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CLASSICAL LINK INVARIANTS AND
THE BURAU REPRESENTATION

DAVID M. GOLDSCHMIDT

The object of this paper is to show how to use the Burau repre-
sentation of the Artin braid group to calculate some invariants of an
oriented link in S 3 . More precisely, we obtain

(a) generators and relations for the Alexander module, and
(b) a unimodular (-ί)-Hermitian form on the torsion submodule

of the Alexander module (see below for a precise statement).
Scaling our form by (1 — t~ι) yields a Hermitian form which, for
knots, is probably the Blanchfield form. If so, it would then follow
from Trotter that the S-equivalence class of the Seifert form of a knot
can be computed from the Burau representation. Even if this form is
the Blanchfield form for knots, the situation for links is less clear
because (1 — t~ι) need not be invertible in the endomorphism ring
of the Alexander module.

Introduction. To state the results precisely, let Bn be the n -string
braid group, let R = Z[t, Γι], and let Vn be a free i?-module of rank
n affording the unreduced1 Burau representation. For γ e Bn , let γ
be the link in S3 obtained by identifying the ends of a geometrical
realization of γ, and set W{y) = (1 - y){Vn).

THEOREM 1. Vn/W(γ) depends only on γ. In fact, it is the Alexan-
der module of the disjoint union of γ with the unknot. Let Un c
Vn afford the reduced Burau representation. Then W(γ) c Un and
Un/W(γ) is the Alexander module of γ.

The fact that the Burau representation is intimately connected with
the Alexander module is well known (cf. [1], p. 122) but the exact
details may not have appeared previously.

To state Theorem 2, we let Q(t) be the field of rational functions
and let * be the automorphism of R defined by t* = t~ι. If M and
N are i?-modules, a (—ί)-Hermitian form on M with values in N is
an i?-module map / : M®RM —> N such that f{x®y) = —tf(y®x)*.
Such a map induces a natural map M —» Hom^(M, N). When this
map is an isomorphism, / is sometimes called a "perfect pairing".

^ t is essential to use the unreduced Burau representation here.
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278 DAVID M. GOLDSCHMIDT

In the following, M is the i?-torsion submodule of the Alexander
module, and N is Q(t)/R.

THEOREM 2. Let ~A = A(γ) be the R-torsion submodule of Un/W(γ).
Then there is a (-t)Ήermitian form defined on A(y) with values in
Q(t)/R depending only on γ. When the Alexander polynomial is non-
zero, the form is a perfect pairing.

The paper is organized as follows. In §2 we recall the definition of
the Burau representation and define an invariant sesqui-linear form
which is essentially due to Squier [3]. In §3 we prove Theorem 1. In §4
we prove Theorem 2 by defining, for any braid γ, a (-ί)-Hermitian
form on A(γ) which we then show is invariant up to isomorphism
under the Markov moves ([1], p. 51). We defer the proof that the form
is unimodular (i.e. a perfect pairing) when the Alexander polynomial
is non-zero to §5, in which we describe an algorithm for calculating
the form and we do the calculations for the figure eight knot. In §6
we study the effect of the orientation-reversing symmetries. In §7 we
show how to get a rational-valued form (integral when Δ is monic) by
taking the trace. Finally, in §8 we apply the results to the (n, m) torus
link. We obtain a presentation for the Alexander module as a direct
sum of cyclic submodules, and explicit formulae for the (Blanchfield?)
form.

2 The Burau representation. Let Bn be the n-string Artin braid
group with standard generators o\, 02, . . . , on-\, a n d let Fn+\ be
the free group on n + 1 free generators XQ9 x\, ... , xn. Let R =
Z[t, t~1]. Then Bn acts on Fn+\ via

{ XiXMx~ι if 7 = /,

Xi i f ; = / + l ,

Xj otherwise.
Note that XQ is fixed by Bn . Define e: Fn+\ —• Z via ε(Xi) — 1 for

all /, and let K = kerε. Then Vn = K/K1 is a free i?-module with
basis f — xox~ιKf (1 < / < ή), where the action of t is given by

1j 1

K'). An easy calculation then shows that
i = Xjfxj1 for any j (one verifies that this is well defined modulo

°i(fj) = { fi i f ; = 1 + 1,

fi otherwise.
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Vn affords the (unreduced) Burau representation of Bn . The vector
un = Σ)/=i tι~ιfi e Vn is fixed by Bn and so is the augmentation
map εo(fi) = 1 (1 < / < ή) (not to be confused with its cousin
defined on the free group). Let Un = ker(ε0). Then Un has the
basis βi = fi — fi+\ (1 < / < ή) and affords the so-called "reduced"
Burau representation. An important point which may not have been
thoroughly appreciated heretofore is that Un is not a summand of Vn

as a 5Λ-module; in fact (un) ® Un has indexSo(un) = ]£?=1 ί'"
1 in

Vn.
The usual geometric interpretation is to let Bn act via the mapping

class group on the (/?+l)-punctureddisk DΛ + 1 with Fn+\ = πi(DΛ +i).
AΓ is then the fundamental group of an infinite cyclic cover C of Bn+\
which can be embedded in R3 as the "parking garage": an infinite ver-
tical stack of (2n + 2)-gons with n + 1 ramps going between succes-
sive levels as in Figure 1. Consequently, there is an integer pairing on
Hχ(C) = K/K', where (x, y)o is the linking number of the push-off
of x with y. We define

Then

(fi,fj)=

l+t

1

if i = j ,

if i <j,
- t

0

ifί = j ,

if i = 7 - 1,

if / = j + 1,

if U — y| > 1.

If * is the automorphism of Z[ί, Γι] defined by t* = t~ι, one checks
that (x, ay + z) = a(x, y) + {x, z), and (x,y) = /(j;, x)*. An easy
calculation shows that this form is invariant under the action of Bn .
Up to a scale factor and the change of variable s2 = t, the restriction
of this form to Un was discovered by Squier [3].

FIGURE 1
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3. The Alexander module. Let γ e Bn, let g be the union of the
geometrical realization of γ with an additional straight string, and
let g be the corresponding link, g is the disjoint union of the link
defined by γ with the unknot. The reason for introducing the unknot
will be clarified shortly.

Geometrically, it is advantageous to imagine the passage from g to
g as occurring in two steps. First, we embed the braid g in a solid
torus T and identify the ends in such a way that a parametrization of
the resulting ρath(s) has positive longitudinal derivative at all points.
Then we attach a second solid torus along the boundary of T to obtain
S3 in the usual way. Let F = Fn+\. Since the complement T — g is a
twisted product of the circle with the (n + l)-ρunctured disk, it's not
hard to see that the fundamental group of T — g is the semi-direct
product G = (γ)F. When we attach the other torus, the effect on τt\
is to set γ = 1, and thus πx (S3 - g) = G/[γ, G](γ) = F/[y, F], where
[γ, F] = (γxγ-{χ-{ \ x e F) (see [1], p. 46 for details).

Let φ: F —• F/[γ, F] be the natural map, and let K = ker(ε) c F.
K defines the "parking garage" whose homology affords the unre-
duced Burau representation of Bn . Since ε(γxγ~ι) = ε(x) it follows
that [γ, F] c K. Thus, ε factors through φ and defines a map έ:
πi ( § 3 - g) -» Z. e(jc) is just the linking number of x with £ . Conse-
quently, φ(K) defines the infinite cyclic cover of S3 - g whose homol-
ogy is the Alexander module. In particular, we see that K/Kf[γ, F]
is isomorphic to the Alexander module of g.

We would like to replace [γ, F] by [γ, K] because in additive
notation the group K/K'[γ, K] is just Vn/(l - γ)(Vn). Indeed, since
γ centralizes F/K it is tempting to conclude that [γ, F] = [γ, K],
but unfortunately this is not in general true. If, however, F = KX
where [γ, X] = 1 then the general identity

(*) [V,kx] = [γ,k]k[γ,x]k-1

implies immediately that [γ, F] = [γ, K]. This is the reason for
adding the extra string. Since Xo is centralized by γ we can take
X = (XQ) above and conclude that Vn/(l — γ)Vn is the Alexander
module of g.

Finally, set Fo = (.x̂  , x2, . . . , xn) Q Fn+\ and let γ be the link
defined by γ. Then φ(Fo) = π\ (S3 - γ), and if we put KQ = K ΠF0,
then Λ^O/AΓQ[7 , FQ] is the Alexander module of γ. Recall that ft =
xo Xj"1^' and that the elements e\ = fi~ fi+\ = ΛT/ X ^ J K 7 (1 < / < n)
are a Z[ί, r^-basis for Un. It follows easily that K0K'/K' = Un .
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In order to keep track of the various relevant subgroups of F, the
following lattice diagram may be helpful:

In such a diagram, a downward sloping line from A to B indicates
that A D B. A parallelogram with A at the top, B and C at the
sides and D at the bottom indicates that A = BC and D = B ΠC.
The above diagram makes several such assertions:

(a) F = KF0,
(b) [γ,Fo]CKθ9

(c) Kf

0 = K'nK0,
(d) [y,F0]iT = [ y , i φ : ' .

All remaining relationships are elementary group-theoretic conse-
quences of these. Assertion (a) follows immediately from ε(x\) = 1,
and (b) follows from the previously noted containment [γ, F] C K.
As for (c), we have K'o C Kr Π Ao and, by the isomorphism theo-
rems, (K'nKo)/K'o is the kernel of the natural epimorphism KQ/K'Q-+

KQK'/K'. But both of these groups are free i?-modules of rank n - 1,
so the natural map is an isomorphism.

To prove (d), we already have shown that [7, K] = [γ, F], whence
[γ, FQ]K' C [γ, K]Kf. Conversely, since K/K1 is generated as an
/^-module by {f\, . . . , / „ } , it follows that

^ * ̂  " >

Notice that since [γ, FQ] is normalized by FQ a n d [̂
we get [y, i^o]^' < i 7 by (a). Now repeated application of (*) shows
that [γ, K]Kf is contained in the normal closure in F of

([γ,x;ι]\l<i<n)Kf
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which is evidently contained in the normal subgroup [γ, FQ]K' . It
now follows from the isomorphism theorems that

Ko/K'o[γ9Fo]*KoK'/[γ9K]K'9

which says precisely that Un/(l-γ)Vn is the Alexander module of γ.

4. The sesqui-linear form. Now fix γ G Bn , let R = %[t, Γ"1],
W = W(y) = im(l - γ), and let A = ^4(y) be the complete inverse
image of the i?-torsion submodule of Vn/W. We want to define a
pairing ( , ) γ : A x W —• i? which is sesqui-linear, that is, conjugate
linear (with respect to the automorphism *) in the first variable, and
linear in the second. Set (α, w)γ = (a, v) where υ is any element
of (1 — γ)~ι(w). Any two choices of v differ by an element u with
γ(u) = u. To see that (a, w)γ is independent of the choice of v,
choose r G R such that raeW and let ra = (1 — γ)(v\). Then

r*(α, u) = (ra, u) = {vx

 1

and therefore (α, M) = 0. This shows that ( , )γ is well defined. It
is obvious that ( , )γ is sesqui-linear with values in R.

Let α -> a be the natural map 4̂ —• ̂ 4 = AjW, and choose
JC , y G ̂ . We define an element (x,y) = (x, y)γ of the i?-module
Q(t)/R as follows: choose r G R with ry e W and put (x, y) =
r~!(x? ry)γ+R.

We first argue that (x, p) is independent of the choice of r. Sup-
pose τ\y eW. Then

We next argue that (x, j;) is independent of the representatives
x, y. I f y - y 1 = i ί ; G W / , then

r'ι(x9 ry)γ-r~\x, ryx)y = r~\x, rw)y = (x 9 w)γ e R.

On the other hand, if x - X\ = (1 - γ)(v) G W and rj; = (1 - y)(v\)
then -rγ~ι(y) = (1 - y " 1 ) ^ ! ) , and

(x, r y ) y - ( x i , rj;)y = (i;-y(i;), ι ; 1 ) = (ι;, t ; i )-(τ ; , y " 1 ^ ) )

= -r(v9 y~\y))

whence r " 1 ^ , ry)y-r-x{xx, rj;)^ = -(v, γ-{(y))eR. _
It is now easily verified that ( , )γ is a sesqui-linear form on -4(y).

To see that it is (-ί)-Hermitian, choose x, y G 4(y) and r G i? such
that

rx — u- γ(u), ry = v — y(ι )
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for some u, v e V. By expanding both sides, we easily verify the
identity

(rx, υ) + (u, ry) = ( n , ry).

Dividing both sides by rr* and using (u, y) = t(y, u)* we have

r-\x9v) + t[r-χ{y9 u)]* = (x, y)

and thus
(x,y) + t(y,x)* = 0.

We will show that the pair (A(γ)9 { , )γ) depends only on the link γ
(up to a form-preserving isomorphism) by showing that it is invariant
under the Markov moves ([1], p. 51).

There are two moves. Suppose first that ζ e Bn . Then the identity

(1 - ξγξ~ι)(Vn) = ξ(l - y)ζ~\Vn) = ξ(l - γ)(Vn)

shows that multiplication by ξ induces an isomorphism W{y) =
W{ξyξ~x) and thus isomorphisms V(γ) s V(ξγξ'1) and A(γ) s

1 ) . We claim that

(ζx, ί j ;) ί y ί -, = (x, y) y for all x e A(γ) ,yeW.

Namely, let (1 - γ)(v) = y. Then
ι)(ξυ)9 so

(ξx, ίy) ί y { -i = (<fx, ζv) = (x,υ) = (x, y)y

as required.
The second Markov move is trickier. With the standard embedding

Bn c Bn+\ we have Bn+{ = (Bn, σn) and we need to find a form-
preserving isomorphism A(γ) —• A(σ^ιγ). We have the inclusion
Vn C F w + 1 in fact F w + 1 = Fw θ Rfn+Ϊ = Vn@ Ren .

LEMMA. W{σ±xy) =

Proof. We make use of the formal identity

(*) (1 - u ^ y ) = (1 - u^ 1) + (1 _ y) - (1 - α ^ K l - y).

This implies that W(σ±ιγ) c ^ ( σ ^ 1 ) + JF(y). Note that

0 for / < n,

ten for / = n,

- en for / = n + 1
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and

0 for / < n,

- t~ιen for i — n,

en for / = n + 1,

so W(σ±ι) = Ren. In particular, W(σ±x) + W(γ) =
. Moreover, (1 - σ±ιγ)(fn+ι) = (1 - σ^ : 1)(/n + 1) = ±e π because

= fn+ι, and therefore we have ^ ( σ ^ 1 ) C PF(1 - γσ±ι). Now
(*) implies that W{y) c W(σ^ιγ) and the lemma follows. D

Now the inclusion map Vn C Vn+\ induces a map ^/fΓ(y) Q
VnjΓ\/W(γ), and since Vn+\ — Vn® Ren the lemma implies that

Vn+λ Vn®Ren „ Vn

W{σtιγ) W(y)@Ren W(γ)'

Explicitly, the map φ: V(γ) —> V(σ^ιγ) given by φ(v + W{γ)) =
i; + ̂ ( σ ^ V ) is an isomorphism. We need to show that φ is form-
preserving on the torsion submodule.

We first define linear functional α, j8 on Vn+\ as follows: for
x G Kπ+i write x = x 0 + <*(*)/« + β(x)fn+ι, where x 0 ^ ^«-i We
next observe that

= (β(x)-ta(x))en,

and that if we define S(x) = (J8(Λ:) - ta(x))fn+\, then

(1 - σn)S(x) = (β(x) - ta(x))en = (1 - σπ

1 = (Γιβ(x) - a(x))en = (l-

Since y(Λ+i) = fn+ι it follows easily that

(1 - σ£ιγ)S(x) = (1 - σ ^ 1 ) ^ ) for all x

Now we get

and thus

To show that φ is form-preserving on A, it suffices to show that
if a G Λ(y) and w G H^(y), then (a,w)γ = ( α , ^ ) σ ± i y . Choose
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v G Vn+χ with (1 - γ)(υ) = w and set u = (1 - Sγ)(v). Then
(1 -σ±ιγ)(u) =

We conclude that

(a,w)y-(a,

so

, = (α,υ) and (a,w)σ±i = ( α , u).
n '

= (a,v-u) = (a9Sγ(υ)) = r(a9 fn+\)

for some r G R because im(5) = Rfn+\. Now choose r\ G R with
rxaeW. Since
Thus,

But then

for all v e Vn+χ, W(y) c ker(ε0).

Λ - l

rxa =
ι=l

/ I - l
where Σ α / = °

z = l

Λ - l

(fl, fn+ι) =
ι=l

and therefore (fl, Λ+i) = 0 as required.
To complete the proof of Theorem 2, we must show that the induced

map A —• HomR(A, Q(t)/R) is an isomorphism when the Alexander
module is torsion. We defer this argument to the next section, where
we obtain explicit formulas.

5. Computations. Theorem 1 says that a presentation for the Alex-
ander module of a link γ can be obtained as follows. Let Wj =

(1 - γ)(fj) = ΣΊllwijβi (1 < j < ή). Since E ' 7 " 1 / / is a fixed
point for γ we have E tJ~ιWj = 0 and therefore any n - 1 of the Wy
generate fΓ(y). Hence, any n - 1 columns of the matrix W = IU^
are a presentation matrix for the Alexander module of γ.

For example, let γ = (σiσ^1)2, so γ = 4X. The matrix of 1 - 7

with

Thus

respect

we get

to if I , fl

Ίt-
t2-

-t

t2

t

3}

t

is

-r1

1
- 1 _ 1

Γ2-2

2ΓX

V
-1
—

-1 +

r 2

Γ

= (2ί -

so yί(y) is generated by {e\, ?2} subject to the relations

eι = (t-l)e2, e2 = (t-2)eι,
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and we obtain the presentation A(γ) = {β\ \ (t2 - 3ί + l)e\ = 0}.
Returning to the general situation, let WQ be a matrix consisting

of any n - 1 columns of W, and let Δ = det(W0). Evidently, Δ
is the Alexander polynomial. Assuming Δ Φ 0, or equivalently that
A(γ) = Un, (<?,-, ej) can be computed by first solving the equation

AeJ =

for Ukj . Thus, U =

Then

is the classical adjoint of Wo, and

UW0=

ei y fk) =

In the above example, iwe get

(t2-3t+l)eι = (Γι

Scaling by (1 - t~ι) and reducing

_,

In the general case, we put

•t - 1 0
0 t - 1

0 0 •••

- i ) .
1 — 2ί

t2 - 3t + Γ

modulo R, we get

ί - 3

0

t
0

-1

o •

- 1

and bij = (ei9 ej). Then B = Δ 1ΓC/. Using this formula, we can
now complete the proof of Theorem 2.

For x, y e A, define φj(y) = (x, 7) . To show that the map
Φ(x) = ψx is an isomoφhism, we construct the inverse map as fol-
lows. Let ψ G Hom^(^4, Q(t)/R). Since A = Un is free on {e\, . . . ,
en-\}, ψ can be lifted to a map $?': A —• Q(ί) with ^(^(y)) c i?.
Let ^(e/) = y i and let y = (yΪ9 ... ,yn-X) e Q(t)n~ι . Then
yŴ o ^ -R Let x = (x\, . . . , xΛ_i) be the row vector defined by
x* = yW0T~ι. Then x* G i? because Γ is unimodular. Moreover,
x*TU = yW0U = Δy and thus x*Z? = y . If we therefore let
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x = Σ Xiβi e ^4, we see that (5c, βj) = φ{βj) for all j . Put Ψ(p) = 5c.
Then we have shown that Φ(Ψ(φ)) = φ . Conversely, if we choose any
x = Σxϊii e Ά9 set x = (xΪ9 ... 9 xn-\) and let φ = φτ, then there
is an obvious lift φ1 corresponding to the row vector y = x*B. Then
x* = yW0T~ι and Ψ(ψχ) = I a s required.

6. Symmetries. Using the standard generators and relations for the
braid group, it is easy to see that there is an automorphism γ —> /
such that σ\ = σ~ι for all /. Then γ' is just γ with all crossings
reversed, i.e. the mirror image. Moreover, γf~x as a word in the σ\
is just γ read backwards, so γf~ι is the inverse of γ. Then γ~ι is
obtained from γ by reversing both its orientation and the orientation
of S 3 .

The symmetry γ —> γ~ι is the easiest to analyze, so we will begin
there. From the identity —γ~~ι(l - y) = 1 - y~ι it follows that multi-
plication by - y 1 induces an isomorphism Un/W(γ) = Un/W(γ~ι).
Choose x, y € ^4(y), r € i?, and ί ;€F n with ry = (1 - y)v . Then
-rγ~ιy = (I - y~l)v and since -y" 1 is unitary we have

(-y~ιχ, -y~xy)y-ι = r-ι{-y-χx, v)

= —r~~ι(x9 yv) = -r~ι(x, v - ry).

It follows that

To analyze the mirror-image symmetry y —> / , we define a map *
on elements υ e Vn (resp. i?-linear maps T: Vn —> Frt ) by applying
the ring automoφhism * to each co-ordinate of v (resp. matrix entry
of T) with respect to the basis {fx, f2, . . . , /„}. Then (Γv + lϋ)* =
Γ*t;* + tϋ*, and (TχT2)* = ΓjT2*. For γ e Bn we abuse notation
slightly by writing y* for the action of the conjugate Burau matrix.

Define P: Vn -> Vn via P{f{) = / r t_/_i. Then P* = P " 1 = P.
Moreover, from the definition of the Squier form we have (JP/J , Pfj)
= (fj, fi) from which it follows by sesqui-linearity that

(Px, Py) = (y*, x*) for all x, y e Vn.

Define δ\ = σ\ 9 and inductively set J / +i = σ\σ2-- Oiδi. Then δn is a
half-twist of all n + 1 strings, and it is easily checked that δnaιδ~x =
βn-i (1 < / < n) . By inspecting matrix entries we verify that

δPσ*P~ιδ-1 =σ" 1 (1 <i<ή)
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from which we obtain the basic identity

δPγ*p-χδ~ι =γf for all y e ^ .

Now choose y, v eVn and r e R with ry = (1 - γ)υ . Then

r*y* = (1 - / > * = (δP)'ι(l - γ')δP(υ*), and thus

= (l-γ')δP(v*).

It follows that the map y \-+ y1 = δP(y*) defines a (conjugate-linear)
isomorphism Un/W(γ) —• Un/W(γf). Moreover, we have

y *, δPυ*)/r* = (Px*, P?;*)/r* = (*> , *)/r*

= t(x,υ)*/r* = t(x9y)*γ.

This result together with equation (*) implies that for the inverse
symmetry γ —• γ'~ι, the map y h-> y" = -y" 1 JP(y*) defines a conju-
gate linear isomorphism Un/W(γ) —• Un/W(γ'~ι) with

These results have particularly simple consequences in the special
case that the Alexander module is cyclic with generator e and anni-
hilator Δ. The form is completely determined by the element (e, e),
and e1 is another generator iff e1 = ae for some unit a of R/AR.
Since the form is (-£)-hermitian? we have (e, e) = —t(e, ^)* which
easily implies that non-invertibility cannot be detected in this case. If,
however, γ is amphicheiral, then for some unit a of R/AR we have

Non-singularity of the form implies that (e, e) is a unit, and thus we
get the necessary condition αα* = - 1 for some unit a.

7. Taking the trace. We first observe that the form ( , ) actually
takes values in a cyclic submodule of Q(t)/R isomorphic to R/Rr
for some r e R. Namely, recall that R is a noetherian UFD and
VnjW is finitely generated. Thus, A has a finite set of generators
{a\, . . . , am} . Let r = lcm{ann^(α/)} . Then the form takes values in
the i?-module Rr~ι/R which is isomorphic to R/Rr. Alternatively,
we could take r to be the Alexander polynomial of γ .

We can assume that the gcd of the coefficients of r is 1 (this
amounts to the assertion that Vn/W is Z-torsion free, which can be
easily seen by specializing the Burau representation at t = 1). Ten-
soring with Q then embeds R/Rr into the finite dimensional algebra
Q[t, t~x]/{r) which admits the canonical linear functional tr ( r ) , the
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trace of the regular representation. By applying this functional, we
obtain a rational valued form ( , ) 0 = tr ( r )( , ) on the Alexander
module. This form appears to depend on the choice of denomina-
tor r, but in fact it does not. For if we replace r by rs, the coset
representing a given value (x, y) of the form is also multiplied by s
and thus has zero trace on the submodule (r)/(rs) of Q[t, t~ι]/(rs).
Since the isomorphism

implies that tr ( r 5 ) = tΓ(r) +t' where t'(x) is the trace of the restriction
of ad(x) to (rs)/(r), { , )o does not depend on r.

For example, in the calculation for the figure eight knot, we got the
hermitian

( i - r 1 ) < g 1 , g 1 ) = f _ ~ | r l .

since t — 3 + t~ι is monic, the Alexander module is finitely generated
over Z, in this case it is Z © Z. If we take the basis {β\, tβ\) , the
action of t is [ j ~3

ι ] and the matrix of the trace form is [z\ z\]

8. The (ft, m) torus link. Let τ = σ\θ2 crΛ2_1. Then the obvious
braid representative for the (ft, m) torus link is γ = τm . It is easy to
see that

Let £| = ft — fi+\ (1 < / < ft) as above. We will calculate with respect
to the basis {eι,e2, ... , en-X, /„} of Vn . Define e0 = fn - f\ and
note that ô = — Y?iZ\ ei It is easily checked that τ(e/) = tei+\ for
all / with subscripts modulo n. Moreover, τ(fn) = f\ = fn — eo, so
we have

m - l

The Alexander module Anm for the (ft, m) torus link is therefore
generated by {^o, ^i > ? ^«-i} subject to the relations

(1) ? i + w = r w ? / ( 0 < / < f t ) ,

(2) Σ7"o?ΐ = o,

(3) Σ?JoXtιei = Q-
These relations may be unraveled as follows. Let d = gcd(ft, m),

m — kd, n = Id, and £ = lcm(ft, m). The relations (1) can be



290 DAVID M. GOLDSCHMIDT

iterated to obtain

Ί+rm
= Γrmei (0 < / < ή)

for any integer r. Note that there are exactly / distinct multiples of
m modulo n, namely {0, d, 2d, . . . , (/- \)d) and a set of orbit rep-
resentatives for translation by m is given by {0, 1, . . . , d-1} . Thus,
relations (1) say precisely that Anm is generated by {eo,e\9 ... 9 e<ι- i}
and that (1 - tlm)et = 0 (0 < i < d). Since Im = kn = e, we see that
(1 - ί*) annihilates ^4Π/W . Relations (2) and (3) can be re-written in
terms of {eo,e\, ... , e^-i} as follows. Let a be the least positive
integer such that am = d (modn). Then l^d = t~amei for all /.
Let

Then relation (2) says that

(4) ^-(/-l^m^ + jam +

and relation (3) becomes

(5) (1 + j*/-™ + t2(d-am)

Let d - am = bn , and put

Pm{t) = -tam ' ^«( f) = j _ ^ « = \ - tbn'

There are two special cases to consider: α = 0, 6 = 1, in which
case d = n and α = 1, & = 0, in which case d = m . In the former
case, put pm{t) = 1, and in the latter case, put pn{t) = 1. Then is all
cases, we can re-write (4) and (5) as

However, we also have (1 - te)u = 0 = (1 - te)v , so u (resp. v ) is
annihilated by the gcd of pm{t) (resp. pn{t)) and \-f . Now, pm{t)
is the product of the cyclotomic polynomials Φr{t) as r ranges over all
divisors of ae = ami which do not divide am. Since d = am + bn,
we have 1 = ak + bl which implies that if r\e and r|<zra, then r\m.
We conclude that

(*\ l-te

 n l-te

(«) 0
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It is n o t difficult n o w to check tha t A n m is generated by {eo ,β\, ... ,
~βd-\} subject t o the relat ions (6) a n d

(7) ( 1 - 0 ^ = 0 (0</<</).

To present Anm as a direct sum of cyclic modules, we set

d-\ , .,

υ =
1 and

/=!

\-t* u 1 -
l-ί bn

V.

Routine calculations then show that {«', v', e^,... , e^-x) is a basis
for Anm, provided that d > 2 and d Φ n,m. Moreover, it follows
that

(8) M' = 0 =

and that relations (7) and (8) imply (6) and (7).
Note that in the knot case (d = 1) we have υ = u = u! = Ί>o.

Hence, the Alexander module is cyclic with annihilator

If either n \ m or m \ n then u! = 0 and {v1, Ί>2, . . . , ^j-i} is a
basis for ^ m . For example, A2^k is cyclic with annihilator

Finally, if n — m, then w' = v ; = 0 and {̂ 2> > ^-1} is a basis.
To evaluate (βi, έFy) we use relations (1) to write

(1 -f)ej = {\ -τ

Hence we obtain

( • ) <;

Recall that

Λ _

t2meJ+2m

tpm(ei,
p=0

\+t if i = 7 ,

-t if/ = 7 - l ,

- 1 if i = j + 1,

0 i f | / - / Ί > l

for \ <i, j <n.
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In fact, the same formulas extend to 0 < i, j < n, and using them,
it is not difficult to make (*) explicit. For example, in the knot case
we get

(gn eώ = Π + t - tam - tχ-amλ = ί1 ~ f1"1)^ - tbn)
\-tnm

REFERENCES

[1] J. Birman, Braids, Links, and Mapping Class Groups., Annals of Mathematics
Studies 85, Princeton Univ. Press, 1975.

[2] R. C. Blanchfield, Intersection theory of manifolds with operators with applica-
tions to knot theory, Ann. of Math., 65 (1957), 340-356.

[3] C. Squier, The Burau representation is unitary, Proc. Amer. Math. Soc, 90
(1984), 199-202.

[4] H. F. Trotter, On S-equivalence of Seifert matrices, Inventiones Math., 20
(1973), 173-207.

Received April 22, 1988 and in revised form March 3, 1989. Thanks are due to
Andrew Casson and Vaughan Jones for many helpful discussions on the present topic.

UNIVERSITY OF CALIFORNIA

BERKELEY, CA 94720

AND

CENTER FOR COMMUNICATIONS RESEARCH

PRINCETON, NJ 08540




