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OPTIMAL PATHS FOR A CAR THAT GOES BOTH
FORWARDS AND BACKWARDS

J. A. REEDS AND L. A. SHEPP

The path taken by a car with a given minimum turning radius has a
lower bound on its radius of curvature at each point, but the path has
cusps if the car shifts into or out of reverse gear. What is the shortest
such path a car can travel between two points if its starting and ending
directions are specified? One need consider only paths with at most
2 cusps or reversals. We give a set of paths which is sufficient in the
sense that it always contains a shortest path and small in the sense
that there are at most 68, but usually many fewer paths in the set for
any pair of endpoints and directions. We give these paths by explicit
formula. Calculating the length of each of these paths and selecting
the (not necessarily unique) path with smallest length yields a simple
algorithm for a shortest path in each case. These optimal paths or
geodesies may be described as follows: If C is an arc of a circle
of the minimal turning radius and S is a line segment, then it is
sufficient to consider only certain paths of the form CCSCC where
arcs and segments fit smoothly, one or more of the arcs or segments
may vanish, and where reversals, or equivalently cusps, between arcs
or segments are allowed. This contrasts with the case when cusps are
not allowed, where Dubins (1957) has shown that paths of the form
CCC and CSC suffice.

1. Introduction. We want to find a shortest path in the plane with
specified initial and final points and directions and with the further
constraint that at each point the radius of curvature should be > 1.
This problem arose in a simple model for a robot cart which moves
under computer control. The cart can shift into reverse and so the
path is allowed to have cusps.

In an elegant paper, Lester Dubins (1957) solved the problem when
the car cannot reverse and cusps are not allowed. Even in this case it is
apparently impossible to give an explicit formula for the shortest path.
Instead Dubins gives a sufficient set of paths, i.e. a set which always
contains what he called a geodesic, or optimal path. His sufficient
set is so small that there are at most 6 contenders in the set for each
case of specified endpoint conditions, and it is a simple matter to find
the shortest of these 6, which gives an algorithm for the solution. He
showed that any geodesic can be described by one of 6 words:
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, /sr, r/r, rsr, rs/ where / , r, and s stand for "go left",
"go right", and "go straight", respectively. Here left and right mean
anticlockwise or clockwise around a circle of unit radius, i.e. a tightest
possible circle, and of course one always goes less than 2π around
any circle. More compactly, Dubins proved that a geodesic must be
a smooth curve that is piecewise circular (radius 1) or linear, with at
most 3 pieces, and always takes the form CCC or CSC where C
is an arc of a unit circle and S is a line segment. A word notation
like CCC or /sr thus stands for the corresponding class of paths.
We use subscripts on a word (as in /tsurυ) to specify the length of the
corresponding arcs or segments involved. Note that one or more of
these lengths may vanish. For example, to choose a path which returns
to the initial point but in the opposite direction, two competing paths
of Dubins type suggest themselves: 4π/2524τr/2 a n d /π/3r5π/3^π/3 ( s e e

Figs. A, B). It is easy to verify that both of these accomplish the job

FIGURE A
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FIGURE B

3 3 3

FIGURE C
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of reversing in place but the second is shorter and turns out to be
optimal by Dubins's theorem, as is the symmetrically reflected path,
rπ/3^5π/3rπ/3 ( s e e Fig- Q Note that in a crude dimensional sense, the
number of free parameters t, w, v exactly matches the number (3)
of conditions of endpoint and direction. For each of the words fs/,
/sr, rsr and rs/ it is not hard to show that there is at most one path
obeying the end conditions.

Although there may actually be two distinct paths of form f^uA) or
of form rt/urυ , Dubins shows [4, p. 513, Sublemma] that only one of
them, with u > π, can be a geodesic.

With this fact it is not hard to show that there is at most one geodesic
for each word, although there may be two different words which are
both optimal, as in the reverse-in-place example.

Dubins has given an effective algorithm for the forward problem,
but what if the car can reverse?

We remark that A. A. Markov in 1887 (Markov (1887), see also
[Krein-Nudelman, p. 17]) considered and solved various related ver-
sions of these problems in his work on laying railroad track connecting
already existing sections of track. Other papers of interest are Melzak
(1961) and Dubins (1961).

If cusps are allowed in the path then we must consider words built
from / + , / " , r + , r~ , s+ , and s~ , where / + means turning to the
left while going forwards, / " means turning to the left while going
backwards, etc. Note that a path of the form / + r ~ , for example, has
a cusp whereas / + r + or /~r~ has no cusp. (In car-driving terms,
the letters / , r, s refer to the steering wheel and the signs + and -
refer to the gear shift.)

It is easy to see that cusps can sometimes shorten Dubins's paths;
for example, in the reverse-in-place problem, the path ^2rπ/3^π/3 ( s e e

Fig. D) reverses in place and is shorter (in fact, it is optimal). Here
the superscript indicates the direction taken along the corresponding
arc or segment. We give a set of words in /±, r*, s± which give a
solution to the reverse problem analogous to that of Dubins for the
forward problem. These are more compactly given in C, S notation:

(l.i) c+c~c+, c+c~c-9

c+c+c-, c~s/2

together with the words obtained by reversing all the signs. Here C
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stands for either / or r so CC means either / r or rf. A C+/2 or
C~π ,2 means the corresponding / or r must be of length π/2, and
the combination CUCU in (1.1) means the two corresponding circular
segments have equal lengths. For more precision we will use the some-
what redundant convention that in Cf , 4 ± > rt° > o r ^ Λe sign of t
should match the direction, i.e. t > 0 when the car is going forward,
t < 0 when it is reversing a distance |ί| along a left-circle, right-circle,
or straight line. Note that in a family of paths such as CfC~C~C+
the number (4) of free parameters t9u,v,w is one more than the
number (3) of end conditions, and so there typically is a manifold of
solutions, t, u, v , w for given end conditions. Optimizing among
the paths of the family gives an extra equation such as v = u, or
v = π/2, so that in each case in (1.1) only 3 free parameters remain.
Of course any length not π/2 can vanish, so sub words are included
as well. We will show (in the remark below the proof of Lemma 3)
that there are paths—for example, in the class C+C~C+C~C+C~—
which are not of any of the above types and which are geodesies but in
all such cases there are equally short geodesies inside our class (1.1).
This phenomenon of geodesies that are not in the sufficient set does
not occur in the simpler forward problem. In a still more compact no-
tation that avoids ± , we may write the list of sufficient special paths
as

(1.2) C\C\C, CC\C, CSC, CCU\CUC, C\CuCu\C,

C\Cπ/2SC, C\Cπ/2SCπ/2\C, C\CC, CSCπ/2\C

where | means reverse direction. There are 48 different words in /± ,
5 ± , r* when C in (1.1) or (1.2) is replaced by C = / or C = r.
Some of these 48 words have 2 formulas for an actual path of its
word type. There are at most 68 formulas in any given case. Table 1
summarizes the 48 words and 68 formulas.

Dubin's proof is different from ours. He shows that there are
geodesies for any endpoint conditions, i.e. the infimum is achieved,
and then proves the lemma that any geodesic of length less than π/8
must be a CSC. It then follows easily that every geodesic must beia
finite word in C and S, and then using a series of special arguments
reduces all finite words to CCC or CSC.

We use advanced calculus to deduce our result from Dubin's the-
orem and then in §7, we use the same general method to outline a
separate proof of Dubin's theorem itself. In fact, we do not see how
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TABLE 1

This table lists the 48 words in our sufficient set, together with their
shorthand names as used in (1.1) and (1.2). The last column gives the
segment length formulas for the given word.

explicit

Γr+Γ
r+Γr+

l+r~Γ
Γr+Γ
r+Γr~

Γr~l+

Γr+Γ

ill?
l+rZulZur

+

r+ίZurZul
+

Γs-rZπnl*

r S /-π/2r+

r+lZπ(2sΊ~

r~s-rZ%l2l
+

Γs~r~

r~s~Γ

Γs'Γ
r+s+r+

r~s~r~

(1.1) form

C+C~C+

C~C+C~
C+C~C+

C+C~C~
C~C+C+

C+C~C~
C~C+C+

C-CC+

c~c~c+

c+c+c~
c+ctczuc~
c~czuctc+

C+CZuCZuC+

c-cictc-

Ks Ks _fl/2ιj ^

C C<κj2S C

C S Cπ/2C

c-s-czj2c
+

c+s+cϊ/2c-
c+s+c+

c+s+c+

c~s~c-
c+s+c+

c~s~c~
C+S+C+
CS'C-

(1.2) form

CICΊC
C\C\C
c\c\c
c\c\c
c\cc
c\cc
c\cc
c\cc

cc\c
cc\c
cc\c
cc\c

ccu\cuc
ccu\cuc
ccu\cuc
ccu\cuc
c\cucu\c
c\cucu\c
c\cucu\c
c\cucu\c
c\cκ/2sc
c\cπ/2sc
C\CK/2SC

c\c%/2sc

CSCyJ^C
csc^ic
CSC^IC

C\Cπ/2SC
C\CXI2SC
C\Cπ/2SC
C\C%I2SC

csc^c
cscπ/2\c

csc%l2\c
CSC
CSC
CSC
CSC

CSC
CSC
CSC
CSC

c\c^2sc«2\c
C 1 C π/2θC π/2 I C

Section 8 formula

(8.3), two roots
(8.3), two roots
(8.3), two roots
(8.3), two roots

(8.4), two roots
(8.4), two roots
(8.4), two roots
(8.4), two roots

(8.4), two roots
(8.4), two roots
(8.4), two roots
(8.4), two roots

(8.7), two roots
(8.7), two roots
(8.7), two roots
(8.7), two roots

(8.8)
(8.8)
(8.8)
(8.8)

(8.9)
(8.9)
(8.9)
(8.9)

(8.9)
(8.9)
(8.9)
(8.9)

(8.10)
(8.10)
(8.10)
(8.10)

(8.10)
(8.10)
(8.10)
(8.10)

(8.2)
(8.2)
(8.2)
(8.2)

(8.1)
(8.1)
(8.1)
(8.1)

(8.11), two roots
(8.11), two roots
(8.11), two roots
(8.11), two roots
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to formulate a result analogous to his short geodesic lemma for the
reverse problem, so his methods do not seem to work in a straightfor-
ward way. We show instead that any curve can be approximated by a
word in C ± and S± . Then we show that any word in C * , S± can
be reduced to one in at most 5 letters without increasing its length.
Finally we reduce to a word on the list by using ideas similar to the
last part of Dubin's proof.

Although we give a rigorous proof of our assertions, we used a com-
puter to empirically determine a sufficient list of words as follows:
Given a set W of words, we tested W for insufficiency by generating
the endpoint conditions randomly and first finding the best path in
W. If a shorter path can be found by concatenating two paths in W,
then W is insufficient. Using this method and pruning, we eventually
arrived at and convinced ourselves that we had a minimal sufficient
set.

Once we had guessed at W, we used the computer again to help do
the extensive algebra in the large number of cases involved to verify
that a rigorous proof could be given by the method outlined above.
Finally, we found that the proof could be simplified (§2), so that it
can easily be followed by an ordinary human without a computer to
check the details. But we think that we could never have found the
right set of words without using a computer.

In §7 we outline a proof of Dubin's theorem by our method.
In §8 we give a list of formulas to compute the lengths of each of

the 68 actual path-solutions for each of the 48 word types suitable for
algorithmic implementation.

2. Admissible paths. For us, the state of a car at a given instant t,
where t is arclength, is completely specified by its position (x(t),y(t))
in the plane. An admissible path or curve is a function γ(t) = (x(t),
y(t), φ{i)) for which we can find measurable functions e and η for
which

(2.1) x{t) = JΓ(O) + / e(τ) cos φ{τ) dτ,
Jo

y(t)=y(0)+ ε(τ)sinφ(τ)dτ, where
Jo

fη{τ)
Jo

dτ
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and where ε(τ) = ±1 and \η(τ)\ < 1 for each τ . In words, a car
can move only forwards or backwards in its own direction φ{τ) with
speed y/x1 +j>2(τ) = |ε(τ)| = 1 and cannot change its direction φ(τ)
faster than one radian per time unit so that its turning radius is at least
one or the curvature of its path is at most one (since the curvature is
the reciprocal of the turning radius).

Note that we must allow infinite acceleration at a cusp where ε(t)
changes sign instantly. The problem where the acceleration must sat-
isfy x+y <a < oc is more difficult and is not treated here. However,
for slowly moving vehicles, such as carts, this seems like a reasonable
compromise to achieve tractability. How does one characterize the
class of paths (xt, yt) which satisfy (2.1)? Any path with piecewise
constant circles of radius > 1 and/or line segments suffices, but one
can take {t :ε(ή = 1} to be an arbitrary measurable set. A somewhat
complicated condition on (xt,yt)9 0 < t < Γ, is: It is assumed that
t is length along the path, so that x} + y} = 1. Then it is necessary
and sufficient that for φ(t) = tan~ι(yt/xt) we have

(2.2) \φ(t + s) - φ(ή\ <s ΐorO<t<t + s<T.

This is an immediate consequence of the fact that a Lip 1 function φ
as in (2.2) is the integral of its derivative η as in (2.1). Finally, β(τ)
is automatically uniquely defined by (2.1) since x} + yf = 1.

The track of an admissible curve γ(t) = (x(t), y(t), φ(t)) is γ(t) =
(x(t), y(t)). By differentiating (2.1) we get

(2.3) *(ί) = e(

so both γ{t) and γ(t) are rectifiable. If g is admissible with g(to) = a
and g(t\) = b with to < t\ we call its restriction γ = g\[t 5 g to the
domain to < t < t\ an admissible path leading from a to b and define
its length L(γ) = t\ - to. Our problem in short: given an arbitrary a
and b in R3 find an admissible γ minimizing L(γ).

3. Summary of results. A word is a finite string in the letters C,
S, I and with some abuse of notation is also thought of as a path or
as a set of paths. Each path in C\CS, for example, starts somewhere,
goes along a circle of radius 1 for some distance > 0, then has a
cusp, then goes along the other circle tangent to the first circle at the
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cusp in the opposite direction for some distance > 0, then continues
along the straight line, for some distance > 0, which is tangent to
the second circle. A path in C\CS is a member of C+C~S~ or
C~C+S+ according as the initial direction is forward or reverse. A
path of C+C~S~ is a member of /+r~s~ or r+/~s~ according as
the initial rotation is counterclockwise or clockwise. A word is said to
have proper form if each of the durations of its segments or letters is
nonzero.

A word of special form is one of those in (1.1), or (1.2). We say a
word can be shortened to another word if for every path of the form
of the first word there is a shorter path of the form of the second word
with the same endpoint conditions of position and direction.

Our first result, proved in §4, is the hardest.

THEOREM I. Any word with 3 cusps can be shortened to a word with
two or fewer cusps.

The obvious induction then yields the following.

COROLLARY. Any word can be shortened to a word with two or fewer
cusps.

By applying Dubins's theorem to the parts of the word between
consecutive cusps or endpoints (where the path is always in the same
direction) we see that any word with two or fewer cusps can be short-
ened to a word with two or fewer cusps and with 9 or fewer segments,
or letters C and S. In fact even more can be done:

THEOREM 2. Any word can be shortened to a word of special form
(1.3).

This is proved in §5. Finally a simple approximation argument in
§6 shows these results apply to all admissible paths, not just to paths
described by words. Thus we obtain:

THEOREM 3. Any admissible path can be shortened to a word of
special form (1.2) ^

The general technique for proving Theorems 1 and 2 is as follows:
Given a four segment word γ, that is, a word with 4 letters C and
S, consider the four dimensional family of all words of the same type



OPTIMAL PATHS 375

as γ with the same starting point and starting direction. Typically
a one dimensional subfamily will also share final endpoint and final
direction with γ, as can be seen by counting constraint equations.
Using calculus and setting derivatives to zero we can find the shortest
path in this subfamily; its four durations will obey a critical point
equation. Thus if γ is not strictly shortenable in its class its four
durations or segment lengths must satisfy the appropriate critical point
equations. If a word w with more than 4 segments is not strictly
shortenable within its type, this process can be repeated on each 4
segment subword to yield a series of relations between the segment
lengths. These relations typically force w to have a very constrained
shape, which enable further deductions about w to be made.

The following notations are helpful. For t eR let Lt, Rt, St

(3.1) L, :R 3 ->R 3 ,

Rt: R 3 -• R 3 ,

St : R 3 -• R 3

be the position and direction at time t of a unit circle, ft or rt, and
a line segment st, respectively, starting from (x, y, φ) 9 so that

(3.2) Lt(x ,y,Φ) = (x + sin(φ + t) - sin φ, y - cos(φ + t)

+ cos</>, φ + t ) ,

Rt(x, y ,</>) = (x - sin(</> - t) + sin φ, y + cos(φ - t)

- cos φ, φ — t),

St(x ,y,φ) = (x

Then a curve ^r's'/^ starting at (0 ,0 ,0) for instance must end
at

(3.3) (X(t, u, v, w), Y(t, u,v,w), Φ(/, u, v, w))

= Rw(Sυ(Ru(Lt(0,0,0))))

and its length is

(3.4) L(t, u,v ,w) = \t\ + \u\ + \v\ + \w\ = t — u — υ —w .

Let VX be the gradient of X(t, u, v , w), i.e.

V ^ ' aw ' dv ' dw)

and similarly for V 7 , VΦ, and VL. For each word, formulas for
VX, V 7 , VΦ, and VL can be obtained.
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For example, the word /trusυ/w starting at ( 0 , 0 , 0 ) has, by a short
calculation and regardless of signs of /, u, v, w

(3.5) X(t, w, v, w) = sin(w - w + ί) + v cos(w - ί)

+ 2 sin(w - ί) + 2 sin ί,

Γ(ί, u, v, w) = - cos(w -u + t)-v sin(u - t)

+ 2 cos(u -t)-2cost+l,

Φ(ί ,u,v,w) = w-u + t,

and V Z , V 7 , VΦ can be easily obtained.
Similarly, the word /trusvrw starting at ( 0 , 0 , 0 ) has

(3.6) X(t ,u9v,w)= sin(w + u-t) + v cos(u - t) + 2 sin t,

, u, v, w) = cos(w + u- t) -vsin(w — ί) — 2cosί + 1,

4. At most 2 cusps suffice. Here we show that any word with 3 or
more cusps can be shortened to a word with < 2 cusps. We start with
some lemmas:

LEMMA 1. A word of proper form C\S can always be strictly short-
ened to a word with zero or one cusps.

Proof. Suppose γ is of the form fγ~sv where T > 0 and V < 0
and leads from ( 0 , 0 , 0 ) to (x9y,φ). This is a special case of the
4-word ^t+rΰsϋ^w where u = w = 0. We will show how to shorten
γ by a word of this type. Consider the following system of ordinary
differential equations with independent variable h:

(4.1)

U{h) = -

v(h) = 1 +

w(h) = -

2cosw(/*)'
υ(h) +2 sin u(h)

2υ(h)cosu(h)

2sinu(h)

v(h)co$u(h)'
sinu(h)

v(h)cosu(h)'

By Picard's existence and uniqueness theorems, [2, p. 12] this system
has a solution for small enough values of h, which passes through
the point (ί(0), u(0),v(0),w(0)) = (Γ, 0, V, 0). Let y(λ) denote
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the corresponding curve ή(h)ru{h)sv{h)4v{h) It *s e a s Y t 0 check (using
(3.4) and (3.5)) that y{h) leads from ( 0 , 0 , 0 ) to (x, y, φ) and that
L'(h) = - 1 . It is also easy to see from (4.1) that ύ(h) < 0 and
w(h) < 0 for all h > 0 sufficiently small, t{h) > 0, κ(Λ) < 0,
v(h) < 0, w(/z) < 0 so that γ(h) remains in the class /+r~s~/~.
For all h sufficiently small γ(h) shortens γ (since L'{h) < 0) and
γ(h) has only one cusp. D

LEMMA 2. Suppose t, u, v, and w are all nonzero.
(a) Suppose λ = CtCu\CυSw is not strictly short enable in its class

CC\CS. Then u = -v (mod2π) or u = v + π (mod2π).
(b) Suppose λ = StCu\CvSw is not strictly shortenable in its class

SC\CS. Then u = -υ(moά2π) or u = v + π (mod2π).
(c) Suppose λ = Ct\CuSvCw is not strictly shortenable in its class

C\CSC. Then v = 0 or u = π/2 (mod2π) or u = -π/2 (mod2π).
This also holds for w = 0, i.e., λ = Ct\CuSv can be shortened inside
the class C\CSC.

(d) Suppose λ — Ct\Cu\CvSw is not strictly shortenable in its class
C\C\CS. Then u = 0 (mod2π) or u = π (mod2π).

(e) Suppose λ = CtCuCυ\Cw is not strictly shortenable in its class
CCC\C. Then u = 2v + π(moά2π).

(f) Suppose λ = Ct\Cu\CvCw is not strictly shortenable in its class
C\C\CC. Then u = 0 (mod2π) or u = π (mod2π).

(g) Suppose λ = Ct\CuCv\Cw is not strictly shortenable in its class
C\CC\C. Then u = v (mod2π) or u = v + π (mod2π).

(h) Suppose λ = CtCu\CυCw is not strictly shortenable in its class
CC\CC. Then u = -υ (mod2π) or u = v + π (mod2π).

Proof, (a) Suppose λ is a path from ( 0 , 0 , 0 ) to (x,y,φ) of type
Z + r V - s - . Let F be the set of all paths of type f+r+f~s- from
( 0 , 0 , 0 ) to (x,y9φ), F can be identified with the set of all tuples
(t, u,υ ,w) for which

(4.2) t>0, u>0, v<0, w<0,

X(t,u,v,w)=x, Y(t,u,υ9w)=y, Φ ( ί , u, υ , w) = φ,

where

(4.3) (X(t, u,υ,w), Y(t, u9v,w),Φ(t9 u9υ,w))

= Sw(Lv(Ru(Lt(0,0,0)))).
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Every point (t9u,υ ,w) in F obeys one or more of the following:
(1) One or more of the components of t, u, υ , w vanishes.
(2) The linear space spanned by VX, VΓ, and VΦ has dimension

less than 3.
(3) No component of (t,u9v,w) vanishes and the span of (VΛΓ,

VY 9 VΦ) has dimension 3, so some neighborhood of (t9 u9υ9w) in
F is a 1-manifold.

Now A = 4+ r ί4;~ sw minimizes L{λ) = t + u - v - w in F. By
hypothesis, none of t, w, υ , w vanish so either (2) or (3) holds. In
case (3) the method of Lagrange multipliers ([3, p. 150], [6, p. 129])
shows there are reals λx, λy, and λφ so that

(4.4) VL = λxVX + λyVY + λφVΦ.

In both cases (2) and (3), then, the space spanned by VX, V 7 , VΦ,
and VL has dimension at most 3, and hence the Jacobian determinant

d(X,Y,Φ,L)
Δ =

d ( t 9 u, v9w)

vanishes. Elementary calculus shows that

(4.5) Δ =

so the conclusion of (a) follows.
Symmetry considerations show that if λ is of some other CC\CS

type (such as f~r~f+s+ or r~l~r+s+, etc) the same results hold.
The proof of the other claims (b)-(h) of Lemma 2 are mutatis

mutandis the same. A trivial complication arises in (c), where both
f+r~s~r~ and f+r~~s~f~ must be checked. D

LEMMA 3. A word of the form C\C\C\C can always be (not neces-
sarily strictly) shortened to a word with at most two cusps.

Proof Let F be the set of all paths of the form ή+r~fυ+r~ from
( 0 , 0 , 0 ) to a given (x, y, φ). On connected components of F, the
length function L(t, u, v , w) = t -u + v -w is constant, congruent
modulo 2π to φ. Consider the new problem of minimizing w on F%
As in the proof of Lemma 2, either some component of (t, u, υ, w)
vanishes (yielding a word with at most 2 cusps) or the Jacobian deter-
minant

d(X9Y9Φ,w)Δ =
d ( t , u9v9w)
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vanishes. Elementary calculation shows

(4.6) Δ = 4sinw

so that w = 0 or π . If u = 0 the word is of the form f^/^r' =
ftXυr~ which has < 1 cusps. If u = π then the sign of the second arc
may be reversed since an arc of length π traversed in one direction is
equivalent to a traversal of the other semicircle in the reverse direction
(see Fig. 3). But this says that there is a curve of the form 4 + r π 4 + r w
leading from ( 0 , 0 , 0 ) to (x, y, φ) with fewer cusps. D

We remark that if L is less then π then C |C |C |C is optimal since
\φ\ = L and |Φ| continually increases along C | C | C | C . Similarly
C|C|C | "\C is optimal for any number of C's so long as L < π.

We now can prove Theorem 1 itself:

THEOREM 1. Any word with three cusps can be shortened to a word
with two or fewer cusps.

Proof. Let θ be a word with 3 cusps. Consider the family G of
all words θ1 of form θf = α|/f|y|£ where each of α, β, γ, and δ
is of form CCC or CSC, where each segment in θ' has length
<L(Θ), and where θ' has the same end conditions as θ. By Dubins's
theorem applied to the cusp-free subwords of θ there is a word θ' in
G with L(θ') < L(θ), so we may assume without loss of generality
that θ is already in G. Since G is compact we may further assume
θ minimizes L(θ) in G, so that θ is not strictly shortenable among
words with < 3 cusps. The general idea is that no subword of such
a θ can be strictly shortened without increasing the number of cusps.
This is very much like Dubins's use of the principle (in the context of
his forward problem) that a subpath of a geodesic is a geodesic.

By Dubins's theorem each of a, β, γ, δ is one of these seven
proper forms

(4.7) C, CC, CCC, 5, OS, SC, CSC.

Since θ cannot be strictly shortened with 3 or fewer cusps, the com-
bination S\S cannot occur in θ, so if a = S or CS then β cannot
be S or SC for example. By Lemma 1 the combinations C\S and
S\C cannot occur in θ . These restrictions alone force a to have one
of the proper forms

(4.8) C, CC, CCC, SC, CSC
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and force β and γ to have one of the proper forms

(4.9) C, CC, CCC, CSC

and force δ to have one of the proper forms

(4.10) C, CC, CCC, OS, CSC

which reduces the overall number of possible forms from 74 = 2401
to 5 4 2 5 = 400.

We may suppose that SC\CS does not occur in θ: if StCu\CυSw

did occur then Lemma 2 (b) and (a) says \v\ = π/2 and u = -v
(mod2π) or u = v + π (mod2π). Since u and v have opposite signs
and since \u\ < 2π we know u = —v . Since V^/2r-π/2 = fπ/2r-π/2s-t
(see Fig. 1) we see that in this case StCu\CυSw = StS-wCu\Cv =
St-wCu\Cv. Since 4/2^-π/2 = rπ/2f-π/2 (again Fig. 1) we further
see that Cυ may be merged into a Q curve. Thus without changing
the length of θ we may repeatedly replace all instances of the form
SC\CS with SC\C, or by symmetry, by C\CS.

Similarly, we may suppose that w has no instance of CC\CS.
Arguing as before, applying Lemma 2 (a) and (c) to CtCu\CvSw we

• — • •

t 7Γ J7Γ t + 2 0 J7Γ JΓ t t + 2

2 2 2 2

2 * 2 2 * 2

FIGURE 1

2 2

FIGURE 2
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CTΓ S ( U

FIGURE 3

see u = ±π/2 and υ = -u. Since 4/2>"-π/2 = rn/2/_n/2 (Fig- 2)
we may reverse the handedness of CM|Ct; which allows QCU\CV to
reduce to C ί + I έ |C,,. Thus all instances of CC\CS and CCC\CS get
replaced by C\CS and all instances of SC\CC and SC|CCC get
replaced by SC\C in 0.

Similarly, if QIC^C^S^ occurs in θ, then by Lemma 2 (d), w =
π (mod2π). But Cπ = C_π (Fig. 3) so in either case Ct\Cu\CυCw =
CtC-uCvSw which has strictly fewer cusps.

These simplifications together imply that we may replace θ by a
word 0' with fewer cusps or by one in which neither β nor γ has
the form CSC. In this last case, θr contains one of these forms:

(4.11) C|C|CC, CC\C\C, C\CC\CC\C,

c\ccc\c, c\c\c\c.

Each of these can be shortened or replaced by a word with fewer cusps,
as follows:

By Lemma 2 (f), Ct\Cu\CυCw is unshortenable only if sinu = 0,
i.e. u = π. Then Cw = C_w reduces the word as before. The case
CC\C\C is symmetrically dealt with.

The case Ct\CuCυ\CwCx\Cy is handled as follows. If \u\ > π the
replacement Q\CUCV = CtC2π-u\Cv is a strict shortening with the
same number of cusps. So we may assume \u\ < π and similarly \v\<
π, |tu| < π , and |x| < π. By Lemma 2 (g), strict shortening is possible
unless u = v or u = υ+π. But w and υ have the same sign so u = v .
Similarly, w = x by Lemma 2 (g) and v = -w by Lemma 2 (h). But
as we see in Fig. 4, and is easily verified, /uru/-ur-u = /-ur-u/uru

SO C^|C^Cι;|Cti;Cχ|Cy = Cf|CWCH|C—t/C—w|Cy = = C^C—^C—u\^u^u^y

which has fewer cusps.
The pattern Ct\CuCvCw\Cx similarly can be supposed to have

\u\ < π , |ty| < π . By Dubins's theorem [4, p. 513, Sublemma],
π < \v\ < 2π. By Lemma 2 (e), v = 2u + π (mod2π) and
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FIGURE 4

υ = 2w + π (mod2π), so \u\ < π/2 and \w\ < π/2. Because
Suriu+πSu = S-urπ-2uf-u (see Fig. 5) we see Ct\CuCυCw\Cx is strictly
shortenable to CtC-u\Ch\C-wCx, where h = π - 2u since π - 2\u\ <
π + 2\u\.

Finally, Lemma 3 takes case of the C |C |C |C case. D

By applying Theorem 1 to subwords of an arbitrary word we can
immediately obtain the following.

COROLLARY. Any word can be shortened to a word with two or fewer
cusps.

REMARK. The reader may be wondering why we cannot simply get
rid of any subword CUCVCW where u, v, w are nonzero and of the
same sign. He may want to reason that by Dubins's lemma [4, p. 513,
Sublemma], π < \υ\ < 2π but reversing the middle segment lets us
replace CuCυCw by Cu\C2n-v\Cw which is shorter. The trouble is
this introduces two more cusps. But in Theorem 1 we want to keep
reducing the number of cusps so such a cusp-increasing step is not
permitted. However, now that Theorem 1 is proved we can use this
lemma of Dubins to further reduce the sufficient set of words and
eliminate C C C s and this will be done as part of the next step in the
reduction to (1.2).

5. Words of special form suffice. Here we extend the conclusion of
Theorem 1.

THEOREM 2. Any word can be shortened to a word of the special form
(1.2).
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Proof. We observe that by Theorem 1 and Dubins's theorem, the
set of words of the form a\β\γ where a, β, γ are each one of C,
S, CC, CS, SC, CSC, CCC suffices. We narrow a\β\γ down to
(1.1) or (1.2) using some lemmas.

LEMMA 4. A proper word of the form Q\CUSV which is not shorten-
able to any word with < 1 cusps must have u = ±π/2.

Proof. Suppose γ = /TW^V where T > 0, U < 0, and V < 0 is
not shortenable to any word with one or fewer cusps. Consider the
system of ordinary differential equations used in the proof of Lemma
1, but this time with boundary condition

(5.1) (ί(0), κ(0), v(0), u (O)) = (Γ, U9 V, 0).

If V Φ 0 and tan U < 0 then Picard's theorem [2, p. 12] applies and
since w(h) in (4.1) < 0, w(h) < 0 and so

(5.2) γ(h) = ft(h)ru(h)Sv(h)4υ{h)

for sufficiently small h > 0 strictly shortens γ (since Z/(λ) = -1)
and has only one cusp (since w(h) < 0 and we remain inside the
family /+r~s~/~). If tan U > 0, on the other hand, then the system
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of ordinary differential equations, analogous to (4.1),

1
(5.3) i{h) = -

ύ(h) = -

w(h) =

2 cos u(h)'

v{h) + 2sinu(h)

2v(h)cosu(h) '

sinu(h)

v(h)cosu{h)

with initial conditions (5.1) has by Picard's theorem, a solution for
sufficiently small h which satisfies w(h) < 0 since u(0) = U and
tant/ > 0 and v(0) = V < 0 and so w(h) < 0 for small A, since
w(0) = 0. Using (3.6) it is easy to verify that for all h > 0, the
endpoint (X(h), Y(h),Φ(h)) of the curve

W v Y\ft) = = H{h)^u(h)^υ(h)^w(h)

is independent of h, i.e. dX/dh = dYjdh = dΦ/dh = 0 and so
y(/z) remains with the family /+r~~s~r~. It may be verified that
L'{h) = - 1 where L(h) = \t(h)\ + \u(h)\ + \υ(h)\ + \w(h)\ = t{h) -
u(h) - υ(h) - ty(Λ) and so y(Λ) for sufficiently small h has only
one cusp and strictly shortens Cτ\CuSy and has the same endpoints,
when τU > 0. The only other case is U = ±π/2 which is excluded
by the hypothesis of Lemma 4. D

LEMMA 5. A word of the form CC\CC\C can always be strictly
shortened to a word with at most 2 cusps.

Proof. This is the only case where a second order analysis seems
to be required, although in proving Dubins's theorem a second order
analysis appears also to be required [4, Lemma 2] although it was not
emphasized there that this was the method being used.

Thus consider the function L(t,u,v,w,z) which is the length of
an admissible CtCu\CvCw\Cz . We may assume without loss that the
p a t h i s 4 + r ί ^ v ~ r w ^ z r s o t h a t L ( t , u , υ , w , z ) = t + u - v - w + z . J

From Lemma 2(h) we learn that v = -u or else ftru/v~r~ can be"
shortened inside CC\CC and so of course the full path can also be
shortened. Similarly from Lemma 2(g) we learn W = V or else
r+/~r~4 + can be shortened. We will show that for 0 < u < π/2
that ίj = tij = -w is a saddle point rather than a minimum value
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of L under the condition that t, u, υ, w, z satisfy the endpoint
conditions. For π/2 < u we will argue directly that the length can be
shortened without increasing the number of cusps.

Case 1. 0 < u < π/2.
The conditions on t9u,v,w,z under which the path ftrufυrwfz

arrives at (x, y, φ) are:

(5.5) x = sin(z — w+v — u + t) + 2 sin(w —v + u — t)

+ 2 sin(^ -u + t) + 2 sin(w - i) + 2 sin t,

y = l - cos(z -w+v-u+ή+2 cos(w -v + u-t)

- 2 cos(i> — u + t)+ 2 cos(u - t) -2 cos t,

φ = z-w + v-u + t.

Since we can assume all of t, u, v , w, z are nonzero, we can
assume that at some w = v = —u, L(t, u,v,w,z) = t+u-v-w + z
has a minimum under all variations of t, u, υ , w , z subject only
to the constraints (5.5).

By the Lagrange multiplier theorem [6, p. 129] if (ί, u, v, w, z)
is a minimum of L(t, u, v, w, z) under the constraints (5.5) then
there are constant (multipliers) σx , σy , σφ such that

(5.6) L* = L(t,u,υ ,w , z)- σxX - σyY - σφΦ,

where X, 7 , Φ are the right sides of (5.5) respectively, has an uncon-
strained m i n i m u m at (t, u,υ ,w, z). Indeed at the point ( ίo, Mo >
^ o , WQ , zo) = (t, M , —M , —M , z) we may take

sin(^o + ι;0) COS(/Q + I Q)

(5.7) σx = : , σy =
smi o

sin(z0) + sinij

^ sm ^o
and verify that L* has zero derivative with respect to each of t, w5

t;, w , z at the point (ίo, MQ , ^o» ^o» zo) There is a 2-dimensional
tangent space to L* under the constraints (5.5). It is easy to check
that ξι = {i\9iίι,v\,wι9 z\) = ( 1 , 0 , 0 , 2 - 2 c o s ^ , 1 - 2cosi>)
and ^2 = (̂ 2 9 ^2 5 ^2 ? ̂ 2 ? ̂ 2) = ( 0 , l , l ? — 1 , — 1 ) are two linearly
independent directions that each satisfy 0 = dX = dY = dΦ if the
differential is taken in the direction of (ίz , u\, i)i, w\, i , ) , / = 1, 2 .
It is a consequence of the general theory of diίferentiable manifolds
[3], that the (conditional) Hessian of the function L(t, u, v, w, z)
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c o n s t r a i n e d b y ( 5 . 5 ) i s g i v e n b y t h e 2 x 2 q u a d r a t i c f o r m (ζ\, ξ2)
τ

d2L (ξ\, ξ2) = H w h e r e d2L i s t h e 5 x 5 u n c o n d i t i o n e d H e s s i a n
m a t r i x o f 2 n d p a r t i a l s o f L w i t h t9u9v,w,z.Itis s e e n t h a t

(5-8> * - ( * ! Z) where

(1 3 + s2cos2t;),
sin v v

4 4
H22 = : , #12 = H2\ = (1 -

smt> smΐT
Since the determinant of H is

(5.9) det(7/) = ^ - c o s ι ; ( l - cos^)
sin v

and so is negative for -π/2 < υ < 0, it follows that H has one neg-
ative and one positive eigenvalue for υ in this range. Thus it follows
that (t,u,v ,w , z) = (t9u, —u, —u, z) is a saddle point rather than
a local minimum of L when 0 < u = -v < π/2. So for w in this
range the path CC\CC\C can be shortened. An alternative proof
avoiding the general theory can be based on computing the second
order term in ε to be positive in the expansion of

L(t+ε, w+(l-cosw)ε, -w+(l-cosw)ε, -u+(l-cosu)ε, z-cosuε),

in powers of ε checking that the first order term in ε vanishes, and the
constraints all hold to order ε2 , so that along this line in εL has a local
maximum rather than a minimum at ε — 0, i.e. at (ί, u, -u, -u, z).

Cose 2. π/2 < u < π. By Fig. 1, 4} 2 /.~ / 2 = ζ^2

r-π/2 s o t h a t i n

this case we have

r r / /
'u-π/2 π/2 -π/2 -

— 't ru-πl2*π/2-πl2*-

But by Dubins's lemma [4, p. 513, Sublemma], any C+C+C+ can be
strictly shortened if M > 0, π>v>0,w>0 and so the first 3 arcs
of the last path can be shortened, and hence the whole path can be
shortened.

Case 3. u = π/2. By the same argument as in Case 2, the path
reαuces 10 tt ίπ/2r-π/2r-u*z — ^+π/2 „ + rz — *rt+π/2/rπ ^z wnicn
can again be shortened by Dubins's lemma below. D

This completes the proof of Lemma 5.
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Resuming the proof of Theorem 2, by Theorem 1 and Dubins's
theorem a sufficient set of words is those of the form

(5.3) a9a\β, o r

where α, β, γ = C,S, CC, CS, SC, CSC, CCC.

By Lemma 1 the triple C\S or S\C can be omitted and in the
proof of Theorem 1 we have seen that SC\CS, CC\CS, C | C | C 5 ,
C | C | C C , C|CCC (and their reverses by symmetry) can always be
strictly shortened or replaced by a word with fewer cusps or fewer
letters. By Lemma 5, CC\CC\C and its reverse are eliminated. It is
easy to see that the only words remaining are those in (1.2), (1.1), and
their subwords. Note that CtCuCr alone is not needed because again
by [4, p. 513, Sublemma], u > π and then Ct\Cu-2π\Cv is strictly
shorter. D

6. Extension to admissible curves. Here we show that Theorem 2
applies to all admissible curves, not just finite words. This is a simple
approximation argument.

THEOREM 3. Any admissible curve can be shortened to a word of
form (1.2).

Proof. Let γ be any admissible curve. Let wn -> γ be a sequence of
finite words converging to γ which exists by the usual approximations
of integrals by finite sums in (2.1). Let w'n be a shortening of wn of
the type described in Theorem 2. By the usual compactness argument,
w'n has a point of accumulation / which is also a word described
in Theorem 2. By continuity, / has the same end points and end
directions as γ. But L(γ') = \imL(wr

n) < lim 1,(11;,,) = L(γ). D

7. Outline of a direct proof of Dubins's theorem. By Theorem 3 it
suffices to prove that any word, that is here any finite string of C s
and S"s reduces to either CCC or CSC.

Dubins's Lemmas 1 and 2 [4] can be stated in our terms as

LEMMA 6. A proper word of the form SCS or SCC may be strictly
shortened to a CSC or a CCC.

LEMMA 7. A proper word of the form CCCC may be strictly short-
ened to a CCCy CCSC, or CSCC.
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Dubins [4] omits the proof in Lemma 6 that SCC is strictly short-
enable, so we do this case. The case SCC is equivalent to CCS
and it is no loss to assume the word is 4rusv . There are two cases
according as 0 < u < π, or π < u < 2π. In the first case consider
the family /rsr and the homotopy of paths P(h) = /t(h)ru{h)sv{h)rw{h)
where (ί(0), κ(0), v(0), w(0)) = (ί, H , v, 0) and for h > 0

(7.1) i i
v(h) = co$u(h), w(h) = sinw(Λ).

It is easy to see that the endpoint of the path is invariant using

(7.2) (x, y, φ) = (sin(ι/; + w - ί) + ^ cos(w - t) + w sin t,

cos(w + u-t)-v sin(w - t) - 2 cos ί + 1,

- w - w + t)

and since tt (O) = sinw > 0, P(h) remains in /rsr for small h. The
length L{h) of P(h) decreases since

(7.3) L{h) = ί(Λ) + ώ(Λ) + *(Λ) + w(h) = -v(Λ)(l - cos u{h)) < 0.

Finally, the homotopy hits the boundary t(h) = 0 or u(h) = 0 or
v{h) = 0 which are all of the form CSC or CCC.

In the second case, if π < u < 2π we will shrink /^uSv inside
the family / r s / . The path P(h) = /t{h)ru{h)sυ{h)^w(h) which starts at
(ί, w, v, 0) and, for A > 0

(7.4) ί(A)= -\υ{h), u{h) = -\v(h)~ sin w(A),

Ό(Λ) = 2sinw(A) + ^(A)cosw(Λ), tί (A) = -sinu(h)

had endpoints invariant in h using the formula for /rsf,

(7.5) ( t , y, 0) = (sin(tί; - u + t) + υ cos(w - t) + 2 sin(w - t)

+ 2 s in t, - c o s ( w -u + t)-v sin(u - ί)

+ 2 cos(w - ί) - 2 cos ί + 1, w - u + t).

The length L{h) of P(h) is decreasing since (7.3) holds again and
w(0) = — sin u > 0 so that P(Λ) remains in /rsf. The boundary is
finally hit at either t(h) = 0 or u{h) = 0 or v(h) = 0 and again we
find a shorter CSC or C C C . This proves Lemma 6.

Now to prove Dubins's theorem, we see that any word can be si-
multaneously reduced both in path length and in the number of its
letters unless the word contains no SCC, CCS, SCS, or CCCC.
The only words containing none of these as subwords are subwords
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of CSC and CCC. This proves Dubins's Theorem in a manner ad-
mittedly quite similar to his method except that we do not require his
Proposition 11 that all short geodesies are CSC's.

8. Explicit formulas for geodesies. We give explicit formulas for
each of the possible actual path-solutions for each of the 48 word
types on the list (1.1). (See Table 1.) Note this section is unnecessary
for the proof of the theorems but may be useful for someone who
wants to implement the actual algorithm. Although some of the 48
words have 2 solutions of the minimizing equations and this gives rise
to 68 actual formulas, we have observed empirically that only 48 (one
for each word) formulas seem to be needed in any case: i.e. some of
the formulas are no doubt spurious solutions of the equations. We
have not bothered to actually prove this but in the discussion below
merely indicate which solutions can probably be discarded.

To give explicit formulas it is simplest to use the f± , ^ , s± no-
tation in which there are 48 different words on the list (1.1) with C
replaced by / or r . However it is not necessary to give formulas for
each word on the list because there are some elementary transforms:

The formulas for say /~r + 5 + / + can be obtained from those for
/+r~s~/~ using the "timeflip" transform which interchanges +'sand
-'s. If the original path goes from ( 0 , 0 , 0 ) to (x9y9φ) then it is
clear that the timeflipped path goes from ( 0 , 0 , 0 ) to (—x, y, —φ).
Thus if we have a formula to find the arclengths t,u,v of a path of
the form 4+C/2 5«^~ fr°m ( 0 , 0 , 0 ) to an (—x, y 9 -φ) this may
be used to find the corresponding arclengths for the / ~ r + s + / + path
to (x9y9φ). Thus timeflipping allows us to eliminate all words on
the list whose first letter has a - sign.

Similarly, the formulas for say r+f~s~r~ can be obtained from
those for f+r~s~f~ using the "reflect" transform which interchanges
r's and / 's along the path. The reflected path changes (x9y9φ) to
(x, —y9 —φ)9 so to find the t, w, v for which ^/~,2s~r~ reaches
(x9y9φ) we find the corresponding quantities for ^rΰi2sΰAΓ t 0

reach (x, —y, —φ). Reflecting (and timeflipping) allows us to elimi-
nate all words on the list except those beginning with / + .

Finally, the formulas for say /~s~r~/+ can be obtained from
those for /+r~s~/~ using the "backwards" transform which follows
the path in reverse order, but with a timeflip so that the individual
segments are transversed in the same direction. This transforms the
final point (x9y9φ) to (xcosφ + y sinφ, xsinφ - ycosφ, φ) and
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so we should use the formula for /+r~s~/~ to get to {xcosφ +
y sin φ, x sin φ - y cos φ, φ) to obtain this formula for /f~s~r~f+ to
arrive at (x,y,φ). This eliminates a few more words on the list for
which we need to give formulas. The remaining 9 words are discussed
below.

In each formula the object is to move from ( 0 , 0 , 0 ) to (x,y,φ).
We write (r, θ) = R(x, y) for the polar transform rcosθ = x9

rsinθ = y, r > 0, -π < θ < π. We write φ = M{θ) if φ = θ
mod2π and - π < φ < π. The quantities T are discarded in the
formulas below and may not be equal at different usages. In each case
where there is a solution-path we give the unknown segment lengths
t, u, v, and the overall length L. We say L = oo if there is no
solution.

(8.1) 4 + 4 < + : Define (w, ί) = i?(x - sin^, y - l + c o s 0 ) ,

and set

υ = M(φ-t), L = |ί| + |M | + |ι;|.

Of course this path cannot be optimal if t or v is outside [0, π ] .

(8.2) ^Surt: Define (ux, t) = R(x + sinφ, y - 1 - cosφ).

If K? < 4, L = oc; else let w = \Ju\-4, (Γ, (9) = R(u, 2), ί =

M(ίi + 0), v = M(t -φ)9 L = \t\ + \u\ + \v\.

( 8 . 3 ) 4 + r w ~ 4 > + : D e f i n e ^ = x - s i n 0 , // = y - l

If M^ > 4, L = oo else let 4̂ = arcsin(wf /4), π/2 < A < π,

(Γ, v) =i?(2-^sinw + ηcosu, ζcosu + ηsinu),

w = M(φ + υ - ύ), L = |ί| + \u\ + \v\.

REMARK. There is another solution which we have never observed
to be optimal and so doubtless can be discarded. It is the same as (8.3)
above except that the other branch of arcsin is used, 0 < A < π/2.

(8.4) ^r~f~ : Use same formula as (8.3); same remark applies.

In each of the cases ft*r+fSur~ and ^r~ί~r^ getting to (x9y,φ)
means solving the equations for t, w, U\, v where U\ = ±u,

(8.5) x + sinφ = ζ = 2sin(t -u + u{) + 2sin(u - t) + 2sint,

y - 1 -cosφ = η = - 2 c o s ( ί - u + U\) + 2cos(w- ί) -
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We need the functions τ = τ(u, v), ω = Ω(w , v) defined for u, v £
[-π, π)

(8.6) δ = M(u-v), A = sinu - sin(5, i? = cosw - cos<5 - 1,

(T9tι)=R(ξA + ηB9ηA-ξB)9

t2 = 2 cos J - 2 cos υ - 2 cos u + 3.

If ί2 < 0, τ = Λ/(ίi + π ) , otherwise τ = Λί(ίi)ω = M(τ-w + ̂  -φ),

(8.7) 4+^V- r- : Let p = 2 f

If 0 < p < 1, set u = arccos(/?)> 0 < u < π/2, t = τ(u, -u),
u = w(u, —M) , L — \t\ + 2|t/| + |v| else L = oc.

REMARK. There is another solution which we have never observed
to be the unique optimum and so doubtless can be discarded. It is the
same as (8.7) above except that p = (2 - y/ξ2 + η2)/4.

(8.8) ^r-f-r+; Let p = (20 - ξ2 - η2)/\6.

If 0 < p < 1, set u — -arccos(/?) ? 0 < u < π/2, t = τ(w, M),

v = w(u, u); else L = oc.

(8.9) ^t+^Zπ/2sΰAΓ : Define ξ = x + sin^>, ^ = y — 1 — cos0,

If p < 2, L = oc. Else set (7\ 00 = ^ ( x / ^ 7 ? , -2) and ί -
M(θ-θχ)9 u = 2-θl9 υ = M(φ-π/2-ή, L = \t\ + π/2 + \u\ + \υ\.

(8.10) ^^Zπn
sΰrv '• Define ξ9 η, /?, # as in (8.9) and set

t = θ, u = 2-p, v =M(t + π/2-φ)9

L = \t\ + π/2 + \u\ + |ι;|.

(8.11) ^rZπ/2rΰ^Sπ/2

rv : Define ξ = x + sin φ, η = y-l-cosφ,

If p < 2, L = oo. Else set t = Λf(β - arccos(-2//?)), -π/2 < ί <
π/2. If ί < 0, L = oo. Else set M = 4 - (ξ + 2cosί)/sint and
w = M(t - φ).



392 J. A. REEDS AND L. A. SHEPP

REMARK. There is another solution which we have never observed
to be the unique optimum and so doubtless can be discarded. It is the
same as (8.11) above except that t = M(θ + arccos(-2/>)), - π / 2 <
t<π/2.

9. Additional remarks. It is perhaps more realistic to assume that
in an application the cart will not have total freedom of motion, but
there will be obstructions in its path. We have not considered the
consequences of these. It does seem reasonable to conjecture that
any optimal path γ in an obstructed plane, (i.e. where a certain open
subset C of the plane is obstructed and cannot be entered) will have
the property that any connected piece of γ disjoint from dC is of
the form (1.2), or (1.1). However, we have not proved this nor are we
even convinced that it is true. We leave it as an open problem.

Colin Mallows has formulated another more realistic problem of
similar type in which the fact that the cart has two sets of wheels and
nonzero length is respected, and obtains some partial results, but these
are less complete.

These problems make sense in higher dimensions as well but we
could solve neither the forward nor reverse case mainly because we
could not explicitly solve the algebraic equations involved in finding
the shortest CCC from a to b in R 5, i.e. with specified initial and
final coordinates and directions in 3 dimensions, and so we could not
use the computer to guess the answer analogous to the way we used it
here. We think this answer is CCC, CSC for the forward problem
but without much evidence or hope of doing the reduction because the
equations get so complicated. An interpretation for the 3-dimensional
problem is that of a plumber wanting to connect two existing pipes
with a pipe which can be bent but not too quickly so that its radius of
curvature should always be > 1. A similar problem is faced by glider
pilots.
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