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THE POWER 3/2 APPEARING IN THE ESTIMATE
OF ANALYTIC CAPACITY

TAKAFUMI MURAI

We show that the power 3/2 appearing in the estimate of analytic
capacity is best possible.

1. Introduction. For a compact set E in the complex plane C,
H°°{EC) denotes the Banach space of bounded analytic functions in
Ec = CU{oc}-E with supremum norm || ||//°°. The analytic capacity
of E is defined by

γ(E) = sup{|/(oo)| \\f\\H~ < 1, / € H°°(EC)},

where /'(oo) = limz_+oo z ( / (z ) - / (oc) ) , i.e., /'(oo) is the (l/z)-coeffi-
cient of the Taylor expansion of / (z ) at infinity. It is easily seen that
γ(E) < \E\, where \E\ is the (generalized) length of E\ if E is a
subset of the real line R, then \E\ equals its 1-dimension Lebesgue
measure (cf. Garnett [4, Chap. III]). Vitushkin [12] constructed an
example Qoo such that γ(Qoc) = 0 and |βoo| > 0 (cf. [4, p. 87]).
Denjoy [3] showed that γ(E) > 0 if E is a subset of a rectifiable curve
such that \E\ > 0. But his proof has a serious gap, and his theorem
was, for a while, called the Denjoy conjecture. As is easily seen, we
may assume that E is a subset of a rectifiable graph. Let pvE denote
the projection of E to R. Since pr is a contraction [6, p. 377], it is
natural to try the lower estimate of γ(E) by γ(pτE). Pommerenke
[11] showed that γ(pvE) = |prls |/4. Hence this approach is equiv-
alent to comparing γ(E) with \ρrE\. To do this, the study of the
Cauchy-Hilbert transform on C 1 graphs is necessary (Davie [2]). In
1977, Calderόn [1] succeeded in proving its boundedness, and, using
his theorem, Marshall [8] finally settled the Denjoy conjecture in the
affirmative. After Marshall's theorem, we are concerned with studying
further relations between γ(E) and | pr i s | . Using an estimate of the
Cauchy-Hilbert transform on Lipschitz graphs [10, p. 53], the author
[9] showed that

if E is a subset of a rectifiable graph Γ satisfying |Γ| = 1, where Q
is an absolute constant. The main purpose of this paper is to show
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that the power 3/2 is best possible. Our method gives a new approach
to the computation of analytic capacity, and suggests that analytic
capacity is related to the theory of fractals (Mandelbrot [7]).

For an integer p > 2, we put

For an n-tuple {p\, . . . , pn) of integers larger than or equal to 2, we
put

A(x;pι,... ,pn) =

7 = 1

A set Γ c C is called a crank of degree n if it is expressed in the
form

for some rc-tuple (p\, . . . , pn) of integers larger than or equal to 2.
(The class of cranks in this paper is smaller than a class defined in [10,
Chap. III].) We shall show

THEOREM. For any n>\, there exists a crank Γn of degree n such

that

where C\ is an absolute constant.

Once this theorem is established, we can deduce the exactness of the
power 3/2 as follows. Adding some segments (perpendicular to the x-
axis) to Γ,2, we obtain an arc connecting 0 and 1. Then the length of
this arc is less than or equal to n + 1 . Hence we can define a rectifiable
graph Γn so that \Γn\ < 3>n, \prE'n\ > 1/2, where E'n = Γn nΓn.
Then γ(E'n) < γ{Γn) < Ci/yfi. Contracting E'n, Γn, we define E'^9

T"n so that \Γ^\ = 1. Then

which shows that the power 3/2 cannot be replaced by any number
less than 3/2.

To prove our theorem, it is necessary to investigate cranks care-
fully. In §2, we shall give a formula ((1) in Proposition 1) to compute
analytic capacity. Proposition 2 is a generalization of Garnett's ex-
ample [4, p. 87], and will be used to prove our theorem. Using the
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method in the proof of the formula, we shall, in §3, give the proof of
our theorem. In the last section, we shall give a new proof of Pom-
merenke's theorem [11] as another application of Proposition 1; our
method shows how to construct the extremal functions.

2. A formula for the computation of γ(•). Let L2(Γ) denote the L2

space of functions on a finite union Γ of smooth arcs with respect
to the length element \dz\. The norm is denoted by || Ĥ /™ . The
Cauchy-Hilbert transform %fγ from L2(Γ) to itself is defined by

where p.v. is the principal value. This is a bounded operator and the
norm is denoted by ||^f IIL2(Γ) L2(Γ) ^ n operator ~Wτ is defined by

"Wτf = Jf / , and Sγ is the identity operator. We show

PROPOSITION 1. Let Γ be a finite union of smooth arcs. Then, for
any 0<ε<

(1)
I m=0 1=0

where

ti (ffi* \ / {3P 3^ \ \\d Ύ\ (Ί >̂ Π
JT ~

and (/ + 1) (/ + m)/m\ = 1 // m = 0. (First X)/^o

 /Λ< taken, and

next Σm=o i s taken.) If | | ^ + ^Γ-*ΓIIL

2(Γ),L 2(Γ) < 2 ' t h e n

(3) y ( )
/=0

This is a version of Garabedian's theorem [4, p. 22] to J f Equality
(3) is applicable to give a new proof of Pommerenke's theorem. (See
§4.) Notice that J ^ + ̂ R J | = 0, where ^ is the Hubert transform
on R. Hence (2) is applicable to compact sets Γ on a Lipschitz graph
which is a small perturbation of R. For any M > 0, there exists a
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crank Γ such that d1{%γ>) > M [10, p. 84]. Then Cauchy-Schwarz'
inequality yields that

Hence (1) is necessary in this case.

Proof of Proposition 1. Let

(4) 7*(^Γ) = inf{|| 1 + *h\\2

L2(Γ) + | |A |£ 2 ( Π h e L 2 (Γ)}.

We begin by showing that

For a compact set E bounded by a finite number of smooth Jordan
curves, we have

(6) γ(E) = ±- infjjΓ \g(z)\2 \dz\ g{oo) = 1, g is analytic in E

[4, p. 22]. Hence a standard argument yields that (6) holds with E
replaced by Γ; in this case, the boundary dΓ has two sides. We
define a smooth curve Sf tending to infinity so that Γ c ^ and that
2* = R outside a large disk. Then S* divides C into two domains
Ω±. For an analytic function g(z) in Γc such that g{oo) — 1 and
JdΓ \g(z)\2\dz\ < oc, we can write

/ N 1 1 ί KW
g(z)= 1 + - / -Λ—z

where the orientation of dw is chosen so that Ω+ lies to the left. Let
g±(z) be the nontangential limits of g at z e Γ with respect to Ω± ,
respectively. Then

J ̂ ^
= 1 + %ϊ(hψ)(z) + ih(z) ( Z G Γ ) ,

where ψ{z) — dz/\dz\. Analogously,

g_(z) = 1 + mhψ){z) - ih{z) (z e Γ).

Thus

ih\\2

Ll{Γ) + \\\+^τ{hψ) - ih\\2

L2{T)
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because \ψ(z)\ = \ (z e Γ). This shows that the quantity in the
right-hand side of (6) (E = Γ) equals \y\%γ), i.e., (5) holds.

We next compute y*(^f) Fatou's lemma shows that there exists
hγ G L2(Γ) which attains the infimum in (4). A variational method
yields that (1 + ^τhτ, J%h) + (AΓ, h) = 0 for all A e L 2 (Γ), where
( , •) is the (complex) inner product with respect to \dz\. Since the
adjoint operator of J f is - ^ V > this shows that

(7) pfr - Wτ^τ)hτ = JFΓ1.

Suppose that Λ̂  e ^ 2 (Γ) also attains the infimum in (4). Then h'τ
satisfies (7), and hence

0 = (pfr - Jrτβrτ){hτ - Af), AΓ - Af)

This shows that h'τ = Ap. Thus Ap is uniquely determined. By (7),
we have

(8) 7*(^r) = 111 +^τhγ\\2

L2{T) + \\hr\\2

L2{Γ)

= (1 + ^ f A Γ ? 1) + {{J?τ -Wτβ?τ)hτ - ~WT\, AΓ)

= [ {l + *thΓ}\dz\.
JT

Let

Then we can write

1=0

because 0 < ε < 1/ll-̂ f III,2(Γ),L2(Γ)
 W e h a v e >

\2+ε2\\βrΓTΓh\\l< \\TΓh\\2

L2{Γ)+ε2\\βrΓTΓh\\l2{Γ)

2 , Tτh) = (h, Tγh) < ||Λ||£l

which shows that ||7rllχ,2(Γ) L2<Γ) — ^ Equality (7) can be rewritten
as

(9)

Observing this equality, we inductively define (hm)™=0 by h^ = 0,

hm = ΓΓ{(1 -ε2)hm-x +ε1Wτ\} (m > 1).
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Then

l|Λm+i - Λm||L2(Γ) = (1 - ε

< (1 — e2)| |Λm — Λ ^ - i H ^ ^ .

Hence limm_^ooΛm exists and satisfies (9), i.e., (7). Thus fiγ
_+oo hm. Since

we have

ra=0 ra=0

Consequently, (8) yields that

- e2)m

m=0

ex)

/
m=0 l / Γ l/=0

Using (5),
We can

Hence, if

m=0
oo

m=0

we obtain
write

\\Jr + 7rT<

1=0
oo

/=0

(1).

2 / + 2 (

--2{J v^Y "1"

then

m=0

Thus (5) and (8) yield (2). _ _
Equality (7) shows that Sf^hγ = S%JfTτ\ + %fγ%'γ%γhγ, and hence,

by (8),
r
I Γ 1

= / IA
JY
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Repeating this argument, we have

L

1=0

If linii^oo d2L(βrτ) = 0, then

lim

L-+oo

Hence (5) gives (3). This completes the proof of our proposition.
We now give a remark. There exists an analytic function gγ{z) in

Yc such that *r(oo) = 1 and y(Γ) = (l/2π) fdΓ\gγ(z)\ \dz\ [4, p. 19].
This is called the Garabedian function of Γ. Equality (5) shows that

There exists / Γ € //°°(ΓC) such that \\fr\\H°° = 1 and /^(oo) = y(Γ)
[4, p. 18]. This is called the Ahlfors function of Γ. We have

1 ί f \dw\

π \Jrw - z

(10)

Jr W-Z ' '

1 f hΓ(w)., .
- / v ' \dw\
π JΓw - z'

To see this, let f(z) denote the function in the right-hand side. Since
gγ{z) does not take 0 in Γ c , f(z) is analytic in Γc [4, p. 21]. We
have /'(oo) = ±γ*(<TΓ) = y(Γ) and

= ^ l ( z ) ± iψ{z)+%f#τhτ{z) ± iWτhτ{z)ψ{z)
J±{ ] l

where ψ(z) = \dz\/dz and f±(z) are the nontangential limits of /
at z € Γ with respect to Ω ± , respectively. Equality (7) shows that

iψ

iψ + (hΓ -

+ΈΓ = iψ{\ + <%rhΓ + ihΓψ}
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which yields that |/+(z)| = 1 on Γ. Analogously, |/_(z)| = 1 on Γ.
Thus \\f\\Hoo = 1. This shows that / = fΓ.

For the proof of our theorem, we note

PROPOSITION 2. Let 0 < SQ < 1 and let (qn)^Lι be a sequence of
integers larger than or equal to 2 such that

n=j

Then

lim supy(Γ(/?i, . . . , pn)) = 0,
Λ—*OO

where the supremum is taken over all n-tuples {p\, , pn) satisfying

Pj > qj ( 1 < j <n).

This is a generalization of Garnett's example [4, p. 87], and used
later. Notice that Σ7=i 2~Λ = 1. A sequence (Γ(2Π))^=1 (2Λ is the n-
tuple of 2) topologically converges to a segment {x + ix 0 < x < 1},
and these cranks behave like cranks of degree 1 with respect to this
segment. Hence we have limsup^oo y(Γ(2Λ)) > 0. This shows that
our proposition is sharp in a sense. Since a minor change of the
argument in [10, p. 81] yields the required equality, we omit the
proof (cf. Jones [5]).

3. Proof of Theorem. In this section, we give the proof of our theo-
rem. Let Lq denote the Lq space of functions on [0, 1) with respect
to the 1-dimension Lebesgue measure | | (1 < q < oo). For a kernel
K = K(x, y) on [0, 1) x [0, 1), we simply write by the same notation
K an operator defined by this kernel, and write by Έ an operator de-
fined by K(x, y) \\K\\ > denotes the norm of K as an operator

from Lq to Lq . The identity operator is denoted by Id. A kernel K
is anti-symmetric if K(x, y) = -K(y, x) (x Φ y). A kernel K is of
type 0 if

sup
x,ye[0,l)

< OO.

A kernel K is of type 1 if \\K\\L* L* < oo and if there exists a sequence

(Kj)JL\ °f kernels of type 0 such that

lim \\Kj - K\\L4 Li = 0, sup ||-K}||L4 L4 < oo.
J—»OO ' - ^ 1 '
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Kernels used in this section are bounded as operators from Lq to

itself for all 1 < q < oc. Let

γ*(K) = inf{|| 1 + Kh\\\2 + ||/z||2

2 h e L2},

/•I

dΉ(K)= (KK)ι\dx ( / > 0 , (AΓ^)° = Id).
./o

Recall the function A(x; p\, ... , pn) in the introduction. Let

πy - x

,... ,Pn](χ,y)
1 1

π ( y - x ) + / ( Λ ( . y p \ , ... , p n ) - A ( x ; p x , ... , p n ) ) '

. . . ,Pn] = H\px, . . . ,/>«]-i/LPi, . . . ,/?Λ_i] (« > 1),

where H[p\, ... , pn-\\ = H if n = 1. Then

7 = 1

Since all components/segments of Γ(p i , ,/?Λ) are parallel to

the x-axis? we can identify ^f(p . ϊ / 7 ) 5 L2(Γ(/?i, . . . , ρn)) with

H\p\, . . . , /?«], L 2 , respectively. We have ||ΛΓ[/7i, . . . , Pn]\\L\ι} <

Ciy/ή for some absolute constant C2 [10, p. 84]. Hence Proposition

1 shows that

( 1 1 ) γ ( Γ ( p u ... , p n ) ) = ± γ * ( H \ p l 9 ... , p n ] )

oo

x y\

where εn = (2C2\/ή)~x. We shall inductively estimate

lim lim γ*(H[p\, . . . , pn]),

where l im^oo is taken first and limPi_+oo is taken last. For £ c l ,

XE denotes its characteristic function, and, for i G l , ι(x) denotes

its integral part. Here are some lemmas necessary for the estimate.
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LEMMA 3. For two kernels K and K1,

Proof. We have, for any h e L2 ,

which yields the required inequality.

LEMMA 4. Let K be an anti-symmetric kernel such that

lim dΉ{K) = 0.
/—>-oo

Then

(12) )
1=0

Since this is a version of (3) to K, we omit the proof.

LEMMA 5. For an anti-symmetric kernel K, 0 < εo < (3||JRΓ||L2 LI)~{

and weU = {ζeC; \ζ\<2, | a r g C | < π / 4 } ,

Π ^ 1 L V Π ^ m V^ .f12/+2o2/+2 (̂  + *) 0 + m)
(13) l + ̂ ί 1 ^ ) l W δ

m=0 1=0

(=γ*(w;K), say)

exists and γ*(w K) is analytic in U.

Proof. Let

Then

f
Jo

1=0

because 2εo||AΊ|L2 Li < 1. Evidently, this is analytic in U. Since K

is anti-symmetric and Reu>2 > 0 (w G J7, Re to2 is the real part of

w2), we have, in the same manner as in the proof of (1),

(14) | | 7 - ( t u ; t f ) | | L ί > L 2 < l (weU).
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Thus the convergence of Σm=o in (13) is uniform in U, which shows
that γ*(w K) exists and is analytic in U.

LEMMA 6. For any / > 0,

lim^2/(Δ[p]) (=rf2/(Δ[oo]), say)

exists and

(15) d2(A[oc])<-~.

Proof. We put

_ c _ l _ 1 _ i _ 7 / _ c _L
O I 1. I t I / O I

2 ^ f ί - 5 + l + / t-s+l

π ^ \ Am1 - [t - s + 1 + ΐ)1 Am1 -{t-s

and show that

(16)

Let

U \m m+\\ TJ7/ I , \m m +

[j'~rr p= u [J'~P~
m, odd L 7 w , even L ^ ^

X P - U 7Γ'

5X = j3χ - ι(px) (0 < x < 1, p > 2).

Notice that |[0, 1)-X P | < 2 i(logp)/p and ||Δ[p]||L4>L4 < 10. Since
A[ρ](x, y) = 0 (x, y e ^ x , y € H^;), we have

/•i 7_j

Jo Wp Wp Wp Wp

= / (ΔlplΔlplJ '̂ΔIpl^^nΛ ^ ^ ^ + ^ ^ nA ΔΪPΪ^H;}^
«/ (J

We now study A[p]χw<(x) (x e WPC\XP). Without loss of generality,

we may assume that p is even. Since x e WpnXp , ι(px) is even and
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ι(logp) < ι(px) < p — i(logp) - 1. We may assume that /(log/?) <
ι(px) <p/2. We have

= ~ ί ί l—^i
π Jw,γy_χ_ιlp y-χ

' l l \ d

-χ + i/p-i/p y-χ + ι/p) y

1
Im/p +y)- (ι(px)/p + x-ι{px)/ρ) + l/p - i/p

\ 1 dy
(2m/p+y) - (ι(px)/p + x- ι[px)/p) + l/pf

ι(px) (p/2)—\
~ / = L\ + L2,
7ί ^

m=ι{px)+l

_]_ rι r___i i _ _ i
~ π /„ \ ί - sx + 1 - / t - sx + 1J

' / 2 1 ί / - 5 , + 1-f
\4m2-(t-sx+l-φ

) ,mφι{px)/2

ί-sx+l
4m2-it-,

dt

L2 = - i ^ ί pχ)) + ( t - s + 1 - /

dt
X -7X

which shows that A[p]χw>(x) = Rl(sx) + 0(l/logp) (x €
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In the same manner, A\p]χWp{x) = Rl(sx) + O(l/log,p) (x € W'p Π
Xp). Thus

d2ι(A[p])= I

A[p](χw~Rl(s.))}dx

Since i?l(5x) is a periodic function with period \/p, we have, in the
same manner as above,

A[p](Xw;Rl(s.))(x) = R2Hsx) + O (jj^j (x e WpnXp),

Repeating this argument, we have

•1
d2l(A[p]) = f\χWp{x)R2l\{sx) + χw.{x)Rll\{sx)} dx + O (j^j

which gives (16).
We have

——oo

oo

1 Ί

\ + t-s)

1 w

= -- Σ (2m + 1 + t — s){(2m
m=-oo v ' ι v

π m^oo (2m + 1 + t - s)1 + 1

= -R\s,t)-iR"{s,t), say.
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Then R' is anti-symmetric and R" is symmetric, i.e., R"(s, t) =
R"(t,s). Thus

• 1

d2{A[oo]) = Re ί R2\ds
Jo

= Re / (-RΊ + iR" 1 )(R'l + iR" 1)ds
Jo

= - ί {(R'l)2 + (R"l)2}ds
Jo

x ί f1
d t

Thus (15) holds.

LEMMA 7. Let K be an anti-symmetric kernel of type 1, and
let {gp)f=2> {hp)%2 be two sequences in L4 such that \\gp\\L* < 1,
\\hp\\LA < 1. Then, for any / > 0,

(17) l̂irn j J Kgp • (A[p]A\p])ιKhp dx

-d2!(A[oo]) f KgpKhpdx\=0,

(18) lim ί KgpA[p](A[p]A[p])ιKhpώc = O.
P^ooJO

Equalities (17) and (18) hold with Kgp replaced by 1.

Proof. First we assume that K is of type 0. Let

A'[p](χ, y) = A[p](x, y)χl0,N/p)(\y - x\) (P>2),

where N = i(logp). Then ||Δ[p] - A'\p]\\Litl} = O(l/\ogp) (cf.
Lemma 6), and hence

/ Kgp{A\p]W])lKhpdx
Jo

= JQKgp- (A'[p]A![p~]yKhp dx + O

Notice that

(A'[p]AW\)'(x,y) = 0 (\y-x\> 2lN/p),
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and that {A'[p]A'[p])! 1 is a periodic function on [2lN/p, l-(2lN/p))
with period 2/p. Let

ηp

m) = ξr / (A'[p)A'[p])Ίdx - d2l(A[oo])

(0<m<ι(p/2)-ί).

Then ηp

m) = 4'N) (lN<m< ι(p/2) -IN-I). Lemma 6 shows that

limsup \η{JN)\ = limsup \d2ι(A'[p]) - ί/2/(Δ[oo])|
p—κx) p—> oo

= limsup\d2ι(A[p]) - d2ί(A[oo])\ = 0.

Since K is of type 0, we have

\Kh{y) - Kh{x)\ ^
sup ^ r^-21 < sup

\y - x\

§-sK(s,,) <OO,

where the supremum in the left-hand side is taken over all x,y
[0,1) and all h e L4 satisfying \\h\\L4 < 1. Thus

Kgp(A[p]A[p))ιKhpdx
o

l-(2lN/p)rl-(2lN/p)

= / Kgp(x)
J21N/P

xf
J\y-

f pW
\y-x\<2lN/p

= / Kgp Khp • (A'[p]A'[p])ιl dx + o(
J21N/P

ι(p/2)~lN-l /Λ \ /T \

= I Σ *sp (-T) Έhp (ηr) ^ ]

P m=lN \ P / V y J

= 4(A[oo]) ί Kgp Khpdx + O(η{JN)) + o(l)
Jo

= d2l(A[oo]) ί Kgp Khpώc + o(l),
Jo

which shows that (17) holds. Let K be of type 1. Then there exists a
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sequence {Kj)JLx of kernels of type 0 such that

\\K-KΛL\L2 ^ i 0' > i)> S U P I I ^ / I I L \ L 4

Then

Kgp (A[p]Wί)lKhp dx- [ Kjgp (A[p]Wί)lKjhp dx
o Jo

f KgpKhpdx- f
Jo Jo

<C3/j

for some constant C3 independent of p and j . Since (17) holds for
all # ; (7 > 1), this shows that (17) holds.

Since Δ[p](Δ[p]Δ[p])/ is anti-symmetric, we have

Δ[pϊ(Δ[p]Δίpϊ)/lΛ = O.

0

Hence, in the same manner as above, we obtain (18). Analogously,

we can replace Kgp by 1.

LEMMA 8. Let K be an anti-symmetric kernel of type 1. Then, for
any / > 0 ,

lim d2l(A[p] + K) (= d2l(A[oc] + K), say)
p—>oo

exists, and we can write

1

(19) ^2/(Δ[oo] + K) = Σ c?kdu-2k(K)
k=0

so that c{

2™
} (0<k< ι(m/2), m > 0) satisfy

(20) 4 M ) = 1 , c£k) = d2k(A[oc]) (m>0,k>0),

7=0
/ /m _ 1 \

, W>0
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Proof. We say that a 2/-tuple (τi, . . . , τ 2/), τ7 = ±1 is negligible if
there exist two integers jo, j ' o (1 < JΌ < iό — 2/) such that fo-jo - 1
is odd, τ, = - 1 ( Ό < 7 < 70) a n d τΛ-i = τj'0+i = * ( W e P u t

τo = τ 2 / + 1 = 1. Hence τ7o_i = 1 if j Q = 1, and τ ^ + 1 = 1 if
7"£ = 2/.) Let τ(Δ[p]) = - 1 (p > 2), τ(tf) = 1. Lemmas 6 and 7
show that d2/(Δ[oo] + K) exists and

= lim Σ ί K\K2'K2l_xK2l\ώc
(Kι,...,K2i),KJ=Δlp],KJ0

where Σ{p) is the summation over all 2/-tuples (K\, . . . , K2i), AΓ7 =
Δ[p], A: such that (τ(Kx),..., τ(^2/)) is not negligible. If (τ(AΓi),...,
τ{K2ι)) is not negligible, then K appears even times in (K\, . . . , K2Ϊ).
We can choose j \ < j 2 < • < 721/ so that Kj = K (1 < μ < 2v),

Kj=A[p] U £ ω j l i ) . Then 7 i - l , ^ + 1 - ^ - 1 (1 < JM < 2 I / - 1 ) ,

2/ - 72i/ are even. Notice that

= ί\κκyidx
7o

Thus we can write

/

d2i(A[oo] + K) = Σξ

k=0

Let κo be an operator defined by h e L2 -> (/J Λ cίx)^[o i) We put

v (Λ-\ &K?!?ldx (mis even),
[ fi(κo + tA[p])K{

p

m-ι)/2ldx (m is odd),

where KpJ = (κo+tA[p])(κo+tA[p]). Then Γoo,m(0 = limp^oo Yp,m(t)

exists, and c^ equals the ^^-coefficient of 1^,2/(0 Evidently, (20)
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holds. Since /J Δ[/?](Δ[/?]Δ[/?]y 1 dx = 0 {j > 0), we have inductively

= YP,2i-ι(t) + t f A[p](κ0 + tW\)Kι

p-J 1 dx
Jo

= YP,2i-ι(t) + t2 f A[p]W\K'P:} 1 dx
J ϋ

+ t3 f
Jo

= Yp,2i-ι(t)

ί\A[p]ΆJp~])2K'p^ldx
Jo

I

t4

Letting p tend to infinity, we have

7=0

In the same manner,

Thus
ι(m/2)

J=0

Comparing the ^^-coefficients of both sides, we obtain (21).

LEMMA 9. Let K be an anti-symmetric kernel of type 1. Then, for
any 0 < δ < 1,

lim γ*(δA[p] + δK) (= y*(<5Δ[oo] + δK), say)
p-+oo

exists; we write y*(JΔ[oo]) if K = 0. Moreover,

(22) y*(JΔ[oc] 4-

Proof. First we show that y*(£Δ[oo] + (5A:) and y*((5Δ[oc])
exist. Define y*{w Δ[p] + K), Γ ( ^ Δ[p] + ΛΓ) (^ E C/) for ε0 =
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(12 + 3||ϋΓ||L2 Li)~x in the same manner as in Lemma 5; we have

< (3\\A[p] + ^| |L2 Li)~x because ||Δ[p]||L2 Li < 4. Lemma 8 shows

that

lim w2ε^ / (A[p] + K)T(w A[p] + K)m+ι(A[p] + K)l dx
p^oo J

[oo] + K) (m > 0).J
Since (14) holds with K replaced by any A[p] + K (p > 2), (13)
exists with K replaced by Δ[oo] + K, i.e.,

(23) Kmγ*(w;Δ\p] + K) (= γ*(w Δ[oo] + K), say)
p—>oo

exists. Since

γ*{δ A[p] + K) = y*{δA[p] + δK) (p>2),

y*(JΔ[oo] + δK) (= γ*(δ Δ[cx)] + ΛΓ)) exists. Putting K = 0, we see
that y*(<JΔ[oo]) exists.

Next we show that γ*(w Δ[oc] + K) and γ*(γ*(w Δ[oc])tί; K)
are analytic in a domain containing (0, 1]. The convergence of (23)
is uniform in U. By Lemma 5, γ*(w A[p] + K) is analytic in U,
and hence γ*(w Δ[oc] + ̂ Γ) is analytic in U. The definition of y*( )
immediately shows that

γ*{Rew Δ[p]) = γ*(RewA[p]) < 1 (tu G J7).

Letting /? tend to infinity, we have γ*(Rew Δ[oo]) < 1 (w e U).
Since y*(w Δ[oo]) is analytic in C/, there exists 0 < η < π/8 such
that

\y\w Δ[oo])| < ^ , | a r g } ; * ( ^ Δ[oo])| < |

in Uη = {w e C; |u>| < 4/3, | argTI;| < η} . Then y*(u>; Δ[oc])κ; G C/
(w G C/̂ ). Thus, by Lemma 5, γ*(γ*(w A[oo])w AT) is analytic in

uη.
By the theorem of identity, it is sufficient to show that (22) holds

for 0 < δ < (8 + 2| |#| |L2 ^ Γ 1 . Since
lim d2!(δA[p]) = lim d2ι(SA[p] + δK)=0,

(12) holds for δA[p], (5Δ[p]+(5i^ (p>2). Letting p tend to infinity,
we have

1=0 1=0
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oo

7*(JΔ[oo] + δK) = Σδ2ld2l{Δ[oo] + K).
1=0

Let

£=0

where cffl (0 < k < ι{rn/2), m > 0) are numbers in Lemma 8. Then

by (20). Equality (21) yields that

oo k

&=0 7=0

oo

= Σ S2jd2j(A[oo])
7=0 k=j

which gives

μm = μTl = 7*(SA[oc))m+i (m > 1).

Thus, by (21),

OO

2 lγ*(SA[oo] + δK) = Σ δ2ld2ί(A[oo] + K)
1=0

oo / oo oo

= Σ δ21 Σ c(

2fd2l_2k(K) =
1=0 k=0 k=0 l=k
oo oo oo

k=0j=0 7=0
oo

2 ι 2 J = γ*(δA[oo))γ*(f(δA[oo])δK).

LEMMA 10. We inductively define a sequence (yl)™=x of positive
numbers by

y\ = f(Δ[«,]), γ*n = y:.,r ( t , Δ M ) (« > 2).
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Then

lim lim lim γ*(H[p\, . . . , pn] - H) = γ* (n > 1),

where lim^ -̂ oo is taken first and li

)£Lj ofpositΰ

(n > 2) of integers

is taken last.

Proof. We define a sequence {λn)™=x of positive numbers by λ\ =
7*(Δ[oo]), λn = y*(Ai...λΛ_,Δ[oo]) (n > 2). Then y*n=λx---λn

(n > 1). Fixing an (n - l)-tuple (/?i, . . . , ̂ n_i) (n > 2) of integers
larger than or equal to 3, we study

lim γ*(H[pι,...,pn]-H)
pn->oo

= l i m y ( Δ [ p ! , , / „ ] { \ p x , , p n { \

P»-i)) (0 < 7 <

Δ[p! , . . . , / ? „ ] + {H\px,..., pn_{\ - i / ) ) .

Put 70 = [0, l/(Pi •••/>„-!)), // = (/o

(Pi A i - i ) - 1) Then

... , pΛ_i] -

\{H\px,...,Pn^]-H){x,y)\

2 1 1
< -Pi • Pn-\ + -

= 0 (x, y G /,-),

-• _ • (xelj,yelk,j

which shows that H[px,... , pn-\\ -H is of type 1. Let

Δ'[pi, . . . , p«](x, y) = Δ[pi, . . . , pn](x, y)χ y fl

Δ'

7=1
'JΊ V

^ = ϊ(log(p!...pΛ)). Then

, ... , p Λ ] - Δ ; [ p i , ... ?JP«]||L4 L4 = 0 ?

= 0lim

(cf. Lemmas 6 and 7). Since

Δ /[pi,.. ., Jp,](x ?>;) = Δ'

Δ
n

7=1

- Δ '

7=1
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lim
O—OO

Δ [ p i , . . . , / ? „ ] - Δ
7=1

= l im

L\L2

= 0,

and hence, in the same manner as in the proof of the existence of
(23),

l im γ*(A[pι ,...,pn] + {H\pλ, ... , p n _ x ] - H))

= lim γ* A
P n -HX>

7=1

(H\pι,...9pn-l]-H)\.

Using (22) with δ = 1, K = H\px, . . . , pn-\] - H, we have

l im γ*{H\px ,...,pn]-H) = y*(Δ[oo] + (H[p{, ... , ̂ . J -
/ 7 ^ O O

In the same manner, using (22) with δ = λ\, AT = //[/?!, . . . , pn-2] -
H, we have

lim lim y*(Jf[pi, . . . ,A,]-/T)

= λ1y (A1Δ[oo])y (y*(A1Δ[cx)]μ1(/Γ[p1, . . . ,pn-2]-H))

= λιλ2γ*(λιλ2(H\pι,...9pn-2]-H)).

Repeating this argument,

l i m l i m γ*(H[px , . . . , p n ] - H )

= λ i λ Λ _ i l i m γ * ( λ ι - - - λ n - ι A \ p χ ] ) = λ ι . . . λ n = γl.

This completes the proof of our lemma.

We now give the proof of our theorem. By Proposition 2, there
exists a positive integer HQ such that

(24) sup y(Γ(pi, . . . , pn)) < 10"5 (n > n0),

where the supremum is taken over all n-tuples (p\, . . . , pn) of in-
tegers larger than or equal to 3. By Lemma 10, we can inductively
choose a sequence {p^)^Lx of integers larger than or equal to 3 so that

\fn < γ*(H[po

ι,...,p°n]-H) < 2γ*n (n > 1),
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where (y^)£Li is t n e sequence in Lemma 10. We show that Γn =
Γ(p^, ...,p®) (n > 1) are required cranks. We may assume that
Π>ΠQ. Lemma 3 shows that

\y*{H\p°x ,...,p°n]-H)< y (tf[p°, . . . , p°n])

<4γ*(H[p°ι,...,p
0

n]-H),

and hence

l
Thus, by (11),

(25) ±γ*n < γ(Tn) < ^γ*.

Using (24) and (25), we have γ* < 8π 10" 5 . Recall (15), and notice
that ί/2/(Δ[oo]) <4ι (/ > 1). Since lim^ d2ι(γ*nA[p]) = 0, (12)
holds for γΐ,A[p]. Letting p tend to infinity, we have

U 7>*(7«Δ[oc]) = y*

/=o

]) < fn - ^
1=0 z : > π 1=2

γ*n - 10y* < y*+1 < γ*n - 10~37*.

Since this holds for all n > ΠQ , a simple induction yields that

77—7= < y*n < C4-j= (n > n0)
C4 /n /ϊl

for some absolute constant C4 . Using (25) again,

1 1 <lc^ (n>n0).

This completes the proof of our theorem.

REMARK 11. It is not known whether γ(-) is semi-additive [4, p.
11]. For 0 < η < 1, we define B^(x) replacing 1/2/7 by η/2p in the
definition of Bp(x). Then cranks Γ^(pi, . . . , pn) of degree n are
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analogously defined. We see that there exists a crank Γ^ of degree
n such that y(Tη

n) < Cnj\J~h, where Cη is a constant depending only
on η. Adding some segments (perpendicular to the x-axis) to Tη

n,
we obtain an arc f η

n connecting 0̂  and 1. Then the diameter of Tη

n is
larger than or equal to 1. Since Yη

n is connected, y(Π) > 1/4 [4, p.
9]. Hence, from the point of view of the above semi-additive problem,
it seems interesting to compute y(Tη

n - Tη

n).

4. Another application of Proposition 1. In this section, we show
another application of our method. Let E be a compact set on R.
Pommerenke [11] showed that

(26) γ(E) = \E\/4,

We deduce (26), (27) from (3), (10); our method explains a quarter
and (27). Let L2(R) denote the L2 space of functions on R, and let
ME denote the multiplier: h e L2(R) —> χh e L2(R), where χ = XE •
We inductively define a sequence (H^)^=o of operators from L2(R)
to itself by H^ = ME , H{

E

m) = HMEH{

E

m'ι) (m > 1). Notice that

d2l(MEHME) = ί Hf]χdx (/ > 0, χ = χE).
J E

We also remark that

(28) H(g Hh) + H(Hg h) = Hg.Hh-gh (g, h e L2

We first show that, for any m > 1,

(29) χHχ • H(

E

m)χ = (m + 1 ) ^ 4 W + 1 ) / + mχH^-^χ.

Equality (28) shows that 2H(χHχ) = (Hχ)2-χχ, which gives χHχ •

H{

E

ι)χ = iχHψχ + χH^χ. Suppose that (29) holds for m. Using

(28) with g = χ, h = χHE

m)χ, we have

χHχ • HE

m+l)χ = χHχ • H{χHf\)

^χ) + Hχ • χH^χ} + χ{χ χHE

m)χ)

χH{(m + l)χHE

m+ι)χ + mχH^χ} + χHE

m)χ

= (m + 2)χHE

m+2)χ + (m + 1 )χHE

m)χ, i.e.,
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(29) holds for m + 1. Thus (29) holds for all m > 1.
We next show that

(30) fH(£l)χdx = ̂ ι\E\ (/> 0).

We put a2l = JEH^l)χdx (/ > 0). Evidently, a0 = \E\. Suppose
that a2i-2 = {(-1) /"V(2/- 1)} |^ | . Equality (29) (m = 21- 1) shows
that

Γ Γ Γ
I tτ v rχ(2/-l) - ? / / zj(2l) J , n i n / ET(2/-2) J
I tiχ ' Γih X CDC = Zl I iig / uX + Ẑ/ — ϊ) I ίih / wlX

J£ J£ j £

= 2la2ι + (2l- l)α2/-2

Since the adjoint operator of // equals - 7 / , we have

/ Hχ.HW-ι)χώc = - f H{χHψ-λ)χ}dx = -a2l.
JE JE

Thus -a2ι = 2la2ι + (2/ - l)#2/-2» which yields that

2 / - 1 (-I) 7 , , , ,
a2l = '2iTϊa2l-2 = 2ΰϊlEl

Now the deduction of (26) is immediate. By (30),

lim d2l(MEHME) = lim f HE

2l)χ dx = 0.
I—>-oo /—>oo JE

Hence we can apply (3). Leibniz's formula and (30) yield that

y{E) = ±γ*(MEHME) = \

Last, we deduce (27) from (10). Equality (10) gives that

fE(z) = — < / — h / E _ ώ > / < 1 + - / E_ c

where hE(s) is the function which attains γ*(MEHME). We show
that this equals the function in the right-hand side of (27). Let

«„(*) = 1, um(z)=X- * X

7

{)ds,
π JE s ~ z
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where H^^χ = χ . Let

oo

t\z) = y i Uγγι\z) \i E vL, \t\ < i).

We begin by showing that

(31) (1 + t2)§-tPt(z) = ux{z)Pt{z) (0 < / < 1).

Let m>\. We have, on R,

\im{um+ι(+ iη) + v

= H(χH{

E

m)χ) + /;

+ H{χHχ H{

E

m~ι)χ} + iχHχ . i / ^ " 1

= H{χH{χH^-λ)χ) + Hχ ^ w " 1 ) / }

+ /{Z//α4m-1 )χ)+//χ.

limwi( + iη)um(' + iη)

= {Hχ + iχ}{H(χH{

E

m-ι)χ) + i

Hχ • χHE

m~x)χ}.

Hence (28) (g = χ, h = χHE

m~l)χ) shows that

lim{«m+i( + iη) + vm+ι( + iη) - u{(- + iη)um{- + iη)} = 0

on R. In particular, this holds on R — E. Hence, by the theorem of
identity, um+x{z) + vm+ί(z) - U\(z)um{z) = 0. Equality (29) shows
that υm+ι(z) = mum+x{z) + (m - l)um-\[z). Thus

(m+ \)um+ι(z) + (m - l)um-ι(z) - uι(z)um(z) = 0 (m > 1),

which yields that

oo oo oo

tmu(z) + t2Σ ™tmu(z) = tux (z) j ^ tmmtmum(z) + t2Σ ™tmum(z) = tux (z) j ^ tmum(z), i.e.,
m=0 m=0 m=0

This is the required equality (31).
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We can choose XQ G R - E, η > 0 so that Pt(x) > 0, MI(JC) > 0
for all x e (x$ - η, Xo + */) > 0 < ί < 1. Equality (31) shows that

= — Pt(x)/Pt{x) (xe(xo-η,xo + η), 0 < ί < 1),
1+

which gives that

because Po = 1. By the theorem of identity,

" ds

Since P?(z) and exp{(/o

r(ί/5/(l+52))w!(z)} are analytic in the unit
disk as functions of /, this equality holds for - 1 < / < 0 also. Thus

oo .
l { ) li

1=0

π JE s- z

= lim
t]

_ 1

1 f ds If H{

F

ι)hE(s) J 11 f ds If
π j E s - z πjE

= 2

which gives (27).

E s - z 2

ί ( f ( ) ) " exp (f
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