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MASS OF RAYS ON COMPLETE OPEN SURFACES

K. SHIOHAMA, T. SHIOYA, AND M. TANAKA

The total curvature of a complete open surface describes certain
properties of the Riemannian structure which defines it. We study
relationships between the total curvature and the mass of rays on
a finitely connected complete open surface and obtain some integral
formulas.

0. Introduction. Throughout this paper let M be a connected,
finitely connected, oriented, complete and noncompact Riemannian
2-manifold without boundary. The total curvature c(M) of M is
defined to be an improper integral over M of Gaussian curvature G
with respect to the area element dM of M . A well-known theorem
due to Cohn-Vossen [1] states that if M admits total curvature, then
2πχ(M) — c(M) > 0, where χ(M) is the Euler characteristic of M.
Clearly c(M) depends on the choice of Riemannian metric. This phe-
nomenon gives rise to the idea that the value 2πχ(M) - c{M) should
describe certain properties of Riemannian metric which defines it.

A ray (respectively, a straight line) on M is by definition a unit
speed geodesic parametrized on [0, oo) (respectively, on R) every
subarc of which realizes distance between its terminal points. For a
point p G M let Sp(l) be the unit circle centered at the origin of the
tangent space Mp to M at p. Let A(p) be the set of all unit vectors
tangent to rays emanating from p. A(p) is closed in Sp(l). Let
ΐDl be the natural measure on Sp(l) induced from the Riemannian
metric. A relation between the mass of rays and the total curvature
was first investigated by Maeda in [6], [7]. He proved that if M is
homeomorphic to R2 and if G > 0, then ΐOloA > 2π — c(M), and in
particular inf^ SDT ° A = 2π - c(M). These results were extended by
Shiga in [10], [11] to Riemannian planes whose Gaussian curvatures
change sign, and later by Oguchi [9] to finitely connected M with
one endpoint. In connection with an isoperimetric problem discussed
by Fiala [3] and Hartman [4], the first-named author proved in [14]
that if M has one end and if 2πχ(M) - c(M) < 2π, then for every
monotone increasing sequence {Kj} of compact sets with \JKj = M,
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The proof of this equation essentially depends on the fact that M ad-
mits no straight lines. This property is guaranteed by the assumptions
on the total curvature and the uniqueness of endpoint of M.

It should also be noted that all results mentioned above are obtained
under the assumption that M has one endpoint. In the case where
M has more than one endpoint (and this is the case where we are
interested in this paper), it will be natural to consider that each end-
point shares the value 2πχ(M)-c(M) in the following sense. Let M
have k endpoints and let K c M be a compact set with the property
that M\ Int(AT) consists of k tubes U\, . . . , Uk such that each C/z

is homeomorphic to Sι x [0, oc) and that each dUi is a piecewise
smooth simply closed curve. Then the Gauss-Bonnet theorem states
that c{K) + Σt\κ(dUi) = 2πX(M)> w h ere c(K) = JκGdM and
κ(ΘUi) denotes the curvature integral over the boundary curve
For each / = 1, . . . , k the value

Si(M):=κ(dUi)-c(Ui)

is nonnegative and independent of the choice of tube. Moreover

k

For details see [15]. Thus one observes that each endpoint correspond-
ing to Uj shares the value 2πχ(M) — c(M).

With these notations our main results will be stated as follows.

THEOREM A. Assume that M admits total curvature and has k end-
points. If Si(M) < 2π holds for each i = 1, ... , k, then for every
monotone increasing sequence {Kj} of compact sets with [j K}• — M,

fK9JloAdM
Min sΛM) < lim inf—— c —7——
\<i<k j->oo Jκ dM

JκdJloAdM
< lim sup — — c — 7 — — < Max sdM).
~ -oo Jκ dM ~ \<i<k

THEOREM B. Assume that M admits total curvature and has k
endpoints. Let € be a simply closed smooth curve in M and let
B(t) := {x e M; d(x, C) < t} and S(t) := {x e M\ d(x, £) = t},
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where d is the distance function induced from Riemannian metric. If
Si{M) < 2π holds for each i = 1, ... , k, then

JR(ί)ίJJloAdM
= { 2πχ(M)-c(M)

y if2πχ(M) - c(M) = 0.

REMARK 1. Shiohama first proved an inequality in Theorem B un-
der the stronger assumption that S/(Af) < 2π. But subsequent im-
provement on the asymptotic behavior of Wl o A was obtained by
Shioya and Tanaka. It turns out that the existence of straight lines on
M is no objection at all. Tanaka's proof for the asymptotic behavior
of Wlo A by assuming s, (Af) = 2π will be provided in Lemma 1.1.
Shioya has extended this result to the case where +oo > Si(M) > 2π.
This result will be published independently because the proof is fas-
cinating and of independent interest in itself.

REMARK 2. Theorem B does not hold for any monotone increas-
ing sequence {Kj} of compact sets with \JKj = M. For example,
consider a surface M of revolution in R3: Let / : R —> (0, oo) be
a positive smooth function satisfying f(t) = 1 for t < - 1 , f{t) =
(t - tan# + 1) for t > 1, where θ is a constant in (0, π/2). M is
defined as

M = { ( x j , z ) € R 3 ; y 2 + z2 = f(x)2, x e R}.

Then S\{M) and S2(M) are 0 and 2πsin0 and 2πχ(M) - c(M) =
2π sin θ. For any given e > 0 there exists a positive number tε such
that if p e M satisfies x{p) < -tε, then WtoA(p) < e, and such that
if x(p) > tε, then VJloA(p) E (^(Λf) -ε, sι(M) + ε). For an arbitrary
fixed number a > 0 choose a monotone increasing sequence {KJ} of
compact sets of M with \JKJ = M such that

Area{p e KJ ;c(/?) > 0}/ Area{/? E A? x(p) < 0} = α.

Then, computation will show that

(2πχ(M) - c(M))a
7->oo Ĵ α oM α + 1 α + 1

Since a > 0 is arbitrary, this example will suggest the validity of
Theorem A.
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1. Preliminaries. Let K c M be a compact set with the property
that M\ Int(^) consists of k tubes U\, . . . , Uk such that each d C/,
is a piecewise smooth closed curve. For a point p e M\ Int(ΛΓ) taken
sufficiently away from K, A(p) is divided into two subsets Aχ{p)
and A'κ(p) as follows: For ueA(p) set γu(t) := exρptu, t>0.

Aκ(p):={ueA(p);γu([O,oc))nKϊ0},

A'κ{p) := {u e A(p) γu([0, oo)) ΓΊ Int(^) = 0}.

Both Aκ{p) and A'κ(p) are closed in Sp(l). It follows from minimiz-
ing property of rays emanating from p that Aχ(p) Π A'κ{p) consists
of at most two elements. Therefore

It was proved in §§2 and 3 in [14] that if 0 < Sι(M) < 2π, then for
any given ε > 0 there exists an R(ε) such that for every p e £// with
d(p,K)>R(e)

- ε < m o 4c(p) < ̂ /(Af) + β.

A crucial step of the proof of Theorems A and B is to obtain the
asymptotic behavior of 971 o A. What is left for this purpose is to
prove for all / = 1, ... , k and for all p e C/, with d(p, K) > R(e),

(**) WloAκ(p)<ε

and the following

LEMMA 1.1 (Tanaka). Assume that Sι(M) = 2π. Then there exists
a compact set K with the property that for any ε > 0 there exists an
Ri(ε) > 0 such that if p e Ut satisfies d(ρ, K) > i?/(ε), then

fffto A'κ{p) >2π-ε.

Making use of a slightly extended version of an idea developed in the
proof of Theorem C in [12], (**) is proved for a more general closed
subinterval Sp(D(p)) of 5^(1) which contains Aκ{p). For p e t//
and for u, v EAκ(p) let DUtV(p) be the disk domain in C/, bounded
by the subarcs of γu and γv between p — γu(0) = γv(0) and their first
intersections with K and a subarc of dUi between them. Let D(p)
be the maximal disk domain among {DUiV(p): u, v e Aχ(p)} and
Sp(D(p)) c 5^(1) the set of all unit vectors at p tangent to D{p).
Define an angle

θκ(p) := m(Sp(D(p))).

Then the proof of (**) is a direct consequence of the following.



MASS OF RAYS 353

LEMMA 1.2 (Shioya). Let K c M be as above and assume that
Si{M) < +00 holds for all i = 1 , . . . , & . For any ε > 0 there exists
an R(ε) > 0 such that ifpe M\K satisfies d(p, K) > R(ε), then

ΘK(P) < β.

2. Proof of Theorems A and B by assuming Lemmas 1.1 and 1.2. First
of all consider the case where the total area of M is bounded. Then
a slight modification of Lemma 3.1 in [14] implies that there exist
k distinct Busemann functions on M, each of which corresponds to
an endpoint of M. A Busemann function is diίferentiable except a
set of measure zero since it is Lipschitz continuous. This fact means
that there exists a measure zero set E on M such that A(p) for ev-
ery p E M\E consists of exactly k elements. Furthermore one has
2πχ(M) - c(M) = 0 if the total area of M is bounded (see Theorem
12 in [5] and Corollary of Theorem A in [13]). Therefore the proof
of theorems in this case is complete.

Assume that the total area of M is unbounded. Let

jR(e) := Max i?/(ε).
\<i<k

Let a be the area of closed i?(β)-ball around K and b the integral
of ΐΰlo A over this closed ball. It follows from (*), Lemmas 1.1 and
1.2 that for all sufficiently large j

b + (Min^^k Si(M) - ε) {/̂  dM - a}

κ dM - a\

The proof of Theorem A is complete since ε is any and the total area
of M is unbounded.

For the proof of Theorem B one applies the Fiala-Hartman type
isoperimetric inequality which was refined by Shiohama in [12] and
[13]. Fix a compact set K containing € as in Lemmas 1.1 and 1.2.
For every i = 1, . . . , k and for sufficiently large t > 0 let L/(ί) and
Ai(t) be the length of S(t)nUi and the area of B(t)nUi. Because M
admits total curvature S(t) Π 17/ is homeomorphic to a circle for all
large t (see Theorem B in [13]), and is piecewise smooth for almost
a l l t. N o t e t h a t A^t) - Aiit1) = fi Li{u) du. F o r e v e r y i=l,...,k

hm — — = hm — ^ = sΛM).
t-κx) t t-+oo t2 V }
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By choosing R(ε) sufficiently large so as to fulfil

- ε <

for all i = I, ... , k and for all / > R(ε), one obtains

<

2 + a * JB(t) dM

2ε)(Sj(M) + g ) ( ' 2 * ( 0 2 ) / 2

This completes the proof of Theorem B.

3. Proof of Lemmas. A general formula for the mass of rays ema-
nating from a point p e M is obtained by using an idea developed
by Shiga in [10]. This is stated as

(***) m o A(p) = 2πχ(M) - c(M\Fp),

where Fp := {expptu; u e A(p),t > 0}. This formula plays an
essential role for the proof of Lemma 1.1.

For the proof of (* * *) fix a point p e M and let T > 0 be a
sufficiently large number such that S(p, T) := {x G M d(p, x) =
T} consists of k piecewise smooth closed curves C\, . . . , Q in
U\, . . . , Ujc and such that the break points Xi9\9 . . . , Xi,m{ϊ) °f Q
are joined to p by exactly two distinct minimizing geodesies a~ x,

< l - - alm{i)> a t m ( i ) W i t h a7,m(°) = < m ( ° ) = P > <*7,m(T) =
a*m(T) = x/j/w and x^m is not conjugate to p along α~ m and
a t m . This is possible whenever T is taken to be a sufficiently large
non-exceptional value (see [4], [13]). Let Fiym (i = I9...,k,
1 < m < m(i)) be a disk domain surrounded by α t m ( [ 0 , T]), the
smooth subarc of S(p, T) with terminal points Xi^m and JC/ Ϊ / W +I and
αΓ,m+i([°> Γ D ' a n d β/,m the angle between -άJm(T) and
-a[ m{T). If /C/>m is the curvature integral of the subarc on
dF[S(9 Γ) ? then

If B(p, Γ) is the closed Γ-ball around j9, then

A: /w(/) A: w(/)

ΣΈ κi,™ - Σ Σ ^ =
/=1 m=\ i=l m=l
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It follows from construction that \Ji\JmSp(Fi9m) is monotone de-
creasing with T and converges to A(p) as T —> oo. The proof of
(***) is complete since limΓ_^00X)f=1 Σm=\ ^i m = 0 (see Theorem
C, [12]) and KmT-*oo c(B(p9 70\U/U, */,/*) = c(M\Fp).

Proof of Lemma 1.1. For a compact set C such that M\C consists
of k tubes, we choose a K containing C such that every minimiz-
ing geodesic joining points in C does not meet ΘK. Let Af, be a
complete open 2-manifold having one end with the properties that
there exists an isometric embedding / of K u t/, into Af, and that
Mi\ι(K U [//) consists of fc — 1 disks. From construction it follows
that 2πχ(Mi) - c{MΪ) = st(M) and χ{Mi) = χ{M) + (k - 1). With-
out loss of generality one may identify points in Uj with those images
in Mi as well as other objects. For p e C/, let Ai(p), AKj(p) and
A'Ki(p) be the set of all unit vectors tangent to rays on A// from /?
with the same properties as defined in M. Then A'κ ,.(/?) = ^ ( p )
follows from the choice of A .̂ There is no strict relationship between
Aκ,i(p) and Aχ(p). But both of them will be estimated in Lemma
1.2.' Since 9Jί o A(p) = (9Jϊo Aκ(p) - Wlo AKJ(p)) + 9Jto Ai(p) and
the first term in the right-hand side turns out to be small by Lemma
1.2, one only needs to show that 9Jΐ o Ai(p) > 2π - ε if p is taken
sufficiently away from K in Af/.

From now on one identifies Af, with Λf. For any ε > 0 let Kε c Af
be a compact set containing AT such that

JM
\G\dM <ε.

>M\Kε

By means of (***) it suffices for the proof of Lemma 1.1 to show
c{M\Fp) < c(M) + 5ε forpeM with d(p,K) > R(ε). It follows
from finite connectivity of M that there are at most finitely many
non-overlapping sectors V\(/?),..., V\(p) in M with the following
properties: (1) Vj(p) Γ\Kε Φ 0 , (2) dVj(p) consists of two rays em-
anating from p, (3) Vj(p) is homeomorphic to a closed half-plane,
and (4) every ray emanating from p is contained in some Vj(p) if
it intersects K€. Vj{p) has the property that if Vj(p) c Vj{p) is a
subsector such that there is no ray emanating from p and passing
through a point on lnt(Vj(p)), then c(Vj(p)) = Wl(Sp(Vj(p))). Let
{pn} be a divergent sequence of points in M\Kε such that {Vj{pn)}
for each 7 = 1 , . . . , / has a limit F, as n —• cx>. This F, is a strip
if it has a nonempty interior. If Vj c Vj is a substrip such that there
exists no straight line contained entirely in Int(FJ), then c(V ) = 0.
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Set V = Vi U U Vι. c(M\FPn) < c(Kε) - c(Kε n FPn) + ε and
{c(KenFPn)}n tends to c(Kε πV) as n —> oc. Thus for all sufficiently
large numbers n, c(M\FpJ < c{M\V) + 4ε. Since J>} is a strip,
a result of Cohn-Vossen (see Satz 3, [2]) implies that c(Vj) < 0 for
all j = 1 , . . . , / . This implies that c(M\Vj) < 2πχ{M\Vj) - 4π.
But since χ(M\Vj) = χ(M) + 1 the above inequality reduces to
c(M\Vj) < 2πχ(M) — 2π. It follows from the assumption for c(M)
that c(M\Vj) < c(M), and in particular c(Vj) = 0 for all j =
1 , . . . , / . Therefore c(M\FPn) < c(M\V) + 4ε < c(M) + 5ε. This
together with (***) proves Lemma 1.1.

Proof of Lemma 1.2. A contradiction will be derived by suppos-
ing that there exists a divergent sequence {pn} of points such that
θκ(Pn) > εo holds for all n and for some εo > 0. Without loss of
generality we may consider that {pn} is contained in a tube U.

To derive a contradiction consider the universal Riemannian cov-
ering U of U whose covering projection is denoted by π. Let
τ: [0, oc) —> M be a ray emanating from a point on 9 U such that
τ([0, oc)) is contained entirely in U. Cut open £/ along τ([0, oc))
and let C/_ i, t/o ? ^i ? be the fundamental domains of U lying
in this order in U. Let τz : [0, oo) —• ί/ be the lifted ray of τ such
that its image lies in dt7/_i n dί// and ΪΓ := C/Q U U\ U C/2. Then
dW consists of two rays ίo([O, oo)), τ3([0, oc)) and a subarc of dU
whose terminal points are ίo(O) and £3(0).

The intersection of the two minimizing segments on dD{pn) with
dU will be denoted by xn and yn . Set Dn = D(pn) and let pn :=
π~ι(Pn)n U\ and Dn c U the lift up of Dn satisfying pn edDn . Let
xn := π " 1 ^ , , ) Π 9 ^ and y« := π " 1 ^ ) n dDn . It follows from min-
imizing property of rays that the lifted minimizing geodesies joining
pn to xn and pn to yn intersect π ' ^ τ ) at most at one point. This
fact means that these geodesies are in W, and in particular, xn and
yn are on dW PidU. By choosing ^subsequence, if necessary, one
may consider that {xn}, {yn} and {Dn} converge to x, y and to an
unbounded domain D in W. Two cases occur in the convergence of
{Dn}. In the first case, assume that {pn} is contained in the closure
of D. Then one may consider that {Dn} is monotone increasing and
\JDn — D. A slight modification of Theorem C in [12] implies that
{θκ(Pn)} converges to 0, a contradiction. In the second case, assume
that {pn} is not contained in the closure of D. Without loss of gen-
erality one may consider that the lifted minimizing geodesic joining
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pn to xn intersects 3D at a point r r t. Set En := £>Π\Z> and let
αΛ e (0, π) be the angle at fn of the corner of DnΓ)D. By construc-
tion, {r^} contains a divergent subsequence. Then Cohn-Vossen's
argument (see §5, [2]) implies that {an} has a limit 0. Let Kε c M
be a compact set so as to satisfy

/ G+dM < ε.
M\KE

Then the area of π~ι(Kε Π U) Π En tends to zero as n -» oo and
the curvature integral over En\π~ι(Kε n 17) is bounded above by ε.
These facts together with the Gauss-Bonnet theorem for En imply
that {θκ(Pn)} contains a subsequence converging to 0 as n —• oo, a
contradiction. This completes the proof of Lemma 1.2.
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