DIAGONALIZING PROJECTIONS IN MULTIPLIER ALGEBRAS AND IN MATRICES OVER A C^{*}-ALGEBRA

Shuang Zhang

Abstract

Assume that \mathscr{A} is a C^{*}-algebra with the FS property ([3] and [16]). We prove that every projection in $M_{n}(\mathscr{A}) \quad(n \geq 1)$ or in $L\left(\mathscr{H}_{\mathscr{A}}\right)$ is homotopic to a projection whose diagonal entries are projections of \mathscr{A} and off-diagonal entries are zeros. This yields partial answers for Questions 7 and 8 raised by M. A. Rieffel in [18]. If \mathscr{A} is σ-unital but non-unital, then every projection in the multiplier algebra $M(\mathscr{A})$ is unitarily equivalent to a diagonal projection, and homotopic to a block-diagonal projection with respect to an approximate identity of \mathscr{A} consisting of an increasing sequence of projections. The unitary orbits of self-adjoint elements of \mathscr{A} and $M(\mathscr{A})$ are also considered.

0. Introduction. It is well known that a projection in $M_{n}(\mathbb{C})$ or in $\mathrm{L}(\mathscr{H})$ is homotopic to a diagonal projection whose diagonal entries are either 1 or 0 , where $M_{n}(\mathbb{C})$ is the algebra consisting of $n \times n$ scalar matrices and $\mathbf{L}(\mathscr{H})$ is the algebra consisting of bounded operators on a separable Hilbert space \mathscr{H}. The following natural question comes up: if \mathbb{C} is replaced by a C^{*}-algebra \mathscr{A}, is every projection in $M_{n}(\mathscr{A})$ or $L\left(\mathscr{H}_{\mathscr{A}}\right)$ homotopic to a diagonal projection whose diagonal entries are projections of \mathscr{A} and off-diagonal entries are zeros? Here $M_{n}(\mathscr{A})$ is the C^{*}-algebra of $n \times n$ matrices over \mathscr{A} and $L\left(\mathscr{H}_{\mathscr{A}}\right)$ can be regarded as bounded infinite matrices over \mathscr{A} whose adjoints exist (see $\S 1$ for a more precise description). Certainly, diagonalizing projections of $M_{n}(\mathscr{A})$ for $n \geq 1$ would yield information about $K_{0}(\mathscr{A})$ (here diagonalizing projections in the sense of Murray-von Neumann is enough for this purpose).

Concerning the matrix algebra $M_{n}(\mathscr{A})$, R. V. Kadison proved ([13] and [14]) that if \mathscr{A} is a von Neumann algebra, then every normal element in $M_{n}(\mathscr{A})$ is unitarily equivalent to a diagonal normal matrix over \mathscr{A}. Consequently, every projection in $M_{n}(\mathscr{A})$ is homotopic to a diagonal projection, since the unitary group of a von Neumann algebra is connected. In general, we certainly do not expect a positive answer for the question if \mathscr{A} is an arbitrary C^{*}-algebra. K. Grove and
G. K. Pedersen have pointed out ([11, 1.3]) that if \mathscr{A} is the algebra $C\left(S^{2}\right)$, the algebra of complex-valued continuous functions on S^{2}, then there exists a projection in $M_{2}(\mathscr{A})$ which is not unitarily equivalent to any diagonal projection. However, we do expect a positive answer for a large class of C^{*}-algebras.

The author has proved ([22]) that if \mathscr{A} is a C^{*}-algebra with FS, then every projection in $M_{n}(\mathscr{A})$ or in $L\left(\mathscr{H}_{\mathscr{A}}\right)$ is Murray-von Neumann equivalent to a diagonal projection. In this note, we will strengthen the previous results to unitary equivalence or homotopy. We prove that if \mathscr{A} is a C^{*}-algebra with FS (not necessarily σ-unital), and if p is a projection of the multiplier algebra $M(\mathscr{A})$, then every projection q of \mathscr{A} is homotopic to a projection $q^{\prime}=p_{1}+p_{2}$, where p_{1} is a projection of $p \mathscr{A} p$ and p_{2} is a projection of $(1-p) \mathscr{A}(1-p)$. As a special case, by induction we conclude that every projection in $M_{n}(\mathscr{A})$ is homotopic to a diagonal projection. This yields partial answers for Questions 7 and 8 raised by M. A. Rieffel in [18]. If \mathscr{A} is σ-unital and $\left\{e_{n}\right\}$ is a fixed sequence of mutually orthogonal projections of \mathscr{A} such that $\sum_{n=1}^{\infty} e_{n}=1$, we prove that every projection in $M(\mathscr{A})$ is unitarily equivalent to a diagonal projection and homotopicto a block-diagonal projection with respect to the decomposition $\sum_{n=1}^{\infty} e_{n}=1$. As a consequence, every projection in $L\left(\mathscr{H}_{\mathscr{C}}\right)$ is unitarily equivalent (and hence homotopic) to a diagonal projection. In addition, the unitary orbits of self-adjoint elements of \mathscr{A} or $M(\mathscr{A})$ are considered.

The class of C^{*}-algebras with FS includes many interesting subclasses of C^{*}-algebras. Obviously, AF algebras, the Calkin algebra, von Neumann algebras and $A W^{*}$-algebras have FS. The BunceDeddens algebras have FS ([2]). All purely infinite, simple C^{*}-algebras have FS ([24, Part I (1.3)] and [25]); in particular, the Cuntz algebras \mathscr{O}_{n} and \mathscr{O}_{A}, where $2 \leq n \leq \infty$ and A is an irreducible scalar matrix, have FS. Certain irrational rotation C^{*}-algebras have FS ([9]). Many corona and multiplier algebras have FS ([5], [24, Part I] and [24, Part IV]). L. G. Brown and G. K. Pedersen have recently proved ([5]) that a C^{*}-algebra \mathscr{A} has FS if and only if $M_{n}(\mathscr{A})$ has FS for all $n \geq 1$; and \mathscr{A} has FS if and only if \mathscr{A} has real rank zero. In [21], [22], [23] and [24] the author has investigated the multiplier and corona algebras of C^{*}-algebras with FS from various angles.

1. Notations. If \mathscr{A} is a C^{*}-algebra, we denote the Banach space double dual of \mathscr{A} by $\mathscr{A}^{* *}$ and the multiplier algebra of \mathscr{A} by $M(\mathscr{A})$; where $M(\mathscr{A})=\left\{m \in \mathscr{A}^{* *}: x m, m x \in \mathscr{A} \forall x \in \mathscr{A}\right\}$ ([1], [7], [15], among others).

Let $\mathscr{H}_{\mathscr{A}}=\left\{\left\{a_{i}\right\}: a_{i} \in \mathscr{A}\right.$ and $\sum_{i=1}^{\infty} a_{i}^{*} a_{i}$ converges in norm $\}$. Then $\mathscr{H}_{\mathscr{A}}$ becomes a Hilbert \mathscr{A}-module with the \mathscr{A}-valued inner product

$$
\left\langle\left\{a_{i}\right\},\left\{b_{i}\right\}\right\rangle=\sum_{i=1}^{\infty} a_{i}^{*} b_{i} \quad \text { for all }\left\{a_{i}\right\},\left\{b_{i}\right\} \in \mathscr{H}_{\Omega} .
$$

We denote by $L\left(\mathscr{H}_{\mathscr{A}}\right)$ the set of all bounded module maps with an adjoint and by $K\left(\mathscr{H}_{\mathscr{A}}\right)$ a closed ideal of $L\left(\mathscr{H}_{\mathscr{A}}\right)$ called the "compact maps"; more precisely, $K\left(\mathscr{H}_{\infty}\right)$ is the norm closure of the set of all "finite rank" module maps, $\left\{\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}: x_{i}, y_{i} \in \mathscr{H}_{s}\right.$ and $\left.n \in \mathbb{N}\right\}$. Here for any pair of elements x and y in $\mathscr{H}_{\mathscr{A}}, \theta_{x, y}$ is defined by $\theta_{x, y}(a)=x\langle y, a\rangle \in \mathscr{H}_{s}$ for all $a \in \mathscr{H}_{s}$ ([15]). It was proved ([15]) that

$$
L\left(\mathscr{H}_{\mathscr{A}}\right) \cong M(\mathscr{A} \otimes \mathscr{K}) \quad \text { and } \quad K\left(\mathscr{H}_{\mathscr{A}}\right) \cong \mathscr{A} \otimes \mathscr{K}
$$

as C^{*}-algebras, where \mathscr{K} is the algebra consisting of compact operators on \mathscr{H}. The formulation of $L\left(\mathscr{H}_{\infty}\right)$ and $K\left(\mathscr{H}_{\mathscr{A}}\right)$ are closely analogous to those of $\mathrm{L}(\mathscr{H})$ and \mathscr{K}.

If \mathscr{A} is a unital C^{*}-algebra, we will denote the unitary group of $M_{n}(\mathscr{A})$ by $U_{n}(\mathscr{A})$ and the path component of $U_{n}(\mathscr{A})$ containing the identity by $U_{n}^{0}(\mathscr{A})$. In particular, we will denote $U_{1}^{0}(\mathscr{A})$ by $U_{0}(\mathscr{A})$.

If p and q are projections in $\mathscr{A}, p \sim q$ means that p and q are equivalent in the sense of Murray-von Neumann, and $p \approx q$ means that p and q are homotopic, i.e., in the same norm path component of projections in \mathscr{A}. It is well known that $p \approx q$ if and only if there exists a unitary element v in $U_{0}(\mathscr{A})$ such that $v p v^{*}=q$. We denote the matrix units of \mathscr{K} by $\left\{e_{i j}\right\}$.
2. Key Lemmas. The following technical lemmas are the key of this paper:
2.1. Lemma. Suppose that \mathscr{A} is a C^{*}-algebra with $F S$ (not necessarily σ-unital) and p is a projection in $M(\mathscr{A})$. If q is a projection in \mathscr{A}, then for any $\varepsilon_{0}>0$ there exists a projection q^{\prime} in \mathscr{A} such that both $p q^{\prime} p$ and $(1-p) q^{\prime}(1-p)$ have finite spectra and $\left\|q-q^{\prime}\right\|<\varepsilon_{0}$. More precisely, the projection q^{\prime} has the following form:

$$
q^{\prime}=\left(\begin{array}{ccc}
f_{0} & 0 & 0 \\
0 & a_{0} & b_{0} \\
0 & b_{0}^{*} & c_{0}
\end{array}\right),
$$

where f_{0} and the range of a_{0} are mutually orthogonal subprojections of p. Consequently $q^{\prime} \approx q$ if $\varepsilon_{0}<1$.

Proof. Let $q=\left(\begin{array}{cc}a & b \\ b^{*} & \\ c\end{array}\right)$ be the decomposition of q with respect to $p+(1-p)=1$. It follows that $a-a^{2}=b b^{*}, c-c^{2}=b^{*} b, a b+b c=b$, $0 \leq a \leq p$ and $0 \leq c \leq 1-p$. (Actually these conditions are also sufficient for q to be a projection.) We will start with the idea in [6] and then go further to construct a projection $q^{\prime}=\left(\begin{array}{ll}a^{\prime} & b^{\prime} \\ b^{\prime \prime} & c^{\prime}\end{array}\right)$ such that both $\sigma\left(a^{\prime}\right)$ and $\sigma\left(c^{\prime}\right)$ are finite sets, and q^{\prime} is close to q in norm.

Let $0<\delta<1$ be a fixed positive number and ε be another positive number such that $3 \varepsilon<\delta$. Since \mathscr{A} has FS, there exists a positive element c_{1} in $(1-p) \mathscr{A}(1-p)$ with a finite spectrum such that

$$
\begin{equation*}
\left\|c-c_{1}\right\|<\varepsilon \tag{1}
\end{equation*}
$$

Set $e=\chi_{(\delta, \infty)}\left(c_{1}-c_{1}^{2}\right)$. If δ_{1} is the smaller root of $t^{2}-t+\delta=0$, then $e=\chi_{\left(\delta_{1}, 1-\delta_{1}\right)}\left(c_{1}\right)$ which is a projection in $(1-p) \mathscr{A}(1-p)$.

Set $c_{0}=c_{1} e+\chi_{\left(1-\delta_{1}, 1\right]}\left(c_{1}\right)$. Then $\sigma\left(c_{0}\right)$ is a finite set, $c_{0}-c_{0}^{2}=$ $e\left(c_{1}-c_{1}^{2}\right) e \in e \mathscr{A} e$ and $\left\|c_{0}-c_{1}\right\| \leq \delta_{1}$. It follows that

$$
\begin{equation*}
\left\|c_{0}-c\right\| \leq \varepsilon+\delta_{1}<\varepsilon+\sqrt{\delta} \tag{2}
\end{equation*}
$$

Set $v=\left(e b^{*} b e\right)^{-1 / 2}\left(e b^{*}\right)$, of course where $\left(e b^{*} b e\right)^{-1}$ is taken in $e \mathscr{A} e$. Since $e\left(c_{1}-c_{1}^{2}\right) e \geq \delta e$ and hence $e b^{*} b e \geq(\delta-3 \varepsilon) e$, $\left(e b^{*} b e\right)^{-1 / 2}$ exists. It is clear that $v v^{*}=e$.

Set $b_{0}=v^{*}\left(c_{0}-c_{0}^{2}\right)^{1 / 2}$. Then $b_{0}^{*} b_{0}=c_{0}-c_{0}^{2}$.
Set $a_{0}=v^{*}\left(e-c_{0}\right) v$. Then $a_{0}-a_{0}^{2}=b_{0} b_{0}^{*}$ and $a_{0} b_{0}+b_{0} c_{0}=b_{0}$.
If we first fix δ small enough, then we choose ε small enough and c_{1} satisfying (1) such that $\left\|c-c_{0}\right\|,\left\|b-b_{0}\right\|$ and $\left\|\left(a-a^{2}\right)-\left(a_{0}-a_{0}^{2}\right)\right\|$ are all smaller than any preassigned positive number. However, $\left\|a-a_{0}\right\|$ can be equal to one. Here we give details for further reference.
It is obvious that

$$
\begin{equation*}
\left\|b^{*} b-\left(c_{1}-c_{1}^{2}\right)\right\| \leq 3\left\|c-c_{1}\right\|<3 \varepsilon \tag{3}
\end{equation*}
$$

Since $\left\|(1-e) b^{*} b(1-e)-(1-e)\left(c_{1}-c_{1}^{2}\right)(1-e)\right\| \leq 3 \varepsilon$ and $\left\|(1-e)\left(c_{1}-c_{1}^{2}\right)(1-e)\right\| \leq \delta$, it is easily seen that

$$
\begin{equation*}
\|b(1-e)\| \leq \sqrt{3 \varepsilon+\delta} \tag{4}
\end{equation*}
$$

Since $e b^{*} b e \geq(\delta-3 \varepsilon) e$, then

$$
\begin{equation*}
\left\|\left(e b^{*} b e\right)^{-1}\right\| \leq(\delta-3 \varepsilon)^{-1} \tag{5}
\end{equation*}
$$

By $[12,126]$ and (3), we can choose ε small enough such that

$$
\begin{equation*}
\left\|\left(e b^{*} b e\right)^{1 / 2}-\left[e\left(c_{1}-c_{2}^{2}\right) e\right]^{1 / 2}\right\|<\delta \tag{6}
\end{equation*}
$$

By (4) and (6) we can choose ε small enough such that

$$
\begin{align*}
\left\|b_{0}-b\right\| & \leq\left\|v^{*}\left(c_{0}-c_{0}^{2}\right)^{1 / 2}-v^{*}\left(e b^{*} b e\right)^{1 / 2}\right\|+\|b(1-e)\| \tag{7}\\
& \leq\left\|\left[e\left(c_{1}-c_{1}^{2}\right) e\right]^{1 / 2}-\left(e b^{*} b e\right)^{1 / 2}\right\|+\sqrt{3 \varepsilon+\delta} \\
& <\delta+\sqrt{3 \varepsilon+\delta} .
\end{align*}
$$

Consequently,

$$
\begin{align*}
\left\|\left(a-a^{2}\right)-\left(a_{0}-a_{0}^{2}\right)\right\| & =\left\|b b^{*}-b_{0} b_{0}^{*}\right\| \tag{8}\\
& \leq 2\left\|b_{0}-b\right\|<2 \delta+2 \sqrt{3 \varepsilon+\delta}
\end{align*}
$$

It is clear from construction that $q_{0}=\left(\begin{array}{ll}a_{0} & b_{0} \\ b_{0}^{0} & c_{0}\end{array}\right)$ is a projection. By Lemma (2.4) of [21], $\sigma\left(a_{0}\right) \backslash\{0,1\}=\sigma\left(1-c_{0}\right) \backslash\{0,1\}$, and hence $\sigma\left(a_{0}\right)$ is also a finite set. The idea of constructing the projection q_{0} is due L. G. Brown ([6]) for different purpose.

We will go further to adjust q_{0} to a projection $q^{\prime}=\left(\begin{array}{cc}a^{\prime} & b^{\prime} \\ b^{\prime \prime} & c^{\prime}\end{array}\right)$ so that $\left\|a-a^{\prime}\right\|$ is small, too. Set $f=v^{*} v$. Then f is a subprojection of p and $f a_{0}=a_{0} f=a_{0}$. We claim that $\left\|f a f-a_{0}\right\|$ can be arbitrarily small if δ, ε and c_{1} are properly chosen. To prove this claim, we need the following estimates.

$$
\begin{align*}
\left\|e\left(b^{*} b\right)^{1 / 2}(1-e)\right\| & =\left\|e\left[\left(b^{*} b\right)^{1 / 2}-\left(c_{1}-c_{1}^{2}\right)^{1 / 2}\right](1-e)\right\| \tag{9}\\
& \leq\left\|\left(b^{*} b\right)^{1 / 2}-\left(c_{1}-c_{1}^{2}\right)^{1 / 2}\right\| .
\end{align*}
$$

Then by $[12,126]$ and

$$
\left[\left(e b^{*} b e\right)^{1 / 2}\right]^{2}=e b^{*} b e=\left[e\left(b^{*} b\right)^{1 / 2} e\right]^{2}+e\left(b^{*} b\right)^{1 / 2}(1-e)\left(b^{*} b\right)^{1 / 2} e,
$$

for a fixed $\delta>0$ we can choose ε small enough (by (3)) such that

$$
\begin{align*}
& \left\|\left(b^{*} b\right)^{1 / 2}-\left(c_{1}-c_{1}^{2}\right)^{1 / 2}\right\|<\frac{\delta^{2}}{2} \text { and } \tag{10}\\
& \left\|\left(e b^{*} b e\right)^{1 / 2}-e\left(b^{*} b\right)^{1 / 2} e\right\|<\delta \sqrt{\frac{\delta}{2}} \tag{11}
\end{align*}
$$

Since

$$
\begin{aligned}
f\left(a-a_{0}\right) f & =v^{*} e v\left(a-a_{0}\right) v^{*} e v \\
& =v^{*} e\left(v a v^{*}-v a_{0} v^{*}\right) e v \\
& =v^{*}\left[e c_{0} e-v(p-a) v^{*}\right] v,
\end{aligned}
$$

then

$$
\begin{align*}
\left\|f\left(a-a_{0}\right) f\right\| & \leq\left\|e c_{0} e-e c e\right\|+\left\|e c e-v(p-a) v^{*}\right\| \tag{12}\\
& <\varepsilon+\left\|e c e-v(p-a) v^{*}\right\|
\end{align*}
$$

Since $(1-a) b=b c, p(1-a) b=b p(c)$ for any polynomial $p(t)$. Approximating by polynomials, we obtain that $\sqrt{1-a} b=b \sqrt{c}$, and hence

$$
b^{*}(1-a) b=c^{2}-c^{3}=\left(b^{*} b\right)^{1 / 2} c\left(b^{*} b\right)^{1 / 2}
$$

It follows that

$$
\begin{aligned}
v(p-a) v^{*} & =\left(e b^{*} b e\right)^{-1 / 2} e b^{*}(p-a) b e\left(e b^{*} b e\right)^{-1 / 2} \\
& =\left(e b^{*} b e\right)^{-1 / 2} e\left[b^{*} b-b^{*} a b\right] e\left(e b^{*} b e\right)^{-1 / 2} \\
& =\left(e b^{*} b e\right)^{-1 / 2}\left[e\left(b^{*} b\right)^{1 / 2} c\left(b^{*} b\right)^{1 / 2} e\right]\left(e b^{*} b e\right)^{-1 / 2} \\
& =\left(e b^{*} b e\right)^{-1 / 2}\left[h_{1}+h_{2}\right]\left(e b^{*} b e\right)^{-1 / 2},
\end{aligned}
$$

where

$$
\begin{aligned}
h_{1}= & e\left(b^{*} b\right)^{1 / 2} e c e\left(b^{*} b\right)^{1 / 2} e \\
= & \left(e b^{*} b e\right)^{1 / 2} c\left(e b^{*} b e\right)^{1 / 2}+\left[e\left(b^{*} b\right)^{1 / 2} e-\left(e b^{*} b e\right)^{1 / 2}\right] c\left(e b^{*} b e\right)^{1 / 2} \\
& +\left(e b^{*} b e\right)^{1 / 2} c\left[e\left(b^{*} b\right)^{1 / 2} e-\left(e b^{*} b e\right)^{1 / 2}\right] \\
& +\left[e\left(b^{*} b\right)^{1 / 2} e-\left(e b^{*} b e\right)^{1 / 2}\right] c\left[e\left(b^{*} b\right)^{1 / 2} e-\left(e b^{*} b e\right)^{1 / 2}\right], \\
h_{2}= & e\left(b^{*} b\right)^{1 / 2}(1-e) c e\left(b^{*} b\right)^{1 / 2} e \\
& +e\left(b^{*} b\right)^{1 / 2} e c(1-e)\left(b^{*} b\right)^{1 / 2} e \\
& +e\left(b^{*} b\right)^{1 / 2}(1-e) c(1-e)\left(b^{*} b\right)^{1 / 2} e .
\end{aligned}
$$

If δ is first fixed small enough, and ε and c_{1} can be chosen such that $6 \varepsilon<\delta$ and

$$
\begin{align*}
&\left\|\left(e b^{*} b e\right)^{-1 / 2} h_{1}\left(e b^{*} b e\right)^{-1 / 2}-e c e\right\| \tag{13}\\
& \leq 2\left\|\left(e b^{*} b e\right)^{-1 / 2}\right\|\left\|e\left(b^{*} b\right)^{1 / 2} e-\left(e b^{*} b e\right)^{1 / 2}\right\|\|c\| \\
&+\left\|\left(e b^{*} b e\right)^{-1 / 2}\right\|^{2}\left\|e\left(b^{*} b\right)^{1 / 2} e-\left(e b^{*} b e\right)^{1 / 2}\right\|^{2}\|c\| \\
& \leq 2 \frac{\delta \sqrt{\delta / 2}}{\sqrt{\delta-3 \varepsilon}}+\left[\frac{\delta \sqrt{\delta / 2}}{\sqrt{\delta-3 \varepsilon}}\right]^{2}<\delta^{2}+2 \delta,
\end{align*}
$$

(where using (5), (10) and (11)) and
(14) $\left\|\left(e b^{*} b e\right)^{-1 / 2} h_{2}\left(e b^{*} b e\right)^{-1 / 2}\right\|$

$$
\begin{aligned}
& \leq 2\left\|\left(e b^{*} b e\right)^{-1 / 2}\right\|^{2}\left\|e\left(b^{*} b\right)^{1 / 2}(1-e)\right\|\|c\|\left\|\left(b^{*} b\right)^{1 / 2}\right\| \\
&+\left\|\left(e b^{*} b e\right)^{-1 / 2}\right\|^{2}\left\|e\left(b^{*} b\right)^{1 / 2}(1-e)\right\|^{2}\|c\| \\
&<(\delta-3 \varepsilon)^{-1}\left[\delta^{2}+\frac{\delta^{4}}{4}\right]<2 \delta+\delta^{2},
\end{aligned}
$$

where we used $\delta-3 \varepsilon>\delta / 2$. Consequently,

$$
\begin{gathered}
\left\|v(p-a) v^{*}-e c e\right\| \leq 4 \delta+2 \delta^{2}, \quad \text { and so } \\
\left\|f\left(a-a_{0}\right) f\right\|<\varepsilon+4 \delta+2 \delta^{2} \quad \text { by }(12) .
\end{gathered}
$$

If δ is fixed small enough and ε is chosen small enough, then $\| f a f-$ $a_{0} \|$ can be arbitrarily small if c_{1} satisfies (1).

Moreover, by properly choosing $\delta>0, \varepsilon$ and c_{1} in a similar way we can require that $\|(p-f) a f\|$ is less than any preassigned positive number. This can be done as follows.

Since $a-a^{2}=b b^{*}$ and the spectral mapping theorem, it is clear $\|b\| \leq 1 / 2$. Since $(1-a) b=b c$, we have

$$
\begin{aligned}
-(1-f) a v^{*}= & (1-f)(1-a) b e\left(e b^{*} b e\right)^{-1 / 2} \\
= & b c e\left(e b^{*} b e\right)^{-1 / 2}-b e\left(e b^{*} b e\right)^{-1} e b^{*} b c e\left(e b^{*} b e\right)^{-1 / 2} \\
= & b c e\left(e b^{*} b e\right)^{-1 / 2}-b e\left(e b^{*} b e\right)^{-1} e b^{*} b e c e\left(e b^{*} b e\right)^{-1 / 2} \\
& -b e\left(e b^{*} b e\right)^{-1} e b^{*} b(1-e) c e\left(e b^{*} b e\right)^{-1 / 2} \\
= & b(1-e) c e\left(e b^{*} b e\right)^{-1 / 2} \\
& -b e\left(e b^{*} b e\right)^{-1} e b^{*} b(1-e) c e\left(e b^{*} b e\right)^{-1 / 2} .
\end{aligned}
$$

It follows that

$$
\begin{align*}
&\|(1-f) a f\| \leq\left\|(1-f) a v^{*}\right\| \tag{15}\\
& \leq\|b\|\|(1-e) c e\|\left\|\left(e b^{*} b e\right)^{-1 / 2}\right\| \\
&+\|b\|\left\|\left(e b^{*} b e\right)^{-1}\right\|\left\|e\left(b^{*} b\right)(1-e)\right\|\|c\|\left\|\left(e b^{*} b e\right)^{-1 / 2}\right\| \\
&<\frac{\varepsilon}{2}\left[\frac{1}{\sqrt{\delta-3 \varepsilon}}\right]+\frac{1}{2}\left[\frac{1}{\delta-3 \varepsilon}\right](3 \varepsilon)\left[\frac{1}{\sqrt{\delta-3 \varepsilon}}\right] \\
&<\left[\frac{\varepsilon}{2}\right] \sqrt{\frac{2}{\delta}}+\left[\frac{3 \varepsilon}{2}\right]\left[\frac{2}{\delta}\right]^{3 / 2},
\end{align*}
$$

where we use (1), (3), (5) and the facts:

$$
\|(1-e) c e\|=\left\|(1-e)\left(c-c_{1}\right) e\right\| \leq\left\|c-c_{1}\right\|, \quad \text { and }
$$

$$
\left\|e b^{*} b(1-e)\right\|=\left\|e\left[b^{*} b-\left(c_{1}-c_{1}^{2}\right)\right](1-e)\right\| \leq\left\|b^{*} b-\left(c_{1}-c_{1}^{2}\right)\right\| .
$$

As a consequence of the last estimate and (8), for any $0<\lambda<1 / 2$, we can fix δ small enough and then choose ε small enough such that $\sigma((p-f) a(p-f)) \subset[0, \lambda] \cup[1-\lambda, 1]$. This is because of the following estimates:

$$
\begin{aligned}
& (p-f)\left[\left(a-a^{2}\right)-\left(a_{0}-a_{0}^{2}\right)\right](p-f)=(p-f)\left(a-a^{2}\right)(p-f) \\
& \quad=(p-f) a(p-f)-[(p-f) a(p-f)]^{2}-(p-f) a f a(p-f), \\
& \left\|(p-f) a(p-f)-[(p-f) a(p-f)]^{2}\right\| \\
& \quad \leq\left\|(p-f)\left[\left(a-a^{2}\right)-\left(a_{0}-a_{0}^{2}\right)\right](p-f)\right\|+\|(1-f) a f\|^{2} \\
& \quad \leq\left\|\left(a-a^{2}\right)-\left(a_{0}-a_{0}^{2}\right)\right\|+\|(p-f) a f\|^{2} .
\end{aligned}
$$

Set $f_{0}=\chi_{[1 / 2,1]}((p-f) a(p-f))$. Then f_{0} is a projection in $(p-f) \mathscr{A}(p-f)$ such that $f_{0} a_{0}=a_{0} f_{0}=0$ and $\left\|f_{0}-(p-f) a(p-f)\right\| \leq$ λ. Set $a^{\prime}=a_{0}+f_{0}, b^{\prime}=b_{0}$ and $c^{\prime}=c_{0}$. Then $q^{\prime}=\left(\begin{array}{l}a^{\prime} \\ b^{\prime \prime}\end{array} b_{c}^{\prime}, \begin{array}{c}b^{\prime}\end{array}\right)$ is a projection in \mathscr{A} such that

$$
\begin{align*}
\left\|q^{\prime}-q\right\| \leq & \left\|\left(f_{0}+a_{0}\right)-a\right\|+2\left\|b_{0}-b\right\|+\left\|c_{0}-c\right\| \tag{16}\\
\leq & \left\|f\left(a-a_{0}\right) f\right\|+2\|f a(p-f)\| \\
& +\left\|f_{0}-(p-f) a(p-f)\right\|+2\left\|b_{0}-b\right\|+\left\|c_{0}-c\right\| .
\end{align*}
$$

Combining all above estimates, we first fix λ small enough, then fix δ small enough, and then choose ε small enough and c_{1} satisfying (1) so that each term on the right-hand side of (16) is small. Then $\left\|q-q^{\prime}\right\|$ is small. It is clear that $\sigma\left(p q^{\prime} p\right)=\sigma\left(f_{0}+a_{0}\right)$ is a finite set. The last sentence in the statement of this lemma is well known.
2.2. Lemma. Suppose that \mathscr{A} is a C^{*}-algebra (not necessarily σ unital) and p is a projection in $M(\mathscr{A})$. If q is a projection in \mathscr{A} such that $\sigma(p q p) \neq[0,1]$, then there exist two projections q_{1} and q_{2} in \mathscr{A} such that $q_{1} \leq p, q_{2} \leq 1-p$ and $q \approx q_{1}+q_{2}$.

Proof. Let $q=\left(\begin{array}{ll}a & b \\ b^{*} & c\end{array}\right)$ be the composition of q with respect to $p+(1-p)=1$. Then $a=p q p, c=(1-p) q(1-p)$ and $b=p q(1-p)$. By [21, 2.4], $\sigma(a) \backslash\{0,1\}=\sigma(1-c) \backslash\{0,1\}$.

If $b=0$, then $q_{1}=a$ and $q_{2}=c$ are as desired. Assume that $b \neq 0$. If $1 \notin \sigma(c)$, then $\|c\|<1$. By the argument of [8, 1], q is path connected to a subprojection q_{1} of p. We can assume that $1 \in \sigma(c)$. Since $\sigma(c) \neq[0,1]$ and 0 is always in $\sigma(c)$, there is a λ in $(0,1) \backslash \sigma(c)$. Then there exists a positive number ε such that $(\lambda-\varepsilon, \lambda+\varepsilon) \cap \sigma(c)=\varnothing$. Since $b \neq 0$, we can assume that $\sigma(c) \cap(\lambda+\varepsilon, 1) \neq \varnothing$ (Otherwise, $\sigma(a) \cap(\lambda+\varepsilon, 1) \neq \varnothing$, we consider a instead.) We will use a variation of $[8,1]$ to construct a path of projections for our purpose.

Define a family of continuous positive functions $\left\{f_{t}\right\}_{t \in[0,1]}$ from $[0,1]$ to $[0,1]$ with the following properties:
(1) $\lim _{t \rightarrow t_{0}}\left\|f_{t}-f_{t_{0}}\right\|_{\infty}=0$ for any t_{0} in $[0,1]$;
(2) $f_{1}(s)=s$ for all s in $[0,1]$;

$$
f_{0}(s)= \begin{cases}1, & \text { if } \lambda \leq s \leq 1 \tag{3}\\ \text { linear, }, & \text { if } \lambda-\varepsilon<s<\lambda, \\ 0, & \text { if } 0 \leq s \leq \lambda-\varepsilon\end{cases}
$$

(4) For all t in $(0,1), f_{t}(s) \leq s$ if $s \in[0, \lambda-\varepsilon]$ and $f_{t}(s) \geq s$ if $s \in[\lambda, 1]$.

Since q is a projection, $b c=(1-a) b$. Approximating by polynomials, we obtain that $b g(c)=g(1-a) b$ for any continuous function g on $[0,1]$. Set

$$
\begin{aligned}
& c_{t}=f_{t}(c), \\
& b_{t}=b\left[\frac{f_{t}(c)-f_{t}(c)^{2}}{c-c^{2}}\right]^{1 / 2}, \\
& a_{t}=p-f_{t}(p-a) .
\end{aligned}
$$

Then b_{t} and c_{t} are well defined elements in \mathscr{A} by the properties of f_{t}. Although $p-a$ is not in $p \mathscr{A} p$ if p is in $M(\mathscr{A}) \backslash \mathscr{A}, p-f_{t}(p-a)$ is in $p \mathscr{A} p$ for $t \in[0,1]$. To see this, first, $f_{t}(p-a)$ is well defined for each $t \in[0,1]$ since $\sigma(p-a) \backslash\{0,1\}=\sigma(c) \backslash\{0,1\}$. Second, if we denote by π the canonical map from $(p \mathscr{A} p)^{+}$to $(p \mathscr{A} p)^{+} / p \mathscr{A} p$, where $(p \mathscr{A} p)^{+}$is the C^{*}-algebra obtained by joining an identity to $p \mathscr{A} p$, then $p-f_{t}(p-a) \in p \mathscr{A} p$, since $\pi\left(p-f_{t}(p-a)\right)=\pi(p)-$ $f_{t}(\pi(p))=0$. It is easily verified that

$$
\begin{aligned}
a_{t}-a_{t}^{2} & =b_{t} b_{t}^{*}, \\
a_{t} b_{t} & =b_{t}\left(1-c_{t}\right), \\
c_{t}-c_{t}^{2} & =b_{t}^{*} b_{t} .
\end{aligned}
$$

Thus $q(t)=\left(\begin{array}{ll}a_{1} & b_{t} \\ b_{t}^{t} & c_{t}\end{array}\right)$ is a projection in \mathscr{A} for each t in $[0,1]$. By the property (1) of $\left\{f_{t}\right\},\{q(t)\}_{t \in[0,1]}$ is contained in the same path component of projections in \mathscr{A}. Then $q(0) \approx q(1)=q$. Since $(\lambda-\varepsilon, \lambda) \cap \sigma(c)=\varnothing, c_{0}=f_{0}(c)=\chi_{[\lambda, 1]}(c)$ is a projection of $(1-p) \mathscr{A}(1-p)$. It is obvious that

$$
q(0)=\left(\begin{array}{ll}
a_{0} & b_{0} \\
b_{0}^{*} & c_{0}
\end{array}\right)=\left(\begin{array}{cc}
a_{0} & 0 \\
0 & c_{0}
\end{array}\right) .
$$

Consequently, a_{0} is a projection of $p \mathscr{A} p$. Set $q_{1}=a_{0}$ and $q_{2}=c_{0}$, as desired.

Roughly speaking, with respect to a fixed sequential increasing approximate identity of \mathscr{A} a block-diagonal projection of $M(\mathscr{A})$ whose blocks are with the same size is homotopic to a diagonal projection. More precisely, we have the following lemma:
2.3. Lemma. Suppose that \mathscr{A} is a σ-unital, non-unital C^{*}-algebra with FS and $\sum_{i=1}^{\infty}\left(s_{i 1}+s_{i 2}+\cdots+s_{i n}\right)=1$, where $\left\{s_{i j}: i \geq 1,1 \leq j \leq\right.$ $n\}$ are mutually orthogonal projections in \mathscr{A} and the sum converges
in the strict topology. If p is a projection in $M(\mathscr{A})$ with the form $\sum_{i=1}^{\infty} p_{i}$, where p_{i} is a projection in $\left(s_{i 1}+s_{i 2}+\cdots+s_{i n}\right) \mathscr{A}\left(s_{i 1}+s_{i 2}+\right.$ $\left.\cdots+s_{i n}\right)$ for $i \geq 1$, then $p \approx \sum_{i=1}^{\infty}\left(p_{i 1}+p_{i 2}+\cdots+p_{i n}\right)$, where $p_{i j}$ is a projection in $s_{i j} \mathscr{A} s_{i j}$ for $i \geq 1$ and $1 \leq j \leq n$.

Proof. It suffices to prove the case if $n=2$. If $n>2$, we simply employ the same proof recursively $n-1$ times by induction to reach the conclusion.

We write

$$
p_{i}=\left(\begin{array}{cc}
a_{i}^{*} & b_{i} \\
b_{i}^{*} & c_{i}
\end{array}\right)
$$

with respect to $s_{i 1}+s_{i 2}$. By Lemma (2.1), for each $i \geq 1$ we can find a projection

$$
p_{i}^{\prime}=\left(\begin{array}{ccc}
f_{i} & 0 & 0 \\
0 & a_{i}^{\prime} & b_{i}^{\prime} \\
0 & b_{i}^{\prime *} & c_{i}^{\prime}
\end{array}\right)
$$

in $\left(s_{i 1}+s_{i 2}\right) \mathscr{A}\left(s_{i 1}+s_{i 2}\right)$ such that $\left\|p_{i}^{\prime}-p_{i}\right\|<1 / 4$, and both a_{i}^{\prime} and c_{i}^{\prime} have finite spectra. Here we use the proof of Lemma (2.1) to properly choose a positive number δ_{i} and a positive element $c_{1 i}^{\prime}$ in $s_{i 2} \mathscr{A} s_{i 2}$ with a finite spectrum, then we have that

$$
\begin{gathered}
e_{i}=\chi_{\left(\delta_{i}, 1-\delta_{t}\right)}\left(c_{1 i}^{\prime}\right), \quad c_{i}^{\prime}=c_{1 i}^{\prime} e_{i}+\chi_{\left(1-\delta_{i}, 1\right)}\left(c_{1 i}^{\prime}\right) \\
v_{i}=\left(e_{i} b_{i}^{*} b_{i} e_{i}\right)^{-1 / 2}\left(e_{i} b_{i}^{*}\right), \quad b_{i}^{\prime}=v_{i}^{*}\left(c_{i}^{\prime}-c_{i i}^{\prime 2}\right)^{1 / 2} \\
a_{i}^{\prime}=v_{i}^{*}\left(e_{i}-c_{1 i}^{\prime}\right) v_{i}
\end{gathered}
$$

and f_{i} is a projection of $s_{i 1} \mathscr{A} s_{i 1}$ orthogonal to the range projection of a_{i}^{\prime}.

Let $p^{\prime}=\sum_{i=1}^{\infty} p_{i}^{\prime}$. Then $\left\|p^{\prime}-p\right\|<1 / 4$, and hence $p \approx p^{\prime}$.
Let $\sigma\left(c_{i}^{\prime}\right)=\left\{\lambda_{i 1}, \lambda_{i 2}, \cdots, \lambda_{i l}\right\}$ for each $i \geq 1$. It follows from the construction or $[\mathbf{2 1}, 2.4]$ that $\sigma\left(a_{i}^{\prime}\right)=\left\{1-\lambda_{i 1}, 1-\lambda_{i 2}, \ldots, 1-\lambda_{i l_{l}}\right\}$. We can write $c_{i}^{\prime}=\sum_{j=1}^{l_{j=1}} \lambda_{i j} r_{i j}$, where $\left\{r_{i j}: 1 \leq j \leq l_{i}\right\}$ is a set of mutually orthogonal projections in $s_{i 2} \mathscr{A} s_{i 2}$. Let λ be any number in the open interval $\left(\frac{1}{2}, \frac{3}{4}\right)$ but not in $\bigcup_{i=1}^{\infty} \sigma\left(c_{i}^{\prime}\right)$. Let $\varepsilon=\min \left\{\lambda-\frac{1}{2}, \frac{3}{4}-\lambda\right\}$. For $i \geq 1$, if $\lambda_{i j}$ is in the open interval $(\lambda-\varepsilon, \lambda)$, we replace $\lambda_{i j}$ by $\lambda_{i j}^{\prime}=\lambda-\varepsilon$, and if $\lambda_{i j}$ is in $(\lambda, \lambda+\varepsilon)$, we replace $\lambda_{i j}$ by $\lambda_{i j}^{\prime}=\lambda+\varepsilon$. If $\lambda_{i j}$ is not in $(\lambda-\varepsilon, \lambda+\varepsilon)$, then we let $\lambda_{i j}^{\prime}=\lambda_{i j}$. Set $c_{i}^{\prime \prime}=\sum_{j=1}^{l_{1}} \lambda_{i j}^{\prime} r_{i j}$ for $i \geq 1$, and correspondingly set $b_{l}^{\prime \prime}=v_{i}^{*}\left(c_{i}^{\prime \prime}-c_{i}^{\prime \prime 2}\right)^{1 / 2}$ and $a_{i}^{\prime \prime}=$ $v_{i}^{*}\left(e_{i}-c_{i}^{\prime \prime}\right) v_{i}$. Then

$$
\begin{gathered}
\left\|a_{i}^{\prime}-a_{i}^{\prime \prime}\right\| \leq\left\|c_{1}^{\prime}-c_{i}^{\prime \prime}\right\|<\varepsilon \text { and } \\
\left\|b_{i}^{\prime}-b_{i}^{\prime \prime}\right\| \leq\left\|\left(c_{i}^{\prime}-c_{i}^{\prime 2}\right)^{1 / 2}-\left(c_{i}^{\prime \prime}-c_{i}^{\prime \prime 2}\right)^{1 / 2}\right\|<\frac{1}{8} .
\end{gathered}
$$

It follows that

$$
p_{i}^{\prime \prime}=\left(\begin{array}{ccc}
f_{i} & 0 & 0 \\
0 & a_{i}^{\prime \prime} & b_{i}^{\prime \prime} \\
0 & b_{i}^{\prime \prime *} & c_{i}^{\prime \prime}
\end{array}\right)
$$

is a projection in $\left(s_{i 1}+s_{i 2}\right) \mathscr{A}\left(s_{i 1}+s_{i 2}\right)$ such that $\left\|p_{i}^{\prime}-p_{i}^{\prime \prime}\right\| \leq 2 \varepsilon+\frac{1}{4}<1$. Define $p^{\prime \prime}=\sum_{i=1}^{\infty} p_{i}^{\prime \prime}$. Then $\left\|p^{\prime}-p^{\prime \prime}\right\|<1$, and hence $p^{\prime} \approx p^{\prime \prime}$. The remaining job is to prove that $p^{\prime \prime}$ is homotopic to a desired diagonal projection.

Let $\left\{f_{t}\right\}_{t \in[0,1]}$ be the family of continuous functions defined in the proof of Lemma (2.2). Since $\sigma\left(c_{i}^{\prime \prime}\right)$ does not intersect with the open interval $(\lambda-\varepsilon, \lambda+\varepsilon)$ for $i \geq 1$, we can define

$$
\begin{aligned}
& c_{i}(t)=f_{t}\left(c_{i}^{\prime \prime}\right) \\
& b_{i}(t)=b_{i}^{\prime \prime}\left[\frac{f_{t}\left(c_{i}^{\prime \prime}\right)-f_{t}\left(c_{i}^{\prime \prime}\right)^{2}}{c_{i}^{\prime \prime}-c_{i}^{\prime \prime 2}}\right]^{1 / 2} \\
& a_{i}(t)=p-f_{t}\left(p-a_{i}^{\prime \prime}-f_{i}\right)
\end{aligned}
$$

Then $a_{i}(t), b_{i}(t)$ and $c_{i}(t)$ are well defined elements in $\left(s_{i 1}+s_{i 2}\right) \mathscr{A}$ $\left(s_{i 1}+s_{i 2}\right)$ for each t in $[0,1]$ and $i \geq 1$ by the properties of f_{t}. Thus for each t in [0,1]

$$
p_{i}(t)=\left(\begin{array}{cc}
a_{i}(t) & b_{i}(t) \\
b_{i}(t)^{*} & c_{i}(t)
\end{array}\right)
$$

is a projection in $\left(s_{i 1}+s_{i 2}\right) \mathscr{A}\left(s_{i 1}+s_{i 2}\right)$. It is easily seen that

$$
p_{i}(1)=p_{i}^{\prime \prime} \quad \text { and } \quad p_{i}(0)=\left(\begin{array}{cc}
a_{i}(0) & 0 \\
0 & c_{i}(0)
\end{array}\right)
$$

where $a_{i}(0)$ is a projection of $s_{i 1} \mathscr{A} s_{i 1}$ and $c_{i}(0)$ is a projection of $s_{i 2} \mathscr{A} s_{i 2}$. Define $p(t)=\sum_{i=1}^{\infty} p_{i}(t)$ for each t in [0, 1]. Then $\{p(t)\}_{t \in[0,1]}$ is a path of projection in $M(\mathscr{A})$. It is obvious that

$$
p(1)=p^{\prime \prime} \quad \text { and } \quad p(0)=\sum_{i=1}^{\infty}\left(\begin{array}{cc}
a_{i}(0) & 0 \\
0 & c_{i}(0)
\end{array}\right)
$$

Since the choice of $\left\{f_{t}\right\}_{t \in[0,1]}$ does not depend on i, the path $\{p(t)$: $t \in[0,1]\}$ is continuous in the norm topology.

Set $p_{i 1}=a_{1}(0), p_{i 2}=c_{i}(0)$ for $i \geq 1$. Then

$$
p \approx p^{\prime} \approx p^{\prime \prime} \approx p(0)=\sum_{i=1}^{\infty}\left(p_{i 1}+p_{i 2}\right), \quad \text { as desired. }
$$

3. Diagonalizing projections in \mathscr{A} and in $M_{n}(\mathscr{A})$. Since we will frequently employ the following well-known fact in this paper, we state it as a lemma.
3.1. Lemma. If \mathscr{A} is a C^{*}-algebra, and if p and q are two $m u$ tually orthogonal projections in \mathscr{A}, then $p \sim q$ if and only if $p \approx q$.

Proof. Let v be a partial isometry in \mathscr{A} such that $v v^{*}=p$ and $v^{*} v=q$. Define $w=v+v^{*}+(1-p-q)$. Then w is a selfadjoint unitary in $M(\mathscr{A})$ such that $w^{*} p w=q$. It is well known that $w \in U_{0}(\mathscr{A})$. It follows that $p \approx q$.
3.2. Theorem. Suppose that \mathscr{A} is a C^{*}-algebra with $F S$ and p_{1}, $p_{2}, \ldots, p_{n}(n \geq 1)$ are mutually orthogonal projections in $M(\mathscr{A})$ such that $\sum_{i=1}^{n} p_{i}=1$. If p is a projection in \mathscr{A}, then $p \approx \sum_{i=1}^{n} q_{i}$, where q_{i} is a projection in \mathscr{A} such that $q_{i} \leq p_{i}$ for $1 \leq i \leq n$.

Proof. Recursively using Lemma (2.1) and Lemma (2.2), we reach the conclusion.

The following theorem can be regarded as an analogue of the wellknown fact: Every projection in $M_{n}(\mathbb{C})$ is homotopic to a diagonal projection whose entries are either 1 or 0 .
3.3. Theorem. Assume that \mathscr{A} is a C^{*}-algebra with $F S$ and $n \geq$ 1. If p is a projection in $M_{n}(\mathscr{A})$, then $p \approx \sum_{i=1}^{n} p_{i} \otimes e_{i i}$, where $\left\{p_{i}\right\}$ is a set of projections in \mathscr{A} such that

$$
p_{1} \leq p_{2} \leq \cdots \leq p_{n-1} \leq p_{n}
$$

Proof. It has been recently proved ([5]) that $\mathscr{A} \otimes \mathscr{K}$ has FS if and only if \mathscr{A} has FS. By Theorem (3.2) we have $p \approx \sum_{i=1}^{n} p_{i}^{\prime} \otimes e_{i i}$, where $\left\{p_{i}^{\prime}\right\}$ is a set of projections in \mathscr{A}. The remaining work is to adjust $\left\{p_{i}^{\prime}\right\}$. We use induction on n.

If $n=2, p \approx p_{1}^{\prime} \otimes e_{11}+p_{2}^{\prime} \otimes e_{22}$, where p_{1}^{\prime} and p_{2}^{\prime} are projections in \mathscr{A}. Combining Lemma (2.1) and Lemma (2.2), we obtain that $p_{1}^{\prime} \approx q_{1}+q_{2}$ in \mathscr{A}, where q_{1} and q_{2} are two projections in \mathscr{A} such that $q_{1} \leq p_{2}^{\prime}$ and $q_{2} \leq 1-p_{2}^{\prime}$. It follows that $p \approx\left(q_{1}+q_{2}\right) \otimes e_{11}+p_{2}^{\prime} \otimes$ e_{22}. Working in the hereditary C^{*}-subalgebra of $M_{n}(\mathscr{A})$ generated by $\left(1-q_{1}\right) \otimes e_{11}+1 \otimes e_{22}$, we have $q_{2} \otimes e_{11}+p_{2}^{\prime} \otimes e_{22} \approx\left(p_{2}^{\prime}+q_{2}\right) \otimes e_{22}$ by Lemma (3.1). It follows that $p \approx q_{1} \otimes e_{11}+\left(p_{2}^{\prime}+q_{2}\right) \otimes e_{22}$. Let $p_{1}=q_{1}$ and $p_{2}=q_{2}+p_{2}^{\prime}$.

Assume that $p \approx \sum_{i=1}^{n} p_{i}^{\prime} \otimes e_{i i}$ such that $p_{2}^{\prime} \leq p_{3}^{\prime} \leq \cdots \leq p_{n}^{\prime}$. Applying Lemma (2.1) and Lemma (2.2) to p_{1}^{\prime}, and p_{n}^{\prime}, we have $p_{1}^{\prime} \approx q_{n}+q_{n}^{\prime}$, where q_{n} and q_{n}^{\prime} are projections in \mathscr{A} such that $q_{n} \leq$ $1-p_{n}^{\prime}$ and $q_{n}^{\prime} \leq p_{n}^{\prime}$. By the same argument as in the last paragraph
we have that $p \approx q_{n}^{\prime} \otimes e_{11}+\sum_{i=2}^{n-1} p_{i}^{\prime} \otimes e_{i i}+\left(p_{n}^{\prime}+q_{n}\right) \otimes e_{n n}$. Repeating this argument to q_{n}^{\prime} and p_{n-1}^{\prime}, we have that $q_{n}^{\prime} \approx q_{n-1}^{\prime}+q_{n-1}$, where q_{n-1}^{\prime} and q_{n-1} are two projections in \mathscr{A} such that $q_{n-1} \leq p_{n}^{\prime}-p_{n-1}^{\prime}$ and $q_{n-1}^{\prime} \leq p_{n-1}^{\prime}$. It follows that $p \approx q_{n-1}^{\prime} \otimes e_{11}+\sum_{i=2}^{n-2} p_{i}^{\prime} \otimes e_{i i}+$ $\left(p_{n-1}^{\prime}+q_{n-1}\right) \otimes e_{n-1, n-1}+\left(p_{n}^{\prime}+q_{n}\right) \otimes e_{n n}$.

Proceeding in this way, we write $p_{1}^{\prime}=\sum_{i=1}^{n} q_{i}$, where $\left\{q_{i}\right\}$ is a set of mutually orthogonal projections in \mathscr{A} such that $q_{i} \leq p_{i+1}^{\prime}-p_{l}^{\prime}$ for $2 \leq$ $i \leq n\left(\right.$ where $\left.p_{n+1}^{\prime}=1\right), q_{1} \leq p_{2}^{\prime}$, and $p \approx q_{1} \otimes e_{11}+\sum_{i=2}^{n}\left(p_{i}^{\prime}+q_{i}\right) \otimes e_{i i}$. Let $p_{1}=q_{1}$ and $p_{i}=p_{i}^{\prime}+q_{i}$ for $2 \leq i \leq n$. Then $p_{1} \leq p_{2} \leq \cdots \leq p_{n}$ and $p \approx \sum_{i=1}^{n} p_{i} \otimes e_{i i}$.
M. A. Rieffel raised a question in [18, 7]: If \mathscr{A} is a unital C^{*} algebra with cancellation, and if two projections p and q in $M_{n}(\mathscr{A})$ represent the same class in $K_{0}(\mathscr{A})$, are p and q in the same path component of projections in $M_{n}(\mathscr{A})$? Since \mathscr{A} has cancellation, $[p]=[q]$ in $K_{0}(\mathscr{A})$ if and only if $p \sim q$ ([3] or [4]). Hence, Rieffel's question is equivalent to whether two Murray-von Neumann equivalent projections in $M_{n}(\mathscr{A})$ are in the same path component of projections in $M_{n}(\mathscr{A})$. The following corollary provides a partial answer for his question in the case that \mathscr{A} has FS:
3.4. Corollary. If \mathscr{A} is a unital C^{*}-algebra with $F S$ and cancellation, and if p and q are two projections in $M_{n}(\mathscr{A})$, then $p \sim q$ if and only if $p \approx q$.

Proof. Of course we need only to show that $p \sim q$ implies $p \approx$ q. Since $M_{n}(\mathscr{A})$ has FS, by Theorem (3.2) we have $p \approx q_{1}+q_{2}$, where q_{1} is a subprojection of q and q_{2} is a subprojection of $1-q$. Since \mathscr{A} has cancellation and $p \sim q, q_{2} \sim q-q_{1}$. Working in $\left(1-q_{1}\right) M_{n}(\mathscr{A})\left(1-q_{1}\right)$, by Lemma (3.1) we can find a unitary v in $U_{0}\left(\left(1-q_{1}\right) M_{n}(\mathscr{A})\left(1-q_{1}\right)\right)$ such that $v q_{2} v^{*}=q-q_{1}$. Set $u=q_{1}+v$. Then u is a unitary in $U_{0}\left(M_{n}(\mathscr{A})\right)$ such that $u q_{1}=q_{1} u$. Thus $p \approx q_{1}+q_{2} \approx q$.

Concerning the unitary orbit of elements in $M_{n}(\mathscr{A})$, we have the following corollary:
3.5. Corollary. If \mathscr{A} is a C^{*}-algebra with $F S$ and x is a normal element in $M_{n}(\mathscr{A})$ with finite spectrum, then there is a unitary element u in $U_{n}^{0}(\mathscr{A})$ such that $u x u^{*}=\sum_{j=1}^{n}\left[\sum_{i=1}^{n} \lambda_{i} p_{i j}\right] \otimes e_{j j}$, where $\left\{p_{i j}\right\}$ is a set of projections in \mathscr{A} such that $p_{i_{1} j} \perp p_{i_{2} j}$ in $\mathscr{A} \otimes e_{j j}$ if $i_{1} \neq i_{2}$.

Proof. By operator calculus we write $x=\sum_{i=1}^{m} \lambda_{i} p_{i}$, where $\left\{\lambda_{i}\right\}$ is a set of complex numbers and $\left\{p_{i}\right\}$ is a set of mutually orthogonal projections in $M_{n}(\mathscr{A})$. By Theorem (3.2) we can find a unitary element u_{1} in $U_{n}^{0}(\mathscr{A})$ such that $u_{1} p_{1} u_{1}^{*}=\sum_{j=1}^{n} p_{1 j} \otimes e_{j j}\left(=q_{1}\right)$ for some projections $\left\{p_{1 j}\right\}$ in \mathscr{A}. Working in $\left(I_{n}-q_{1}\right) M_{n}(\mathscr{A})\left(I_{n}-q_{1}\right)$ and repeating the same argument, we can find a unitary u_{2}^{\prime} in $U_{0}\left[\left(I_{n}-q_{1}\right) M_{n}(\mathscr{A})\left(I_{n}-q_{1}\right)\right]$ such that $u_{2}^{\prime}\left(u_{1} p_{2} u_{1}^{*}\right) u_{2}^{\prime 2}=\sum_{j=1}^{n} p_{2 j} \otimes e_{j j}$ for some projections $\left\{p_{2 j}\right\}$ in \mathscr{A}. It follows from $p_{1} p_{2}=0$ that $p_{1 j} p_{2 l}=0$ for $1 \leq j<l \leq n$. Set $u_{2}=q_{1}+u_{2}^{\prime}$. Then u_{2} is a unitary in $U_{n}^{0}(\mathscr{A})$ and $u_{2} u_{1}\left(p_{1}+p_{2}\right) u_{1}^{*} u_{2}^{*}=\sum_{i=1}^{2} \sum_{j=1}^{n} p_{i j} \otimes e_{j j}=$ $\sum_{j=1}^{n}\left(\sum_{i=1}^{2} p_{i j}\right) \otimes e_{j j}$.

Proceeding in this way we can find unitary elements $\left\{u_{i}: 1 \leq i \leq\right.$ $m\}$ in $U_{n}^{0}(\mathscr{A})$ such that

$$
\begin{array}{r}
u_{m} u_{m-1} \cdots u_{1}\left(p_{1}+p_{2}+\cdots+p_{m}\right) u_{1}^{*} \cdots u_{m-1}^{*} u_{m}^{*} \\
=\sum_{i=1}^{m}\left[\sum_{j=1}^{n} p_{i j} \otimes e_{j j}\right]=\sum_{j=1}^{n}\left[\sum_{i=1}^{m} p_{i j}\right] \otimes e_{j j}
\end{array}
$$

Let $u=u_{m} \cdots u_{2} u_{1}$. It is obvious that u is in $U_{n}^{0}(\mathscr{A})$ and

$$
u x u^{*}=\sum_{j=1}^{n}\left[\sum_{i=1}^{m} \lambda_{l} p_{i j}\right] \otimes e_{j j} .
$$

It is well known that the unitary orbit of a self-adjoint matrix in $M_{n}(\mathbb{C})$ contains a diagonal self-adjoint matrix. If \mathbb{C} is replaced by a unital C^{*}-algebra with FS, we have the following weaker analogue:
3.6. Corollary. If \mathscr{A} is a C^{*}-algebra with $F S$ and x is a selfadjoint element in $M_{n}(\mathscr{A})(n \geq 1)$, then for any $\varepsilon>0$ there exist a unitary element u in $U_{n}^{0}(\mathscr{A})$ and elements a_{i} in \mathscr{A} with finite spectra such that

$$
\left\|u x u^{*}-\sum_{i=1}^{n} a_{i} \otimes e_{i i}\right\|<\varepsilon .
$$

Proof. Since $M_{n}(\mathscr{A})$ has FS, there is a self-adjoint element h in $M_{n}(\mathscr{A})$ with finite spectrum such that $\|x-h\|<\varepsilon$. By the same argument as in the proof of Corollary (3.5) we can find a unitary element u in $U_{n}^{0}(\mathscr{A})$ such that $u h u^{*}=\sum_{l=1}^{n} a_{i} \otimes e_{i i}$, where $\left\{a_{i}\right\}$ is a set of self-adjoint elements in \mathscr{A} with finite spectra. Therefore,

$$
\left\|u x u^{*}-\sum_{i=1}^{n} a_{i} \otimes e_{i i}\right\|=\|x-h\|<\varepsilon .
$$

3.7. Remark. Concerning the computation of K_{0}-groups of a C^{*} algebra, M. A. Rieffel raised a question in [18, 8]: What is the smallest n such that the projections in $M_{n}(\mathscr{A})$ generate $K_{0}(\mathscr{A})$? Theorem (3.3) provides a partial answer for his question for the class of C^{*} algebras with FS (actually it has been given in [22] although it was not mentioned there). In fact, if \mathscr{A} is a C^{*}-algebra with FS, then the smallest such an integer is $n=1$; in other words, $K_{0}(\mathscr{A})$ is generated by the set of Murray-von Neumann equivalence classes of projections in \mathscr{A}.
4. Diagonalizing projections in $M(\mathscr{A})$.
4.1. Theorem. Assume that \mathscr{A} is a σ-unital C^{*}-algebra with FS and $\left\{e_{n}\right\}$ is a fixed increasing sequential approximate identity consisting of projections. If p is a projection in $M(\mathscr{A})$, then the following hold:
(i) There is a unitary u in $M(\mathscr{A})$ connected to the identity by a path of unitaries, where the path is continuous in the strict topology, such that upu* $=\sum_{i=1}^{\infty} p_{i}$, where $p_{i} \leq e_{i}$ for $i \geq 1$; in other words, each strict path component of projections in $M(\mathscr{A})$ contains a diagonal projection with respect to $\left\{e_{n}\right\}$.
(ii) There exist a unitary v in $U_{0}(M(\mathscr{A}))$ and a subsequence $\left\{e_{m_{i}}\right\}$ of $\left\{e_{n}\right\}$ such that vpv* $=\sum_{i=1}^{\infty} p_{i}^{\prime}$, where p_{i}^{\prime} is a projection of $\left(e_{m_{i}}-e_{m_{i-1}}\right) \mathscr{A}\left(e_{m_{i}}-e_{m_{i-1}}\right)$ for $i \geq 1$; in other words, each norm path component of projections in $M(\mathscr{A})$ contains a block-diagonal projection with respect to $\left\{e_{n}\right\}$.

Before proving this theorem, we state the following corollary, which can be regarded as an analogue of the well known fact that a projection on a separable Hilbert space is unitarily equivalent to a diagonal projection whose diagonal entries are either 1 or 0.
4.2. Corollary. If \mathscr{A} is a σ-unital C^{*}-algebra with FS, and if p is a projection in $L\left(\mathscr{H}_{\mathscr{A}}\right)$, then there is a unitary u in $L\left(\mathscr{H}_{\mathscr{A}}\right)$ such that upu* $=\sum_{i=1}^{\infty} p_{i} \otimes e_{i i}$, where $\left\{p_{i}\right\}$ is a sequence of projections in \mathscr{A}. Consequently, $p \approx \sum_{i=1}^{\infty} p_{i} \otimes e_{i i}$ (by[8]).

Proof of Theorem (4.1).
Case 1. If p is a projection of \mathscr{A}.
Choose $n \geq 1$ large enough such that $\left\|p\left(1-e_{n}\right) p\right\|$ is small. Then Lemma (2.1) of [10] applies. We find a unitary u in $U_{0}(M(\mathscr{A}))$ such
that $u p u^{*} \leq e_{n}$. By Theorem (3.2), $p \approx u p u^{*} \approx \sum_{i=1}^{n} p_{i}$, where $p_{i} \leq e_{i}-e_{i-1}$ for $1 \leq i \leq n$. Hence both (i) and (ii) hold.

Case 2. If p is a projection in $M(\mathscr{A}) \backslash \mathscr{A}$.
Let $\left\{q_{n}\right\}$ and $\left\{q_{n}^{\prime}\right\}$ be two increasing sequences of projections in \mathscr{A} such that $q_{n} \nearrow p$ and $q_{n}^{\prime} \nearrow 1-p$ in the strict topology. Set $f_{n}=q_{n}+q_{n}^{\prime}$. Then $\left\{f_{n}\right\}$ is an increasing sequential approximate identity of \mathscr{A} consisting of projections. By the argument of [10, 2.4] we find a unitary element v in $U_{0}(M(\mathscr{A}))$ such that

$$
e_{m_{1}} \leq v f_{n_{1}} v^{*} \leq e_{m_{2}} \leq v f_{n_{2}} v^{*} \leq e_{m_{3}} \leq \cdots,
$$

where $\left\{n_{i}\right\}$ and $\left\{m_{i}\right\}$ are increasing sequences. It is clear that

$$
v p v^{*}=\sum_{i=1}^{\infty} v p\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}=\sum_{i=1}^{\infty} v\left(q_{n_{i}}-q_{n_{i-1}}\right) v^{*}
$$

and $v\left(q_{n_{i}}-q_{n_{t-1}}\right) v^{*} \leq v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}=\left(v f_{n_{t}} v^{*}-e_{m_{i}}\right)+\left(e_{m_{t}}-v f_{n_{i-1}} v^{*}\right)$ (where $q_{n_{0}}=0$ and $f_{n_{0}}=0$).

We first prove (i). By Theorem (3.2) we find a unitary w_{i} in $U_{0}\left(\mathscr{A}_{i}\right)$, where $\mathscr{A}_{i}=\left[v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}\right] \mathscr{A}\left[v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}\right]$, such that $w_{i} v\left(q_{n_{1}}-q_{n_{t-1}}\right) v^{*} w_{i}^{*}=r_{i}+r_{i}^{\prime}$, where $r_{i} \leq v f_{n_{i}} v^{*}-e_{m_{t}}$ and $r_{i}^{\prime} \leq$ $e_{m_{t}}-v f_{n_{t-1}} v^{*}$. Set $w=\sum_{i=1}^{\infty} w_{i}$. Then w is a unitary in $M(\mathscr{A})$ such that w is path connected (in the strict topology) to the identity and

$$
w v p v^{*} w^{*}=\sum_{i=1}^{\infty}\left(r_{i}+r_{i}^{\prime}\right) \leq \sum_{i=1}^{\infty}\left[\left(v f_{n_{i}} v^{*}-e_{m_{i}}\right)+\left(e_{m_{i}}-v f_{n_{i-1}} v^{*}\right)\right] .
$$

Since $r_{i}+r_{i+1}^{\prime} \leq e_{m_{t+1}}-e_{m_{t}}$, we can apply Theorem (3.2) again to get a unitary w_{i}^{\prime} in $U_{0}\left(\mathscr{B}_{i}\right)$, where $\mathscr{B}_{i}=\left(e_{m_{t+1}}-e_{m_{i}}\right) M(\mathscr{A})\left(e_{m_{i+1}}-e_{m_{i}}\right)$ such that

$$
w_{i}^{\prime}\left(r_{i}+r_{i+1}^{\prime}\right) w_{i}^{\prime *}=\sum_{j=m_{i}+1}^{m_{i+1}} p_{j}
$$

where p_{j} is in $\left(e_{j}-e_{j-1}\right) \mathscr{A}\left(e_{j}-e_{j-1}\right)$ for $m_{i}<j \leq m_{i+1}$.
Define $w^{\prime}=\sum_{i=1}^{\infty} w_{i}^{\prime}$. Then w^{\prime} is a unitary in $M(\mathscr{A})$ such that w^{\prime} is path connected in the strict topology to the identity and $w^{\prime} w v p v^{*} w^{*} w^{\prime *}=\sum_{i=1}^{\infty} p_{i}$. Set $u=w^{\prime} w v$, as (i) desired.

To prove (ii), we start with $p \approx v p v^{*}=\sum_{i=1}^{\infty} v\left(q_{n_{t}}-q_{n_{t-1}}\right) v^{*}$, where $s_{i}=v\left(q_{n_{i}}-q_{n_{t-1}}\right) v^{*} \leq v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}=\left(v f_{n_{i}} v^{*}-e_{m_{i}}\right)+\left(e_{m_{i}}-v f_{n_{i-1}} v^{*}\right)$ for each $1 \geq 1$ and $q_{n_{0}}=0$ and $f_{n_{0}}=0$. With respect to

$$
v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}=\left(v f_{n_{i}} v^{*}-e_{m_{i}}\right)+\left(e_{m_{i}}-v f_{n_{t-1}} v^{*}\right),
$$

we can write

$$
s_{i}=\left(\begin{array}{cc}
a_{i} & b_{i} \\
b_{i}^{*} & c_{i}
\end{array}\right) \quad \text { for } i \geq 1
$$

By Lemma (2.3),

$$
v p v^{*} \approx \sum_{i=1}^{\infty}\left(s_{i}+s_{i}^{\prime}\right)
$$

where s_{i} is a projection in $\left(v f_{n_{i}} v^{*}-e_{m_{i}}\right) \mathscr{A}\left(v f_{n_{i}} v^{*}-e_{m_{t}}\right)$ and s_{i}^{\prime} is a projection in $\left(e_{m_{t}}-v f_{n_{i-1}} v^{*}\right) \mathscr{A}\left(e_{m_{i}}-v f_{n_{i-1}} v^{*}\right)$. Let $p_{i}^{\prime}=s_{i}^{\prime}+s_{i-1}$ for $i \geq 1$, where $s_{0}=0$, as desired.

The following theorem asserts that the unitary orbit of each selfadjoint element of $M(\mathscr{A})$ contains an "almost" diagonal form, which is a natural analogue of the classical Weyl-von Neumann theorem.
4.3. Theorem. Assume that \mathscr{A} is a σ-unital C^{*}-algebra with $F S$ and also $M(\mathscr{A})$ has $F S$. If $\left\{e_{n}\right\}$ is a fixed increasing approximate identity of \mathscr{A} consisting of projections and h is a self-adjoint element in $M(\mathscr{A})$, then there exist a unitary u in $M(\mathscr{A})$, an element a in \mathscr{A}, some mutually orthogonal subprojection $p_{i j}\left(1 \leq j \leq n_{i}\right)$ of $e_{i}-e_{i-1}$ for each $i \geq 1$ and a real bounded scalar sequence $\left\{\lambda_{i j}\right\}$ such that

$$
\sum_{i j} p_{i j}=1, \quad \text { and } \quad u h u^{*}=\sum_{i=1}^{\infty}\left[\sum_{j=1}^{l_{i}} \lambda_{i j} p_{i j}\right]+a
$$

where a can be chosen such that $\|a\|$ is arbitrarily small. Moreover, u is connected to the identity by a path of unitaries in $M(\mathscr{A})$, where the path is continuous in the strict topology.
4.4. Corollary. If \mathscr{A} is a unital C^{*}-algebra with FS and $L\left(\mathscr{H}_{\mathscr{A}}\right)$ has FS also, then for any self-adjoint element h in $L\left(\mathscr{H}_{\Omega}\right)$ there are a unitary u in $L\left(\mathscr{H}_{\mathscr{A}}\right)$, an element a in $K\left(\mathscr{H}_{\mathscr{A}}\right)$, a sequence of projections $\left\{p_{i j}\right\}$ in \mathscr{A} and a real bounded scalar sequence $\left\{\lambda_{i j}\right\}$ such that

$$
\sum_{i=1}^{\infty}\left(\sum_{j=1}^{l_{L}} p_{i j}\right) \otimes e_{i i}=1 \quad \text { and } \quad u h u^{*}=\sum_{i=1}^{\infty}\left[\sum_{j=1}^{l_{i}} \lambda_{i j} p_{i j}\right] \otimes e_{i i}+a,
$$

where $p_{i j}\left(i \leq j \leq l_{i}\right)$ are mutually orthogonal for each fixed i, and a can be chosen with an arbitrarily small norm.

Proof of Theorem (4.3).. Since \mathscr{A} is σ-unital and both \mathscr{A} and $M(\mathscr{A})$ have FS, by [21, 3.1] we can find mutually orthogonal projections p_{i} in \mathscr{A} with $\sum_{i=1}^{\infty} p_{i}=1$, a real bounded scalar sequence
$\left\{\lambda_{i}\right\}$ and an element b in \mathscr{A} with arbitrarily small norm such that $h=\sum_{i=1}^{\infty} \lambda_{i} p_{i}+b$. Let $f_{n}=\sum_{i=1}^{n} p_{i}$. Then $\left\{f_{n}\right\}$ is an increasing approximate identity consisting of projections. By the same argument as in $[\mathbf{1 0}, 2.4]$ we can find a unitary v in $M(\mathscr{A})$ such that $v \sim 1$, and

$$
e_{m_{1}} \leq v f_{n_{1}} v^{*} \leq e_{m_{2}} \leq v f_{n_{2}} v^{*} \leq e_{m_{3}} \leq \cdots,
$$

where $\left\{n_{i}\right\}$ and $\left\{m_{i}\right\}$ are increasing sequences. Since

$$
v\left(\sum_{j=n_{t-1}+1}^{n_{i}} p_{i}\right) v^{*}=\left(v f_{n_{t}} V^{*}-e_{m_{t}}\right)+\left(e_{m_{t}}-V f_{n_{t-1}} v^{*}\right)
$$

(where $f_{n_{0}}=0$), by the same arguments in the proof of Theorem (4.1) we can find a unitary w_{i} of $\left[v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}\right] M(\mathscr{A})\left[v\left(f_{n_{t}}-f_{n_{t-1}}\right) v^{*}\right]$ path connected to the identity $v\left(f_{n_{i}}-f_{n_{i-1}}\right) v^{*}$ such that

$$
w_{i} v\left(\sum_{j=n_{i-1}+1}^{n_{i}} p_{i}\right) v^{*} w_{i}^{*}=\sum_{j=n_{i-1}+1}^{n_{i}} w_{i} v p_{i}^{\prime} v^{*} w_{i}^{*}+\sum_{j=n_{i-1}+1}^{n_{i}} w_{i} v p_{i}^{\prime \prime} v^{*} w_{i}^{*},
$$

where

$$
\begin{aligned}
p_{i}^{\prime}+p_{i}^{\prime \prime}=p_{i}, \quad r_{i} & =\sum_{j=n_{t-1}+1}^{n_{i}} w_{i} v p_{i}^{\prime} v^{*} w_{i}^{*}=v f_{n_{i}} v^{*}-e_{m_{i}} \quad \text { and } \\
r_{i}^{\prime} & =\sum_{j=n_{t-1}+1}^{n_{t}} w_{i} v p_{i}^{\prime \prime} v^{*} w_{i}^{*}=e_{m_{i}}-v f_{n_{t-1}} v^{*}
\end{aligned}
$$

Let $w=\sum_{i=1}^{\infty} w_{i}$. Then w is a unitary in $M(\mathscr{A})$ such that w is connected to the identity by a path of unitaries, where the path is continuous in the strict topology. Since $r_{j}+r_{j+1}^{\prime} \leq e_{m_{j+1}}-e_{m_{j}}$, by the same arguments in the proof of Theorem (4.1), we obtain a unitary w_{j}^{\prime} of $\left(e_{m_{\jmath+1}}-e_{m_{j}}\right) M(\mathscr{A})\left(e_{m_{j+1}}-e_{m_{j}}\right)$ path connected to the identity $e_{m_{j+1}}-e_{m}$ such that

$$
w_{j}^{\prime}\left(r_{j}+r_{j+1}^{\prime}\right) w_{j}^{\prime *}=\sum_{i=m_{j}+1}^{m_{j+1}} \sum_{j=1}^{l_{i}} p_{i j}
$$

where $\left\{p_{i j}: 1 \leq j \leq l_{i}\right\}$ is a set of mutually orthogonal subprojections in $\left(e_{i}-e_{i-1}\right) \mathscr{A}\left(e_{i}-e_{i-1}\right)$.

Define $w^{\prime}=\sum_{i=1}^{\infty} w_{i}^{\prime}$. Then w^{\prime} is a unitary in $M(\mathscr{A})$ such that w^{\prime} is path connected to the identity, where the path is continuous in the strict topology. Set $u=w^{\prime} w v$. Then u is path connected to the
identity, where the path is continuous in the strict topology. It is easily verified that $u h u^{*}$ has a desired form. (Notice that $\left\{\lambda_{i}\right\}$ is equal to $\left\{\lambda_{i j}\right\}$ as sets.)
4.5. Remarks. (i) The condition " $M(\mathscr{A})$ has FS" in the hypotheses of Theorem (4.3) and Corollary (4.4) has been studied in [5], [21] and [24]. Actually many multiplier algebras have the FS property.
(ii) Several applications of the results in this note have been given in the author's subsequent papers [24, Part II, III, IV].

Acknowledgment. The author wishes to thank the referee for pointing out an inaccuracy in Theorem (4.1) in the primary manuscript of this paper.

References

[1] C. A. Akemann, G. K. Pedersen and J. Tomiyama, Multipliers of C^{*}-algebras, J. Funct. Anal., 13 (1973), 277-301.
[2] J. Bunce and J. Deddens, A family of simple C^{*}-algebras related to weighted shift operators, J. Funct. Anal., 19 (1975), 13-24.
[3] B. Blackadar, Notes on the structure of projections in simple C^{*}-algebras, Semesterbericht Funktionalanalysis, W82, Tübingen, March 1983.
[4] __, K-Theory for Operator Algebras, Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, 1987.
[5] L. G. Brown and G. K. Pedersen, C*-algebras of real rank zero, preprint, 1989.
[6] L. G. Brown, Extensions of AF algebras: the projection lifting problem, Operator Algebras and Applications, Proc. Symp. Pure Math., 38 (1981), Part I, 175-176.
[7] R. Busby, Double centralizers and extensions of C^{*}-algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.
[8] J. Cuntz and N. Higson, Kuiper's theorem for Hilbert modules, Operator Alg. and Math. Phys., Vol. 62, Proc. of a Summer Conference June 17-21, 1985.
[9] M.-D. Choi and G. A. Elliott, Density of the self-adjoint elements with finite spectrum in an irrational rotation C^{*}-algebra, Math. Scand., (to appear).
[10] G. A. Elliott, Derivations of matroid C^{*}-algebras II, Ann. of Math., 100 (1974), 407-422.
[11] K. Grove and G. K. Pedersen, Diagonalizing matrices over $C(X)$, J. Funct. Anal., 59 (1984), 65-89.
[12] P. R. Halmos, A Hilbert Space Problem Book, second edition, Springer-Verlag New York, Heidelberg, Berlin, 1982.
[13] R. V. Kadison, Diagonalizing matrices over operator algebras, Bull. Amer. Math. Soc., 8 (1983), 84-86.
[14] __, Diagonalizing matrices, Amer. J. Math., 106 (1984), 1451-1468.
[15] G. Kasparov, Hilbert C*-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory, 4 (1980), 133-150.
[16] G. K. Pedersen, The linear span of projections in simple C^{*}-algebras, J. Operator Theory, 4 (1980), 289-296.
[17] M. A. Reiffel, The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory, 17 (1987), 237-254.
[18] M. A. Reiffel, Non-stable K-theory and non-commutative tori, Contemporary Math., 62 (1987), 267-279.
[19] , Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc., 46 (1983), 301-333.
[20] H. Weyl, Uber beschrankte quadratischen formen deren differentz vollstetig ist, Rend. Circ. Mat. Palermo, 27 (1909), 373-392.
[21] S. Zhang, K_{1}-groups, quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc., to appear.
[22] __, A Riesz decomposition property and ideal structure of multiplier algebras, J. Operator Theory, (to appear).
[23] _ On the structure of projections and ideals of corona algebras, Canad. J. Math., 41 (1989), 721-742.
[24] _, C^{*}-algebras with real rank zero and the internal structure of their corona and multiplier algebras, Part I, II, IV, preprints. Part III to appear in Canad. J. Math.
[25] , A property of purely infinite simple C^{*}-algebras, Proc. Amer. Math. Soc., to appear.

Received November 1, 1988 and in revised form September 28, 1989.
University of Kansas
Lawrence, KS 66045-2142

