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A CLASS OF CONSISTENT ANTI-MARTIN'S AXIOMS

JOHN W. L. MERRILL

Both the Continuum Hypothesis and Martin's Axiom allow induc-
tive constructions to continue in circumstances where the inductive
hypothesis might otherwise fail. The search for useful related axioms
procedes naturally in two directions: towards "Super Martin's Ax-
ioms," which extend MA to broader classes of orders; and towards
"Anti-Martin's Axioms" (AMA's) which are strictly weaker than CH,
but which, when combined with ->CH, deny MA. In this paper, we
consider restrictions of van Douwen and Fleissner's Undefinable Forc-
ing Axiom which are consistent with the negation of the continuum
hypothesis.

1. Introduction. Baumgartner proposed an Anti-Martin's Axiom
that he referred to as "The Complete Failure of Martin's Axiom,"
which asserts that for each c.c.c. order, there is a collection of ω\
dense subsets of that order which cannot be met by any filter. This
axiom is clearly an AMA; it follows from CH, is consistent with ->CH,
and, in conjunction with the negation of CH, implies the failure of
MA. Unfortunately, a collection of essentially random subsets of a
c.c.c. order yields only a very weak inductive capacity.

Another, less well-known, Anti-Martin's Axiom was introduced by
van Douwen and Fleissner. Analyzing a model introduced by Bell
and Kunen, they extracted an axiom they referred to as "The Definable
Forcing Axiom," which captures some of the properties of that model.
In this paper, we examine several other axioms closely related to DFA
and capturing other facets of this model.

2. Notation and definitions. We assume that the reader is familiar
with the terminology and notation of Martin's axiom and of iterated
forcing. A good reference for the former is [9] or [5]; good references
for the latter include [6] and [7].

All forcing-related axioms refer, however indirectly, to the notion
of a generic filter through a partial order.

DEFINITION 2.1. Let Jί be any model of ZFC, and let P E / be
any partial order. & is an Jt-generic filter over P if & is a filter in
P , and if, for each ^ c P which is dense, 3F Π 2 φ 0 .
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For our purposes, the essential definition in [4] is that of an α-
generic sequence of filters. Since it is impossible for a non-trivial
generic filter to exist, van Douwen and Fleissner examined sequences
of filter which were cumulatively generic.

DEFINITION 2.2. Let P be a partial ordering, and let α be an
ordinal. An a-generic sequence of filters over P is a sequence of filters,
{&β: β E α), such that for each dense ^ c P , there is a ζ e α such
that for each β€(ξ9 a),3m&β φ0.

In this paper, we will consider a still weaker version of genericity.
Instead of studying the α-genericity of sequences of filters, we will
study the α-genericity of sequences of centered families.

DEFINITION 2.3. Let P be a partial order, and let J c P , Call
& centered if and only if every finite subset of & has a lower bound
in P .

DEFINITION 2.4. Let P be a partial ordering, and let α be an ordi-
nal. An a-generic sequence of centered families over P is a sequence
of centered families, (fy: β £ α) , such that for each dense S ' c P ,
there is a ζ e α such that for each β e (ξ, α) , 3fC\&βΦ<ΰ.

A sequence of centered families is α-generic if and only if every
dense subset of the partial order in which they are embedded is even-
tually met by the members of the sequence. In this paper, when we
refer to an α-generic sequence, we shall mean an α-generic sequence
of centered families, not an α-generic sequence of filters.

In [4], van Douwen and Fleissner propose the following axiom, there
referred to as the Undefinable Forcing Axiom (UFA):

Axiom 2.5. Over each c.c.c. partial order of cardinality no greater
than c, there is an ωi-generic family of filters.

Todorcevic observed that this axiom implies the continuum hypoth-
esis. His proof, however, depends essentially upon the fact that the
axiom guarantees the existence of a family of filters, and says nothing
about the existence of families of centered families. Therefore, this
paper studies a weaker form of UFA:

Axiom 2.6. Over each c.c.c. partial order of cardinality no greater
than c, there is an ω\ generic family of centered families.

Abusing notation, Axiom 2.6 will be referred to as UFA throughout
this paper. This conflation of different axioms is justified by the cir-
cumstances in which they are applied. Either UFA is interesting only
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insofar as it applies to forcing constructions—and, when so restricted,
the two axioms are equivalent. To show this, we need a somewhat
non-standard definition.

DEFINITION 2.7. A partial order P is well-met if and only if every
compatible pair, /? e P and <? E P, has a greatest lower bound.

LEMMA 2.8. If P is a well-met partial order, and Ψ is any centered
family contained in P, then there is a filter SF D %*.

Proof. Set

(1) F = I p e P: (3k G ω)(3q{, ... , qk e V) I f | qt< p

Since f is centered, every finite set of its elements has a meet. It is,
therefore, evident that & consists of pairwise compatible elements,
and that for any finite set of elements of SF, there is some element
extending all of them. Moreover, & is closed upwards, and extends
^ , as desired. D

THEOREM 2.9. If P is a well-met partial order, then there is an ω\-
generic sequence of filters over P if and only if there is an ω\ -generic
sequence of centered families over P.

Proof. The forward implication is trivial—any ω\ -generic sequence
of filters is already an ωi-generic sequence of centered families.

To prove the reverse implication valid, let (ffa: a e ωi) be an
cύ\-generic sequence of centered families. Let («^: α E ωi) be a
sequence of extensions of these families to filters. Observe that if any
one of the centered families meets any fixed dense set, then so does the
filter extending it; thus, (SQ is an ω\-generic sequence of filters, as
desired. D

It is well known that every partial order embeds as a dense sub-
order of a well-met partial order of the same cardinality. (Just adjoin
all formal meets of finite sets of compatible elements.) Moreover,
it is known that most of the order-theoretic properties of the original
partial order are inherited by the superstructure, and that among these
are the countable chain condition, σ-centeredness, (σ, /c)-linkedness
for any k , and similar properties.

As a consequence of this inheritance, and of Theorem 2.9, Axiom
2.6 for all c.c.c. partial orders is equivalent to Axiom 2.5 for all well-
met partial orders, and the same equivalences hold for weakenings
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of these axioms. Since two orders are forcing-equivalent whenever
they both embed densely in some larger order, it is acceptable to call
Axiom 2.6 the Undefinable Forcing Axiom, since any application of
Axiom 2.5 to construct a structure by internal forcing can be recast as
an application of Axiom 2.6 to a well-met superorder of the original
order.

In van Douwen and Fleissner's paper [4], the authors examined
the properties of an axiom they refer to as DFA, which asserts the
existence of ωi-generic sequences of filters for each c.c.c. partial order
definable from a formula, and, possibly, a single real. Among the
orders which can be defined in this fashion are the measure algebra
and the Cohen order, for instance. There are, however, relatively well-
behaved orders which are not covered by this definition, such as the
order which adds a new subset of ω which is almost contained in
each element of a filter on ω. These orders will be covered by the
axioms discussed here.

DEFINITION 2.10. Let P be any partial order.

• F c P is Λ -linked iff for each M c F with \M\ = k, there is
a QM € P such that for each p e F, qM <p.

• A partial order is said to be σ-centered if it can be decom-
posed into the union of countably many centered families of
elements.

• A partial order is (σ, A:)-linked if it can be decomposed into
the union of countably many fc-linked families.

Observe that orders which are σ-centered or (σ, fc)-linked for some
k are c.c.c. The purpose of this paper is to show that UFA is consistent
with the negation of CH when it is restricted to such orders.

3. Consistency results. The Bell-Kunen model was originally con-
structed to prove the consistency of a certain property of the Cech-
Stone compactification of ω. (That all points in the remainder ω*
have 7r-character ω\.) We shall use it to prove the consistency of sev-
eral weak forms of UFA, all of which imply the same combinatorial
result.

DEFINITION 3.1. (The Bell-Kunen Model.) Let ^ be a model of
ZFC. By induction on ω\, define a forcing extension of J£ by a c.c.c.
order. For a = 0, let P o = 0 . For a e ωx, let Qa be a P α name
for an order such that 1 Ihp̂  " Qa is a c.c.c. order forcing MA and
adding at least c+ reals." Let Pα+i = P a * Qa - For a a limit ordinal
less than or equal to ω\, let P α be the direct limit of the sequence
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of preceding P^ 's. P ω is a Bell-Kunen order for Jί. The sequence
((Pα |α G ωx + l)(Qα |α G ωi)) is a Bell-Kunen iteration for <£ .\i G
is PWi-generic over Jΐ, then ^ [ G ] is a Bell-Kunen model constructed
over J£ (referred to as the Bell-Kunen model when the reference is
clear).

Lemma 3.2, the essential technical lemma, states that if we are pre-
sented with a well-met partial order which can be "nicely" decom-
posed in the intermediate extensions, then the approximations in the
intermediate stages will be "good enough" to generate an a>\ -generic
sequence of centered families of elements of the final order. The sets
Xa are the universes of the approximations to the order. The ordinals
ξa are the stages at which the decisions about the structure of the order
close on themselves sufficiently that the centered families generated in
the approximations are guaranteed to be "generic enough" in the final
order.

LEMMA 3.2. Let < be a Vωχ-name and let γ be an ordinal such that

(2) l l h " y < c , "

and

(3) 1 If- " < is a c.c.c. partial ordering ofγ."

Also, let {Xa: a G co\) be a sequence of ground model sets, and let
(ξa: a e co\) be a sequence of countable ordinals. Assume that for
each a e co\ and for each Jt-generic filter over P, &, the following
conditions hold in the extension

• Xa cXα+i c γ.
• Ifaeω{ and F e [Xa]

<ω > then if

(4) (3p G 2?)p Ih "(3α G γ){Vξ G F)(a<ξ)"9

then

(5) (3/7 G ̂  Π Pξ )p Ih "(3a G y)(V£ G F)(a < ξ)".

Then for any %?', an Jt-generic filter over Pωι, Jί\%'\ contains an
ω {-generic sequence of centered families over the partial order (γ,

Proof. For each a G ω\, let

(6) σa = {(p,F):peFωι,Fe[Xa]
<ω, and

ph"(3aeγ)(\/ξeF)(a<ξΓ}.
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Observe first that σa is a Pω i-name which can be viewed as a P<* -
name, by hypothesis. That is, considering the name

(7) τa = {(p,F):peFζa,Fe[Xa]
<ω, and

ph"(3aeγ)(VζeF)(a<ζΓ)}

one sees that if %? is ^-generic over P, then for each F E [Xα]< α ί,

(8) ((3p e *)p Ih "F E σa") & {(3q e(^Π PξJ)q Ih «F E τQ»)

Therefore, the set defined (in the final extension) by σa is already
added by stage ξa.

For the nonce, let us work in ̂ £[^], where %? is some arbitrary
^-generic filter over P W i . Observe that the set σa\%?\ is partially
ordered by reverse extension. Moreover, observe also that the resulting
partial order has the countable chain condition. Let Y E [σa[^]]ωι.
For each F E Y, let ξf be such that for each ζ E F, ξf < ζ. (Note
that the existence of such a ξf is guaranteed by the membership of
F in σa , but that the values of the individual minima may well not
be computed at that stage. Thus, this selection must be performed in
the final model.)

Since (y, <[<#"]) is known to be c.c.c, there must exist finite sets
F E Y and G E Y such that ξf and ξg are compatible relative to
<μF]. By definition of σa , then, (FuG)e σa[J^], F c (F U G) and
G c ( F u G ) , witnessing that Y is not an antichain in σa[^]. Since
possessing the countable chain condition is inherited downwards, σa

is c.c.c. in all intermediate models in which its members are decided.
Moreover, since \σa\ < c, there is some ζa < ω\ at which a

Jt[^ Π Pζ ]-generic subset is added to (σa, D) . Denote that set by
XT*. Let

(9) ^a = {βeγ: (3Fe^a)(\/ξ e y)[((VC 6 F)(ξ<ζ)) => ({

where the truth or falsehood of the expression in Equation (9) is com-
puted in the final extension, not in the intermediate model.

These (the sequence (9a' a Ξ ωύ) form an ω\-generic sequence
for (y, <[^]) in ^ # [ ^ ] . To prove this, two facts must be demon-
strated: first, that each &ά is centered, and, second, that the sequence
(&a) is ωi-generic.

To show that each SΓa is centered, let F E ψa\<ω. For each β e
F, let Fβ E β& witness the membership of β in 3^. Since %?a is
a filter in (σa, 2 ) , and since //*#/ order is a well-met partial order,
UβeF Fβ ̂  ^α By definition of σα , then, there must be some element
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of γ which extends each β G F relative to <, proving that <9ζ is
centered.

To prove that (&ά) is ω\-generic, a certain correspondence must
be exhibited: to each dense ^ c j (dense in the partial ordering
specified by <[%Ί) must be assigned an a& G ωγ such that for each
β>a99&an&φ0.

Towards this end, let 2 c γ be dense in Jΐ\%f\. Let

(10) A = {ae3f: (Vβ G 9f)(μ φ β => a * W]β)}.

Observe that A is a maximal antichain in (y, <[^]) , and, therefore,
is countable. Let δ e ω\ be large enough that A e Jt[^ nl*s] a n d
AcXs Let α^ = max(<J, ξδ).

Let C G ωi be an arbitrary ordinal such that ζ# < ζ - Since A is
an antichain in (γ, <[^]) , 4̂' = {{^}: α G ̂ 4} must be an antichain
in {σζ9 D). Thus, Sdζ (defined above) meets A! \ let {β} be this
intersection. (This set is a singleton because A' is an antichain.)

Since {β} €<%ζ, β is a member of ̂  , by definition. By construc-
tion of A', βeA; since A C ̂ , β e2J.

Thus, for every C > α ^ > ^ Π ^ ^ Θ , and, therefore, ψa: α G
ωi) is ωi-generic over (y, <[%*]), for any ^-generic set ^ , as de-
sired. D

LEMMA 3.3. Let k G ω, αnrf suppose that P can 6e decomposed
into a countable union of k-linked families as

Lei F be any non-empty subset of P with \F\ < k. F has a lower
bound in P if and only if

(12) (3n G ω)(Vp G F)(3q < p)(q G Lk

n).

Proof. (=>) Assume that F has a lower bound in P , and let p
be any such. For some n, p G L£, and that L^ is a witness to the
validity of (12).

(<ί=) By (12), select an n eω and, for each p eF, select a qp <p
with qp e L% . There are no more than A: different ^ 's, and they all
belong to a )c-linked family, so they must have a common refinement
in P . That common refinement of {gp: p G F} is also a common
refinement of F as was desired. D

THEOREM 3.4. In the Bell-Kunen model UFA holds for orders which
are (σ, k)-linked for each k in ω.
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Proof. Let < be a Pω i-name for a partial order on some γ < c which
is (σ, A:)-linked for every k in ω . For each such k, let (Λ,̂ : n e ω)
be a sequence of names for subsets of γ witnessing that < is (σ, k)-
linked; that is, such that each k e ω,

(13) lh"{Mkeω) \J λk

n = γ"
neω

and, moreover, such that for each k e ω and each neω,

(14) l l h " 4 i s ( σ , £

As before, let us work in the extension for a short while. Let %? be
^-generic over P W j . We define a function, f:γxωxω->2 by

{ 1 if there is some β eγ such that β < [J^]a

andβeλ*ir]9

0 otherwise.

Let φ be any Pω i-name for this function.
Since P W i is c.c.c, we can compute an a priori upper bound for

how long it takes to decide the values of each of these names. Using
this upper bound, let p: γ —• ω\ be a ground model function such
that for each a e γ, each k e ω, each neω, and any ^-generic

(16) tt3peS?)p\\φ(a9 n,k))o ((βp e (S?nPp(γ)))p\\φ(a9 n,

Let (γa: a e ω\) be an increasing sequence of ordinals strictly less
than c, the supremum of which is γ. For a e ω\, let

(17) Xa = {βeγa:p(β)<a}.

Letting ξa = a for each aeωx, the sequences (Xa) and (ξa) are
as required in the hypotheses of Lemma 3.2. Since Xa is a subset of
γa, the cardinality of Xa is always less than c. It is clear from the
definition that for each a e ω\, Xa c Λfα+i C y. It only remains
to show that comparability relative to <[%*] of elements of Xa is
decided by elements of Pa

By Lemma 3.3, group wise comparability of some finite F c Xa is
equivalent to the various members of F having extensions belonging
to some λ\\%f\ for some A: > | ^ | . By definition of φ, this is equiva-
lent to proving that for neω and some k e ω with \F\ <k, there
is some p e %? such that

(18) p\V "(Vα e F){φ(a, n , k) = 1)".
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It thus remains only to demonstrate that there is a p G β? satisfying
(18) if and only if there is a p e {& Π Pα) satisfying (18). This is
precisely the import of Equations (16) and (17).

Thus, (Xa: a € co\) satisfies the hypotheses of Lemma 3.2, and,
therefore, UFA holds for <. D

We have the following immediate corollary.

COROLLARY 3.5. UFA (σ-centered) holds in the Bell-Kunen model

Merrill [8] has shown that UFA fails for orders of cardinality ω2
in the Bell-Kunen model. Lemma 3.2 shows that is the best possible
result.

THEOREM 3.6. UFA holds for orders of cardinality ωx in the Bell-
Kunen model

Proof. Let < be a Pω j-name for a c.c.c. order on ω\. Let Xa =
a + 1, and let ξa be any countable ordinal which is large enough to
guarantee that for each finite F c a, the compatibility or incompati-
bility of the members of F is decided by stage ζa . Applying Lemma
3.2, we obtain the theorem. D

4. Cardinal consequences of weak forms of UFA, In their paper, van
Douwen and Fleissner [4] observed that UFA has interesting conse-
quences contrasting strongly with those arising from MA. For instance,
DFA implies that the reals are the union of a>\ null sets and of ω\
sets of first category. UFA, by contrast, implies that the continuum
has cofinality ω\, and that for each uncountable K < c, 2K — 2C.
(Notice how different this is from the situation under MA.) In all but
one of these cases, van Douwen and Fleissner's original proof goes
through essentially unaltered using the conclusions of Theorem 3.4
instead of either DFA or UFA.

The proof that the reals are the union of ω\ sets of first category
if the conclusions of Theorem 3.4 hold consists mostly of observing
that measure algebra is (σ, k)-linked for each /c, and that an ω\-
generic sequence through the measure algebra adds an ω\ sequence
of first-category sets which cover the real line. Similarly, the proof
that the reals are the union of ω\ null sets in any model in which
the conclusions of Theorem 3.4 hold consists of the same argument,
with "Cohen algebra" substituted for "measure algebra" and "null set"
for "set of first category". The only differences between van Douwen
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and Fleissner's proof and ours is that it is often easier to show that an
order is (σ, &)-linked than it is to show that it is real-definable.

Similarly, van Douwen and Fleissner's characterization of the con-
tinuum function under UFA also follows from the conclusions of The-
orem 3.4, or even the conclusion of the weaker Corollary 3.5. One of
their two proofs goes through completely unaltered; the other requires
some work. To demonstrate that the confinality of c is ω\, for in-
stance, van Douwen and Fleissner observe that every non-principal
ultrafilter on ω has small π-character if UFA holds, and then invoke
a result of Kunen's to prove that cf(c) = ω\. That proof goes through
unaltered using UFA ( σ-centered) instead of full UFA.

One of their proofs does not quite go through unaltered. The proof
of Lemma 4.2 presented in [4] employs an order which is not obviously
(σ, £)-linked for each k. For completeness, therefore, the following
version of their proof is presented here. This version makes use of an
order which is not only (σ, /c)-linked for each k , but even σ-centered.

We shall require the following definition:

DEFINITION 4.1 The ωi-Borel sets over a topological space 5^ are
the members of the least family of subsets of that space containing all
the members of @{!T) and closed under complement and union or
intersection of subfamilies of cardinality no more than ω\.

LEMMA 4.2. Assume the conclusions of Theorem 3.4. Then every
subset of the reals is an ω\-Borel set.

Proof, Let X be a subset of R. Let P^ be a σ-centered order
making X a G$ in the extension, i.e.

(19) Px

each %i is a finite union of open, rational intervals,

Xi e [R\X]<ω, and (Vι < ή) I % Π I ( J Xj \ 1 = 0

ordered by reverse inclusion on the common factors:

(20)
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if and only if

(1) k>l,

(21) (2) for each j<l,&jD3η, and

(3) for each j < I, Xj D Yj.

Observe that ¥χ is σ-centered, and that

(22)

{p = (pr %-M ;X))}V"

Let ( f α : a e ω i ) be an ω\-generic sequence for Px. For a E ω\,

let Ga = (f)ieω U{24: (3p e &a)ip = (% • • %-\%i X))}) •

Claim. X = [Jaeωι(ffβlaGβ).
If y φ X, then there is a tail of the filters hitting the dense set

of conditions forcing that (3j G ω)y £ Xj thus, for each a G ω\,
Π^l α ^ ^s a s u ^ s e t of Z . If x G X, then there is a tail of the filters
which, for each n , hit the dense set which says (3p G Γ)(x G 2 # ) , or,
equivalently, there is a tail of filters such that x e Ga. •

COROLLARY 4.3 (wm Douwen and Fleissner, see [4]). Assume UFA
for σ-centered partial orders. Then 2C = 2ω i .

Proof. There are 2C subsets of the reals, and only 2ωi ωi-Borel
sets. Thus, 2ωi > 2C of course, 2C > 2 ω i . D

5. Conclusions and open questions. Kunen (pers. comm.) has char-
acterized the structure of the unsplit Hausdorίf gaps in the Bell-Kunen
model.

THEOREM 5.1 (Kunen). In the Bell-Kunen model, every unsplit Haus-
dorffgap is a (K , ω\)-gap for some K < c.

It can be easily shown that this result follows from Lemma 3.2,
because there is an order which splits an unsplit Hausdorff gap the
members of which consist of finite sets of members of the gap, order
thereon being decided purely by the elements of the members of the
gap.

Baumgartner [2] points out that this order has precaliber ω\ in
every case where Theorem 5.1 applies, and, therefore a more direct
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proof of the theorem would follow from UFA restricted to orders with
precaliber ω\. The present author has been unable to find either a
proof or a refutation of this axiom in the Bell-Kunen model. It would,
therefore, by very interesting to resolve the truth or falsehood of the
following assertion:

Conjecture 5.2. In the Bell-Kunen model, UFA holds for all c.c.c.
partial orders with precaliber ω\. (Or, in fact, for all c.c.c. partial
orders with property K.)

We have presented several restrictions of UFA which are consistent
with the negation of the continuum hypothesis, and we have shown
that they have non-obvious consequences for the structure of the con-
tinuum. Along with the truth or falsehood of Conjecture 5.2, it would
be interesting to know the answers to any of the following open ques-
tions.

1. Is UFA restricted to orders of cardinality u>2 consistent with the
negation of the continuum hypothesis?

2. Is the negation of CH consistent UFA for c.c.c.-productive or-
ders?

3. Is UFA restricted to σ-linked orders consistent with 2ω > ω\ ?
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