DIAGONALIZING PROJECTIONS IN MULTIPLIER ALGEBRAS AND IN MATRICES OVER A C*-ALGEBRA

Shuang Zhang

Assume that \mathscr{A} is a C^* -algebra with the FS property ([3] and [16]). We prove that every projection in $M_n(\mathscr{A})$ $(n \ge 1)$ or in $L(\mathscr{H}_{\mathscr{A}})$ is homotopic to a projection whose diagonal entries are projections of \mathscr{A} and off-diagonal entries are zeros. This yields partial answers for Questions 7 and 8 raised by M. A. Rieffel in [18]. If \mathscr{A} is σ -unital but non-unital, then every projection in the multiplier algebra $M(\mathscr{A})$ is unitarily equivalent to a diagonal projection, and homotopic to a block-diagonal projection with respect to an approximate identity of \mathscr{A} consisting of an increasing sequence of projections. The unitary orbits of self-adjoint elements of \mathscr{A} and $M(\mathscr{A})$ are also considered.

0. Introduction. It is well known that a projection in $M_n(\mathbb{C})$ or in $L(\mathscr{H})$ is homotopic to a diagonal projection whose diagonal entries are either 1 or 0, where $M_n(\mathbb{C})$ is the algebra consisting of $n \times n$ scalar matrices and $L(\mathscr{H})$ is the algebra consisting of bounded operators on a separable Hilbert space \mathscr{H} . The following natural question comes up: if \mathbb{C} is replaced by a C^* -algebra \mathscr{A} , is every projection in $M_n(\mathscr{A})$ or $L(\mathscr{H}_{\mathscr{A}})$ homotopic to a diagonal projection whose diagonal entries are projections of \mathscr{A} and off-diagonal entries are zeros? Here $M_n(\mathscr{A})$ is the C^* -algebra of $n \times n$ matrices over \mathscr{A} and $L(\mathscr{H}_{\mathscr{A}})$ can be regarded as bounded infinite matrices over \mathscr{A} whose adjoints exist (see §1 for a more precise description). Certainly, diagonalizing projections of $M_n(\mathscr{A})$ for $n \ge 1$ would yield information about $K_0(\mathscr{A})$ (here diagonalizing projections in the sense of Murray-von Neumann is enough for this purpose).

Concerning the matrix algebra $M_n(\mathscr{A})$, R. V. Kadison proved ([13] and [14]) that if \mathscr{A} is a von Neumann algebra, then every normal element in $M_n(\mathscr{A})$ is unitarily equivalent to a diagonal normal matrix over \mathscr{A} . Consequently, every projection in $M_n(\mathscr{A})$ is homotopic to a diagonal projection, since the unitary group of a von Neumann algebra is connected. In general, we certainly do not expect a positive answer for the question if \mathscr{A} is an arbitrary C^* -algebra. K. Grove and

G. K. Pedersen have pointed out ([11, 1.3]) that if \mathscr{A} is the algebra $C(S^2)$, the algebra of complex-valued continuous functions on S^2 , then there exists a projection in $M_2(\mathscr{A})$ which is not unitarily equivalent to any diagonal projection. However, we do expect a positive answer for a large class of C^* -algebras.

The author has proved ([22]) that if \mathscr{A} is a C^{*}-algebra with FS, then every projection in $M_n(\mathscr{A})$ or in $L(\mathscr{H}_{\mathscr{A}})$ is Murray-von Neumann equivalent to a diagonal projection. In this note, we will strengthen the previous results to unitary equivalence or homotopy. We prove that if \mathscr{A} is a C^{*}-algebra with FS (not necessarily σ -unital), and if p is a projection of the multiplier algebra $M(\mathscr{A})$, then every projection q of \mathscr{A} is homotopic to a projection $q' = p_1 + p_2$, where p_1 is a projection of $p \mathscr{A} p$ and p_2 is a projection of $(1-p)\mathscr{A}(1-p)$. As a special case, by induction we conclude that every projection in $M_n(\mathscr{A})$ is homotopic to a diagonal projection. This yields partial answers for Questions 7 and 8 raised by M. A. Rieffel in [18]. If \mathscr{A} is σ -unital and $\{e_n\}$ is a fixed sequence of mutually orthogonal projections of \mathscr{A} such that $\sum_{n=1}^{\infty} e_n = 1$, we prove that every projection in $M(\mathscr{A})$ is unitarily equivalent to a diagonal projection and homotopicto a block-diagonal projection with respect to the decomposition $\sum_{n=1}^{\infty} e_n = 1$. As a consequence, every projection in $L(\mathcal{H}_{\mathcal{A}})$ is unitarily equivalent (and hence homotopic) to a diagonal projection. In addition, the unitary orbits of self-adjoint elements of \mathscr{A} or $M(\mathscr{A})$ are considered.

The class of C^* -algebras with FS includes many interesting subclasses of C^* -algebras. Obviously, AF algebras, the Calkin algebra, von Neumann algebras and AW^* -algebras have FS. The Bunce-Deddens algebras have FS ([2]). All purely infinite, simple C^* -algebras have FS ([24, Part I (1.3)] and [25]); in particular, the Cuntz algebras \mathscr{O}_n and \mathscr{O}_A , where $2 \le n \le \infty$ and A is an irreducible scalar matrix, have FS. Certain irrational rotation C^* -algebras have FS ([9]). Many corona and multiplier algebras have FS ([5], [24, Part I] and [24, Part IV]). L. G. Brown and G. K. Pedersen have recently proved ([5]) that a C^* -algebra \mathscr{A} has FS if and only if $M_n(\mathscr{A})$ has FS for all $n \ge 1$; and \mathscr{A} has FS if and only if \mathscr{A} has real rank zero. In [21], [22], [23] and [24] the author has investigated the multiplier and corona algebras of C^* -algebras with FS from various angles.

1. Notations. If \mathscr{A} is a C^{*}-algebra, we denote the Banach space double dual of \mathscr{A} by \mathscr{A}^{**} and the multiplier algebra of \mathscr{A} by $M(\mathscr{A})$; where $M(\mathscr{A}) = \{m \in \mathscr{A}^{**} : xm, mx \in \mathscr{A} \ \forall x \in \mathscr{A}\}$ ([1], [7], [15], among others).

Let $\mathscr{H}_{\mathscr{A}} = \{\{a_i\}: a_i \in \mathscr{A} \text{ and } \sum_{i=1}^{\infty} a_i^* a_i \text{ converges in norm}\}$. Then $\mathscr{H}_{\mathscr{A}}$ becomes a Hilbert \mathscr{A} -module with the \mathscr{A} -valued inner product

$$\langle \{a_i\}, \{b_i\} \rangle = \sum_{i=1}^{\infty} a_i^* b_i \text{ for all } \{a_i\}, \{b_i\} \in \mathscr{H}_{\mathscr{A}}.$$

We denote by $L(\mathscr{H}_{\mathscr{A}})$ the set of all bounded module maps with an adjoint and by $K(\mathscr{H}_{\mathscr{A}})$ a closed ideal of $L(\mathscr{H}_{\mathscr{A}})$ called the "compact maps"; more precisely, $K(\mathscr{H}_{\mathscr{A}})$ is the norm closure of the set of all "finite rank" module maps, $\{\sum_{i=1}^{n} \theta_{x_i, y_i} : x_i, y_i \in \mathscr{H}_{\mathscr{A}} \text{ and } n \in \mathbb{N}\}$. Here for any pair of elements x and y in $\mathscr{H}_{\mathscr{A}}$, $\theta_{x, y}$ is defined by $\theta_{x, y}(a) = x \langle y, a \rangle \in \mathscr{H}_{\mathscr{A}}$ for all $a \in \mathscr{H}_{\mathscr{A}}$ ([15]). It was proved ([15]) that

$$L(\mathscr{H}_{\mathscr{A}})\cong M(\mathscr{A}\otimes\mathscr{H})$$
 and $K(\mathscr{H}_{\mathscr{A}})\cong\mathscr{A}\otimes\mathscr{H}$

as C^* -algebras, where \mathscr{K} is the algebra consisting of compact operators on \mathscr{H} . The formulation of $L(\mathscr{H}_{\mathscr{A}})$ and $K(\mathscr{H}_{\mathscr{A}})$ are closely analogous to those of $L(\mathscr{H})$ and \mathscr{H} .

If \mathscr{A} is a unital C^* -algebra, we will denote the unitary group of $M_n(\mathscr{A})$ by $U_n(\mathscr{A})$ and the path component of $U_n(\mathscr{A})$ containing the identity by $U_n^0(\mathscr{A})$. In particular, we will denote $U_1^0(\mathscr{A})$ by $U_0(\mathscr{A})$.

If p and q are projections in \mathscr{A} , $p \sim q$ means that p and q are equivalent in the sense of Murray-von Neumann, and $p \approx q$ means that p and q are homotopic, i.e., in the same norm path component of projections in \mathscr{A} . It is well known that $p \approx q$ if and only if there exists a unitary element v in $U_0(\mathscr{A})$ such that $vpv^* = q$. We denote the matrix units of \mathscr{K} by $\{e_{ij}\}$.

2. Key Lemmas. The following technical lemmas are the key of this paper:

2.1. LEMMA. Suppose that \mathscr{A} is a C*-algebra with FS (not necessarily σ -unital) and p is a projection in $M(\mathscr{A})$. If q is a projection in \mathscr{A} , then for any $\varepsilon_0 > 0$ there exists a projection q' in \mathscr{A} such that both pq'p and (1-p)q'(1-p) have finite spectra and $||q-q'|| < \varepsilon_0$. More precisely, the projection q' has the following form:

$$q' = \begin{pmatrix} f_0 & 0 & 0 \\ 0 & a_0 & b_0 \\ 0 & b_0^* & c_0 \end{pmatrix},$$

where f_0 and the range of a_0 are mutually orthogonal subprojections of p. Consequently $q' \approx q$ if $\varepsilon_0 < 1$.

SHUANG ZHANG

Proof. Let $q = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ be the decomposition of q with respect to p+(1-p) = 1. It follows that $a-a^2 = bb^*$, $c-c^2 = b^*b$, ab+bc = b, $0 \le a \le p$ and $0 \le c \le 1-p$. (Actually these conditions are also sufficient for q to be a projection.) We will start with the idea in [6] and then go further to construct a projection $q' = \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix}$ such that both $\sigma(a')$ and $\sigma(c')$ are finite sets, and q' is close to q in norm.

Let $0 < \delta < 1$ be a fixed positive number and ε be another positive number such that $3\varepsilon < \delta$. Since \mathscr{A} has FS, there exists a positive element c_1 in $(1-p)\mathscr{A}(1-p)$ with a finite spectrum such that

$$||c-c_1|| < \varepsilon.$$

Set $e = \chi_{(\delta,\infty)}(c_1 - c_1^2)$. If δ_1 is the smaller root of $t^2 - t + \delta = 0$, then $e = \chi_{(\delta_1, 1-\delta_1)}(c_1)$ which is a projection in $(1-p)\mathscr{A}(1-p)$.

Set $c_0 = c_1 e + \chi_{(1-\delta_1, 1]}(c_1)$. Then $\sigma(c_0)$ is a finite set, $c_0 - c_0^2 = e(c_1 - c_1^2)e \in e \mathscr{A} e$ and $||c_0 - c_1|| \le \delta_1$. It follows that

(2)
$$||c_0 - c|| \le \varepsilon + \delta_1 < \varepsilon + \sqrt{\delta}.$$

Set $v = (eb^*be)^{-1/2}(eb^*)$, of course where $(eb^*be)^{-1}$ is taken in $e \mathscr{A} e$. Since $e(c_1 - c_1^2)e \ge \delta e$ and hence $eb^*be \ge (\delta - 3\varepsilon)e$, $(eb^*be)^{-1/2}$ exists. It is clear that $vv^* = e$.

Set $b_0 = v^* (c_0 - c_0^2)^{1/2}$. Then $b_0^* b_0 = c_0 - c_0^2$.

Set $a_0 = v^*(e - c_0)v$. Then $a_0 - a_0^2 = b_0b_0^*$ and $a_0b_0 + b_0c_0 = b_0$. If we first fix δ small enough, then we choose ε small enough and c_1 satisfying (1) such that $||c-c_0||$, $||b-b_0||$ and $||(a-a^2)-(a_0-a_0^2)||$ are all smaller than any preassigned positive number. However, $||a - a_0||$ can be equal to one. Here we give details for further reference.

It is obvious that

(3)
$$||b^*b - (c_1 - c_1^2)|| \le 3||c - c_1|| < 3\varepsilon$$

Since $||(1-e)b^*b(1-e) - (1-e)(c_1 - c_1^2)(1-e)|| \le 3\varepsilon$ and $||(1-e)(c_1 - c_1^2)(1-e)|| \le \delta$, it is easily seen that

(4)
$$||b(1-e)|| \leq \sqrt{3\varepsilon + \delta}.$$

Since $eb^*be \geq (\delta - 3\varepsilon)e$, then

(5)
$$\|(eb^*be)^{-1}\| \leq (\delta - 3\varepsilon)^{-1}.$$

By [12, 126] and (3), we can choose ε small enough such that

(6)
$$\|(eb^*be)^{1/2} - [e(c_1 - c_2^2)e]^{1/2}\| < \delta.$$

By (4) and (6) we can choose ε small enough such that

(7)
$$\|b_0 - b\| \le \|v^* (c_0 - c_0^2)^{1/2} - v^* (eb^* be)^{1/2}\| + \|b(1 - e)\| \\ \le \|[e(c_1 - c_1^2)e]^{1/2} - (eb^* be)^{1/2}\| + \sqrt{3\varepsilon + \delta} \\ < \delta + \sqrt{3\varepsilon + \delta}.$$

Consequently,

(8)
$$\|(a-a^2) - (a_0 - a_0^2)\| = \|bb^* - b_0 b_0^*\|$$

$$\leq 2\|b_0 - b\| < 2\delta + 2\sqrt{3\varepsilon + \delta}.$$

It is clear from construction that $q_0 = \begin{pmatrix} a_0 & b_0 \\ b_0 & c_0 \end{pmatrix}$ is a projection. By Lemma (2.4) of [21], $\sigma(a_0) \setminus \{0, 1\} = \sigma(1 - c_0) \setminus \{0, 1\}$, and hence $\sigma(a_0)$ is also a finite set. The idea of constructing the projection q_0 is due L. G. Brown ([6]) for different purpose.

We will go further to adjust q_0 to a projection $q' = \begin{pmatrix} a' & b' \\ b' & c' \end{pmatrix}$ so that ||a - a'|| is small, too. Set $f = v^*v$. Then f is a subprojection of p and $fa_0 = a_0 f = a_0$. We claim that $||faf - a_0||$ can be arbitrarily small if δ , ε and c_1 are properly chosen. To prove this claim, we need the following estimates.

(9)
$$||e(b^*b)^{1/2}(1-e)|| = ||e[(b^*b)^{1/2} - (c_1 - c_1^2)^{1/2}](1-e)||$$

 $\leq ||(b^*b)^{1/2} - (c_1 - c_1^2)^{1/2}||.$

Then by [12, 126] and

$$[(eb^*be)^{1/2}]^2 = eb^*be = [e(b^*b)^{1/2}e]^2 + e(b^*b)^{1/2}(1-e)(b^*b)^{1/2}e,$$

for a fixed $\delta > 0$ we can choose ε small enough (by (3)) such that

(10)
$$||(b^*b)^{1/2} - (c_1 - c_1^2)^{1/2}|| < \frac{\delta^2}{2}$$
 and

(11)
$$\|(eb^*be)^{1/2} - e(b^*b)^{1/2}e\| < \delta \sqrt{\frac{\delta}{2}}.$$

Since

$$f(a - a_0)f = v^* ev(a - a_0)v^* ev$$

= $v^* e(vav^* - va_0v^*)ev$
= $v^* [ec_0e - v(p - a)v^*]v$

then

(12)
$$||f(a-a_0)f|| \le ||ec_0e - ece|| + ||ece - v(p-a)v^*|| < \varepsilon + ||ece - v(p-a)v^*||.$$

Since (1-a)b = bc, p(1-a)b = bp(c) for any polynomial p(t). Approximating by polynomials, we obtain that $\sqrt{1-ab} = b\sqrt{c}$, and hence

$$b^*(1-a)b = c^2 - c^3 = (b^*b)^{1/2}c(b^*b)^{1/2}.$$

It follows that

$$\begin{split} v(p-a)v^* &= (eb^*be)^{-1/2}eb^*(p-a)be(eb^*be)^{-1/2} \\ &= (eb^*be)^{-1/2}e[b^*b-b^*ab]e(eb^*be)^{-1/2} \\ &= (eb^*be)^{-1/2}[e(b^*b)^{1/2}c(b^*b)^{1/2}e](eb^*be)^{-1/2} \\ &= (eb^*be)^{-1/2}[h_1+h_2](eb^*be)^{-1/2}, \end{split}$$

where

$$\begin{split} h_1 &= e(b^*b)^{1/2}ece(b^*b)^{1/2}e \\ &= (eb^*be)^{1/2}c(eb^*be)^{1/2} + [e(b^*b)^{1/2}e - (eb^*be)^{1/2}]c(eb^*be)^{1/2} \\ &+ (eb^*be)^{1/2}c[e(b^*b)^{1/2}e - (eb^*be)^{1/2}] \\ &+ [e(b^*b)^{1/2}e - (eb^*be)^{1/2}]c[e(b^*b)^{1/2}e - (eb^*be)^{1/2}], \\ h_2 &= e(b^*b)^{1/2}(1-e)ce(b^*b)^{1/2}e \\ &+ e(b^*b)^{1/2}ec(1-e)(b^*b)^{1/2}e \\ &+ e(b^*b)^{1/2}(1-e)c(1-e)(b^*b)^{1/2}e. \end{split}$$

If δ is first fixed small enough, and ε and c_1 can be chosen such that $6\varepsilon < \delta$ and

(13)
$$\|(eb^*be)^{-1/2}h_1(eb^*be)^{-1/2} - ece\| \\ \leq 2\|(eb^*be)^{-1/2}\| \|e(b^*b)^{1/2}e - (eb^*be)^{1/2}\| \|c\| \\ + \|(eb^*be)^{-1/2}\|^2\|e(b^*b)^{1/2}e - (eb^*be)^{1/2}\|^2\|c\| \\ \leq 2\frac{\delta\sqrt{\delta/2}}{\sqrt{\delta-3\varepsilon}} + \left[\frac{\delta\sqrt{\delta/2}}{\sqrt{\delta-3\varepsilon}}\right]^2 < \delta^2 + 2\delta \,,$$

(where using (5), (10) and (11)) and

$$\begin{aligned} (14) \quad & \|(eb^*be)^{-1/2}h_2(eb^*be)^{-1/2}\| \\ & \leq 2\|(eb^*be)^{-1/2}\|^2\|e(b^*b)^{1/2}(1-e)\| \,\|c\| \,\|(b^*b)^{1/2}\| \\ & + \|(eb^*be)^{-1/2}\|^2\|e(b^*b)^{1/2}(1-e)\|^2\|c\| \\ & < (\delta - 3\varepsilon)^{-1} \left[\delta^2 + \frac{\delta^4}{4}\right] < 2\delta + \delta^2 \,, \end{aligned}$$

where we used $\delta - 3\varepsilon > \delta/2$. Consequently,

$$\|v(p-a)v^* - ece\| \le 4\delta + 2\delta^2, \text{ and so} \\ \|f(a-a_0)f\| < \varepsilon + 4\delta + 2\delta^2 \text{ by (12).}$$

If δ is fixed small enough and ε is chosen small enough, then $||faf - a_0||$ can be arbitrarily small if c_1 satisfies (1).

Moreover, by properly choosing $\delta > 0$, ε and c_1 in a similar way we can require that ||(p - f)af|| is less than any preassigned positive number. This can be done as follows.

Since $a - a^2 = bb^*$ and the spectral mapping theorem, it is clear $||b|| \le 1/2$. Since (1 - a)b = bc, we have

$$\begin{aligned} -(1-f)av^* &= (1-f)(1-a)be(eb^*be)^{-1/2} \\ &= bce(eb^*be)^{-1/2} - be(eb^*be)^{-1}eb^*bce(eb^*be)^{-1/2} \\ &= bce(eb^*be)^{-1/2} - be(eb^*be)^{-1}eb^*bece(eb^*be)^{-1/2} \\ &- be(eb^*be)^{-1}eb^*b(1-e)ce(eb^*be)^{-1/2} \\ &= b(1-e)ce(eb^*be)^{-1/2} \\ &- be(eb^*be)^{-1}eb^*b(1-e)ce(eb^*be)^{-1/2}. \end{aligned}$$

It follows that

$$\begin{aligned} (15) & \|(1-f)af\| \leq \|(1-f)av^*\| \\ & \leq \|b\| \, \|(1-e)ce\| \, \|(eb^*be)^{-1/2}\| \\ & + \|b\| \, \|(eb^*be)^{-1}\| \, \|e(b^*b)(1-e)\| \, \|c\| \, \|(eb^*be)^{-1/2}\| \\ & < \frac{\varepsilon}{2} \left[\frac{1}{\sqrt{\delta - 3\varepsilon}} \right] + \frac{1}{2} \left[\frac{1}{\delta - 3\varepsilon} \right] (3\varepsilon) \left[\frac{1}{\sqrt{\delta - 3\varepsilon}} \right] \\ & < \left[\frac{\varepsilon}{2} \right] \sqrt{\frac{2}{\delta}} + \left[\frac{3\varepsilon}{2} \right] \left[\frac{2}{\delta} \right]^{3/2} , \end{aligned}$$

where we use (1), (3), (5) and the facts:

$$\|(1-e)ce\| = \|(1-e)(c-c_1)e\| \le \|c-c_1\|, \text{ and} \\ \|eb^*b(1-e)\| = \|e[b^*b - (c_1 - c_1^2)](1-e)\| \le \|b^*b - (c_1 - c_1^2)\|.$$

As a consequence of the last estimate and (8), for any $0 < \lambda < 1/2$, we can fix δ small enough and then choose ε small enough such that $\sigma((p-f)a(p-f)) \subset [0, \lambda] \cup [1-\lambda, 1]$. This is because of the following estimates:

$$\begin{split} (p-f)[(a-a^2)-(a_0-a_0^2)](p-f) &= (p-f)(a-a^2)(p-f) \\ &= (p-f)a(p-f) - [(p-f)a(p-f)]^2 - (p-f)afa(p-f), \\ \|(p-f)a(p-f) - [(p-f)a(p-f)]^2\| \\ &\leq \|(p-f)[(a-a^2)-(a_0-a_0^2)](p-f)\| + \|(1-f)af\|^2 \\ &\leq \|(a-a^2)-(a_0-a_0^2)\| + \|(p-f)af\|^2. \end{split}$$

187

Set $f_0 = \chi_{[1/2,1]}((p-f)a(p-f))$. Then f_0 is a projection in $(p-f)\mathscr{A}(p-f)$ such that $f_0a_0 = a_0f_0 = 0$ and $||f_0-(p-f)a(p-f)|| \le \lambda$. Set $a' = a_0 + f_0$, $b' = b_0$ and $c' = c_0$. Then $q' = \begin{pmatrix} a', b' \\ b', c' \end{pmatrix}$ is a projection in \mathscr{A} such that

(16)
$$||q'-q|| \le ||(f_0+a_0)-a||+2||b_0-b||+||c_0-c||$$

 $\le ||f(a-a_0)f||+2||fa(p-f)||$
 $+ ||f_0-(p-f)a(p-f)||+2||b_0-b||+||c_0-c||.$

Combining all above estimates, we first fix λ small enough, then fix δ small enough, and then choose ε small enough and c_1 satisfying (1) so that each term on the right-hand side of (16) is small. Then ||q - q'|| is small. It is clear that $\sigma(pq'p) = \sigma(f_0 + a_0)$ is a finite set. The last sentence in the statement of this lemma is well known. \Box

2.2. LEMMA. Suppose that \mathscr{A} is a C*-algebra (not necessarily σ unital) and p is a projection in $M(\mathscr{A})$. If q is a projection in \mathscr{A} such that $\sigma(pqp) \neq [0, 1]$, then there exist two projections q_1 and q_2 in \mathscr{A} such that $q_1 \leq p$, $q_2 \leq 1-p$ and $q \approx q_1 + q_2$.

Proof. Let $q = \begin{pmatrix} a & b \\ b^* & c \end{pmatrix}$ be the composition of q with respect to p + (1-p) = 1. Then a = pqp, c = (1-p)q(1-p) and b = pq(1-p). By [21, 2.4], $\sigma(a) \setminus \{0, 1\} = \sigma(1-c) \setminus \{0, 1\}$.

If b = 0, then $q_1 = a$ and $q_2 = c$ are as desired. Assume that $b \neq 0$. If $1 \notin \sigma(c)$, then ||c|| < 1. By the argument of [8, 1], q is path connected to a subprojection q_1 of p. We can assume that $1 \in \sigma(c)$. Since $\sigma(c) \neq [0, 1]$ and 0 is always in $\sigma(c)$, there is a λ in $(0, 1)\setminus\sigma(c)$. Then there exists a positive number ε such that $(\lambda - \varepsilon, \lambda + \varepsilon) \cap \sigma(c) = \emptyset$. Since $b \neq 0$, we can assume that $\sigma(c) \cap (\lambda + \varepsilon, 1) \neq \emptyset$ (Otherwise, $\sigma(a) \cap (\lambda + \varepsilon, 1) \neq \emptyset$, we consider a instead.) We will use a variation of [8, 1] to construct a path of projections for our purpose.

Define a family of continuous positive functions $\{f_t\}_{t \in [0,1]}$ from [0, 1] to [0, 1] with the following properties:

- (1) $\lim_{t\to t_0} ||f_t f_{t_0}||_{\infty} = 0$ for any t_0 in [0, 1];
- (2) $f_1(s) = s$ for all s in [0, 1];
- (3)

$$f_0(s) = \begin{cases} 1, & \text{if } \lambda \le s \le 1, \\ \text{linear}, & \text{if } \lambda - \varepsilon < s < \lambda, \\ 0, & \text{if } 0 \le s \le \lambda - \varepsilon; \end{cases}$$

(4) For all t in (0, 1), $f_t(s) \le s$ if $s \in [0, \lambda - \varepsilon]$ and $f_t(s) \ge s$ if $s \in [\lambda, 1]$.

Since q is a projection, bc = (1 - a)b. Approximating by polynomials, we obtain that bg(c) = g(1 - a)b for any continuous function g on [0, 1]. Set

$$c_{t} = f_{t}(c),$$

$$b_{t} = b \left[\frac{f_{t}(c) - f_{t}(c)^{2}}{c - c^{2}} \right]^{1/2},$$

$$a_{t} = p - f_{t}(p - a).$$

Then b_t and c_t are well defined elements in \mathscr{A} by the properties of f_t . Although p-a is not in $p\mathscr{A}p$ if p is in $M(\mathscr{A})\backslash\mathscr{A}$, $p-f_t(p-a)$ is in $p\mathscr{A}p$ for $t \in [0, 1]$. To see this, first, $f_t(p-a)$ is well defined for each $t \in [0, 1]$ since $\sigma(p-a)\backslash\{0, 1\} = \sigma(c)\backslash\{0, 1\}$. Second, if we denote by π the canonical map from $(p\mathscr{A}p)^+$ to $(p\mathscr{A}p)^+/p\mathscr{A}p$, where $(p\mathscr{A}p)^+$ is the C*-algebra obtained by joining an identity to $p\mathscr{A}p$, then $p - f_t(p-a) \in p\mathscr{A}p$, since $\pi(p - f_t(p-a)) = \pi(p) - f_t(\pi(p)) = 0$. It is easily verified that

$$a_t - a_t^2 = b_t b_t^*,$$

$$a_t b_t = b_t (1 - c_t),$$

$$c_t - c_t^2 = b_t^* b_t.$$

Thus $q(t) = \begin{pmatrix} a_t & b_t \\ b_t & c_t \end{pmatrix}$ is a projection in \mathscr{A} for each t in [0, 1]. By the property (1) of $\{f_t\}$, $\{q(t)\}_{t \in [0, 1]}$ is contained in the same path component of projections in \mathscr{A} . Then $q(0) \approx q(1) = q$. Since $(\lambda - \varepsilon, \lambda) \cap \sigma(c) = \varnothing$, $c_0 = f_0(c) = \chi_{[\lambda, 1]}(c)$ is a projection of $(1 - p)\mathscr{A}(1 - p)$. It is obvious that

$$q(0) = \begin{pmatrix} a_0 & b_0 \\ b_0^* & c_0 \end{pmatrix} = \begin{pmatrix} a_0 & 0 \\ 0 & c_0 \end{pmatrix}.$$

Consequently, a_0 is a projection of $p \mathscr{A} p$. Set $q_1 = a_0$ and $q_2 = c_0$, as desired.

Roughly speaking, with respect to a fixed sequential increasing approximate identity of \mathscr{A} a block-diagonal projection of $M(\mathscr{A})$ whose blocks are with the same size is homotopic to a diagonal projection. More precisely, we have the following lemma:

2.3. LEMMA. Suppose that \mathscr{A} is a σ -unital, non-unital C*-algebra with FS and $\sum_{i=1}^{\infty} (s_{i1}+s_{i2}+\cdots+s_{in}) = 1$, where $\{s_{ij}: i \ge 1, 1 \le j \le n\}$ are mutually orthogonal projections in \mathscr{A} and the sum converges in the strict topology. If p is a projection in $M(\mathscr{A})$ with the form $\sum_{i=1}^{\infty} p_i$, where p_i is a projection in $(s_{i1} + s_{i2} + \dots + s_{in})\mathscr{A}(s_{i1} + s_{i2} + \dots + s_{in})$ for $i \ge 1$, then $p \approx \sum_{i=1}^{\infty} (p_{i1} + p_{i2} + \dots + p_{in})$, where p_{ij} is a projection in $s_{ij}\mathscr{A}s_{ij}$ for $i \ge 1$ and $1 \le j \le n$.

Proof. It suffices to prove the case if n = 2. If n > 2, we simply employ the same proof recursively n - 1 times by induction to reach the conclusion.

We write

$$p_i = \begin{pmatrix} a_i^* & b_i \\ b_i^* & c_i \end{pmatrix}$$

with respect to $s_{i1} + s_{i2}$. By Lemma (2.1), for each $i \ge 1$ we can find a projection

$$p'_{i} = \begin{pmatrix} f_{i} & 0 & 0\\ 0 & a'_{i} & b'_{i}\\ 0 & b'_{i}^{*} & c'_{i} \end{pmatrix}$$

in $(s_{i1}+s_{i2}) \mathscr{A}(s_{i1}+s_{i2})$ such that $||p'_i-p_i|| < 1/4$, and both a'_i and c'_i have finite spectra. Here we use the proof of Lemma (2.1) to properly choose a positive number δ_i and a positive element c'_{1i} in $s_{i2} \mathscr{A} s_{i2}$ with a finite spectrum, then we have that

$$e_{i} = \chi_{(\delta_{i}, 1-\delta_{i})}(c'_{1i}), \qquad c'_{i} = c'_{1i}e_{i} + \chi_{(1-\delta_{i}, 1)}(c'_{1i}),$$

$$v_{i} = (e_{i}b_{i}^{*}b_{i}e_{i})^{-1/2}(e_{i}b_{i}^{*}), \qquad b'_{i} = v_{i}^{*}(c'_{i} - c'_{1i})^{1/2},$$

$$a'_{i} = v_{i}^{*}(e_{i} - c'_{1i})v_{i}$$

and f_i is a projection of $s_{i1} \mathscr{A} s_{i1}$ orthogonal to the range projection of a'_i .

Let $p' = \sum_{i=1}^{\infty} p'_i$. Then ||p' - p|| < 1/4, and hence $p \approx p'$.

Let $\sigma(c'_i) = \{\lambda_{i1}, \lambda_{i2}, \dots, \lambda_{il}\}$ for each $i \ge 1$. It follows from the construction or [21, 2.4] that $\sigma(a'_i) = \{1 - \lambda_{i1}, 1 - \lambda_{i2}, \dots, 1 - \lambda_{il_i}\}$. We can write $c'_i = \sum_{j=1}^{l} \lambda_{ij} r_{ij}$, where $\{r_{ij}: 1 \le j \le l_i\}$ is a set of mutually orthogonal projections in $s_{i2} \ll s_{i2}$. Let λ be any number in the open interval $(\frac{1}{2}, \frac{3}{4})$ but not in $\bigcup_{i=1}^{\infty} \sigma(c'_i)$. Let $\varepsilon = \min\{\lambda - \frac{1}{2}, \frac{3}{4} - \lambda\}$. For $i \ge 1$, if λ_{ij} is in the open interval $(\lambda - \varepsilon, \lambda)$, we replace λ_{ij} by $\lambda'_{ij} = \lambda - \varepsilon$, and if λ_{ij} is in $(\lambda, \lambda + \varepsilon)$, we replace λ_{ij} by $\lambda'_{ij} = \lambda + \varepsilon$. If λ_{ij} is not in $(\lambda - \varepsilon, \lambda + \varepsilon)$, then we let $\lambda'_{ij} = \lambda_{ij}$. Set $c''_i = \sum_{j=1}^{l} \lambda'_{ij} r_{ij}$ for $i \ge 1$, and correspondingly set $b''_i = v_i^* (c''_i - c''_i)^{1/2}$ and $a''_i = v_i^* (e_i - c''_i)v_i$. Then

$$||a'_i - a''_i|| \le ||c'_i - c''_i|| < \varepsilon$$
 and
 $||b'_i - b''_i|| \le ||(c'_i - c'^2_i)^{1/2} - (c''_i - c''^2_i)^{1/2}|| < \frac{1}{8}.$

It follows that

$$p_i'' = \begin{pmatrix} f_i & 0 & 0 \\ 0 & a_i'' & b_i'' \\ 0 & b_i''^* & c_i'' \end{pmatrix}$$

is a projection in $(s_{i1}+s_{i2}) \mathscr{A}(s_{i1}+s_{i2})$ such that $||p'_i-p''_i|| \le 2\varepsilon + \frac{1}{4} < 1$. Define $p'' = \sum_{i=1}^{\infty} p''_i$. Then ||p'-p''|| < 1, and hence $p' \approx p''$. The remaining job is to prove that p'' is homotopic to a desired diagonal projection.

Let $\{f_t\}_{t \in [0, 1]}$ be the family of continuous functions defined in the proof of Lemma (2.2). Since $\sigma(c''_i)$ does not intersect with the open interval $(\lambda - \varepsilon, \lambda + \varepsilon)$ for $i \ge 1$, we can define

$$c_i(t) = f_t(c''_i),$$

$$b_i(t) = b''_i \left[\frac{f_t(c''_i) - f_t(c''_i)^2}{c''_i - c''_i^2} \right]^{1/2}$$

$$a_i(t) = p - f_t(p - a''_i - f_i).$$

Then $a_i(t)$, $b_i(t)$ and $c_i(t)$ are well defined elements in $(s_{i1} + s_{i2}) \mathscr{A}$ $(s_{i1} + s_{i2})$ for each t in [0, 1] and $i \ge 1$ by the properties of f_t . Thus for each t in [0, 1]

$$p_i(t) = \begin{pmatrix} a_i(t) & b_i(t) \\ b_i(t)^* & c_i(t) \end{pmatrix}$$

is a projection in $(s_{i1} + s_{i2}) \mathscr{A}(s_{i1} + s_{i2})$. It is easily seen that

$$p_i(1) = p''_i$$
 and $p_i(0) = \begin{pmatrix} a_i(0) & 0\\ 0 & c_i(0) \end{pmatrix}$,

where $a_i(0)$ is a projection of $s_{i1} \mathscr{A} s_{i1}$ and $c_i(0)$ is a projection of $s_{i2} \mathscr{A} s_{i2}$. Define $p(t) = \sum_{i=1}^{\infty} p_i(t)$ for each t in [0, 1]. Then $\{p(t)\}_{t \in [0, 1]}$ is a path of projection in $M(\mathscr{A})$. It is obvious that

$$p(1) = p''$$
 and $p(0) = \sum_{i=1}^{\infty} \begin{pmatrix} a_i(0) & 0 \\ 0 & c_i(0) \end{pmatrix}$.

Since the choice of $\{f_t\}_{t \in [0, 1]}$ does not depend on *i*, the path $\{p(t): t \in [0, 1]\}$ is continuous in the norm topology.

Set $p_{i1} = a_1(0)$, $p_{i2} = c_i(0)$ for $i \ge 1$. Then

$$p \approx p' \approx p'' \approx p(0) = \sum_{i=1}^{\infty} (p_{i1} + p_{i2}),$$
 as desired.

3. Diagonalizing projections in \mathscr{A} and in $M_n(\mathscr{A})$. Since we will frequently employ the following well-known fact in this paper, we state it as a lemma.

3.1. LEMMA. If \mathscr{A} is a C*-algebra, and if p and q are two mutually orthogonal projections in \mathscr{A} , then $p \sim q$ if and only if $p \approx q$.

Proof. Let v be a partial isometry in \mathscr{A} such that $vv^* = p$ and $v^*v = q$. Define $w = v + v^* + (1 - p - q)$. Then w is a self-adjoint unitary in $M(\mathscr{A})$ such that $w^*pw = q$. It is well known that $w \in U_0(\mathscr{A})$. It follows that $p \approx q$.

3.2. THEOREM. Suppose that \mathscr{A} is a C*-algebra with FS and p_1 , p_2, \ldots, p_n $(n \ge 1)$ are mutually orthogonal projections in $M(\mathscr{A})$ such that $\sum_{i=1}^n p_i = 1$. If p is a projection in \mathscr{A} , then $p \approx \sum_{i=1}^n q_i$, where q_i is a projection in \mathscr{A} such that $q_i \le p_i$ for $1 \le i \le n$.

Proof. Recursively using Lemma (2.1) and Lemma (2.2), we reach the conclusion. \Box

The following theorem can be regarded as an analogue of the wellknown fact: Every projection in $M_n(\mathbb{C})$ is homotopic to a diagonal projection whose entries are either 1 or 0.

3.3. THEOREM. Assume that \mathscr{A} is a C^* -algebra with FS and $n \ge 1$. If p is a projection in $M_n(\mathscr{A})$, then $p \approx \sum_{i=1}^n p_i \otimes e_{ii}$, where $\{p_i\}$ is a set of projections in \mathscr{A} such that

$$p_1 \leq p_2 \leq \cdots \leq p_{n-1} \leq p_n.$$

Proof. It has been recently proved ([5]) that $\mathscr{A} \otimes \mathscr{K}$ has FS if and only if \mathscr{A} has FS. By Theorem (3.2) we have $p \approx \sum_{i=1}^{n} p'_i \otimes e_{ii}$, where $\{p'_i\}$ is a set of projections in \mathscr{A} . The remaining work is to adjust $\{p'_i\}$. We use induction on n.

If n = 2, $p \approx p'_1 \otimes e_{11} + p'_2 \otimes e_{22}$, where p'_1 and p'_2 are projections in \mathscr{A} . Combining Lemma (2.1) and Lemma (2.2), we obtain that $p'_1 \approx q_1 + q_2$ in \mathscr{A} , where q_1 and q_2 are two projections in \mathscr{A} such that $q_1 \leq p'_2$ and $q_2 \leq 1 - p'_2$. It follows that $p \approx (q_1 + q_2) \otimes e_{11} + p'_2 \otimes e_{22}$. Working in the hereditary C*-subalgebra of $M_n(\mathscr{A})$ generated by $(1 - q_1) \otimes e_{11} + 1 \otimes e_{22}$, we have $q_2 \otimes e_{11} + p'_2 \otimes e_{22} \approx (p'_2 + q_2) \otimes e_{22}$ by Lemma (3.1). It follows that $p \approx q_1 \otimes e_{11} + (p'_2 + q_2) \otimes e_{22}$. Let $p_1 = q_1$ and $p_2 = q_2 + p'_2$.

 $p_1 = q_1$ and $p_2 = q_2 + p'_2$. Assume that $p \approx \sum_{i=1}^n p'_i \otimes e_{ii}$ such that $p'_2 \leq p'_3 \leq \cdots \leq p'_n$. Applying Lemma (2.1) and Lemma (2.2) to p'_1 , and p'_n , we have $p'_1 \approx q_n + q'_n$, where q_n and q'_n are projections in \mathscr{A} such that $q_n \leq 1 - p'_n$ and $q'_n \leq p'_n$. By the same argument as in the last paragraph we have that $p \approx q'_n \otimes e_{11} + \sum_{i=2}^{n-1} p'_i \otimes e_{ii} + (p'_n + q_n) \otimes e_{nn}$. Repeating this argument to q'_n and p'_{n-1} , we have that $q'_n \approx q'_{n-1} + q_{n-1}$, where q'_{n-1} and q_{n-1} are two projections in \mathscr{A} such that $q_{n-1} \leq p'_n - p'_{n-1}$ and $q'_{n-1} \leq p'_{n-1}$. It follows that $p \approx q'_{n-1} \otimes e_{11} + \sum_{i=2}^{n-2} p'_i \otimes e_{ii} + (p'_{n-1} + q_{n-1}) \otimes e_{n-1,n-1} + (p'_n + q_n) \otimes e_{nn}$.

Proceeding in this way, we write $p'_1 = \sum_{i=1}^n q_i$, where $\{q_i\}$ is a set of mutually orthogonal projections in \mathscr{A} such that $q_i \leq p'_{i+1} - p'_i$ for $2 \leq i \leq n$ (where $p'_{n+1} = 1$), $q_1 \leq p'_2$, and $p \approx q_1 \otimes e_{11} + \sum_{i=2}^n (p'_i + q_i) \otimes e_{ii}$. Let $p_1 = q_1$ and $p_i = p'_i + q_i$ for $2 \leq i \leq n$. Then $p_1 \leq p_2 \leq \cdots \leq p_n$ and $p \approx \sum_{i=1}^n p_i \otimes e_{ii}$.

M. A. Rieffel raised a question in [18, 7]: If \mathscr{A} is a unital C^* algebra with cancellation, and if two projections p and q in $M_n(\mathscr{A})$ represent the same class in $K_0(\mathscr{A})$, are p and q in the same path component of projections in $M_n(\mathscr{A})$? Since \mathscr{A} has cancellation, [p] = [q]in $K_0(\mathscr{A})$ if and only if $p \sim q$ ([3] or [4]). Hence, Rieffel's question is equivalent to whether two Murray-von Neumann equivalent projections in $M_n(\mathscr{A})$ are in the same path component of projections in $M_n(\mathscr{A})$. The following corollary provides a partial answer for his question in the case that \mathscr{A} has FS:

3.4. COROLLARY. If \mathscr{A} is a unital C*-algebra with FS and cancellation, and if p and q are two projections in $M_n(\mathscr{A})$, then $p \sim q$ if and only if $p \approx q$.

Proof. Of course we need only to show that $p \sim q$ implies $p \approx q$. Since $M_n(\mathscr{A})$ has FS, by Theorem (3.2) we have $p \approx q_1 + q_2$, where q_1 is a subprojection of q and q_2 is a subprojection of 1-q. Since \mathscr{A} has cancellation and $p \sim q$, $q_2 \sim q - q_1$. Working in $(1-q_1)M_n(\mathscr{A})(1-q_1)$, by Lemma (3.1) we can find a unitary v in $U_0((1-q_1)M_n(\mathscr{A})(1-q_1))$ such that $vq_2v^* = q - q_1$. Set $u = q_1 + v$. Then u is a unitary in $U_0(M_n(\mathscr{A}))$ such that $uq_1 = q_1u$. Thus $p \approx q_1 + q_2 \approx q$.

Concerning the unitary orbit of elements in $M_n(\mathscr{A})$, we have the following corollary:

3.5. COROLLARY. If \mathscr{A} is a C^* -algebra with FS and x is a normal element in $M_n(\mathscr{A})$ with finite spectrum, then there is a unitary element u in $U_n^0(\mathscr{A})$ such that $uxu^* = \sum_{j=1}^n [\sum_{i=1}^n \lambda_i p_{ij}] \otimes e_{jj}$, where $\{p_{ij}\}$ is a set of projections in \mathscr{A} such that $p_{i,j} \perp p_{i,j}$ in $\mathscr{A} \otimes e_{jj}$ if $i_1 \neq i_2$.

Proof. By operator calculus we write $x = \sum_{i=1}^{m} \lambda_i p_i$, where $\{\lambda_i\}$ is a set of complex numbers and $\{p_i\}$ is a set of mutually orthogonal projections in $M_n(\mathscr{A})$. By Theorem (3.2) we can find a unitary element u_1 in $U_n^0(\mathscr{A})$ such that $u_1p_1u_1^* = \sum_{j=1}^{n} p_{1j} \otimes e_{jj} (=q_1)$ for some projections $\{p_{1j}\}$ in \mathscr{A} . Working in $(I_n - q_1)M_n(\mathscr{A})(I_n - q_1)$ and repeating the same argument, we can find a unitary u'_2 in $U_0[(I_n - q_1)M_n(\mathscr{A})(I_n - q_1)]$ such that $u'_2(u_1p_2u_1^*)u'_2{}^2 = \sum_{j=1}^{n} p_{2j} \otimes e_{jj}$ for some projections $\{p_{2j}\}$ in \mathscr{A} . It follows from $p_1p_2 = 0$ that $p_{1j}p_{2l} = 0$ for $1 \le j < l \le n$. Set $u_2 = q_1 + u'_2$. Then u_2 is a unitary in $U_n^0(\mathscr{A})$ and $u_2u_1(p_1 + p_2)u_1^*u_2^* = \sum_{i=1}^{2} \sum_{j=1}^{n} p_{ij} \otimes e_{jj} =$ $\sum_{j=1}^{n} (\sum_{i=1}^{2} p_{ij}) \otimes e_{jj}$.

Proceeding in this way we can find unitary elements $\{u_i: 1 \le i \le m\}$ in $U_n^0(\mathscr{A})$ such that

$$u_{m}u_{m-1}\cdots u_{1}(p_{1}+p_{2}+\cdots+p_{m})u_{1}^{*}\cdots u_{m-1}^{*}u_{m}^{*}$$
$$=\sum_{i=1}^{m}\left[\sum_{j=1}^{n}p_{ij}\otimes e_{jj}\right]=\sum_{j=1}^{n}\left[\sum_{i=1}^{m}p_{ij}\right]\otimes e_{jj}.$$

Let $u = u_m \cdots u_2 u_1$. It is obvious that u is in $U_n^0(\mathscr{A})$ and

$$uxu^* = \sum_{j=1}^n \left[\sum_{i=1}^m \lambda_i p_{ij} \right] \otimes e_{jj}.$$

It is well known that the unitary orbit of a self-adjoint matrix in $M_n(\mathbb{C})$ contains a diagonal self-adjoint matrix. If \mathbb{C} is replaced by a unital C^* -algebra with FS, we have the following weaker analogue:

3.6. COROLLARY. If \mathscr{A} is a C*-algebra with FS and x is a selfadjoint element in $M_n(\mathscr{A})$ $(n \ge 1)$, then for any $\varepsilon > 0$ there exist a unitary element u in $U_n^0(\mathscr{A})$ and elements a_i in \mathscr{A} with finite spectra such that

$$\left\|uxu^*-\sum_{i=1}^n a_i\otimes e_{ii}\right\|<\varepsilon.$$

Proof. Since $M_n(\mathscr{A})$ has FS, there is a self-adjoint element h in $M_n(\mathscr{A})$ with finite spectrum such that $||x - h|| < \varepsilon$. By the same argument as in the proof of Corollary (3.5) we can find a unitary element u in $U_n^0(\mathscr{A})$ such that $uhu^* = \sum_{i=1}^n a_i \otimes e_{ii}$, where $\{a_i\}$ is a set of self-adjoint elements in \mathscr{A} with finite spectra. Therefore,

$$\left\| uxu^* - \sum_{i=1}^n a_i \otimes e_{ii} \right\| = \|x - h\| < \varepsilon.$$

3.7. REMARK. Concerning the computation of K_0 -groups of a C^* algebra, M. A. Rieffel raised a question in [18, 8]: What is the smallest n such that the projections in $M_n(\mathscr{A})$ generate $K_0(\mathscr{A})$? Theorem (3.3) provides a partial answer for his question for the class of C^* algebras with FS (actually it has been given in [22] although it was not mentioned there). In fact, if \mathscr{A} is a C^* -algebra with FS, then the smallest such an integer is n = 1; in other words, $K_0(\mathscr{A})$ is generated by the set of Murray-von Neumann equivalence classes of projections in \mathscr{A} .

4. Diagonalizing projections in $M(\mathscr{A})$.

4.1. THEOREM. Assume that \mathscr{A} is a σ -unital C*-algebra with FS and $\{e_n\}$ is a fixed increasing sequential approximate identity consisting of projections. If p is a projection in $M(\mathscr{A})$, then the following hold:

(i) There is a unitary u in $M(\mathscr{A})$ connected to the identity by a path of unitaries, where the path is continuous in the strict topology, such that $upu^* = \sum_{i=1}^{\infty} p_i$, where $p_i \leq e_i$ for $i \geq 1$; in other words, each strict path component of projections in $M(\mathscr{A})$ contains a diagonal projection with respect to $\{e_n\}$.

(ii) There exist a unitary v in $U_0(M(\mathscr{A}))$ and a subsequence $\{e_{m_i}\}$ of $\{e_n\}$ such that $vpv^* = \sum_{i=1}^{\infty} p'_i$, where p'_i is a projection of $(e_{m_i} - e_{m_{i-1}}) \mathscr{A}(e_{m_i} - e_{m_{i-1}})$ for $i \ge 1$; in other words, each norm path component of projections in $M(\mathscr{A})$ contains a block-diagonal projection with respect to $\{e_n\}$.

Before proving this theorem, we state the following corollary, which can be regarded as an analogue of the well known fact that a projection on a separable Hilbert space is unitarily equivalent to a diagonal projection whose diagonal entries are either 1 or 0.

4.2. COROLLARY. If \mathscr{A} is a σ -unital C*-algebra with FS, and if p is a projection in $L(\mathscr{H}_{\mathscr{A}})$, then there is a unitary u in $L(\mathscr{H}_{\mathscr{A}})$ such that $upu^* = \sum_{i=1}^{\infty} p_i \otimes e_{ii}$, where $\{p_i\}$ is a sequence of projections in \mathscr{A} . Consequently, $p \approx \sum_{i=1}^{\infty} p_i \otimes e_{ii}$ (by [8]).

Proof of Theorem (4.1).

Case 1. If p is a projection of \mathscr{A} .

Choose $n \ge 1$ large enough such that $||p(1-e_n)p||$ is small. Then Lemma (2.1) of [10] applies. We find a unitary u in $U_0(\mathcal{M}(\mathcal{A}))$ such

that $upu^* \le e_n$. By Theorem (3.2), $p \approx upu^* \approx \sum_{i=1}^n p_i$, where $p_i \le e_i - e_{i-1}$ for $1 \le i \le n$. Hence both (i) and (ii) hold.

Case 2. If p is a projection in $M(\mathscr{A}) \setminus \mathscr{A}$.

Let $\{q_n\}$ and $\{q'_n\}$ be two increasing sequences of projections in \mathscr{A} such that $q_n \nearrow p$ and $q'_n \nearrow 1 - p$ in the strict topology. Set $f_n = q_n + q'_n$. Then $\{f_n\}$ is an increasing sequential approximate identity of \mathscr{A} consisting of projections. By the argument of [10, 2.4] we find a unitary element v in $U_0(M(\mathscr{A}))$ such that

$$e_{m_1} \leq v f_{n_1} v^* \leq e_{m_2} \leq v f_{n_2} v^* \leq e_{m_3} \leq \cdots$$

where $\{n_i\}$ and $\{m_i\}$ are increasing sequences. It is clear that

$$vpv^* = \sum_{i=1}^{\infty} vp(f_{n_i} - f_{n_{i-1}})v^* = \sum_{i=1}^{\infty} v(q_{n_i} - q_{n_{i-1}})v^*$$

and $v(q_{n_i} - q_{n_{i-1}})v^* \le v(f_{n_i} - f_{n_{i-1}})v^* = (vf_{n_i}v^* - e_{m_i}) + (e_{m_i} - vf_{n_{i-1}}v^*)$ (where $q_{n_0} = 0$ and $f_{n_0} = 0$). We first prove (i). By Theorem (3.2) we find a unitary w_i in

We first prove (i). By Theorem (3.2) we find a unitary w_i in $U_0(\mathscr{A}_i)$, where $\mathscr{A}_i = [v(f_{n_i} - f_{n_{i-1}})v^*]\mathscr{A}[v(f_{n_i} - f_{n_{i-1}})v^*]$, such that $w_i v(q_{n_i} - q_{n_{i-1}})v^*w_i^* = r_i + r'_i$, where $r_i \leq vf_{n_i}v^* - e_{m_i}$ and $r'_i \leq e_{m_i} - vf_{n_{i-1}}v^*$. Set $w = \sum_{i=1}^{\infty} w_i$. Then w is a unitary in $M(\mathscr{A})$ such that w is path connected (in the strict topology) to the identity and

$$wvpv^*w^* = \sum_{i=1}^{\infty} (r_i + r'_i) \le \sum_{i=1}^{\infty} [(vf_{n_i}v^* - e_{m_i}) + (e_{m_i} - vf_{n_{i-1}}v^*)].$$

Since $r_i + r'_{i+1} \le e_{m_{i+1}} - e_{m_i}$, we can apply Theorem (3.2) again to get a unitary w'_i in $U_0(\mathscr{B}_i)$, where $\mathscr{B}_i = (e_{m_{i+1}} - e_{m_i})M(\mathscr{A})(e_{m_{i+1}} - e_{m_i})$ such that

$$w'_i(r_i+r'_{i+1})w'^*_i=\sum_{j=m_i+1}^{m_{i+1}}p_j,$$

where p_j is in $(e_j - e_{j-1}) \mathscr{A}(e_j - e_{j-1})$ for $m_i < j \le m_{i+1}$.

Define $w' = \sum_{i=1}^{\infty} w'_i$. Then w' is a unitary in $M(\mathscr{A})$ such that w' is path connected in the strict topology to the identity and $w'wvpv^*w^*w'^* = \sum_{i=1}^{\infty} p_i$. Set u = w'wv, as (i) desired.

To prove (ii), we start with $p \approx vpv^* = \sum_{i=1}^{\infty} v(q_{n_i} - q_{n_{i-1}})v^*$, where $s_i = v(q_{n_i} - q_{n_{i-1}})v^* \le v(f_{n_i} - f_{n_{i-1}})v^* = (vf_{n_i}v^* - e_{m_i}) + (e_{m_i} - vf_{n_{i-1}}v^*)$ for each $1 \ge 1$ and $q_{n_0} = 0$ and $f_{n_0} = 0$. With respect to

$$v(f_{n_i} - f_{n_{i-1}})v^* = (vf_{n_i}v^* - e_{m_i}) + (e_{m_i} - vf_{n_{i-1}}v^*),$$

we can write

$$s_i = \begin{pmatrix} a_i & b_i \\ b_i^* & c_i \end{pmatrix}$$
 for $i \ge 1$.

By Lemma (2.3),

$$vpv^* \approx \sum_{i=1}^{\infty} (s_i + s'_i)$$
,

where s_i is a projection in $(vf_{n_i}v^* - e_{m_i}) \mathscr{A}(vf_{n_i}v^* - e_{m_i})$ and s'_i is a projection in $(e_{m_i} - vf_{n_{i-1}}v^*) \mathscr{A}(e_{m_i} - vf_{n_{i-1}}v^*)$. Let $p'_i = s'_i + s_{i-1}$ for $i \ge 1$, where $s_0 = 0$, as desired.

The following theorem asserts that the unitary orbit of each selfadjoint element of $M(\mathcal{A})$ contains an "almost" diagonal form, which is a natural analogue of the classical Weyl-von Neumann theorem.

4.3. THEOREM. Assume that \mathscr{A} is a σ -unital C*-algebra with FS and also $M(\mathscr{A})$ has FS. If $\{e_n\}$ is a fixed increasing approximate identity of \mathscr{A} consisting of projections and h is a self-adjoint element in $M(\mathscr{A})$, then there exist a unitary u in $M(\mathscr{A})$, an element a in \mathscr{A} , some mutually orthogonal subprojection p_{ij} $(1 \le j \le n_i)$ of $e_i - e_{i-1}$ for each $i \ge 1$ and a real bounded scalar sequence $\{\lambda_{ij}\}$ such that

$$\sum_{ij} p_{ij} = 1, \quad and \quad uhu^* = \sum_{i=1}^{\infty} \left[\sum_{j=1}^{l_i} \lambda_{ij} p_{ij} \right] + a,$$

where a can be chosen such that ||a|| is arbitrarily small. Moreover, u is connected to the identity by a path of unitaries in $M(\mathscr{A})$, where the path is continuous in the strict topology.

4.4. COROLLARY. If \mathscr{A} is a unital C*-algebra with FS and $L(\mathscr{H}_{\mathscr{A}})$ has FS also, then for any self-adjoint element h in $L(\mathscr{H}_{\mathscr{A}})$ there are a unitary u in $L(\mathscr{H}_{\mathscr{A}})$, an element a in $K(\mathscr{H}_{\mathscr{A}})$, a sequence of projections $\{p_{ij}\}$ in \mathscr{A} and a real bounded scalar sequence $\{\lambda_{ij}\}$ such that

$$\sum_{i=1}^{\infty} \left(\sum_{j=1}^{l_i} p_{ij} \right) \otimes e_{ii} = 1 \quad and \quad uhu^* = \sum_{i=1}^{\infty} \left[\sum_{j=1}^{l_i} \lambda_{ij} p_{ij} \right] \otimes e_{ii} + a,$$

where p_{ij} $(i \le j \le l_i)$ are mutually orthogonal for each fixed *i*, and *a* can be chosen with an arbitrarily small norm.

Proof of Theorem (4.3).. Since \mathscr{A} is σ -unital and both \mathscr{A} and $M(\mathscr{A})$ have FS, by [21, 3.1] we can find mutually orthogonal projections p_i in \mathscr{A} with $\sum_{i=1}^{\infty} p_i = 1$, a real bounded scalar sequence

SHUANG ZHANG

 $\{\lambda_i\}$ and an element b in \mathscr{A} with arbitrarily small norm such that $h = \sum_{i=1}^{\infty} \lambda_i p_i + b$. Let $f_n = \sum_{i=1}^{n} p_i$. Then $\{f_n\}$ is an increasing approximate identity consisting of projections. By the same argument as in [10, 2.4] we can find a unitary v in $M(\mathscr{A})$ such that $v \sim 1$, and

$$e_{m_1} \leq v f_{n_1} v^* \leq e_{m_2} \leq v f_{n_2} v^* \leq e_{m_3} \leq \cdots,$$

where $\{n_i\}$ and $\{m_i\}$ are increasing sequences. Since

$$v\left(\sum_{j=n_{i-1}+1}^{n_i} p_i\right)v^* = (vf_{n_i}V^* - e_{m_i}) + (e_{m_i} - Vf_{n_{i-1}}v^*)$$

(where $f_{n_0} = 0$), by the same arguments in the proof of Theorem (4.1) we can find a unitary w_i of $[v(f_{n_i} - f_{n_{i-1}})v^*]M(\mathscr{A})[v(f_{n_i} - f_{n_{i-1}})v^*]$ path connected to the identity $v(f_{n_i} - f_{n_{i-1}})v^*$ such that

$$w_i v \left(\sum_{j=n_{i-1}+1}^{n_i} p_i \right) v^* w_i^* = \sum_{j=n_{i-1}+1}^{n_i} w_i v p_i' v^* w_i^* + \sum_{j=n_{i-1}+1}^{n_i} w_i v p_i'' v^* w_i^*,$$

where

$$p'_{i} + p''_{i} = p_{i}$$
, $r_{i} = \sum_{j=n_{i-1}+1}^{n_{i}} w_{i}vp'_{i}v^{*}w^{*}_{i} = vf_{n_{i}}v^{*} - e_{m_{i}}$ and
 $r'_{i} = \sum_{j=n_{i-1}+1}^{n_{i}} w_{i}vp''_{i}v^{*}w^{*}_{i} = e_{m_{i}} - vf_{n_{i-1}}v^{*}$

Let $w = \sum_{i=1}^{\infty} w_i$. Then w is a unitary in $M(\mathscr{A})$ such that w is connected to the identity by a path of unitaries, where the path is continuous in the strict topology. Since $r_j + r'_{j+1} \leq e_{m_{j+1}} - e_{m_j}$, by the same arguments in the proof of Theorem (4.1), we obtain a unitary w'_j of $(e_{m_{j+1}} - e_{m_j})M(\mathscr{A})(e_{m_{j+1}} - e_{m_j})$ path connected to the identity $e_{m_{j+1}} - e_{m_j}$ such that

$$w'_{j}(r_{j}+r'_{j+1})w'^{*}_{j} = \sum_{i=m_{j}+1}^{m_{j+1}}\sum_{j=1}^{l_{i}}p_{ij},$$

where $\{p_{ij}: 1 \le j \le l_i\}$ is a set of mutually orthogonal subprojections in $(e_i - e_{i-1}) \mathscr{A}(e_i - e_{i-1})$.

Define $w' = \sum_{i=1}^{\infty} w'_i$. Then w' is a unitary in $M(\mathscr{A})$ such that w' is path connected to the identity, where the path is continuous in the strict topology. Set u = w'wv. Then u is path connected to the

198

identity, where the path is continuous in the strict topology. It is easily verified that uhu^* has a desired form. (Notice that $\{\lambda_i\}$ is equal to $\{\lambda_{ij}\}$ as sets.)

4.5. REMARKS. (i) The condition " $M(\mathscr{A})$ has FS" in the hypotheses of Theorem (4.3) and Corollary (4.4) has been studied in [5], [21] and [24]. Actually many multiplier algebras have the FS property.

(ii) Several applications of the results in this note have been given in the author's subsequent papers [24, Part II, III, IV].

Acknowledgment. The author wishes to thank the referee for pointing out an inaccuracy in Theorem (4.1) in the primary manuscript of this paper.

References

- C. A. Akemann, G. K. Pedersen and J. Tomiyama, *Multipliers of C*-algebras*, J. Funct. Anal., 13 (1973), 277-301.
- [2] J. Bunce and J. Deddens, A family of simple C^{*}-algebras related to weighted shift operators, J. Funct. Anal., **19** (1975), 13–24.
- [3] B. Blackadar, Notes on the structure of projections in simple C^{*}-algebras, Semesterbericht Funktionalanalysis, W82, Tübingen, March 1983.
- [4] ____, K-Theory for Operator Algebras, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1987.
- [5] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, preprint, 1989.
- [6] L. G. Brown, Extensions of AF algebras: the projection lifting problem, Operator Algebras and Applications, Proc. Symp. Pure Math., 38 (1981), Part I, 175–176.
- [7] R. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.
- [8] J. Cuntz and N. Higson, *Kuiper's theorem for Hilbert modules*, Operator Alg. and Math. Phys., Vol. 62, Proc. of a Summer Conference June 17–21, 1985.
- [9] M.-D. Choi and G. A. Elliott, Density of the self-adjoint elements with finite spectrum in an irrational rotation C^* -algebra, Math. Scand., (to appear).
- [10] G. A. Elliott, Derivations of matroid C*-algebras II, Ann. of Math., 100 (1974), 407–422.
- [11] K. Grove and G. K. Pedersen, *Diagonalizing matrices over* C(X), J. Funct. Anal., **59** (1984), 65-89.
- [12] P. R. Halmos, A Hilbert Space Problem Book, second edition, Springer-Verlag New York, Heidelberg, Berlin, 1982.
- [13] R. V. Kadison, *Diagonalizing matrices over operator algebras*, Bull. Amer. Math. Soc., 8 (1983), 84–86.
- [14] ____, Diagonalizing matrices, Amer. J. Math., 106 (1984), 1451-1468.
- [15] G. Kasparov, Hilbert C*-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory, 4 (1980), 133-150.
- [16] G. K. Pedersen, The linear span of projections in simple C*-algebras, J. Operator Theory, 4 (1980), 289–296.
- [17] M. A. Reiffel, *The homotopy groups of the unitary groups of non-commutative tori*, J. Operator Theory, **17** (1987), 237–254.

- [18] M. A. Reiffel, Non-stable K-theory and non-commutative tori, Contemporary Math., 62 (1987), 267-279.
- [19] ____, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc., 46 (1983), 301-333.
- [20] H. Weyl, Uber beschrankte quadratischen formen deren differentz vollstetig ist, Rend. Circ. Mat. Palermo, 27 (1909), 373-392.
- [21] S. Zhang, K_1 -groups, quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc., to appear.
- [22] ____, A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory, (to appear).
- [23] ____, On the structure of projections and ideals of corona algebras, Canad. J. Math., 41 (1989), 721-742.
- [24] ____, C*-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part I, II, IV, preprints. Part III to appear in Canad. J. Math.
- [25] ____, A property of purely infinite simple C*-algebras, Proc. Amer. Math. Soc., to appear.

Received November 1, 1988 and in revised form September 28, 1989.

UNIVERSITY OF KANSAS LAWRENCE, KS 66045-2142