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AMENABILITY OF DISCRETE CONVOLUTION
ALGEBRAS, THE COMMUTATIVE CASE

N I E L S G R Θ N B Λ E K

A Banach algebra 21 is called amenable if all bounded derivations
into dual Banach 2l-modules are inner. Let S be a semigroup and let
lι(S) be the corresponding discrete convolution algebra. This paper
is on the theme: "On the hypothesis that lι(S) is amenable, what
conclusions can be drawn about the (algebraic) structure of S ?" We
give a complete characterization of commutative semigroups carrying
amenable semigroup algebras. If S is commutative, then lι(S) is
amenable if and only if S is a finite semilattice of groups, that is,
there is a finite semilattice Y and disjoint commutative groups GQ

(a e Y) s u c h t h a t S = \JaEY Ga a n d GaGβ C Gaβ ( a , β e Y ) .

The theme above has previously been studied in [3] and [4]. In
both papers it is apparent that the condition of amenability imposes
strong algebraic constraints on the semigroup. In [3] a rather com-
plete description of inverse semigroups carrying amenable semigroup
algebras is given. Of particular interest for this paper is that a semi-
lattice carries an amenable semigroup algebra if and only if it is finite
[3, Theorem 10]. In [4] it is proved that, if a one-sided cancellative
semigroup carries an amenable semigroup algebra, then it is a group.
The result of this paper, that for a commutative semigroup S, the
semigroup algebra lι(S) is amenable if and only if S is a finite lat-
tice of groups, is proved by looking at the gross structure of S by
means of the "principle of maximal homomorphic image of a given
type". Using the fact that homomorphic images of S carry amenable
semigroup algebras when S does, we establish the necessity of the
characterization by showing that each archimedean component of S
is a group. This is obtained by applying the results from [3] and [4],
mentioned above, to the maximal semilattice, the maximal cancella-
tive, and the maximal separative homomorphic images of S. The
sufficiency of the characterization is easily verified. Alternatively, it
follows from [3, Theorem 8].

1. Preliminaries. We shall need some elementary semigroup the-
ory. We prefer to keep our exposition self-contained, so although
most of what follows can be found in standard texts on the subject,
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we shall, with a few exceptions, give proofs in some detail. For a
further discussion the reader is referred to [1]. Throughout S will
denote a commutative semigroup, with the binary operation written
multiplicatively.

1.1. DEFINITIONS. Consider the following conditions on S:
(A) Each element of S is an idempotent.
(B) For all s, teS there is n e N such that

sn e tS and tn e sS.

(C) s2 = t2 = st => s = t (s,teS).
If S satisfies (A) we call S a semίlattice.
If S satisfies (B) we call S archimedean.
If S satisfies (C) we call S separative.
An ideal in S is a subset / such that SI QI. A prime ideal in S

is an ideal, whose complement is a subsemigroup of S.
A congruence on S is an equivalence relation which is compatible

with the semigroup operation.
A congruence — on S will be called separative (cancellative,

archimedean, etc.) if the semigroup S/ ~ is separative (cancellative,
archimedean, etc.).

1.2. DEFINITION. (Principle of maximal homomorphic image of
a given type). Let £ be a class of congruences on S, closed under
intersections. Put po = f]{p\P Ξ £}• Then S/po is the maximal
"type class € " homomorphic image of S.

See also [1, p. 18] and [7, §1].

EXAMPLE. Let po = f]{p\s2ps (s e S)}. Then S/po is the maxi-
mal semilattice homomorphic image of S.

1.3. DEFINITION. Let s eS and choose m e N smallest possible so
that sm = smJrr for some r € N . Then order(s) = m and the smallest
possible r is called period (s). If no such m e N can be found we
put order(s) = oo.

1.4. DEFINITION. Let S be a semigroup and suppose that there is
a semilattice Y and disjoint subsemigroups £ α (α e Γ) of S such
that 5 = U α e r ^ a n d s*sβ = Saβ (a, β eY). Then 5 is called a
semilattice of the subsemigroups SQ (aeY).

The following lemma is the main structure theorem for commuta-
tive semigroups.
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1.5. LEMMA. Let S be a commutative semigroup and let Y be
the maximal semilattice homomorphic image of S. Then there are
disjoint archimedean subsemigroups Sa (α EY) of S such that S is
a semilattice of the semigroups Sa (aeY). This decomposition of S
into archimedean subsemigroups is unique up to isomorphism of Y,
and S is separative if and only if each archimedean component Sa is
cancellative.

Proof See [1, §4.3].

1.6. LEMMA. On S define the relations:

s c t o 3u e S su = tu

and
s σ t & 3n0 e NV« > n0 sn = tn.

Then c and σ are congruences and S/c is the maximal cancellative
homomorphic image of S and S/σ is the maximal separative homo-
morphic image of S.

Proof. It is clear that both relations are congruences. Now suppose
p is a cancellative congruence; that is, sup tu => s pt (s, t, u e S).
Then clearly set => spt (s, t e S) so that c Q p. Since c is
cancellative we are done with the statements about c.

Now suppose that s2 σt2σst; that is, there is no e N so that s2n =
t2n = sntn f o r n > H() . Then ^ 0 + ^ = SS2no t2no t = S2n»+U2n«+λ =

s4no+2 so that for n > Sno + 2 we have sn = tn . Hence s σ t, proving
that σ is separative. Let p be a separative congruence. If s σ t, then
there is k e N so that stk = tk+x. In particular stk ptk+ι. This gives

(stk~1)2 = stk~2stk pstk-2tk+λ =stk-ιtkptk+ιtk~ι = (tk)2.

With x = stk~ι and y — tk we have x2 py2 pxy so that xpy,
that is, stk~ι ptk . Repeating as necessary, we get stpt2ps2, where
the second relation follows from symmetry. Thus spt, proving that
σ Q p. D

1.7. LEMMA. s2σs <=>• order(s) < oo and period^) = 1. If ey f
are idempotents in S, then eaf^e — f.

Proof. Suppose s2 a s. Then there is Π Q G N SO that s2n = sn for
n > no. If r is the period of s we have 2n = n (mod r) for n> no
so that r = 1. The rest is obvious. D
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1.8. LEMMA. S/σ is a group if and only if S is archimedean with
unique idempotent.

Proof. First suppose that S/σ is a group. From Lemma 1.7 it
follows that S has a unique idempotent. Let s, t e S. Since S/σ is
a group there are u, v e S so that suσt and tυ σs. By definition
of a , 5 divides a power of t and / divides a power of Λ , that is, S
is archimedean. Conversely, let s e 5 and let e denote the unique
idempotent in S. Since S is archimedean there are t, u e S so that
st = e and we = ̂ o for some no. We have (e^)"0"^ = eno+psnosp =
eno+puesp = uesp = s"o+^ (/? e N) so that esσs. Clearly stσe, so
*S/σ is a group. D

2. The main theorem. For the remainder of this paper we shall as-
sume that S is a commutative semigroup such that lι(S) is amenable.
We shall make frequent use of the fact that, if T is a homomor-
phic image of <S, then lι(T) is amenable, and if / is an ideal in
S which is generated by an idempotent, then I1 (I), being a closed
/1(5')-ideal which is unital as a Banach algebra, is amenable [6, Propo-
sition 5.1]. Thus, if S = Uαer^a *s ^ e decomposition of S into
its archimedean components, then the semilattice Y is finite, since
lι(Y) is amenable ([3, Theorem 10]). We give Y the usual semilat-
tice ordering a < β o aβ = a (α, β E Γ ) . Since Y is finite, Y has
a minimal element, namely the product of all elements in Y.

It is convenient to start with the case where S is separative; that is,
we are assuming that each archimedean component is cancellative.

2.1. LEMMA. Let S and Y be as above and let αo be the minimal
element of Y. Then SaQ is a group.

Proof. By [4, Theorem 2.3] S/c is a group. Let s e SaQ Then
there is t e S so that for all u e S stucu, that is, for all u e S
there is v e S so that stuv = uv. Since αo is minimal, st e SaQ

and uv e Sa , so, using the cancellation law in Sa , we see that st
is a neutral element in SaQ. Consequently lι(SaQ) can be identified
canonically with an ideal generated by an idempotent in lι(S). It
follows that lι(Sa) is amenable and therefore Sa0 is a group, again
by [4, Theorem 2.3]. ° D

2.2. LEMMA. Let lι(S) be amenable and suppose that S is separa-
tive. Then S is a finite semilattice of groups.
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Proof. Let S = \JaβY Sa be the decomposition of S into its archi-
medean components. Let β e Y, and define T = \Ja>βSa . Then T
is a subsemigroup of S and S\T is a (prime) ideal in S. Hence
the canonical Banach space direct sum lι(S) = lι(T) Θ lι(S \ T) is a
semidirect product, so that lι{T) is amenable. Since β is minimal in
{a G Y\a > β}, Lemma 2.1 implies that Sβ is a group. But /? was
arbitrary in Y. D

We now turn to the general case.

2.3. LEMMA. Suppose lι(S) is amenable. Then S is a finite semi-
lattice of its archimedean components, S = \JaeY Sa. Each Sa has a
unique idempotent ea, and eaSa is a group, isomorphίc to the maxi-
mal separative homomorphic image of Sa.

Proof. By Lemma 2.2 S/σ is a finite semilattice of groups, S/σ =
\JaeY Ga. Let Sa be the preimage of Ga by the canonical map
S —> S/σ. With slight abuse of notation we have Sa/σ = Ga, so
that Sa is archimedean with unique idempotent, ea say, by Lemma
1.8. It follows that S = UaeγSa is the decomposition of S into its
archimedean components. Now let s e Sa. Since Ga is a group,
there is t e Sa so that stσeQ, i.e. (sί)'2 = ̂ α for some « G N . Hence
eas

n~xtn is an inverse to eαs. Clearly the canonical map from eaSa

to Ga is surjective. Assume that eas σ eQ for some s e Sa. Since
eα5Q is a group it follows from Lemma 1.7 that eas = ea, proving
injectivity of the canonical map. D

We shall finish the proof of the main theorem by proving that
eaSa = Sa for each a € Y. This is done by exploiting that lι(S),
being amenable, has a bounded approximate identity. First we need
a definition.

2.4. DEFINITION. Let s e S. Then we define

[ss~ι] = {ueS\us = s}.

Since lι(S) has a bounded approximate identity [ss~ι] Φ 0 for all
seS [4, Theorem 1.1].

2.5. LEMMA. Let S = \JaeYSa be the decomposition of S into
its archimedean components, as in Lemma 2.3, and let s e Sa. If
[ss~ι] Π Sa Φ 0 , then s e eaSa. If a is maximal in Y, then Sa is a
group.
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Proof. Let u G [ss~ι] Π Sa . Then usσ eas. Since 5Q/σ is a group
we have u σ ea, i.e. un = ea for some n G N . Hence 5 = w"s = e a s .
In general, if s G Sa and w G [ss~{] n S^ , then 5 = ws G SQ n Sβa,
so β > a. Thus, when α is maximal in 7 we have that [ss~ι] Q Sa

for all s e Sa. It follows that eαSα = Sa, so that SQ is a group by
Lemma 2.3. •

2.6. LEMMA. Let s = {jaeYSa be as in Lemma 2.3.
{ea\oί eY} φ0 for all s eS. In particular lι(S) is unital

Proof. First note that, if u G [ W 1 ] , then [uu~ι] Q [ss~1]. Let
s € S and let 5 α be the archimedean component of s. Put Uo = s
and choose successively u^ G [Uk-\U~^}_χ]. Let Sa/c be the archimedean
component of u^. As noted in the proof of Lemma 2.5 we have
ot-o < oί\ < - < ak < - - . Since cardΓ < 00, we eventually have
Sak = Sak+i, whence [uku^ι]nSak Φ 0 , so that eak € [w^w"1] by
Lemma 2.5. As observed in the beginning of the proof ea/c G [ss~ι].
From [5, Theorem 7.5] it follows that lι(S) has a unit. D

We are now able to prove:

2.7. THEOREM. Let S be a commutative semigroup. Then lx{S) is
amenable if and only if S is a finite semilattice of commutative groups.

Proof. The sufficiency has been noted in the introduction. Hence
we assume that lι(S) is amenable. Let s = \JaeγSa be the de-
composition as in Lemma 2.3. By Lemma 2.5 the theorem is true
if cardy = 1. We proceed by induction on n = cardF. Assume
that n > 2 and that the theorem is true for semigroups which are
semilattices of archimedean semigroups with cardinality of the semi-
lattice strictly less than n. Let αo be the minimal element in Y.
Let β G Y \ {αo}, and define Tβ = \Ja>β Sa. As in the proof of
Lemma 2.2, we see that lι{Tβ) is amenable. Thus, by the induction
hypothesis, we have that Sa is a group for a eY\ {αo}. We finish
the induction step by proving that SΆo = eaoSao. To this end, define
a congruence ~ on S by

s~t&Ss = St (s,teS).

Note that, if s ~ /, then s e St, since [ss~ι] Φ 0 . Using that Sa

is a group for α Φ αo, we see that S/~ = \Ja^a ie<*} u ^ 0 / ~ # Hence

lι{Sa l~) is (isomoφhic to) a closed ideal of finite codimension in the
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amenable Banach algebra lι(S/~), and therefore l{(Sao/~) is itself
amenable [2, Theorem 4.1]. From Lemma 2.5 we get that Sa /~ is a
group. In particular we have for all s e Sga0 that s ~ eaQs, so, by the
note above, SaQ Q ea0Sa0 The induction step is hereby completed. D

Acknowledgment. I wish to acknowledge a stimulating correspon-
dence with Professor J. Duncan on the subject. I wish to thank Dr.
K. B. Laursen for a careful reading of the manuscript.

REFERENCES

[1] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups, Math.
Surveys no. 7, Amer. Math. Soc, Providence, Rhode Island 1967.

[2] P. C. Curtis and R. J. Loy, The structure of amenable Banach algebras; (to
appear in J. London Math. Soc).

[3] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semi-
group algebras, Proc. Royal Soc. Edinburgh, 80A (1978), 309-321.

[4] N. Gronbsek, Amenability of weighted discrete convolution algebras on cancella-
tive semigroups, Proc. Royal Soc. Edinburgh, 110A (1988), 351-360.

[5] E. Hewitt and H. S. Zuckerman, The l\-algebra of a commutative semigroup,
Trans. Amer. Math. Soc, 83 (1956), 70-97.

[6] B. E. Johnson, Cohomology in Banach algebras; Mem. Amer. Math. Soc, 127
(1972).

[7] T. Tamura, The study of closets and free contents related to semilattice decom-
position of semigroups', in Semigroups, Proceedings of a symposium on semi-
groups held at Wayne State University, Detroit, Michigan, (1968); Academic
Press, New York and London.

Received August 29, 1988.

K0BENHAVNS UNIVERSITETS M A T E M A T I S K E INSTITUT

UNIVERSITETSPARKEN 5

2100 KΘBENHAVN 0, DENMARK






