AnF c{0}

Proof. For G a closed subset of (0, 1], we define

t

when this limit exists. Observe that the family of sets {G\ζ(G) = 1}
is a z-filter, and can be extended to a maximal z-filter on (0,1] .
This induces a prime z-filter & on [0, 1 ]. Let A be a set of isolated
points of (0, 1]. There exists a neighborhood of A, ^ , such that

?A) — 0. So the complement of <9A is in 9~.

5. Residue class domains of C°°([0, 1], R). As a byproduct of §§2
and 3 we get some results on C°°([0, 1], R). We shall classify 20
residue class domains, 2 for each of the 10 residue class domains of
c.

5.1. Residue class domains of C°° {[0, 1] ,R) that are inherited from

C([0, 1], R). In this part of §5 we classify one residue class domain
of C°°([0, 1], R) for every residue class domain of c.

For any sequence of points Y = {yn} in [0, 1], converging to zero,
the restriction map

rest: C°°([0, 1], R ) - + C ( 7 , R)

has image isomorphic to a subring of c. Further if there is enough
space between the yn 's (e.g. yn — l/n), then the image of {f\βk\0) =
0, for all k > 0} under rest is a convex ideal of c. That is, given any
/ : Y -> R which is eventually less then any power of x , / can be
"glued together" to form a C°° function. Therefore, if & is a non-
maximal prime z-filter on [0,1] and Ύ e^ then C°°([0, 1], R)/p.gr
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(p&- is the set of functions that are zero on an element of &) is iso-
morphic to a subring of c/p^^) {(^{SΓ) is the ultrafilter induced on
Y by y ) C°°([0, 1], Jty/pr is the vector sum of subring isomorphic
to R[[x]] and a prime ideal whose image is convex in cjpy . Further
for any non-maximal prime ideal p c C°°([0, 1], R) with associated
prime z-filter y , if 7 G / then there exists a prime ideal p e c
such that C°°([0, 1], R)/p is isomorphic to a subring of c/p . In this
case C°°([0, 1], R)//? is the vector sum of a subring isomorphic to
R[[x]] and a prime ideal whose image is convex in c/p . Further for
two such prime ideals P\,Pi<Z C°°([0, 1], R),

, 1], R)/p2 ϊC°°([0, 1],

NOTATION 5.1.1.

Qy = { /€ C°°([0, 1], R)|/W(>;) = 0 for all k}.

We shall also write J! for ^ and ζ? for β 0 F ° r a prime z-filter

^ r = {/e C°°([0? 1],

For a prime ideal p of C([0, 1], R), P # denotes /?nC°°([0, 1], R).

5.1.2.

NOTATION 5.1.3. For a rank one set F c [0, 1], with a unique
accumulation point, we denote by pr and pF#:

the maps induced by the restriction to the isolated points of F.
Observe that ρF is onto.

Fact 5.1.4. Let F be as in Notation 5.1.3. Let F be a non-
maximal prime z-filter containing F. Then pF*{p$r) is a prime ideal
of ρF*{C°°{[0, 1], R). In fact there exists a non-principal ultrafilter
% on N such that

NOTATION 5.1.5. For i 7 and ^ as in Fact 5.1.4, we denote by
^ P ( ^ ) (or just ^"(<9r) if no confusion is likely) the non-principal
ultrafilter on N such that PF{P^) — Pv -
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We let p*F denote the isomorphism

p*F:C([0, l ] , κ

induced by pr and we let pψ denote the monomorphism

induced by pF*.

As we said earlier, if there is enough space between the xn 's in a
sequence {xn}™=\ and g is a function dominated by all powers of
{x -y) then we can C°° patch together the restriction of g to F.

Therefore we define:

DEFINITION 5.1.6. A closed set F = {xn}^Lχ U {y}, F c [0, 1] is a
set having polynomial distances if

(i) l i m ^ o o x n = y .
(ii) \y-xn\ > \y-xn+\\.

(iii) Either for all n , xrt > j ; , or for all n , xw < j .
(iv) There exist m e N and M G R such that Af|x,j -

\xn-y\m for all Λ.

The most obvious example of such a set is {l/n}™=ι U {0} . From
now on we assume, without loss of generality, that y is the origin. We
shall show that if &" contains a set having polynomial distances, then
the image of C°°([0, 1], R)/ρ^ can be described as the vector sum
of a subring isomorphic to R[[x]] and a prime ideal which is convex
in l°°/p^(^). We shall finally show that for two such prime z-filters
& and 9, the following are equivalent:

(i) clPwφ ) - c
(ii) C°°([0, l ] ,

(iii) C°°([0, l ] ,

We also have a similar result for all prime ideals p of C°°([0, 1], R)
such that pp c p <£ Q.

We shall need to use bump functions.
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NOTATION 5.1.7. We let

e-ι/χ.e-ι/(i-χ) i f θ < x < l ,

0 if 1 < x or X < 0,

Γ e

<Pr{x) = I Q

_ J

-r/x . e~r/(r-x) if 0 < X < r,

if r < x of x < 0,

o iϊr + b<xorx<b.

LEMMA 5.1.8. For φ, #v, (2n<ί ί?r ^ as above, for all b and all

for all k.

Proof. Left to reader.

As corollaries of Lemma 5.1.8, we get the following lemmas.

LEMMA 5.1.9. Let F c [0, 1] be such that F = {Xn}^=ι ui°} w i t h

(i) lim«_oo xn = 0.
(ii) xn > xn+i.

Let {cn}^L\ be a real valued sequence such that, for all k e N, there
exists a constant K^ such that

Kk ' \χn — *n+\\ > \cn\

and

Kk - \Xn-\ - Xn\ > \Cn\

for all n e N.
Then there exists g e C°°([0, 1], R) such that g(xn) = cn.

Proof. We define a family of functions {hn} :

hn =e4 'Ψrn,bn

where
rn = min(|xw -xn+\\, \xn -xn-\\),

bn =xn -



136 JAMES J. MOLONEY

Let

It can be checked that g is C°° .

LEMMA 5.1.10. Let F c [0, 1] be a compact rank 1 set. Let F =
{xn}^L\ U {0}. Let F have polynomial distances. Let 2F be a non-
maximal prime z-filter on [0, 1] such that F e ^ . Let {fj}JL0

be a family of C°°([0, 1], R) functions such that fjk)(O) = 0 for all
J G N U { 0 } and all & G N U { 0 } . Then there exists f e C°° {[0, 1],R)

α// jeNu{0},

. Let M e R and m e N be such that

M -\xn- xn+\ I > JC^2 for all neN.

We put an additional condition on F, that (xn)/(xn+\) is bounded.
(If necessary, we can always add points.)

We shall prove this lemma by constructing Taylor polynomials at
each xn , and then patching them together with bump functions. Let

rn = xn - Xn+ι, bn = xn+ι We define

Γ ) [Γn )ζn{x)=[Jx

 9r-b'{t)dt)[jx

 9'-bSt)dt) f o r a l l ^ L

Observe that ζn(xn) = 1, ζ{

n

k\xn) = 0 for all k > 1. The problem
now is to choose a suitable degree d(n), for the Taylor polynomial at
xn so that

oo / d(n)
/»/ \ x "̂  l r c / \ j* / \ τ \. "̂  y*/ \ / \ / / / ι\

n=\ \ 7=0

is a C°°([0, 1], R) function.
We observe that for all j e N and fceN, there exists ϋΓy) * € R

such that

fj(x)<KjΛx
k for all x.
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For x, xn < x < xn-\, we have

U(n-\)

So we define d(n):

έ/(/i) = max

</(!)=!,

n.ι < 1, for all A; <

or
d{n) = 1 if the set of such s's is empty.

Observe that since M and Kjkm+2 do not depend directly on n,

lim d(n) = oo.

i s now domi-Observe also that since (JCW_I)/(XW) is bounded,
nated by x . The proof is complete.

Lemma 5.1.10 will mainly be useful for studying C°°([0, 1],
We have the following proposition as a result of Lemma 5.1.9. We
earlier said that under certain conditions C°°([0, 1], R)//?jr could be
described as a vector sum of a subring isomorphic to R[[x]] and a
prime ideal whose image is convex in c/p^^). Our next proposition
will essentially prove this. We also show that this prime ideal is ω\-
saturated. As a byproduct we get a result for all non-maximal prime
z-filters that contain rank one sets.
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PROPOSITION 5.1.11. Let F be a rank one set with a unique limit
point. Let SF be a non-maximal prime z-filter with F e &". Then

(a) pf\C°°[0, 1 ], R)//?Jr) contains a convex prime ideal of c/p%?^).
Further, if F has polynomial distances, then {letting y be the limit

point of F)

(b) pψ{QylP% ) is a convex prime ideal of c/p^^).
(c) Qy/P& has no countable cofinal subset.

Proof, (a) and (b) follow immediately from Lemma 5.1.9. To prove
(c), we let {fj}JL\ be a countable set of sequences such that

(i) for all « € N , fj+\(xn) > fj{xn) > 0 and
(ii) for each J G N and k eN, there exists a constant Kjk such

that Kjk{xn)
k > fj(xn) for all n .

We now construct a function / such that / >& /} for all j e
N and such that, for all k e N , there exists a constant Kk with
Kk(xn)

k > \f(xn)\ - This will prove the proposition.
To construct / , we first define d(n):

d(n) = max{/c < n\Kkk (xn) < 1}.

Then
f{Xn) = f\{Xn)V " 'V fd(n){*n)*

This completes the proof.

From here on, & and 9 will denote non-maximal prime z-filters
with rank one sets F e & and G e &, each having polynomial
distances, each having the origin as their sole limit point.

We now wish to study how the different types of ultrafilters, %(3r),
affect C°°([0, 1], R)/pjr. In studying c/p, the ultrafilter affected the
set (l°°/p - c/p). In the current case, it affects the set of those func-
tions which are less (mod &) than all powers of x and greater
(mod &) than all flat at the origin C°° functions.

LEMMA 5.1.12. Let &{&) be a P-point. Let fe C([0, 1], R) be
such that

I/I <<? xk for all keN.

Then there exists g e C°°([0, 1], R) such that f=<?g.

Proof. Consider the following subsets of {xn}™=\,

Aj = {xn\\f(xn)\<xJ
n}.
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Notice that Aj e &(&) for all j G N. Since ^ ( ^ ) is a P-point there
exists A G ̂ ( ^ ) such that (A - Aj) is finite for all J G N . Hence,
for each j G N, there exists a constant Kj such that

| / ( ^ ) | < KjxJ

n for all * Λ G A.

The result follows from Lemma 5.1.9.

LEMMA 5.1.13. Let <^{3Γ) be anon-P-point Then
(a) There exists f e C([0, 1], R) such that \f\ <^ xj for all j e N

and f ><? \g\ for all g G C°°([0, 1], R) such that g{k)(0) = 0 for all
&GN.

(b) The set of all f as in (a) does not have a countable cofinal subset
(c) The set of all f as in (a) has a countable coinitial subset if and

only if (IQ^D/CQ^Γ))* does.

Proof. We shall prove all three at once. We first observe that the
families {{an}\an = l/(k(n))} and {h\h(xn) = Xn{n)} where k(n) e
N, are cofinal and coinitial in their respective sets. We have the ob-
vious map {l/(k(n))} —• {x«(A2)} which clearly preserves order and
"non-convergence." The result follows immediately.

We shall now let c/p^§r) — c/p&(&) and use Ax-Kochen machi-
nery to build up an isomorphism from Frac(C°°([0, 1],R)//?J^)
to Frac(C°°([0, l ] , R ) / p | ) which sends C°°([0, 1], R)/p£ to
C°°([0, 1], R ) / p | . We recall that Q/pr and Q/p? are convex in
C([0,1] ,R)/p^, so Frac(C°°([0, 1], R)//£) = Frac(C([^? 1], R ) / ^ ) .

Recall that, by 1.35, a valued field (K, R, I, G9 υ , K) can be de-
termined up to isomorphism by the pair (K, / ) . We shall be denoting
valued fields by these pairs (as we did before in §2).

NOTATION 5.1.14. The bounded continuous functions on (0,1]
will be denoted C*((0, 1], R).

PROPOSITION 5.1.15. For SF and & as above let

ry = {/ e C([0, 1], R)| I/I < xk , V* G N | ,

r? = j / G C([0, 1], R)| I/I < x^ , V* G N | .

Then there is an isomorphism

ψ: Frac(C([0, 1], R)/r^) - Frac(C([0, 1],
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such that
(a) ^(C°°([0, 1], R)/4) = C°°([0, 1], R
(b) For / , * e C°°([0, 1], R), 1/ ψ([f+rr]) = [g + r9\ then

flV(0) = gW(Q) for all keN.

Proof. Let

Define % similarly.
Consider the valued fields

(ΛΓ = Frac(C([0, l],R)/5^), i? = C*((0, 1],R)/^) and

(By 1.33 these pairs also describe the valued fields up to isomorphism.)
These are real closed valued fields with convex valuations. The residue
class fields are both R. The valuation groups are both ω\ -saturated,
ω-pseudo-completeness follows from 2.1.22. Therefore, we have an
isomorphism

ψx: Frac(C([0, 1], R)/^) -> Frac(C([0? 1], R)/%)

such that for all constant functions b ,

Ψ\([b + sr]) = [b + s?].

Consider the real closed fields with convex valuation

(* = Frac(C([0, 1 ] ^ ) / ^ ) , / = ^ ) and

(^ = Frac([0? 1], R)/»), / = s9/r9).

In both cases,
(i) The valuation group is R.

(ii) There is a cross section π(a) = xa .
(iii) The valued field is ω-pseudo-complete by 2.1.22.
(iv) The residue class field is

Frac(C([0, 1], R)/^) (or Frac(C([0, 1], R)/^)).

Therefore, we have an isomorphism ψ such that for a polyno-
mial g,

Let / e C°°([0, 1] R) be such that βk\0) = ak. Then [/] is the
unique pseudo-limit of the sequence
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Hence

Therefore, ψ([f + r& ]) = [g + r&] implies (f - g) e r& and hence
(f-g){k)(0) = 0 for all k (assuming g is C°°).

It is interesting that Proposition 5.1.15 does not depend on the
ultrafilters ίί{^) and %(&). Further, it does not matter at all which
power of x is dominated by the distances between xn and xn+\ the
analysis in this paper does not distinguish between {(l/2)n}™=ι u {0}
and

N O T A T I O N 5.1.16.

f/ = { / e C ( [ 0 , l ] , R ) | 3 * e C ( [ 0 , l],R), g = f and

\/k e N3Mk e R; \g(x)\ < Mkx
k for all x e [0, 1]}

φ of course is Q.

We next have one of the main theorems of the section.

THEOREM 5.1.17. Let !F and & be as in Notation 5.1.11. Let u$r
and u& be prime ideals of C([0, 1], R) such that p^ <zu^ £ t? and
p% c u$ £ t&.

Then the following are equivalent:
(a) C([0, l],R)/ur~C([09 l]9R)/u9.
(b) There exists an isomorphism

ψ: C°°([0, 1], R)/u%r - C°°([0, 1], R ) / 4

5wc/z ίAαί ι/ ψ{[f+u%\) = [g + u%\ then jW(0) = gW(0) for all
fcGN.

/« particular, the following are equivalent
(al) C([0, l ] , R ) / ^ ^ C ( [ 0 , l ] , R ) / ^ .
(bl) ΓΛ r̂̂  ^x/to an isomorphism

θ: C°°([0, 1], R)/p^ - C°°([0, 1], R)/p|

such that if θ([f + p%]) = [̂  + p | ] /Λe/i / ^ ( 0 ) = <?(/:)(0) for all
i t e N .

Proof, (a) —• (b). By Proposition 5.1.15, (a) implies the existence of
an isomorphism

ψ2: Frac(C([0, 1], R)/ry) - Frac(C([0, 1],

such that
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and for / e C ° ° ( [ 0 , 1],R)

Ψi([f + &]) = [f + r?].

By Lemma 5.1.13, the valuation group of the valued field

(* = Frac(C([0, l ] 5 R ) / ^ ) , / = r ^ )

is isomorphic to the valuation group of the valued field

(K = Frac(/°°/co,^(y)), / = /o,^F(^)M),^(^)).

But by (a) this is isomorphic to the valuation group of the valued field

(K = Frac(/°°/co,^w), / = /o,^(jf)M),^)),

which is isomorphic to the valuation group of the valued field

(K = Frac(C[0, 1], R)/t9), / = r9/t9).

Hence we have an analytic isomorphism

(ψ3, ψt): (K = Frac(C([0, 1], R ) / ^ ) , / = ly/fcO

(# = Frac(C([0, 1], R)/fe), /

Since r%- c ίy and r% c fe , the valuations are trivial on

C°°([0,l],R)/φ and C°°([0, 1], R)/ί | ;

therefore we can require that for all / e C°°([0, 1], R),

We do this by choosing the initial subfields Ko^ and Ko^ such that

U+te] e K0,r and [/+ t&\ e Ko^

for all / e C°°([0, 1], R). Then letting

residueo,,^: KQ^^ —• Frac(C([0, 1],

and

residueo,^: ^ o , ^ - Frac(C([0, 1],

be the restrictions of the residue maps, clearly

(residueo,^)"1 o ψ2 o (residueo,^)([/+ t^]) = [f+t&],

and ψ^ is an extension of

(residueo, ̂ ) " ι o ψ2 o (residueo, ^ ) .

Finally we consider the valued field

(tf = Frac(C([0, 1],
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Claim, t^/u^r does not have a countable cofinal subset (nor does

Proof of Claim. Observe that the families

{h\h(xn)=xϊ{n)}keNcC([O,l],R)

are cofinal in CQ^^/P^^ and t^/usr respectively. As in Lemma
5.1.13, the map

preserves order and "convergence." c^^^lP^^) ^ a s n o c o u n t a b l e
cofinal subset, neither does (t&-/u& ) .

This claim shows that the valuation group of

(K = Frac(C([0, 1], R)/ur)9 I = (tr/ur))

is a convex subgroup of an a>\ -saturated Abelian group (similarly for
t& and u&).

(a) clearly forces the two valuation groups to be the same type of
convex subgroup, hence isomorphic. So we have an isomorphism

, 1], R)/ur) - Frac(C([0, l],

with
ψ(tsr/Usr) = tg/U?.

Since by Lemma 5.1.9, t^ju^ = {t$r/u^r) and t&/u%> = {t%ju%), we
have that

ψ(C°°([09 1], R)/u%.) = C°°([0, 1], R ) / 4 .

Let f,ge C°°([0, 1], R) be such that ψ{[f+u%]) = [g + u%\9

then ψ3([f+φ]) = [g+%] But ^ 3 ( [ / + ^ ] ) = [f+t%] so (/-^) e ί |
and /W(0) = ̂ (/ :Hθ) for a f l i k e N .

(b)—>(a). This follows almost immediately from Lemma 5.1.13.
Observe that the functions mentioned in Lemma 5.1.13 affect the ring
C°°([0, 1], R)/u%- itself. That is, if / e r? - t<? , then given get%,
there exists h e C°°([0, 1], R) such that

\g\xk>\h\

but there does not exist [ξ] e C°°([01, ], ΊL)/u%- such that [g] [ξ] =
[A].
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5.2. Residue class domains of C°°([0, 1], R) that inherit the deriva-
tion from C°°([0, 1], R). In 5.1 we classified 1 residue class domain
of C°°([0, 1],R) for each residue class domain of c. In this part of
§5 we shall classify a second residue class domain of C°°([0, 1], R)
for each residue class domain of c. We are concerned in this part
of §5 with differentially closed prime ideals of C°°([0, 1], R). In
particular, if u is a prime ideal as in 5.1, then we examine

We shall show that
(a) C°°([0, 1], R)/ii! * C°°([0, 1], R)/u2 iff
(β) C°°([0, l h R J / t ^ - C ^ α O , 1 ] , R ) M

Therefore for each residue class domain in 5.1 we get one additional
residue class domain. We cannot use the Ax-Kochen machinery
to do this, because the valuation ideal would not be contain-
ed in C°°([0, l],R)/w. Instead, we consider the elements of
C°°([0, 1], R)/Wf as a sequence of congruence classes

ilfk+ *]}%*,

where [fa + ui\ is the fcth derivative of [̂ o + u{\. The set of such
sequences forms a differential ring. The isomorphism ζ from
C°°([0, 1], R)/ιii to C°°([0, 1], R)/u2 induces an isomorphism be-
tween the sets of such sequences

We shall show that under this isomorphism the image of
C°°([0, 1], R)/tui is C°°([0, 1], R)/w2. Astonishingly, it is more
work to show that (β) implies (a) than vice versa. Of course, if
U2/W2 is the image of U\/w\ then this follows immediately, but this is
not always the case. However, it is the case unless (C°°([0, 1], R)/M/)+

has a coinitial subset of the form {[/ + ui\k}^Lx. We dispose of this
case by showing that if 1/2/̂ 2 is not the image of U\/w\ then the rad-
ical of the sum of the ideals U2/W2 + lm(u\/w\) is the smallest prime
ideal containing the coinitial set {[f+U2]k}™=ι. A similar result holds
for u\/w\+ preimage( 1/2/̂ 2)

Finally we show that for such w there exists a prime ideal p,
w c p C C°°([0, 1], R), such that C°°([0, 1], R)/p is not one of the
residue class domains that we classified. In fact we show that there
exists a prime ideal p c C°°([0, 1], C) such that p is not its own
complex conjugate.
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NOTATION 5.2.1. Let u.ψ- be a prime ideal of C([0, 1], R), such
that

p<? c u$r <£ t?-

where p<? and t& are as in 5.1. Then

w<r{μ) = {/e C°°([0, 1], R)|Vfc, βk) e i&},

(where w£ - u<? Π C°°([0, 1], R)).
We shall write Wgr unless confusion is likely.

Now we have the main result of this section which shall be proved
later.

THEOREM 5.2.2. Let F and G be rank one subsets of [0, 1], each
with exactly one limit point. Let their least elements be yF and yQ
respectively. Let F and G have polynomial distances. Let & and
& be non-maximal prime z-filters on [0,1] such that F e & and
G G &. Let u<? and u& be prime ideals of C([0, 1], R) such that

(1) Z ( / ) e ^ implies feu^.
(2) / G u% = ur Π C°°([0, 1], R) implies fk\yF) = 0 for all

k>0.
(3) There exists feC°°([0, 1], R) such that f <£ u^ but f{k)(yF)

= 0 for all k>0.
Let u& have the corresponding properties.
Then the following are equivalent:

(i) C([0, l],R)/^^C([0, l],R)/%.
(ii) There exists an isomorphism

ψ: C°°([0, l],R)/u%r - C°°([0, 1], R ) / 4

such that ψ([f+ u%-\) = [g + u%\ implies βk\yF) = g^k\yG) for <dl
k>0.

(iii) There exists an isomorphism

ξ: C°°([0? 1], R)/wr -+ C°°([0, l]9R)/w?

(where wΨ = {f\fW e u% for all k > 0}), such that ζ(D([f])) =

Df(ξ([f])).

Before going further we observe:
First, the theorem would hold if yF and yQ were both the greatest

elements of F and G. If one were greatest and one were least, we
should change (ii) to read
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Second, without loss of generality we can assume yF =yG = 0.
Third, (i) <-• (ii) is 5.1.17. So it remains to show that (ii) +-> (iii).
Our first inclination here is to notice that if Frac(C°°([0, l],ΈL)/u& )

is given the valuation

we get an ω-pseudo-complete Hensel field with cross-section, hav-
ing as residue field Frac(C°°([0, l]9ΈL)/u%-). There is one serious
problem with this approach to proving Theorem 5.2.2: The valuation
ideal is not contained in C°°([0, 1], R)/w^, as the following example
shows.

EXAMPLE 5.2.3. Let F = {l/n} U {0} be in &. Let

f[x) = e-
χlχήn{πlx), g{x) = <r ^ A

Then v([f]) = 1, v([g]) = 0. Hence υ([f]/[g]) = 1. However,

It might be objected that this example deals only with certain special
SF. However, assuming Theorem 5.2.2 to be true, Theorem 5.2.2 and
Example 5.2.3 show that the valuation ideal will not be contained
in C°°([0, 1], ΈL)/q&- for any & containing a rank one set F with
polynomial distances. In fact, for such an ^ , this can be shown
for any w^- as above. We cannot, therefore, easily use Ax-Kochen
machinery to classify these domains. Instead, we shall use jets.

DEFINITION 5.2.4. For the purpose of this paper a. jet is a sequence

{fj}T=o w h e r e fj £ c°°([°> !]> R ) f o r a 1 1 J e N.

DEFINITION 5.2.5. A residue class jet (modp) is a sequence

{[/,]}~o where [/)]e C~([0, l],R)/p.

NOTATION 5.2.6. T denotes the set of all jets. T/p denotes the
set of all residue class jets (mod p).

REMARK 5.2.7. T and T/p are commutative differential rings with

(i) elementwise addition,

(ii) multiplication defined: {fj}JL0 {gj}JL0 = {hj}%0, where

k=0

(iii) a derivation D defined: D({fJ}f=0) = {fJ+ι}f=0.
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REMARK 5.2.8. We have a differential ring injection

defined

θ

The image of this map is a proper subring of Γ/(w# + &). Now let

ψ: C°°([0, 1], R)/i& - C°°([0, 1], R ) / 4

be an isomorphism. This clearly induces an isomorphism

Ω: 7 7 * 4 - 7 7 4

defined by

As a candidate for ξ in Theorem 5.2.2 we have

*Γ«l) o Ω o ( V
We need only show that

(C°°([O, 1], R)/i&)) = 0M (C°°([0, 1], R ) / 4 )

PROPOSITION 5.2.9. For ^ as m Theorem 5.2.2, Ω as aόov^,
θ as in Remark 5.2.8, we have

Proof. If fe t%, then /<•>) G ί̂ - for all G N . Since by hypothesis,
ψ([g]) = [h] implies gW(0) = Λ^(0) for all λ:9 we have that / ( ^ e
/^ implies that there exists Λy G / | such that ^([/ ( y )]) = [Λ7 ] . Finally
Lemma 5.1.10 gives the existence of h G if such that ^
Hence

This proves

The other inclusion follows by symmetry.

Proof of Theorem 5.2.2. (ii) —• (iii). As we mentioned above we need
only show that
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In fact, we need only show that for [/] e C°°([0, 1],

ξ([f]) = θ-^oΩoθ^df]) e C°°([0, 1], ΈL)lw9.

So let f,ge C°°([0, 1], R) be such that ψ{[f + u%-]) = [g + u%].
Then by hypothesis, βk)(0) = g{k)(0) for all k. Hence, if
Vd/W + u%\) = [Ait + 4 ] , then A^(0) = / ^ ( 0 ) = *<*+A>(0) for
all 7 and so (g{k)-hk) e t% for all k. Then, by Lemma 5.1.10, there
exists ζet% such that [ζW + u%] = [#<*) - Λ* + w|] for all fc . Then,

[g-ζ + w?]e C°°([0, 1],

(iii) —• (ii). If ξ{u%lw,gr) = u%lw<§, then this result follows imme-
diately. In some cases, however, ζ{u^lwsr) Φ u%lw& (see Example
5.2.10). We need the following claim:

Claim 1. Let / e t% be such that / >r9- 0 and such that / ( / c ) e u%
for all k > 1. Then for all J G N , there exists A7 £ f£- such that
[/z7 + w^y = [f + w,gr]. That is, [/ + w^r] has a 7 th root.

Proof of Claim 1. Recall that t%-/u%- ^ tgrfup so all positive ele-
ments of t%-/u%- have y th roots in t%-/u%- for all 7 . If [gj + u%-]j =
[ / + ! & ] , ' t h e n {[«/], 0 , 0 , . . . y = {[/], 0, 0, . . . } . By Lemma
5.1.10, there exists hj e t% such that hj =$r gj and hf] =& 0 for all
k> 1.

/m 2. For / , g e t%, if gw e u% for all k > 1 and |
for all j , then [f + w,^] divides [^ + ̂ H (in C°°([0, l ] ,

Proof of Claim 2. Quotient rule.
Observe now, that if / G u%- — w&-, then for some j , neither [f+w^]
nor [-/ + wrgr] will have a 7 th root.

Cto'm 3. If ζ(u%-/w^ ) Φ u%/w&, then there exist g, h €
C°°([0, 1],R) such that

^ = {/I I/I < Î P for all 7 e

Proof of Claim 3. Let / e u% be such that ξ([f+w^]) =
where g φ u%. Let /? G t% be such that 0 <^ /? <^ \g\J for all
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j e N . Let ζ e t% be such that ζ =? p and C w =& 0 for all k > 1.
Then [g + w&] divides [ζ + w&]. Hence [ζ + w&] e ξ{u%/w^). But
[ζ + w&] has jth roots for all j e N, so ί - 1 ([C
Therefore [C + ti;^] = [w&], ζ e u%, and p eu%. Then

| / | I/I < \g\J for all j e ]

To see the other inclusion, recall that u% = %>nC°°([0, 1], R) and
is therefore convex. Hence if / e u% is such that | / | >^ \g\J for
some j , then gj e u% hence g e w | , contrary to assumption. For
the corresponding result for u%-, we use ί"1.

Therefore, to complete the proof of the theorem, we are left with
the case

4 = {/I I/I< |^ | 7 for all j e

We next denote

4 =
where Λ and g are as in Claim 3. An Ax-Kochen argument yields
the result if we can show that there exists an isomorphism

Ψϊ: C°°([0, 1], R)Λ& -H. C°°([0, 1], R ) / 4

such that ψ\(\ζ + e%\) = [/> + 4 l implies C(Λ)(0) = />W(0) for all
A: € N . This, in turn, will follow automatically if we show that
ξ{e%-lwr) = e%lw$. So let

A<r = {γe φ\3j e N, 3ζ, p e t% yj = ζ+p, [ζ+w<?] e (u%/w,r),

and [p + W.9-] e ξ-ι{u£/wsr)}.

{γe 4\3j (ΞN, 3ζ, p e 4; γj = ζ + p, [ζ + w&] € {u%/w%),

and [p + w&] e ξ(u%-/w^)}.

Clearly ξ{A&-/wgr) = Ag/wg. So, if we can show that A? = ef-,
the theorem will be proved. By the proof of Claim 3, A? c e%- and
A& c e%. We need to show that e% C A& and e% cA$. Let

[p + % ] G ξ~x{u%/wz), [p $
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There exists ζ G u% such that ζW =& p{k) for all k > 1. So
(ζ-ρ)e A? and (ζ-p){k) =r 0 for all k > 1. Since (ζ - p) £ u%,
there exists j such that \ζ - p\ >&- \h\J.

Next, let σ e e% be such that σ(/:) e 4 - for all fc > 1. Since
for some m G N, |£ - /?| >,^ |/zp >^ \σ\Jm, we have that {[£-/>],
0 , 0 , . . . } divides { [ ^ m + 1 ] , 0 , 0 , . . . } . Therefore σ e A^ .

Next, let β e e% . There exists £2 e w^ such that β{k) =& ζ(

2

k) for
all k > 1. Thus (β - ζi) has the conditions of σ above, and hence
{β - £2) £ 4 ^ and /? G 4 ^ . By symmetry e% a A$. This proves
(iii) —• (ii) and completes the proof of Theorem 5.2.2.

We mentioned that ξ{u%/wrgr) need not equal u%/w%. The fol-
lowing is an example.

EXAMPLE 5.2.10. Let h{x) = x- e~χlχ. Let F = {l/n}™=ι U {0}
be in nonmaximal &. Define &,

Define u% and u%-

u% = if\e-k'x > I/I for all k e N | ,

4 = lf\e-k>x > I/I for all k e N | .

It can be shown, by Taylor's Theorem, that w& = w&. But u% Φ u%
since ^~1/χsin(π/x) G ŵ - - w | . Hence, we have

id: C°°([0, 1], R ) / ^ - C°°([0, l],R)/w?

and

The diίfeomorphism Λ, of course, does induce an isomorphism such
that ξ(u%-/w&-) = u%/w%>. Surprisingly, it induces more than one
such isomorphism. We define ξ\ and £2

, [f], [fh . . . » = {[foh], [foh], . . . } .

We also have a surprising corollary to Theorem 5.2.2.

COROLLARY 5.2.11. Let S? be as in Theorem 5.2.2. Let

W) e^for all n > 0}.



Then there exists a prime ideal
ξ,

such that

Proof. Let

Then C([0, 1],

C°°([0, l],R)/ί

ξ(D[f])

u, = {f\\f\<t

R)/prc~C([O,

= ^(ί(L/Ί))

?-i/(^) for some

1], R)lugr and

and an isomorphism

R)/W^r

* } •
the result follows by

Theorem 5.2.2.

Combining Theorem 5.2.2 with 3.2.26 we see that we have classified
9 domains C°°([0, \]9R)/u% and 9 domains C°°([0, l],R)/w^.
We also have C°°([0, 1], R)/β ~ R[[JC]] and C°°([0, 1], R)/m -
R. Altogether, we have classified 20 residue class domains of
C°°([0,l],R).

We shall show now that there exist prime ideals p, ^ c p , 5^
as in Theorem 5.2.2, such that C°°([0, 1], R)//7 is not one of the
domains we have classified.

REMARK 5.2.12. For all the domains we have so far classified, there
is no v/^T in the fraction field.

LEMMA 5.2.13. Let R be any commutative ring. For f,geR,if

f is in every prime ideal that contains g, then for some k € N , g

divides fk.

Proof. Assume that for all k e N, g does not divide fk. Then
letting / = {gh\h e R}, we have that / n {/, f2 , . . . , / " , . . . } = 0 .
By Zorn's Lemma there exists an ideal / , such that

(a) IcJ,
(b) / n { / , / 2 , . . . , / ' \ . . . } = 0,and
(c) / is maximal with respect to (b).
To see that J is prime, let hk £ J and assume toward a contra-

diction that fn = )χ + kx and fm = j 2 + hy (with j \ , j 2 e J). But
then

fm+n = U\h + Jikx + jihy + khxy) e J.
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THEOREM 5.2.14. Let 3F be as in Theorem 5.2.2. Let q^r be as in
Notation 5.1.1. Then there exists a prime ideal p c C°°([0, 1], R),
such that q? c p and yfΛ e Frac(C°°([0, 1], R)/p.

Proof. Let [{l/n}™={ U {0}] e &. As we mentioned earlier,
this assumption involves no loss of generality. Define / and g in
C ° ° ( [ 0 , l ] R ) by

It can be shown that f2 + g2 does not divide gk (mod q^r) for any
k e N. That is, (since sin(Aίπ) = 0), we can show that for any k,
±oo are the only possible limit points of

n=\

So by Lemma 5.2.13, there exists a prime ideal p\ c C°°([0, 1 ], R)/q&-
such that [f2 + g2+q^] EP\ and [g+p^] φ P\. Hence, there exists a
prime ideal /? c C°°([0, 1], R) such that q^ C p, {f2 + g2)ep, and
g φ p. Therefore, in C°°([0, 1], R)/p, [/]2 + [g]2 = 0, [/] ^ 0,
[<?] 7̂  0 and in the fraction field

REMARK 5.2.15. This also shows the existence of a prime ideal p c
C°°([0, 1], C) such that p is not equal to its own complex conjugate.
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